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The arcsine law and an asymptotic behavior

of orthogonal polynomials

Hayato Saigo and Hiroki Sako

Abstract. Interacting Fock spaces connect the study of quantum probability theory, classi-

cal random variables, and orthogonal polynomials. They are pre-Hilbert spaces associated

with creation, preservation, and annihilation processes. We prove that if three processes are

asymptotically commutative, the arcsine law arises as the “large quantum number limits.”

As a corollary, it is shown that for many probability measures, the asymptotic behavior of

orthogonal polynomials is described by the arcsine function. A weaker form of asymptotic

commutativity provides us with a discretized arcsine law, which is described by the Bessel

functions of the �rst kind.
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1. Introduction

In the quantum �eld theory, the pair of “annihilation” and “creation” operators

plays a crucial role. The notion of interacting Fock spaces, which are pre-Hilbert

spaces associated with “annihilation” and “creation” operators (and “preserva-

tion” operators) satisfying characteristic commutation relations, were discovered

in a quantum-probabilistic approach to the mathematical analysis of interacting

�elds [2, 3].

Later Accardi and Bożejko [1] discovered a striking connection between in-

teracting Fock spaces and the theory of orthogonal polynomials for probability

measures on R whose moments are �nite. Three-term recurrence relations for

orthogonal polynomials provide a method of decomposition. The three-term re-

currence relation implies that the multiplication of x on the polynomials is a sum-

mation of three operators (annihilation, creation and preservation). The method

is called “quantum decomposition” [9, 10].
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In terms of interacting Fock space and quantum decomposition, Saigo [14] in-

troduced quite a simple combinatoric and algebraic method for the study of asymp-

totic behavior of Hermite polynomials. The sequence of orthogonal polynomials

for the Gaussian measure

d�.x/ D 1p
2�

e� x2

2 dx

is that of Hermite polynomials ¹Hnº. The measure H 2
n � is nothing but the

probability measure representing energy eigenstates of the quantum harmonic

oscillator. The limit distribution of the normalization of H 2
n � is

d�As.x/ D dx

�
p

2 � x2
; .�

p
2 < x <

p
2/:

The measure �As is called the arcsine law. It is especially known for the rela-

tionships to Brownian motion discovered by P. Lévy [13]. (See also [8, 15, 16]

for example.) Since the arcsine law is the distribution of position distribution of

classical harmonic oscillators, the algebraic method introduced in [14] can be con-

sidered as a new combinatoric approach to quantum-classical correspondence.

In the present paper, the methods and results in [14] is extended to the gen-

eral interacting Fock spaces satisfying a relative asymptotic commutativity con-

dition which we call (RAC1). As a corollary, the asymptotic behavior of a

wide class of orthogonal polynomials (including polynomials of Hermite, Jacobi,

Laguerre, etc.) can be characterized in terms of the arcsine law. (As basic ref-

erences for orthogonal polynomials and their asymptotic behavior, see [5, 17] for

example.) The proof is given in Section 5 following the preliminaries introduced

in the �rst four sections. In the last section, we discuss a weaker form of relative

asymptotic commutativity condition (RAC2) and identify the limit distribution

which we call discrete arcsine law. The distribution is explicitly represented in

terms of Bessel functions. It also appears in the context of quantum walks [12],

2. Basic notions

2.1. Algebraic probability space. For a classical probability space .�;F; P /, a

pair of a complex algebra and its linear functional is de�ned. Such a pair is given

by �
L1.�;F; P /;

Z

�

� dP

�
;
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and sometimes given by
� \

1�p<1
Lp.�;F; P /;

Z

�

� dP

�
:

An algebraic probability space is a generalization of these pairs. In this general-

ization, we do not assume commutativity on the algebra.

De�nition 2.1. A �-algebra A is a complex algebra equipped with a mapping

A 3 x 7! x� 2 A satisfying

.X�/� D X; .˛X/� D N̨X�; .X C Y /� D X� C Y �; .XY /� D Y �X�;

for every X; Y 2 A and ˛ 2 C.

De�nition 2.2. Let A be a �-algebra having a unit element 1 2 A. We call a linear

map 'WA ! C a state on A if it satis�es

'.1/ D 1; '.X�X/ � 0; for X 2 A:

It is not necessary to assume an operator algebra structure on A in this paper.

De�nition 2.3. A pair .A; '/ of a �-algebra and a state on A is called an algebraic

probability space. An element of A is called an algebraic random variable of the

algebraic probability space .A; '/. If an algebraic random variable X 2 A satis�es

X� D X , then X is called a self-adjoint algebraic random variable.

We de�ne a notation for a state 'WA ! C, a self-adjoint algebraic random

variable X 2 A and a probability distribution � on R as follows.

Notation 2.4. We use the notation X �' � when

'.Xm/ D
Z

R

xmd�.x/ for all m 2 N.

This stands for the identity between two moment sequences.

2.2. Interacting Fock space

De�nition 2.5 (Jacobi sequence). A pair of sequences .¹!nC1=2º; ¹˛nº/ is called

a Jacobi sequence,

� if ¹!nC1=2º are positive real numbers 0 < !1=2, !3=2, !5=2, : : : labeled by

half natural numbers, and

� if ¹˛nº are real numbers ˛0, ˛1, ˛2, : : : labeled by natural numbers.
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In other works as [10, De�nition 1.24], the sequence ¹!nC1=2º is called a Jacobi

sequence of in�nite type and given di�erent labels.

De�nition 2.6 (interacting Fock space). Let .¹!nC1=2º; ¹˛nº/ be a Jacobi se-

quence. An interacting Fock space �!;˛ is a complex pre-Hilbert space �.C/

equipped with the following additional structure .¹ˆnº1
nD0; A; B; C /:

� Fixed sequence of vectors ¹ˆnº1
nD0 � �.C/ satisfying

– hˆn; ˆmi D 0 if m ¤ n, and hˆn; ˆni D 1,

– �.C/ is a complex linear span of ¹ˆnº,

� A; B; C W �.C/ ! �.C/ are linear operators uniquely determined by

– Aˆ0 D 0, Aˆn D p
!n�1=2 ˆn�1;

– Bˆn D ˛nˆn;

– Cˆn D p
!nC1=2 ˆnC1:

The sequence of vectors ¹ˆnº1
nD0 � �.C/ forms a orthonormal set of �.C/.

The operator A is called the annihilation operator, B is called the preservation

operator, and C is called the creation operator.

De�nition 2.7. The summation X D A C B C C is expressed by the symmetric

tridiagonal matrix

X D

0
BBBBBB@

˛0
p

!1=2 0 : : :

p
!1=2 ˛1

p
!3=2

: : :

0
p

!3=2 ˛2

: : :

:::
: : :

: : :
: : :

1
CCCCCCA

:

This is called the Jacobi matrix.

The sequence of real numbers hXmˆ0; ˆ0i is called the moments sequence of

the Jacobi matrix X . Accardi and Bożejko showed in [1, Section 5] that for every

probability measure � on R whose moments are �nite, the moment sequence

Mm D
Z

R

xmd�.x/

can be realized as that of an interacting Fock space hXmˆ0; ˆ0i.
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Let A be the complex algebra generated by the matrices A; B; C and by the

identity matrix id. The multiplication and the linear structure are de�ned by

the usual matrix calculations. The �-operation is given by the composition of

transpose and complex conjugation. Since the generating set ¹A D C �; B D B�,

C D A�º � A is closed under the �-operation, the whole algebra A is also closed

under the �-operation.

Recall that the operators A; B; C act on the linear space
L1

nD0 Cˆn. Let

'k be the state de�ned as 'k.�/ WD h � ˆk ; ˆki. Then the pairs ¹.A; 'k/ºk2N
are algebraic probability spaces labeled by k. The asymptotic behavior of the

sequence ¹.A; 'k/ºk2N is the subject of this paper.

2.3. Interacting Fock spaces and orthogonal polynomials. Theorems for in-

teracting Fock spaces often have interesting interpretation in terms of orthogonal

polynomials. To see this, we review the relation between interacting Fock spaces,

probability measures and orthogonal polynomials. Let � be a probability measure

on R having �nite moments. Then the space of polynomial functions is contained

in the Hilbert space L2.R; �/. The Gram-Schmidt procedure which provides or-

thogonal polynomials depends only on the moment sequence.

Let ¹pn.x/ºnD0;1;::: be the monic orthogonal polynomials of � such that the

degree of pn equals to n. Then a relation among consecutive three terms

p0.x/ D 1;

xp0.x/ D p1.x/ C ˛0p0.x/;

xpn.x/ D pnC1.x/ C ˛n pn.x/ C !n�1=2 pn�1.x/; n � 1

holds, if we appropriately choose the real numbers ˛n, !n�1=2. It is not hard to

prove that !n�1=2 is positive for every n, if the support of � is an in�nite set. Thus

we obtain a Jacobi sequence .¹!nC1=2º; ¹˛nº/ out of the measure �.

Let Pn denote the normalized orthogonal polynomial pn=kpnk2. It has been

proved that the isometry U W �!;˛ ! L2.R; �/W ˆn 7! Pn satis�es that U �xU D
A C B C C , where x stands for the multiplication operator acting on L2.R; �/.

See [10, Theorem 1.51] for the proof. This means that we can decompose a

measure-theoretic random variable into the sum of non-commutative algebraic

random variables. This crucial idea in algebraic probability theory is called

“quantum decomposition” in [9] (see also [10, Section 1.5]). Through the equality

U �xU D A C B C C , we obtain an identity for the moments A C B C C �'n

jPn.x/j2�.dx/:
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Remark 2.8. For every algebraic probability space .A; '/ and every self-adjoint

algebraic random variable X 2 A, it is known that there exists a probability

measure � on R which satis�es X �' �.

3. Quantum-classical correspondence for the Harmonic oscillator

The interacting Fock space corresponding to !nC1=2 D n C 1; ˛n D 0 is called

the “quantum harmonic oscillator.” For the quantum harmonic oscillator, it is well

known that

X WD A C B C C D A C C

represents the “position” and that

X �'0

1p
2�

exp
�

� x2

2

�
dx:

That is, in the n D 0 case the distribution of the position is Gaussian.

The asymptotic behavior of the distributions of position is nontrivial. What

is the “classical limit” of the quantum harmonic oscillator? This question, which

is related to fundamental problems in quantum theory and asymptotic analysis

[7, Section 3.6], was analyzed in [14, Section 3] from the viewpoint of non-

commutative algebraic probability with quite a simple combinatorial argument.

The answer is nothing but the arcsine law.

Theorem 3.1 ([14, Theorem 3.1]). Let �!;˛ WD .�.C/; A; B � 0; C / be the

quantum harmonic oscillator, X WD A C C and �n be a probability distribution

on R such that
Xp

2k C 1
�'k

�k :

Then �n weakly converges to the arcsine law �As.

Here
p

2k C 1 is the normalization factor to make the variance one, that is,

D� Xp
2k C 1

�2

ˆk; ˆk

E
D 1:

Since it is easy to see that the arcsine law gives “time-averaged behavior” of

the classical harmonic oscillator, the result can be viewed as “quantum-classical

correspondence” for harmonic oscillators.
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As the case for the quantum harmonic oscillator, we de�ne the notion of

classical limit distribution for interacting Fock spaces. It is a distribution to which

the distribution for X under 'n, after normalization, converges in moment.

De�nition 3.2 (classical limit distribution). Let �!;˛ WD .�.C/; A; B; C / be an

interacting Fock space and let X be ACBCC . Let �n be a probability distribution

on R such that
X � ˛np

!nC1=2 C !n�1=2

�'n
�n:

A probability distribution � on R is called a classical limit distribution of �!;˛,

if �n converges � in moment.

By the normalizations �˛n and �=p
!nC1=2 C !n�1=2, the measure �n has

mean 0 and variance 1.

Remark 3.3. Existence of a classical limit distribution depends on the Jacobi

sequence .!; ˛/. In many cases which historically attract attention, the limit exists.

See Remark 5.4.

Uniqueness of the classical limit distribution relates to the moment problem.

In the case that the limit distribution is a unique solution of a moment problem,

moment convergence implies weak convergence [6, Theorem 4.5.5.].

Thus, a classical limit distribution of an interacting Fock space is also a weak

limit of measures de�ned by square of orthogonal polynomials. For example, in

the case of Gaussian distribution, Theorem 3.1 implies the following. Let Pk be

the sequence of normalized Hermite polynomials. Then

jPk.x/j2 exp.�x2=2/p
2�

dx

de�nes a sequence of probability measures whose second moment is 2k C 1.

The sequence of normalizations

p
2k C 1

ˇ̌
Pk

�p
2k C 1x

�ˇ̌2 exp.�.2k C 1/x2=2/p
2�

dx

weakly converges to the arcsine law

�As.dx/ D dx

�
p

2 � x2
:
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4. Two-sided in�nite Jacobi sequences

In this section, we set up a framework to analyze classical limit distributions.

We introduce two-sided in�nite Jacobi sequences.

De�nition 4.1 (Two-sided Jacobi sequence). Let

! D
°
!m � 0

ˇ̌
ˇ m D : : : ; �3

2
; �1

2
;
1

2
;
3

2
; : : :

±
;

˛ D ¹˛n 2 R j n D : : : ; �2; �1; 0; 1; : : :º

be two-sided in�nite sequences of reals satisfying one of the following condi-

tions .1/ or .2/:

.1/ there exists a non-positive integer N such that

� if m < N , then !m D 0,

� if m > N , then !m > 0,

� and if n < N , then ˛n D 0;

.2/ for every half integers m D : : : ; �3=2; �1=2; 1=2; 3=2; : : : , we have !m > 0.

We call the pair .!; ˛/ a two-sided Jacobi sequence.

De�nition 4.2 (two-sided interacting Fock space). Let .!; ˛/ be a two-sided

Jacobi sequence. An interacting Fock space �!;˛ is a quadruple .�.C/; A; B; C /

consists of a pre-Hilbert space �.C/ D
L1

nD�1 Cˆn with inner product given by

hˆn; ˆmi D ın;m, and operators A; B; C de�ned as follows:

� A is the annihilation operator Aˆn D p
!n�1=2 ˆn�1I

� B is the preservation operator Bˆn D ˛nˆnI
� C is the creation operator Cˆn D p

!nC1=2 ˆnC1:

De�nition 4.3. The summation X D A C B C C is expressed by the tridiagonal

matrix X D ŒXm;n�m;n2Z whose matrix coe�cients are given by

Xm;n D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

p
!n�1=2 m D n � 1;

˛n; m D n;
p

!nC1=2 m D n C 1;

0; jm � nj � 2:

This operator X is called the two-sided Jacobi matrix of .!; ˛/.
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The matrix X is an algebraic random variable. Its moments with respect to the

state h�ˆ0; ˆ0i can be described by the matrix entries as follows:

hX1ˆ0; ˆ0i D ˛0;

hX2ˆ0; ˆ0i D !�1=2 C ˛2
0 C !�1=2;

hX3ˆ0; ˆ0i D !�1=2˛�1 C 2!�1=2˛0 C ˛3
0 C 2!1=2˛0 C !1=2˛1;

and so on.

Lemma 4.4. The matrix coe�cients of Xk are described by polynomials of

¹p!nC1=2º [ ¹˛nº.

Proof. The above claim holds for X0 D id and for X1 D X .

We prove the general case by induction. Supposing that the lemma holds

for Xk�1; Xk, we prove that the matrix coe�cients of XkC1 are described by

polynomials of ¹p!nC1=2º [ ¹˛nº.
Let m; n be arbitrary integers. The .m; n/-entry of XkC1 is described by

hXkC1ˆn; ˆmi. Since the matrix expression of X is symmetric, we have

hXkC1ˆn; ˆmi
D hXkˆn; Xˆmi
D hXkˆn; Aˆm C Bˆm C Cˆmi
D hXkˆn;

p
!n�1=2ˆm�1 C ˛nˆm C p

!nC1=2ˆmC1i
D p

!n�1=2hXkˆn; ˆm�1i C ˛nhXkˆn; ˆmi C p
!nC1=2hXkˆn; ˆmC1i:

The induction hypothesis, this can be expressed by a polynomial of ¹p!nC1=2º [
¹˛nº. �

In fact, the moments hXkˆ0; ˆ0i of X is described by a polynomial of

¹!nC1=2º [ ¹˛nº. The weaker claim in the above lemma su�ces to imply the

following.

Lemma 4.5. Let ¹.!.k/; ˛.k//ºk be a sequence of two-sided Jacobi sequences and

let .!; ˛/ be a two-sided Jacobi sequence. Let X .k/ and X be the corresponding

Jacobi matrices acting on
L1

nD�1 Cˆn. If limk!1 !
.k/

nC1=2
D !nC1=2 and

limk!1 ˛
.k/
n D ˛n for every integer n, then we have the following moment

convergence: lim
k!1

h.X .k//mˆ0; ˆ0i D hXmˆ0; ˆ0i:
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Proof. By Lemma 4.4, the m-th moment h.X .k//mˆ0; ˆ0i of X .k/ is expressed

by a polynomial of
®q

!
.k/

nC1=2

¯
[ ¹˛.k/

n º. If limk!1 !
.k/

nC1=2
D !nC1=2 and

limk!1 ˛
.k/
n D ˛n for every integer n, then the polynomial also converges. The

limit is the m-th moment h.X/mˆ0; ˆ0i of X . �

5. The arcsine law as classical limit distribution

5.1. Relative asymptotic commutativity (RAC1) . In this part, we propose a

condition (RAC1) for the one-sided interacting Fock space �!;˛ . The condition

handles asymptotic behavior of creation C , preservation B , and annihilation A

modulo standard variance.

De�nition 5.1. The interacting Fock space is said to satisfy (RAC1), if the com-

mutators ŒA; C � and ŒA; B� are asymptotically zero in the following sense:

lim
n!1

AC � CA

!nC1=2 C !n�1=2

ˆn D 0; lim
n!1

AB � BA

!nC1=2 C !n�1=2

ˆn D 0:

Recall that h � ˆn; ˆni stands for the n-th state of the interacting Fock space.

The denominator !nC1=2C!n�1=2 is the variance of the algebraic random variable

X D A C B C C with respect to the state h � ˆn; ˆni.

Lemma 5.2. The condition (RAC1) is equivalent to

lim
n!1

!nC1=2

!n�1=2

D 1; lim
n!1

˛n � ˛n�1p
!nC1=2 C !n�1=2

D 0:

Proof. The commutators ŒA; C � and ŒA; B� satisfy the following:

AC � CA

!nC1=2 C !n�1=2

ˆn D !nC1=2 � !n�1=2

!nC1=2 C !n�1=2

ˆn;

AB � BA

!nC1=2 C !n�1=2

ˆn D ˛n � ˛n�1

!nC1=2 C !n�1=2

p
!n�1=2ˆn�1:

Thus we have

AC � CA

!nC1=2 C !n�1=2

ˆn D

!nC1=2

!n�1=2

� 1

!nC1=2

!n�1=2

C 1
ˆn;

AB � BA

!nC1=2 C !n�1=2

ˆn D ˛n � ˛n�1p
!nC1=2 C !n�1=2

1r
!nC1=2

!n�1=2

C 1

ˆn�1:
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The latter conditions in the lemma imply that the right hand sides converges to 0.

Then the condition (RAC1) follows.

Conversely, we suppose that (RAC1) holds. In this case, we have

lim
n!1

!nC1=2 � !n�1=2

!nC1=2 C !n�1=2

D 0; lim
n!1

˛n � ˛n�1

!nC1=2 C !n�1=2

p
!n�1=2 D 0:

By the equality
2

1 � !nC1=2 � !n�1=2

!nC1=2 C !n�1=2

� 1 D !nC1=2

!n�1=2

;

the �rst condition of (RAC1) implies that

lim
n!1

!nC1=2

!n�1=2

D 2

1 � 0
� 1 D 1:

The second condition of (RAC1) implies that

lim
n!1

˛n � ˛n�1p
!nC1=2 C !n�1=2

D lim
n!1

˛n � ˛n�1

!nC1=2 C !n�1=2

p
!n�1=2 lim

n!1

s
!nC1=2 C !n�1=2

!n�1=2

D 0
p

2

D 0:

Now we obtain the conditions in the lemma. �

The quantum harmonic oscillator introduced in Section 3 satis�es the above

condition. The following theorem is the main result in this paper, which general-

izes Theorem 3.1.

Theorem 5.3. Let �!;˛ WD .�.C/; A; B; C / be an interacting Fock space satisfy-

ing asymptotic commutativity (RAC1). Then the classical limit distribution given

in De�nition 3.2 exists and is the arcsine law dx=.�
p

2 � x2/.

Proof. Let .¹!nC1=2º; ¹˛nº/ be a one-sided Jacobi sequence. Suppose that (RAC1)

holds. Consider the k-th state h � ˆk; ˆki and the normalized algebraic random

variable

X .k/ D X � ˛kp
!kC1=2 C !k�1=2
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acting on
L1

nD0 Cˆn. The matrix coe�cients are described by

X .k/
m;n D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

!n�1=2p
!kC1=2 C !k�1=2

; m D n � 1;

˛n � ˛kp
!kC1=2 C !k�1=2

; m D n;

!nC1=2p
!kC1=2 C !k�1=2

; m D n C 1;

0; jm � nj � 2:

To study asymptotic behavior of X .k/ acting on
L1

nD0 Cˆn, we change the index

m; n D 0; 1; : : : ; k; : : : to m; n D �k; �k C 1; : : : ; 0; : : : , and exploit two-sided

interacting Fock space �.k/ D
L1

nD�k Cˆn. We now consider the state h � ˆ0; ˆ0i
and the algebraic random variable eX .k/ de�ned by

e
X .k/

m;n D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

!nCk�1=2p
!kC1=2 C !k�1=2

; m D n � 1;

˛nCk � ˛kp
!kC1=2 C !k�1=2

; m D n;

!nCkC1=2p
!kC1=2 C !k�1=2

; m D n C 1;

0; jm � nj � 2:

By the �rst condition of Lemma 5.2, the neighboring ratio of ¹!nCkC1=2º1
nD�k

is

1. This implies that for every �xed integer n,

lim
k!1

e
X .k/

n�1;n D 1p
2

D lim
k!1

e
X .k/

nC1;n:

By the second condition of Lemma 5.2,

lim
k!1

˛k � ˛k�1p
!kC1=2 C !k�1=2

D 0:

Together with

lim
k!1

!nCkC1=2

!kC1=2

D 0;

this implies that for every n,

lim
k!1

e
X .k/

n;n D 0:
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Now we exploit Lemma 4.5. Let eX be the two-sided in�nite matrix

zX D

0
BBBBBBBBB@

: : :
: : :

: : : 0 1=
p

2

1=
p

2 0 1=
p

2

1=
p

2 0
: : :

: : :
: : :

1
CCCCCCCCCA

acting on `2.Z/. The bold zero 0 stands for the position of the matrix coe�cient

h � ˆ0; ˆ0i. By Lemma 4.5, we have

lim
k!1

h.X .k//mˆk ; ˆki D lim
k!1

h. eX .k//mˆ0; ˆ0i D h. zX/mˆ0; ˆ0i:

It turns out that the classical limit distribution does exist. For the rest of this proof,

we calculate the limit distribution.

Now we exploit the the Fourier duality between Z and TD ¹z 2C j jzj D 1º.
Let FW L2.T/ ! `2.Z/ denote the Fourier transform. We identify the characteris-

tic function ın on ¹nº � Z with the vector ˆn in the completion of the two-sided

Fock space. We can describe F by F.zn/ D ˆn, where zn stands for the function

T 3 z 7! zn 2 C. The restriction of F gives a surjective isometry between the

polynomial functions on T and the two-sided Fock space.

Since the operator zX maps ˆn to ˆn�1=
p

2CˆnC1=
p

2, its Fourier transform

F
�1 zXF maps zn to

zn�1

p
2

C znC1

p
2

D
� Nzp

2
C zp

2

�
zn D

p
2Re.z/zn

This means that the operator F�1 zXF is the multiplication operator by the function

T 3 z 7!
p

2Re.z/ 2 R

Thus we have

h. zX/mˆ0; ˆ0i`2.Z/ D h.
p

2Re.z//m1; 1iL2.T/

D
Z

T

.
p

2Re.z//md.Haar measure/

D
Z 2�

0

.
p

2Re.eit//m dt

2�

D
Z 2�

�

.
p

2 cos t /m dt

�
:
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Replacing
p

2 cos t with x, we have

lim
k!1

h.X .k//mˆk ; ˆki D
Z p

2

�
p

2

xm dx

�
p

2 � x2
: �

Remark 5.4. The theorem means that the arcsine law is turned out to be the

classical limit distribution in many cases. We pick up several examples.

.1/ The interacting Fock spaces corresponding to the uniform distribution

�Œ�1;1�dx=2, are described by the Jacobi sequence

!nC1=2 D .n C 1/2

.2n C 1/.2n C 3/
; ˛n D 0:

.2/ The quantum decomposition of the exponential distribution �Œ0;1/e
�xdx is

given by the Jacobi sequence

!nC1=2 D .n C 1/2; ˛n D 2n C 1:

.3/ q-Gaussians (�1 < q � 1) are probability measures onR given by the Jacobi

sequence

!nC1=2 D 1 C q C q2 C � � � C qn; ˛n D 0:

The case of q D 1 corresponds to the Gaussian measure. The case of q D 0

corresponds to the semicircle law .
p

4 � x2 dx/=.2�/ of Wigner.

By Lemma 5.2, these interacting Fock spaces satisfy (RAC1).

Remark 5.5. Since the arcsine law is the solution of a determinate moment

problem, moment convergence implies weak convergence.

Remark 5.6. It is quite interesting to compare Kerov’s theorem [11, Theorem

33]. It is well known that the roots of .n � 1/-th and n-th orthogonal polynomials

interlace. The mutual relationship of interlacing roots can be represented by a

rectangular diagram (a continuous version of Young diagram, for more details see

[11, Chapter 0, Section 4]). Kerov’s theorem states that the asymptotic behavior

of the rectangular diagrams obeys “the arcsine law” (which is di�erent from the

probability measure dx=.�
p

2 � x2/ but closely related to it), for the orthogonal

polynomials satisfying the condition corresponding to (RAC1).
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Theorem 5.3 implies the following asymptotic behavior of orthogonal polyno-

mials:

Corollary 5.7. Let � be a probability measure such that the corresponding Jacobi

sequence .¹!nº; ¹˛nº/ satis�es (RAC1). Let Pn be the normalized orthogonal

polynomial with degree n. The measure �n de�ned as

�n.dx/ WD jPn.
p

!nC1=2 C !n�1=2x/j2�.
p

!nC1=2 C !n�1=2dx/

weakly converge to the arcsine law �As.

It turns out that many kinds of orthogonal polynomials such as Legendre

polynomials, Laguerre polynomials or q-Hermite polynomials for �1 < q � 1

satisfy the above condition.

6. Weaker form of asymptotic commutativity and classical limits

It is reasonable to guess that we can obtain other types of classical limits assuming

a weaker condition on the operators A; B; C . Relaxing the commutativity condi-

tion between A and B , we have discretized arcsine laws as classical limits.

De�nition 6.1. The interacting Fock space is said to satisfy (RAC2), if the com-

mutator ŒA; C � is asymptotically zero and if ŒA; B� is asymptotically a scalar mul-

tiple of A in the following sense:

� lim
n!1

AC � CA

!nC1=2 C !n�1=2

ˆn D 0 and

� there exists a real number r satisfying

lim
n!1

.AB � BA/ � rA

!nC1=2 C !n�1=2

ˆn D 0:

Recall that !nC1=2 C !n�1=2 is the variance of X D A C B C C with respect

to h � ˆn; ˆni. Calculation on the matrix coe�cients yields the following lemma.

The proof is almost the same as that of Lemma 5.2.

Lemma 6.2. The condition (RAC2) is equivalent to

lim
n!1

!nC1=2

!n�1=2

D 1

and convergence of the sequence
° ˛n � ˛n�1p

!nC1=2 C !n�1=2

±
n
.
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In the following subsection, we denote by c the limit of the latter sequence.

Example 6.3. � An interacting Fock space with (RAC1) satis�es (RAC2).

� The one-sided interacting Fock space �!;˛ de�ned by !nC1=2 D 1=2 and

˛n D cn shares the property (RAC2). The in�nite Jacobi matrix is given by

X D

0
BBBBBB@

0 1=
p

2 0

1=
p

2 c 1=
p

2
: : :

0 1=
p

2 2c
: : :

: : :
: : :

: : :

1
CCCCCCA

6.1. Calculation of the classical limits. From now on, we consider the case that

the interacting Fock space satisfy (RAC2). Let X .k/ be the random variable

X � ˛kp
!kC1=2 C !k�1=2

:

Observing the Jacobi sequence, we obtain the following lemma.

Lemma 6.4. For every integers m; n, we have

lim
k!1

hX .k/ˆkCm; ˆkCni D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

1=
p

2; m D n � 1;

cn; m D n;

1=
p

2; m D n C 1;

0; jm � nj � 2:

Proof. The proof is similar to the �rst half of the proof of Theorem 5.3. By the

de�nition of the operators A; B; C , the operator X .k/ satis�es

hX .k/ˆkCm; ˆkCni D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

!nCk�1=2p
!kC1=2 C !k�1=2

; m D n � 1;

˛nCk � ˛kp
!kC1=2 C !k�1=2

; m D n;

!nCkC1=2p
!kC1=2 C !k�1=2

; m D n C 1;

0; jm � nj � 2:

The conditions in Lemma 6.2 imply the above lemma. �
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We grasp the asymptotic behavior of X .k/ with respect to the state h � ˆk ; ˆki,
using two-sided in�nite tridiagonal matrices acting on the inner product spaceL

k2Z Cˆk . Putting the limit of the matrix coe�cient hX .k/ˆkCm; ˆkCni at

.m; n/-entry, we obtain the following tridiagonal operator:

zX D

0
BBBBBBBBBBBBBBB@

: : :
: : :

: : :

: : : �2c 1=
p

2 0

: : : 1=
p

2 �c 1=
p

2 0

0 1=
p

2 0 1=
p

2 0

0 1=
p

2 c 1=
p

2
: : :

0 1=
p

2 2c
: : :

: : :
: : :

: : :

1
CCCCCCCCCCCCCCCA

;

where “0” is at the position of .0; 0/. By Lemma 4.5, convergence of the matrix

coe�cients implies the following moment convergence:

lim
n!1

h.X .k//mˆk; ˆki D h zXmˆ0; ˆ0i: (6.1)

To see the moment sequence ¹h zXmˆ0; ˆ0iº of zX , we study the densely de-

�ned operator zX acting on `2.Z/ D
L

k2Z Cˆk. Via the Fourier transform

`2.Z/ Š L2.T/, we may regard zX as a densely de�ned symmetric operator acting

on L2.¹eitº/. The space of Laurent polynomials of z D eit is the domain of zX .

For a bounded measurable function f on T D ¹eit j t 2 Rº, we denote by

MŒf � the multiplication operator L2.T/ 3 g 7! fg 2 L2.T/. The operator zX
acts on the Laurent polynomials as follows:

� the annihilation part of zX is identi�ed with the multiplication operator

MŒe�it=
p

2�,

� the diagonal part of zX is identi�ed with the di�erential operator .c=i/d=dt .

� the creation part of zX is identi�ed with the multiplication operator

MŒeit=
p

2�,

In the case that c ¤ 0, the summation is expressed by

M
he�it

p
2

i
C c

i

d

dt
C M

h eit

p
2

i
D c

i

� d

dt
C iM

hp
2 cos t

c

i�
;
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We may further calculate

M
he�it

p
2

i
C c

i

d

dt
C M

h eit

p
2

i

D c

i
M

h
exp

�
� i

p
2 sin t

c

�i
ı d

dt
ı M

h
exp

�
i

p
2 sin t

c

�i

D M
h

exp
�

� i

p
2 sin t

c

�i
ı

�c

i

d

dt

�
ı M

h
exp.i

p
2 sin t

c
/
i
:

We can easily prove the above equation by hitting an arbitrary Laurent polynomial

of eit . We note that the absolute value of exp
�
i

p
2 sin t
c

�
is 1. De�ne an.c/ by the

Fourier expansion

exp
�
i

p
2 sin t

c

�
D

X

n2Z
an.c/eint :

De�nition 6.5. For x 2 R, we denote by ıx the probability measure concentrated

on x. The probability measure

�c D
X

n2Z
jan.c/j2ıcn

on R is called a discrete arcsine distribution.

Theorem 6.6. Suppose that the interacting Fock space �¹!nº;¹˛nº satisfy the

condition (RAC2) but does not satisfy (RAC1). De�ne a real number c by

lim
n!1

˛n � ˛n�1p
!n�1=2 C !nC1=2

:

Then for each natural number m, we have the following moment convergence:

lim
k!1

D� X � ˛kp
!kC1=2 C !k�1=2

�m

ˆk ; ˆk

E
D

Z

R

xm�c.dx/:

Proof. By the equation (6.1), it su�ces to show that

h zXk ˆ0; ˆ0i D
Z

R

xm�c.dx/:
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Considering the Fourier transform, the left hand side is equal to

D�
M

he�it

p
2

i
C c

i

d

dt
C M

h eit

p
2

i�m

1; 1iL2.¹eit º/

D
D°

M
h

exp
�

� i

p
2 sin t

c

�i
ı

�c

i

d

dt

�
ı M

h
exp

�
i

p
2 sin t

c

�i±m

1; 1
E
L2.¹eit º/

D
D
M

h
exp

�
� i

p
2 sin t

c

�i
ı

�c

i

d

dt

�m

ı M
h

exp
�
i

p
2 sin t

c

�i
1; 1

E
L2.¹eit º/

D
D�c

i

d

dt

�m

exp
�
i

p
2 sin t

c

�
; exp

�
i

p
2 sin t

c

�E
L2.¹eit º/

:

By the Fourier expansion of exp
�
i

p
2 sin t
c

�
, the above quantity is

D�c

i

�m d m

dtm
exp

�
i

p
2 sin t

c

�
;
X

n2Z
an.c/eint

E
L2.¹eit º/

D
X

n2Z
an.c/

D�c

i

�m d m

dtm
exp

�
i

p
2 sin t

c

�
; eint

E
L2.¹eit º/

:

By iteration of partial integration, this is equal to

X

n2Z
an.c/

D
exp

�
i

p
2 sin t

c

�
;
�c

i

�m d m

dtm
eint

E
L2.¹eit º/

D
X

n2Z
.cn/man.c/

D
exp

�
i

p
2 sin t

c

�
; eint

E
L2.¹eit º/

D
X

n2Z
.cn/mjan.c/j2:

This is nothing other than
R
R

xm�c.dx/. �

6.2. Calculation of the discrete arcsine law �c . To identify the discrete arcsine

law �c, we have only to calculate the Fourier expansion of exp
�
i

p
2 sin t
c

�
. By the

Maclaurin expansion of the exponential function, we have

exp
�
i

p
2 sin t

c

�
D exp

�eit � e�it

p
2c

�
D

1X

kD0

1

kŠ

�eit � e�it

p
2c

�k

:
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By the binomial theorem, we have

exp
�
i

p
2 sin t

c

�
D

1X

kD0

1

kŠ

kX

lD0

.�1/l

.
p

2c/k

�
k

l

�
ei.k�l/te�ilt

D
1X

kD0

kX

lD0

.�1/l

.
p

2c/k

1

lŠ.k � l/Š
ei.k�2l/t :

It is not hard to check that this summation of the absolute values uniformly

converges. Therefore it is possible to change the order of summation. Now we

de�ne n by k � 2l . The condition 0 � l � k is described by 0 � l � n C 2l . This

is equivalent to max¹0; �nº � l . Then the Fourier expansion is described by

exp
�
i

p
2 sin t

c

�
D

1X

nD�1

1X

lDmax¹0;�nº

.�1/l

.
p

2c/nC2l

1

lŠ.n C l/Š
eint :

For n � 0, we have

an.c/ D
1X

lD0

.�1/l

.
p

2c/nC2l

1

lŠ.n C l/Š
;

a�n.c/ D
1X

lDn

.�1/l

.
p

2c/�nC2l

1

lŠ.�n C l/Š
D

1X

lD0

.�1/lCn

.
p

2c/nC2l

1

.n C l/ŠlŠ
:

Let Jn denote the n-th Bessel function of �rst kind

Jn.x/ D
1X

lD0

.�1/l

22lCnlŠ.l C n/Š
x2lCn:

The above Fourier coe�cients are described as follows:

an.c/ D Jn

�p
2

c

�
; a�n.c/ D .�1/nJn

�p
2

c

�
:

Theorem 6.7. The discrete arcsine law �c is a probability measure supported on

cZ. For n D 0; 1; 2; : : : , the weights �c.¹cnº/ and �c.¹�cnº/ are given by the

following:

�c.¹cnº/ D �c.¹�cnº/ D 1

2nc2n

� 1X

lD0

.�1/l

.
p

2c/2l

1

.n C l/ŠlŠ

�2

D
°
Jn

�p
2

c

�±2

:

Remark 6.8. We thank Prof. Marek Bożejko and Prof. Wojciech Młotkowski

for pointing out the relationship between the discrete arcsine law and Bessel

functions.
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6.3. Remarks on the discrete arcsine law. Before closing this subsection, let

us consider the limit of �c as c ! 0. The m-th moment of the discrete arcsine �c

is given by
D�e�it

p
2

C eit

p
2

C c

i

d

dt

�m

1; 1
E
L2.¹eit º/

:

When c goes to 0, the moment converges to

D�e�it

p
2

C eit

p
2

�m

1; 1
E
L2.¹eit º/

D
Z �

��

.
p

2 cos t /m dt

2�
D

Z p
2

�
p

2

xm dx

�
p

2 � x2
:

This is the k-th moment of the arcsine law. Since the moment sequence of the

arcsine law characterizes the measure, convergence in law implies weak conver-

gence.

Theorem 6.9. As c ! 0, the discrete arcsine law �c weakly converges to the

arcsine law dx=�
p

2 � x2.

If a measure on R has the same moment sequence as �c , it is identical to �c .

Theorem 6.10. The discrete arcsine law �c is characterized by its moments.

Proof. We exploit the Carleman’s condition for the moment sequence

D�e�it

p
2

C eit

p
2

C c

i

d

dt

�m

1; 1
E
L2.¹eit º/

of the discrete arcsine law. We may assume that c > 0, since �c also gives the

same moment sequence. Consider the Fourier expansion

X

n

b.m/
n eint D

�e�it

p
2

C eit

p
2

C c

i

d

dt

�m

1:

Note that if n … Œ�m; m� then b
.m/
n D 0. By the equality

b.mC1/
n D b

.m/
n�1p

2
C

b
.m/
nC1p

2
C c

i
nb.k/

n ;

we have

mC1X

nD�m�1

jb.mC1/
n j �

� 1p
2

C 1p
2

C c.m C 1/
� mX

nD�m

jb.m/
n j:
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It is easy to show by induction that

mX

nD�m

jb.m/
n j � .

p
2 C cm/m:

In particular the .2m/-th moment b
.2m/
0 is at most .

p
2 C 2cm/2m. Therefore we

have
1X

mD0

1

2m

q
b

.2m/
0

�
1X

mD0

1p
2 C 2cm

D C1:

This means that the moment sequence of the discrete arcsine law satis�es the

Carleman’s condition, which is a su�cient condition for determinacy. For the

Carleman’s condition, we refer the readers to the book [4] by Akhiezer. �

Acknowledgements. The authors are grateful to Prof. Marek Bożejko for his
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