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Abstract. In the worldline formalism, scalar Quantum Electrodynamics on a 2-dimensional

lattice is related to the areas of closed loops on this lattice. We exploit this relationship in

order to determine the general structure of the moments of the algebraic areas over the set

of loops that have �xed number of edges in the two directions. We show that these mo-

ments are the product of a combinatorial factor that counts the number of such loops, by a

polynomial in the numbers of steps in each direction. Our approach leads to an algorithm

for obtaining explicit formulas for the moments of low order.

Mathematics Subject Classi�cation (2010). 05A15.

Keywords. Random walks on Z2, algebraic areas, lattice QED.

1. Introduction

In a recent work [1], we have studied the short distance behavior of the one-loop

expectation value of local operators in lattice scalar quantum chromodynamics.

For this study, we used a discrete version of the worldline formalism [2, 3, 4, 5],

in which propagators are represented as a sum over all the random walks on the

lattice, that connect the two endpoints of the propagator. In this approach, the

coe�cients of the expansion in powers of the lattice spacing are related to combi-

natorial properties of these random walks. The leading coe�cient merely counts

the random walks of a certain length, but the following coe�cients are related to

areas enclosed by the random walk (for local operators, the two endpoints of the

propagator are at the same point, and therefore its worldline representation is a

sum over closed random walks). In fact, the successive terms of this expansion

can be related to the moments of the distribution of the areas. In the case of an



382 Th. Epelbaum, F. Gelis, and B. Wu

isotropic lattice (i.e. with identical lattice spacings in all directions), the results

we needed could be found in [6], in which the authors obtain the general structure

of the moments of the area distribution over the set of closed random walks of

�xed length 2n. Moreover, this paper contains explicit formulas for the moments

of order 2 and 4, that were su�cient for our purposes in the isotropic case.

However, the generalization of this expansion to the case of an anisotropic

lattice (i.e. with di�erent lattice spacings in each direction) requires the moments

of the area over the set of closed random walks that make n1 steps in the direction

C1 and n2 steps in the direction C2 (and also n1; n2 steps in the directions

�1; �2). Some numerical explorations and guesswork suggested a very simple

form for these moments, namely the product of the number of such closed walks

times a polynomial in n1; n2. Then, by taking this structure for granted, we

obtained the expressions of these polynomials for the moments 2; 4; 6; 8 and 10

by making an exhaustive list of all the closed random walks up to the length 2n D

20. The purpose of the present paper is to prove these formulas, by exploiting

the relationship between the distribution of areas and Quantum Electrodynamics

(QED) on a 2-dimensional lattice.

Let us consider an in�nite planar square lattice, and denote by �n1;n2
the set

of the closed loops (with a �xed base point to avoid considering loops that are

identical up to a translation) drawn on the edges of this lattice, that make 2n1

hops in the directions ˙1 and 2n2 hops in the directions ˙2. We are interested

in the distribution of the algebraic areas enclosed by the loops in �n1;n2
. In this

paper, we prove that

X


2�n1;n2

.Area .
//2l D
.2.n1Cn2//Š

n1Š2n2Š2
P2l .n1; n2/ ; (1)

where P2l is a symmetric polynomial in n1; n2 of degree 2l . Note that the

combinatorial factor .2.n1 C n2//Š=.n1Š2n2Š2/ is nothing but the cardinal of the

set �n1;n2
. Therefore, the polynomial P2l .n1; n2/ can be interpreted as the mean

value of .Area .
//2l over this set. Our approach provides an algorithm for

calculating these polynomials explicitly. The �rst two non-zero moments involve

the polynomials

P2.n1; n2/ D
n1n2

3
(2a)

and

P4.n1; n2/ D
n1n2.7n1n2 � .n1Cn2//

15
: (2b)

(The polynomials that enter in (1) up to 2l � 12 are listed at the end of Section 3.)
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Remark. By summing the expressions in (2) over all n1 C n2 D n, we recover

the results of [6]

X

n1Cn2Dn

.2.n1Cn2//Š

n1Š2n2Š2
n1n2

3
D

�2n

n

�2 n2.n � 1/

6.2n � 1/

and
X

n1Cn2Dn

.2.n1Cn2//Š

n1Š2n2Š2
n1n2.7n1n2 � .n1Cn2//

15

D
�2n

n

�2 n3.n � 1/.7n2 � 18n C 13/

60.2n � 1/.2n � 3/
:

The rest of this paper is devoted to a proof of (1) and (2). Our approach is based

on the formulation of lattice scalar quantum electrodynamics in the worldline

formalism. When this formulation is used in two dimensions, in the presence

of a transverse magnetic �eld, the propagator of the scalar particle can be viewed

as a generating function for the distribution of the areas of random loops on a

square lattice. In Section 2, we de�ne more precisely the model and recall this

correspondence. We also explain how to perform an expansion in powers of the

interactions with the magnetic �eld. In the section 3, we prove the main result,

namely (1). Our proof leads to an algorithm to obtain explicit expressions for the

polynomialP2l , that we have implemented in order to obtain (2) and several higher

moments. A few intermediate calculations are explained in Appendix A, and

some basic links between our approach and the Hofstadter-Harper Hamiltonian

are outlined in Appendix B.

2. Lattice scalar QED in two dimensions

2.1. Area distribution of random walks from lattice QED. Consider the fol-

lowing operator, acting on complex valued functions on Z2:

X

.k;l/2Z2

Dij;kl fkl �
2fij � U1;ij fiC1j � U �

1;i�1j fi�1j

a2
1

C
2fij � U2;ij fij C1 � U �

2;ij �1fij �1

a2
2

:

(3)

In Quantum Electrodynamics, this operator is the square of the discrete

2-dimensional covariant derivative1 in two dimensions, acting on a scalar �eld.

1 When U1;ij D 1 and U2;ij D 1, this operator is just the opposite of the discrete Laplacian.
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Here, we choose an anisotropic lattice, with lattice spacings a1 and a2 in the two

directions. The coe�cients U1;ij and U2;ij are complex phases called “link vari-

ables”. Their name comes from the fact that they live on the edges of the lat-

tice, while the function fij lives on the nodes of the lattice. The link variables

have a direction and an orientation: in the notation U1;ij , the index 1 is the direc-

tion of the link, and the coordinates ij denote the starting point of the oriented

link. Thus, U1;ij lives on the edge that connects the points .i; j / and .i C 1; j /.

The complex conjugate of a link variable lives on the same link but has the oppo-

site orientation.

An interesting object is the inverse Gij;kl of this operator, which in QED is

nothing but the propagator of a particle in a given external electromagnetic �eld.

It is de�ned by
X

.k;l/2Z2

Dij;kl GklImn D ıimıjn: (4)

In the worldline formalism, this inverse can be written as a sum over closed random

walks (see [1]). When evaluated with identical endpoints (we take the point of

coordinates .0; 0/, but this choice is irrelevant), its expression reads

G00;00 D
a2

4

1
X

n1;n2D0

�h1

4

�2n1
�h2

4

�2n2 X


2�n1;n2

Y

`2


U`; (5)

where
Q

`2
 U` denotes the product of the link variables encountered along the

closed path 
 . We have also de�ned

2

a2
�

1

a2
1

C
1

a2
2

and h1;2 �
a2

a2
1;2

: (6)

By using an anisotropic lattice, we can isolate closed random walks with a

given number of steps in each direction by selecting a given term in the Taylor

series of the left hand side in powers of h1 and h2. In other words, the order in

h1 and h2 counts the numbers of steps made by the random walk in the directions

˙1 and ˙2. In order to obtain an explicit connection to the area enclosed by the

paths, we need to specialize the link variables in such a way that they represent a

magnetic �eld transverse to the plane of the lattice. By Gauss’s law, the product
Q

`2
 U` will then become the exponential of the magnetic �ux through the loop


 , and will give direct access to the area. For a given transverse magnetic �eld B ,

there are in fact in�nitely many ways to represent it in terms of link variables, due
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to the gauge invariance of electrodynamics.2 The choice that we adopt in the rest

of this paper is the Landau gauge:

U1;ij � 1; U2;ij � eiBa1a2i : (7)

It is easy to check that
Y

`2


U` D eiBa1a2 Area.
/; (8)

where Area .
/ is the algebraic area enclosed by the path 
 , measured as a number

of elementary lattice plaquettes. Note that this equation would be true with any

other gauge equivalent choice for the link variables,3 since the left hand side is

a gauge invariant quantity. In the rest of the paper, we denote � � Ba1a2 the

magnetic �ux through one elementary plaquette of the lattice.

Knowing the left hand side of (5) as a function of �; h1;2 would therefore give

access to the full distribution of areas, since we can write

X


2�n1;n2

ei� Area.
/ D

1
X

lD0

.�1/l

.2l/Š
�2l

X


2�n1;n2

.Area.
//2l : (9)

Only the even moments are non-zero, since one gets the opposite algebraic area

by reversing the path 
 . Note that this correspondence is equivalent to the well-

known relationship between the distribution of areas and the traces of the powers

of the Hofstadter-Harper Hamiltonian [7, 8, 9].

2.2. Rules for the expansion in powers of the magnetic �eld. In terms of the

rescaled lattice spacings de�ned in (6), the operator D reads

a2
X

.k;l/2Z2

Dij;klfkl � 4fij � h1.fiC1j C fi�1j / � h2.ei�ifij C1 C e�i�ifij �1/;

(10)

where we have now specialized to the gauge choice of (7). This operator can be

separated into a vacuum part and a term due to the interactions with the magnetic

�eld,

D D D.0/ � � ; (11)

2 Di�erent gauge choices correspond to di�erent ways of writing the algebraic area inside

a closed loop 
 as a contour integral. The Landau gauge used in this paper amounts to using

the formula
H


 x dy. Gauge transformations change the integrand into x dy C d�.x; y/, which

leaves the area unchanged since the added term is a total derivative.

3 This is trivially seen by recalling that gauge transformations of the link variables read

U1;ij �! �ij U1;ij ��
iC1j ; U2;ij �! �ij U2;ij ��

ij C1:
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with

a2
X

.k;l/2Z2

D
.0/

ij;kl
fkl � 4fij � h1.fiC1j C fi�1j / � h2.fij C1 C fij �1/

and

a2
X

.k;l/2Z2

�ij;klfkl � h2..ei�i � 1/fij C1 C .e�i�i � 1/fij �1/:

Let us �rst consider the vacuum case, in order to establish the notations.

We consider an in�nite lattice. In this case, the propagator can be conveniently

represented in Fourier space by the following formula,

G
.0/

ij;kl
D a2

Z 2�

0

dp1dp2

.2�/2

ei.p1.i�k/Cp2.j �l//

4 � 2.h1 cos.p1/ C h2 cos.p2//
: (12)

By evaluating this expression with equal endpoints, i D k; j D l , and expanding

in powers of h1;2, we can easily recover (5) for a vanishing �ux � D 0. For this, we

only need to recall the number of random loops that make n1 hops in the direction

C1 and n2 hops in the direction C2:

X


2�n1;n2

1 D
.2.n1 C n2//Š

n1Š2n2Š2
: (13)

In order to go beyond this trivial result, we must include the e�ect of the

interaction term �. The inverse of (11) can be written as a formal series

G D G.0/ C G.0/�G.0/

„ ƒ‚ …

G.1/

C G.0/�G.0/�G.0/

„ ƒ‚ …

G.2/

C � � � D

1
X

kD0

G.k/ : (14)

Note that this is not exactly an expansion in powers of �, since � is itself an in�nite

series in �. However, since � starts at the order �, we need only to calculate the

terms up to the order �2l if we are interested in the order �2l .

Note that, although the free propagator depends on a single momentum

p � .p1; p2/, the full propagator carries di�erent momenta at its two endpoints,

because of the interaction with the magnetic �eld. Thus, equation (12) is replaced

by

Gij;kl D

Z 2�

0

dp1dp2

.2�/2

dp0
1dp0

2

.2�/2
ei.p1i�p0

1
kCp2j �p0

2
l/ zG.p; p0/; (15)

where zG.p; p0/ is the full propagator in momentum space. Here, we de�ne the

momenta in such a way that p enters at one endpoint and p0 exits at the other
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endpoint of the propagator. The o�-diagonal momentum components of the

propagator are inherited from those of the interaction term,

a2 z�.p; p0/ D .2�/2h2Œeip2ı.p0
1 � p1 � �/ C e�ip2ı.p0

1 � p1 C �/

� 2 cos.p2/ı.p0
1 � p1/�ı.p0

2 � p2/:
(16)

With the gauge choice that we have adopted, the interactions with the magnetic

�eld always conserve the component p2 of the momentum. Therefore, the full

propagator zG.p; p0/ is itself proportional to ı.p0
2 � p2/. In contrast, the magnetic

�eld can change the component p1, but only in discrete increments ˙� (or 0 if

we pick the third term in (16)). For bookkeeping purposes, it is useful to write z�

as a sum of three terms,

z� �
X

�2¹�1;0;C1º

z��

a2 z�� � .2�/2h2ı.p0
1 � .p1 C ��// ı.p0

2 � p2/ V�.p2/;

V˙1.p2/ � e˙ip2 ; V0.p2/ � �2 cos.p2/:

The index � denotes the increment (in units of �) of the momentum p1 caused by

the interaction. Note that

V�1 C V0 C VC1 D 0 ; (17)

which implies that each insertion of the interaction term increases the order in �

by at least one unit.

2.3. Term of order �k. We can organize the expression of zG.k/ as follows:

zG.k/ D
X

.�1;:::;�k/2¹�1;0;C1ºk

zG.kI�1:::�k/;

zG.kI�1:::�k/ � zG.0/ z��1
zG.0/ z��2

: : : z��k
zG.0/;

where zG.0/ is the Fourier transform of the free propagator, that can be read o�

from (12). Tracking explicitly the momentum �ow, this can be written as

zG.kI�1:::�k/ D hk
2

zG.0/.p/ V�1
.p2/ zG.0/.p C �1�/ : : : V�k

.p2/ zG.0/.p C �k�/;

(18)

where we denote

� � .�; 0/; �i �

i
X

j D1

�j .and �0 � 0/: (19)
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The contribution of this term to the left hand side of (5) reads

G
.kI�1:::�k/
00;00 D

a2

4

Z
dp1dp2

.2�/2

4 hk
2

4 � 2.h1 cos.p1/ C h2 cos.p2//

V�1
.p2/

4�2.h1 cos.p1C�1�/Ch2 cos.p2//

� � �
V�k

.p2/

4�2.h1 cos.p1C�k�/Ch2 cos.p2//
:

In order to make the connection with (5), let us expand the integrand in powers

of h1;2:

Integrand

D .�1/n0

X

.a0;:::;ak ;b0;:::;bk/2N2kC2

.a0 C b0/Š

a0Šb0Š
� � �

.ak C bk/Š

akŠbkŠ

�h1

4

�a0C���Cak
�h2

4

�kCb0C���Cbk

.2 cos.p2//b0C���CbkCn0 ei.nC�n�/p2

.2 cos.p1//a0.2 cos.p1 C �1�//a1 : : : .2 cos.p1 C �k�//ak ;

where we denote

n�;0;C � Card¹1 � i � k j �i D �1; 0; C1º: (20)

(Note that n� C n0 C nC D k.) The integral over p2 is of the form

Z 2�

0

dp2

2�
.2 cos p2/meinp2 D

X

pCqDm

mŠ

pŠqŠ
ın;p�q D

mŠ
�m C n

2

�

Š
�m � n

2

�

Š

: (21)

The �nal expression is valid only if jnj � m and m; n have the same parity, other-

wise the integral is zero. Therefore, m C n and m � n should both be even. Since

m D n0 C
P

bi and n D nC � n�, this implies that k C
P

bi should be even. This

was of course expected for a closed random walk, since k C
P

bi is the number
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of steps in the directions ˙2 (see the order in h2 in (20)). For the integral over p1,

we need
Z 2�

0

dp1

2�
.2 cos.p1 C �0�//a0 : : : .2 cos.p1 C �k�//ak

D
X

˛0Cˇ0Da0

� � �
X

˛kCˇkDak

a0Š

˛0Šˇ0Š
� � �

akŠ

˛kŠˇkŠ

ı˛0C���C˛k ;ˇ0C���Cˇk
ei�.�0.˛0�ˇ0/C���C�k.˛k�ˇk//:

Wrapping everything together, we obtain

G
.kI�1:::�k/
00;00

D
a2

4
.�1/n0

X

n1;n2

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

kCb0C���CbkD2n2

.˛0 C ˇ0 C b0/Š

˛0Šˇ0Šb0Š
� � �

.˛k C ˇk C bk/Š

˛kŠˇkŠbkŠ

�h1

4

�2n1
�h2

4

�2n2 .2n2 � nC � n�/Š

.n2 � nC/Š.n2 � n�/Š
ei�.�0.˛0�ˇ0/C���C�k.˛k�ˇk//;

(22)

where we have introduced

2n1 �

k
X

iD0

ai and 2n2 � k C

k
X

iD0

bi : (23)

The sum over the bi ’s can be performed easily by using the following identity

(see Appendix A.1)

X

b0C���CbkDB

.a0 C b0/Š

b0Š
� � �

.ak C bk/Š

bkŠ
D a0Š : : : akŠ

.A C B C k/Š

BŠ.A C k/Š
; (24)

where A � a0 C � � � C ak. Therefore, equation (22) can be rewritten as

G
.kI�1:::�k/
00;00 D

a2

4

X

n1;n2

�h1

4

�2n1
�h2

4

�2n2 .2.n1Cn2//Š

n1Š2n2Š2
FkI�1:::�k

.n1; n2I �/; (25)

with

FkI�1:::�k
.n1; n2I �/

� .�1/n0
n1Š2

.2n1Ck/Š

n2Š2

.2n2�k/Š

.2n2�nC�n�/Š

.n2�nC/Š.n2�n�/Š

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
ei�.�0.˛0�ˇ0/C���C�k.˛k�ˇk//:

(26)
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In this formula, the sum over the ˛i ’s and ˇi ’s, as well as the combinatorial factors

under this sum, are symmetric under the exchange ˛i $ ˇi , while the argument

of the exponential is antisymmetric. Therefore, FkI�1:::�k
.n1; n2I �/ is even in �.

3. Moments of the distribution of areas

3.1. Terms of order �0. As a check, one can �rst evaluate (26) for � D 0.

For this, we need the following sum (see Appendix A.2)

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
D

.2n1 C k/Š

kŠn1Š2
; (27)

which leads to

FkI�1:::�k
.n1; n2I 0/ D

.�1/n0

kŠ

n2Š2

.2n2�k/Š

.2n2�nC�n�/Š

.n2�nC/Š.n2�n�/Š
: (28)

When summing over all the possible assignments of �i in ¹�1; 0; C1º, we obtain

n2Š2

kŠ.2n2 � k/Š

X

.�1;:::;�k/

2¹�1;0;C1ºk

.�1/n0
.2n2�nC�n�/Š

.n2�nC/Š.n2�n�/Š
D 0 if k � 1; (29)

(see Appendix A.3) that vanishes as expected since the interaction terms do not

contribute to the �-independent part of the result.

3.2. Terms of order �2. In order to obtain the terms that are quadratic in the

magnetic �ux, we need to calculate the sum

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
Œ�1.˛1 � ˇ1/ C � � � C �k.˛k � ˇk/�2

D
X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ

h k
X

iD1

�2
i .˛i � ˇi /

2

C
X

i 6Dj

�i�j .˛i � ˇi /. j̨ � ǰ /
i

:
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The terms that appear in the right hand side involve sums of one of the following

types (see Appendices A.4 and A.5),

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
.˛i � ˇi /

2 D
2kn1

.k C 2/Š

.2n1 C k/Š

n1Š2
; (30)

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
.˛i � ˇi /. j̨ � ǰ / D �

2n1

.k C 2/Š

.2n1 C k/Š

n1Š2
;

(31)

(i 6D j in the second equation) and we obtain

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
Œ�1.˛1 � ˇ1/ C � � � C �k.˛k � ˇk/�2

D
.2n1 C k/Š

n1Š2
2n1

.k C 2/Š

h

k

k
X

iD1

�2
i �

X

i 6Dj

�i �j

i

:

Since the expansion in �k is in fact an expansion in powers of e˙i� � 1, it is a

priori obvious that the terms of order �2 can only appear in the orders k D 1 and

k D 2. This corresponds to a fairly small number of terms (3 for k D 1 and 32 for

k D 2) that can be summed by hand to obtain

FkD0.n1; n2I �/ D 1;

X

�12¹�1;0;C1º

FkD1I�1
.n1; n2I �/ D �

�2

2Š

4n1n2

3Š
C O.�4/;

X

.�1;�2/2¹�1;0;C1º2

FkD2I�1�2
.n1; n2I �/ D C

�2

2Š

8n1n2

4Š
C O.�4/;

so that the total up to the order �2 reads

X

k�2

X

.�1;:::;�k/2¹�1;0;C1ºk

FkI�1:::�k
.n1; n2I �/ D 1 �

�2

2Š

n1n2

3
C O.�4/:

From this formula, we can read out the second moment of the distribution of areas,

X


2�n1;n2

.Area .
//2 D
.2.n1Cn2//Š

n1Š2n2Š2
n1n2

3
;

which ends the proof of the �rst of (2).



392 Th. Epelbaum, F. Gelis, and B. Wu

3.3. Moment of order 2l

3.3.1. General structure. Let us now consider the general case of the terms of

arbitrary (but even) order �2l . Now, the sum we must calculate is

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
Œ�1.˛1 � ˇ1/ C � � � C �k.˛k � ˇk/�2l

D
X

l1C���ClkD2l

.2l/Š

l1Š : : : lkŠ
�

l1

1 : : : �
lk

k

X

˛0C���C˛kDn1

ˇ0C���CˇkDn1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ

k
Y

iD1

.˛i �ˇi /
li

„ ƒ‚ …

Cl1:::lk
.n1/

:

(32)

In order to evaluate the sum underlined in the last line, we proceed as in Appen-

dix A.4. First, we de�ne a generating function

Hl1:::lk
.x; y/ �

X

n1;n0
1

�0

xn1yn0
1

X

˛0C���C˛kDn1

ˇ0C���CˇkDn0
1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ

k
Y

iD1

.˛i � ˇi /
li :

The desired quantity is the coe�cient of .xy/n1 in the Taylor expansion of this

function. Following the Appendices A.4 and A.5, this function is also equal to

Hl1:::lk
.x; y/ D

1

1 � x � y

k
Y

iD1

h

.x@x � y@y/li
1

1 � x � y

i

:

After evaluating the derivatives, the generating function takes the form

Hl1:::lk
.x; y/ D

Al1
.x; y/Al2

.x; y/ : : : Alk
.x; y/

.1 � x � y/1CkC2l
; (33)

where the An.x; y/ are polynomials de�ned iteratively by

A0.x; y/ D 1;

AnC1.x; y/ D Œ.n C 1/.x � y/ C .1 � x � y/.x@x � y@y/�An.x; y/:
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The degree of An is thus equal to n, and the product in the numerator of (33) can

be expanded as
k

Y

iD1

Ali
.x; y/ D

X

mCn�2l

Amn.¹liº/x
myn:

Each term in this sum gives the following contribution to the coe�cient of .xy/n1

in the Taylor expansion of the generating function:

xmyn

.1 � x � y/1CkC2l
D � � � C

.2n1 C k C 2l � m � n//Š

.k C 2l/Š .n1 � m/Š.n1 � n/Š
.xy/n1 C � � � :

Let us combine Cl1:::lk
.n1/ with the other factors that depend on n1 in (26), at the

exception of the factor .2.n1 C n2//Š=.n1Š2n2Š2/,

P
.k/

l1:::lk
.n1/

�
n1Š2

.2n1Ck/Š
Cl1:::lk

.n1/

D
1

.kC2l/Š

X

mCn�2l

Amn.¹liº/
n1Š

.n1�m/Š
„ ƒ‚ …

deg: m

n1Š

.n1�n/Š
„ ƒ‚ …

deg: n

.2n1CkC2l �m�n//Š

.2n1Ck/Š
„ ƒ‚ …

deg: 2l�m�n

:

(34)

The three underlined factors are polynomials in n1, of respective degrees m, n and

2l � m � n, and therefore P
.k/

l1:::lk
.n1/ is also a polynomial in n1 whose degree

is bounded by 2l (at this level of the discussion, it is not possible to see the

cancellations that may reduce the �nal degree when we sum on m; n).

Let us now focus on the dependence on n2, and combine all the n2-dependent

factors into the following quantity, except the factor .2.n1 C n2//Š=.n1Š2n2Š2/,

Q
.k/

l1:::lk
.n2/

�
X

.�1;:::;�k/2¹�1;0;C1ºk

.�1/n0

h k
Y

iD1

�
li

i

i n2Š

.n2�nC/Š
„ ƒ‚ …

deg: nC

n2Š

.n2�n�/Š
„ ƒ‚ …

deg: n�

.2n2� kCn0/Š

.2n2�k/Š
„ ƒ‚ …

deg: n0

;

(35)

which is a sum of products of three polynomials in n2, of respective degrees nC,

n� and n0 (the total degree is thus k). Therefore, Q
.k/

l1:::lk
.n2/ is a polynomial

in n2 whose degree is bounded by k (again, cancellations that may decrease the

degree when summing over the �i ’s are beyond the reach of this argument – see

Section 3.3.2).
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In order to obtain the moment 2l of the distribution of areas, we just need to

sum4 on 1 � k � 2l and for each k on the partitions l1 C � � �C lk D 2l . This leads

to the following expression for the 2l-th moment:

X


2�n1;n2

.Area .
//2l D
.2.n1Cn2//Š

n1Š2n2Š2
P2l .n1; n2/;

where P2l is a polynomial in n1; n2 de�ned as

P2l .n1; n2/ �
X

1�k�2l

l1C���ClkD2l

.2l/Š

l1Š : : : lkŠ
P

.k/

l1:::lk
.n1/ Q

.k/

l1:::lk
.n2/: (36)

The above counting only provides an upper bound 4l for the total degree of this

polynomial. However, the asymptotic behavior of these moments for large random

loops is known, since their area grows like their perimeter: this implies that the

degree should in fact be exactly 2l . In addition, this polynomial should obviously

be symmetric in n1;2. This last property is non trivial in our approach, since the

choice of the gauge in which we have represented the magnetic �eld breaks the

manifest symmetry between the two directions of space.

3.3.2. Degree of Q
.k/

l1:::lk

.n2/. Starting from the expression (35) and expanding

the factors �
li

i , we see that Q
.k/

l1:::lk
.n2/ is a linear combination of the polynomials

S
.k/

�1:::�k
.n2/

�
X

.�1;:::;�k/2¹�1;0;C1ºk

.�1/n0

h k
Y

iD1

�
�i

i

i n2Š

.n2 � nC/Š

n2Š

.n2 � n�/Š

.2n2 � k C n0/Š

.2n2�k/Š
;

(37)

where the �i are integers � 0, such that

k
X

iD1

�i D

k
X

iD1

li D 2l :

(This follows from the fact that the right hand side of (35) is homogeneous in

the �i ’s.)

4 Note that �
l1

1 : : : �
lk

k
is a homogeneous polynomial of degree 2l in the �i ’s. If k > 2l,

some of the �i ’s must be absent in each monomial of this polynomial. By summing over the

three values �1; 0; C1 of any of the missing �i ’s, one gets zero (see the subsection 3.3.2).
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Firstly, one can prove that S
.k/

�1:::�k
.n2/ D 0 if any of the �i ’s is zero. Let us

assume for instance that �k D 0, and introduce the notation

Qn�;0;C � Card¹1 � i � k � 1 j �i D �1; 0; C1º;

so that

n� D Qn� C 1; n0;C D Qn0;C if �k D �1;

n0 D Qn0 C 1; n�;C D Qn�;C if �k D 0;

nC D QnC C 1; n�;0 D Qn�;0 if �k D C1:

Then, the sum over the three values of �k contains a factor

X

�k2¹�1;0;C1º

.�1/n0
.2n2�nC�n�/Š

.n2 � nC/.n2 � n�/Š

D .�1/ Qn0
.2n2 � k C Qn0/Š

.n2 � QnC/Š.n2 � Qn�/Š
¹.n2 � Qn�/ � .2n2 � QnC � Qn�/ C .n2 � QnC/º

D 0:

(Notice that Qn� C Qn0 C QnC D k � 1.)

From now on, we need only to consider the situation where all the �i ’s are

strictly positive. First, note that since the �i ’s are non-zero, we can exclude �i D 0

from the sum in (37). Let us assume that ke of the �i ’s are even (� 2) and that ko

of them are odd (ke C ko D k). Without loss of generality, we can assume that

�1; : : : ; �ko are odd and �koC1; : : : ; �k are even. If �k is even, it is easy to check

that

S
.k/

�1:::�k
.n2/ D .2n2 � k C 1/ S

.k�1/

�1:::�k�1
.n2/

by performing explicitly the sum over �k D ˙1. By iterating this formula, we can

eliminate all the even �i ’s to obtain

S
.k/

�1:::�k
.n2/ D

.2n2 � k C ke/Š

.2n2 � k/Š
S

.ko/

�1:::�ko
.n2/: (38)

We need now to examine (37) in the case where all the �i ’s are odd, in order

to evaluate the last factor in the right hand side of the previous equation. When �

is odd and � D ˙1, we have �� D �. Therefore,

�
�1

1 : : : �
�o

ko
D �1 : : : �ko D .�1/no�;

where we denote

no˙ � Card¹1 � i � ko j �i D ˙1º:
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Thus, we have

S
.ko/

�1:::�ko
.n2/ D

X

.�1;:::;�ko /2¹�1;C1ºko

.�1/no�
n2Š

.n2�noC/Š

n2Š

.n2�no�/Š
: (39)

Since the right hand side depends on the �i ’s only via no˙, we can rewrite this as

S
.ko/

�1:::�ko
.n2/ D

X

noCCno�Dko

koŠ

noCŠno�Š
.�1/no�

n2Š

.n2�noC/Š

n2Š

.n2�no�/Š

D

8

ˆ
<

ˆ
:

0 if ko is odd,

.�1/p .2p/Š

pŠ

n2Š

.n2 � p/Š
if ko D 2p is even.

(40)

Note that since
Pk

iD1 �i D 2l is even, the number ko of odd �i ’s is also even, and

we are in the second case. By counting the powers of n2 in (38) and (40), we see

that

deg.S
.k/

�1:::�k
/ D ke C

ko

2
:

Given our assumption that none of the �i ’s is zero, this leads to5

deg.S
.k/

�1:::�k
/ D

ko

2
C ke �

1

2

k
X

iD1

�i D l:

Since the polynomial Q
.k/

l1:::lk
.n2/ is a linear combination of the S

.k/

�1:::�k
.n2/,

its degree is at most l . By symmetry, the maximum degree in the variable n1

in the moment of order 2l is also l .

3.3.3. Explicit results for 2 < 2l � 12. The proof of the general structure

of the moment of order 2l also provides a straightforward algorithm to calculate

explicitly the polynomial P2l .n1; n2/. Let us mention an important improvement

over (36), based on the fact that the polynomial P
.k/

l1:::lk
.n1/ is invariant under the

permutations of ¹l1; : : : ; lkº. One can therefore arrange the partitions ¹l1; : : : ; lkº

into classes whose elements are identical up to a permutation, and compute

P
.k/

l1:::lk
.n1/ only once for each class. For each class, the sum over the members of

the class can be introduced inside the calculation of Q
.k/

l1:::lk
.n2/, where it becomes

5 If k � l, the largest degree is realized when �1; : : : ; �k are all even, so that ko D 0; ke D k

and the degree is at most k in this case. Therefore, the degree of S
.k/

�1:::�k
is in fact bounded by

Min .k; l/.
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the innermost sum. For small l up to 2l D 12, it leads to the following expressions

(we have arranged them in terms of the elementary symmetric polynomials):

P4.n1; n2/ D
n1n2.7n1n2 � .n1 C n2//

15
;

P6.n1; n2/ D
n1n2

21
.31.n1n2/2 � 15.n1n2/.n1 C n2/

C 2.n1 C n2/2 � .n1 C n2//;

P8.n1; n2/ D
n1n2

15
.127.n1n2/3 � 134.n1n2/2.n1 C n2/

C 53.n1n2/.n1 C n2/2 � 6.n1 C n2/3 � 22.n1n2/.n1 C n2/

C 8.n1 C n2/2 � 3.n1 C n2//;

P10.n1; n2/ D
n1n2

33
.2555.n1n2/4 � 4778.n1n2/3.n1 C n2/

C 3745.n1n2/2.n1 C n2/2 � 1282.n1n2/.n1 C n2/3

C 120.n1 C n2/4 � 1444.n1n2/.n1 C n2/C1438.n1n2/.n1 C n2/2

� 300.n1 C n2/3 � 503.n1n2/.n1 C n2/ C 270.n1 C n2/2

� 85.n1 C n2//;

(41)

and

P12.n1; n2/ D
1414477.n1n2/6

1365
�

197569.n1n2/5.n1 C n2/

65

C
5381569.n1n2/4.n1 C n2/2

1365
�

2015366.n1n2/4.n1 C n2/

1365

�
1190473.n1n2/3.n1 C n2/3

455
C

19486.n1n2/3.n1 C n2/2

7

�
1321279.n1n2/3.n1 C n2/

1365
C

1082842.n1n2/2.n1 C n2/4

1365

�
321112.n1n2/2.n1 C n2/3

195
C

372679.n1n2/2.n1 C n2/2

273

�
82664.n1n2/2.n1 C n2/

195
�

5528.n1n2/.n1 C n2/5

91

C
22112.n1n2/.n1 C n2/4

91
�

175514.n1n2/.n1 C n2/3

455

C
384196.n1n2/.n1 C n2/2

1365
�

21421.n1n2/.n1 C n2/

273
: (42)
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Two simple properties are satis�ed by all these polynomials:

P2l .n1; 0/ D P2l .0; n2/ D 0 and P2l .1; 1/ D
1

3
: (43)

The �rst one is a consequence of the fact that if n1 or n2 is zero, then all the closed

paths one can construct have a vanishing area. The second one follows from the

fact that for n1 D n2 D 1, all the closed paths have area �1, 0 or C1, and therefore

contribute equally to all the even moments.

The practical limitations of this algorithm are the growth of the number of

terms that need to be summed, and the dramatic cancellations that occur among

these terms: the intermediate calculations contain polynomials with rational co-

e�cients whose representation involves very large integers, while the �nal result

has a rather moderate complexity. This suggests that there may be a better way to

organize the calculation, that would help avoiding these cancellations.

4. Conclusions

In this paper, we have used the worldline representation of scalar QED lattice

propagators in two dimensions in order to obtain the general structure of the

moments of the distribution of the areas of closed random walks that make �xed

number of steps in the two directions. We �nd that these moments are the product

of the number of such random walks, times a polynomial in the number of steps

made in each direction. The derivation of this formula also provides an algorithm

to obtain this polynomial explicitly (although this is practical only for moments

of low order).

In this approach, one must choose a “gauge” to represent the transverse mag-

netic �eld whose �ux measures the areas, and there are in�nitely many ways of

doing this. Although the �nal result – in particular the polynomials P2l – is gauge

invariant, each gauge choice may lead to an alternative to (34), (35) and (36) for

representing this polynomial, thereby potentially providing a more e�cient way

of computing it.

Appendices

A. Combinatorial identities

A.1. Derivation of (24). Let us consider the following function,

F.x/ �
X

B�0

xB
X

b0C���CbkDB

.a0 C b0/Š

b0Š
� � �

.ak C bk/Š

bkŠ
:
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By construction, the left hand side of (24) is the B-th Taylor coe�cient of F.x/.

The sum on B unconstrains the sums over b0; b1 : : : bk , so that we can write

F.x/ D

k
Y

iD0

� X

b�0

xb .ai C b/Š

bŠ

�

D

k
Y

iD0

ai Š

.1 � x/1Cai

D
a0Š : : : akŠ

.1 � x/1CkCA
;

where A � a0 C � � � C ak . The Taylor coe�cient of order B can then be obtained

as F .B/.0/=BŠ, which gives immediately the right hand side of (24).

A.2. Derivation of (27). Consider the function

G.x; y/ �
X

n1;n0
1

�0

xn1yn0
1

X

˛0C���C˛kDn1

ˇ0C���CˇkDn0
1

.˛0 C ˇ0/Š

˛0Šˇ0Š
� � �

.˛k C ˇk/Š

˛kŠˇkŠ
:

The left hand side of (27) is the coe�cient of .xy/n1 in the Taylor expansion of

G.x; y/. This function can be rewritten as

G.x; y/ D
� X

˛;ˇ�0

x˛yˇ .˛ C ˇ/Š

˛ŠˇŠ

�1Ck

D
1

.1 � x � y/1Ck
: (44)

The right hand side of (27) is then obtained as Œ@
n1
x @

n1
y G.x; y//=n1Š2�x;yD0.

A.3. Derivation of (29). In (29), we need to perform the sum over the 3k

possible assignments for the indices �1; : : : ; �k. However, the summand depends

on these indices only via the numbers n�; n0; nC de�ned in (20). Therefore, the

sum over the �i ’s can be rewritten as follows:

X

.�1;:::;�k/2¹�1;0;C1ºk

. � � � / D
X

n�Cn0CnCDk

kŠ

n�Šn0ŠnCŠ
. � � � /:

(In the right hand side, the combinatorial factor counts the number of assignments

of the �i ’s that lead to a given triplet .n�; n0; nC/.) Therefore, the sum that appears
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in the right hand side of (29) is equal to

X

.�1;:::;�k/2¹�1;0;C1ºk

.�1/n0
.2n2�nC�n�/Š

.n2�nC/Š.n2�n�/Š

D kŠ

k
X

n0D0

.�1/n0

n0Š

.2n2 C n0 � k/Š

n2Š2

X

n�CnCDk�n0

n2Š

nCŠ.n2 � nC/Š

n2Š

n�Š.n2 � n�/Š

„ ƒ‚ …

.2n2/Š
.k�n0/Š .2n2Cn0�k/Š

D
.2n2/Š

n2Š2

k
X

n0D0

.�1/n0
kŠ

n0Š.k � n0/Š
/ .1 � 1/k

D 0 if k � 1:

A.4. Derivation of (30). Consider the function

H.x; y/ �
X

n1;n0
1

�0

xn1yn0
1

X

˛0C���C˛kDn1

ˇ0C���CˇkDn0
1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
.˛k � ˇk/2:

The left hand side of (30) is the coe�cient of .xy/n1 in the Taylor expansion of

H.x; y/. Using some results of Section A.2, we �rst obtain

H.x; y/ D
1

.1 � x � y/k

X

˛;ˇ�0

.˛ C ˇ/Š

˛ŠˇŠ
.˛ � ˇ/2 x˛yˇ :

The remaining sum in the right hand side of the previous equation is given by

X

˛;ˇ�0

.˛ C ˇ/Š

˛ŠˇŠ
.˛ � ˇ/2 x˛yˇ D .x@x � y@y/2

X

˛;ˇ�0

.˛ C ˇ/Š

˛ŠˇŠ
x˛yˇ

D
x2 C y2 � 6xy C x C y

.1 � x � y/3
:

This leads to the following expression for H.x; y/,

H.x; y/ D
1

.1 � x � y/1Ck
�

3

.1 � x � y/2Ck
C

2.1 � 4xy/

.1 � x � y/3Ck
: (45)
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From this formula, it is easy to extract the Taylor coe�cient that gives the sum

of (30):

.2n1 C k/Š

n1Š2 kŠ
�

3.2n1 C k C 1/Š

n1Š2 .k C 1/Š
C

2.2n1 C k C 2/Š

n1Š2 .k C 2/Š
�

8.2n1 C k/Š

.n1 � 1/Š2 .k C 2/Š

D
2kn1

.k C 2/Š

.2n1 C k/Š

n1Š2
:

A.5. Derivation of (31). This time, consider the function

I.x; y/ �
X

n1;n0
1

�0

xn1yn0
1

X

˛0C���C˛kDn1

ˇ0C���CˇkDn0
1

.˛0Cˇ0/Š

˛0Šˇ0Š
� � �

.˛k Cˇk/Š

˛kŠˇkŠ
.˛i � ˇi /. j̨ � ǰ /:

Following the same reasoning as in the previous appendix, we have

I.x; y/ D
1

.1 � x � y/k�1

h

.x@x � y@y/
1

1 � x � y

i2

D
.x � y/2

.1 � x � y/3Ck

D
1

.1 � x � y/1Ck
�

2

.1 � x � y/2Ck
C

1 � 4xy

.1 � x � y/3Ck
:

The coe�cient of .xy/n1 in the Taylor expansion of this function is

.2n1 C k/Š

n1Š2 kŠ
�

2.2n1 C k C 1/Š

n1Š2 .k C 1/Š
C

.2n1 C k C 2/Š

n1Š2 .k C 2/Š
�

4.2n1 C k/Š

.n1 � 1/Š2 .k C 2/Š

D �
2n1

.k C 2/Š

.2n1 C k/Š

n1Š2
:

B. Link with the Hofstadter-Harper Hamiltonian

The purpose of this appendix is to establish the “dictionnary” between our lattice

QED approach and the Hofstadter-Harper Hamiltonian. Let us start from (3),

that de�nes the inverse propagator in the Landau gauge. In this gauge, the link

variables that describe the background �eld on the lattice do not depend on the

coordinate along the direction 2, and it is therefore convenient to perform a Fourier
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transform in this variable by writing

fij �

Z 2�

0

d�

2�
ei�j Qfi� ;

Dij;kl �

Z 2�

0

d�d�0

.2�/2
ei.�j ��0l/ zDi�;k�0:

From (3), it is immediate to obtain an explicit form for the Fourier transform of

the inverse propagator:

a2 zDi�;k�0 D 2�ı.� � �0/Œ4ıi;k � .h1.ıi;kC1 C ıi;k�1/ C 2h2 cos.�i C �/ıi;k
„ ƒ‚ …

H
.�;�;h1;h2/

ik

/�;

where the underlined operator H .�;�;h1;h2/ is the (anisotropic) Hofstadter-Harper

Hamiltonian [10, 11] for a magnetic �ux � and a wavenumber � in the direction 2.

The proportionality to ı.� � �0/ is speci�c to Landau gauge, and ensures that the

inverse can be calculated separately in each � sector. The Fourier transform zG of

the propagator is de�ned by

X

k2Z

Z 2�

0

d�0

2�
zDi�;k�0 zGk�0;l�00 D 2�ı.� � �00/ ıi;l ;

and it can be formally written as

zGi�;k�0 D
a2

4
2�ı.� � �0/

1
X

nD0

�H .�;�;h1;h2/

4

�n

ik
:

From this expression, the diagonal elements of the propagator in direct space are

readily obtained, and by comparing with (5) we get

1
X

n1;n2D0

�h1

4

�2n1
�h2

4

�2n2 X


2�n1;n2

ei� Area .
/ D

1
X

nD0

Z 2�

0

d�

2�

�H .�;�;h1;h2/

4

�n

ii
:

(46)

Note that any value of the coordinate i may be used in the right hand side of this

equation, since the problem is invariant under discrete translations on the lattice.

Since the Hamiltonian H .�;�/ is the sum of two terms respectively proportional

to h1 and h2, equation (46) leads to the identity

X


2�n1;n2

ei� Area.
/ D

Z 2�

0

d�

2�
.H1 C H

.�;�/
2 /

2n1;2n2

i i ; (47)
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where

.H1/ik � ıi;kC1 C ıi;k�1; .H
.�;�/
2 /ik � 2 cos.�i C �/ıi;k;

and where the notation .H1 C H
.�;�/
2 /2n1;2n2 denotes the sum of all the terms

with 2n1 powers of H1 and 2n2 powers of H
.�;�/
2 in the 2.n1 C n2/-th power of

H1 C H
.�;�/
2 . The main di�culty in calculating the right hand side is that H1 and

H
.�;�/
2 do not commute (except in the trivial case � D 0), and each term in this

sum depends on how the H
.�;�/
2 ’s are interspersed between the H1’s. The expan-

sion rules described in the subsection 2.2 provide the necessary bookkeeping for

performing this calculation. In particular, the quantities �i �
Pi

j D1 �j de�ned

in (19) record the cummulative e�ect of the �’s up to the i-th factor H1.

The main result of this paper, namely (1), does not apply directly to the left

hand side of (47) but to its expansion in powers of the �ux �. Therefore, it

provides only indirect information on the structure of the trace of the powers of

the Hofstadter-Harper Hamiltonian: if one keeps track separately of the number of

powers n1 and n2 of H1 and H
.�;�/
2 respectively, then the Taylor coe�cients of the

expansion in � are a combinatorial factor times a polynomial. The summation over

all n1 C n2 D n then leads to the structure established in [6], namely .2n/Š2=nŠ4

times a rational fraction in n. Using a computer algebra system such as Maple

and the expressions listed in (2), (41), and (42), one can obtain the explicit form of

this rational fraction for the lowest order moments, but these expressions are not

particularly illuminating.

Because it only applies to the expansion of (47) in powers of �, it also seems

di�cult to connect our result to other known results about the spectrum of the

Hofstadter-Harper Hamiltonian and in particular to the distinctive di�erences that

arise depending on whether the �ux is commensurate with 2� or not. Indeed,

the periodicity of the Hamiltonian in the coordinate i when the �ux is 2� times a

rational number is a “non perturbative” property which is only manifest if one does

not expand the cosine in powers of �. Going beyond our result for the moments

would require to perform the sum on the moment order 2l in (1) (which does not

seem feasible given the fact that the polynomial P2l is not known explicitly for all

l), or to perform the sum over the ˛i ’s and ˇi ’s in (26) without �rst expanding the

exponential that contains the �ux.
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