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Period preserving properties of an invariant

from the permanent of signed incidence matrices

Iain Crump,1 Matt DeVos,1 and Karen Yeats1

Abstract. A 4-point Feynman diagram in scalar �4 theory is represented by a graph G

which is obtained from a connected 4-regular graph by deleting a vertex. The associated

Feynman integral gives a quantity called the period of G which is invariant under a number

of graph operations – namely, planar duality, the Schnetz twist, and it also does not depend

on the choice of vertex deleted to form G.

In this article we study a graph invariant we call the graph permanent, which was

implicitly introduced in a paper by Alon, Linial and Meshulam [1]. The graph permanent

applies to any graph G D .V; E/ for which jEj is a multiple of jV j � 1 (so in particular

to graphs obtained from a 4-regular graph by removing a vertex). We prove that the graph

permanent, like the period, is invariant under planar duality and the Schnetz twist when

these are valid operations, and we show that when G is obtained from a 2k-regular graph

by deleting a vertex, the graph permanent does not depend on the choice of deleted vertex.
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1. Introduction

For the duration of this introduction, let � be a 4-regular graph and let G D

� � v for some v 2 V.�/. The graph � can be uniquely reconstructed from G;

we call � the completion of G and G a decompletion of �. We can think of G as a

Feynman diagram, speci�cally as a 4-point graph in scalar �4 theory. It is natural,

then, to ask about the Feynman integral of G. Simplifying by ignoring all physical

parameters and considering only graphs with no subdivergences, it makes sense to

de�ne a number known as the period of G [3, 5, 12, 13] (de�ned more thoroughly in

Section 4.4). This period is the residue of the Feynman integral under a variety of

1 The authors acknowledge the support of NSERC.
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regularizations and so gives a largely renormalization scheme independent aspect

of the Feynman integral.

There are a number of graph theoretic operations which are known to preserve

the period. If G is planar, then G and its planar dual have the same period [4];

this is a consequence of taking a Fourier transform of the Feynman integral. If G

and another graph G0 have isomorphic completions, then G and G0 have the same

period [4, 13]. If � and � 0 relate by the Schnetz twist (see Figure 2) and G and

G0 are decompletions of � and � 0 respectively, then G and G0 have the same

period [13]. Furthermore, if � has a 3-vertex cut, then the period of G is a product

of the periods of two particular minors [4, 13].

In view of this, we are interested in graph theoretic properties or invariants

which are preserved by planar duality, completion followed by decompletion,

and Schnetz twist. The c2 invariant is an arithmetic graph invariant de�ned by

counting points on the Kirchho� polynomial which is conjectured to have these

properties (see [7]); duality is proven in [9] for graphs that meet a speci�c subgraph

condition, and it is established in [7] that if decompletion is true then the 3-cut

condition follows. We are not aware of any other nontrivial graph invariants

thought to satisfy these properties.

In this paper we introduce the following graph invariant; let G be a graph with

jE.G/j D k.jV.G/j � 1/ for some integer k. Construct a signed incidence matrix

from G and delete a single arbitrary row. From this, construct a block matrix by

stacking the modi�ed incidence matrix k times. Up to sign, we call the permanent

of this matrix modulo k C 1 the graph permanent. Extending the concept of

completion and decompletion to arbitrary regular graphs (De�nition 15), we prove

the following:

Theorem. Suppose � and � 0 are connected 2k-regular graphs.

� Any two decompletions of � have equal graph permanent (Theorem 17).

� If � and � 0 di�er by a Schnetz twist, any pair of decompletions of � and � 0

will have equal graph permanents (Proposition 19).

Further, let G be a graph such that jE.G/j D 2.jV.G/j � 1/ and G� its planar

dual.

� The graph permanents of G and G� are equal (Proposition 20).

Finally, suppose � is a 4-regular graph.

� If � has a 3-vertex cut, then the graph permanent of any decompletion of � is

the product of the graph permanents of two particular minors (Corollary 23).
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Further we prove a product property when K has a 4-edge cut (Theorem 24)

that corresponds to the case of subdivergences in the Feynman graph.

Our invariant is well de�ned on a wider class of graphs than decompletions of

4-regular graphs and relates naturally to �ow questions on graphs. Indeed, when

this invariant is nonzero, it implies, by way of the Alon–Tarsi polynomial tech-

nique ([2]), that the graph in question has a modular k orientation (or equivalently

a Zk �ow using only the values ˙1). Furthermore, in the key case of 4-regular

graphs, the polynomial is closely related to the Feynman integrand. This will be

explained in detail in Section 5

Completion invariance for 2k-regular graphs can be distilled into a curious

identity for graphs (Theorem 18), and we close the introduction with a description

of this. Let G be 2k-regular, and �x an orientation of the edges of G which

we call the reference orientation. Now de�ne an arbitrary orientation of G to

be odd (even) if the number of edges for which this orientation disagrees with

the reference orientation is odd (even). Let s; t be distinct vertices of G. Any

orientation for which degC.s/ D 2k D deg�.t / and degC.v/ D k D deg�.v/ for

every v 2 V.G/ n ¹s; tº will be called an s-to-t orientation. Let Es;t .Os;t / denote

the number of even (odd) s-to-t orientations. With this terminology, we can state

this new identity as follows.

Theorem. If G is a 2k-regular graph, and .s; t /, .s0; t 0/ are pairs of distinct

vertices of G, then

Es;t � Os;t � Es0;t 0 � Os0;t 0 .mod k C 1/:

2. A block matrix construction

Throughout this paper, all graphs are assumed to be connected and loop-free.

We allow parallel edges.

De�nition 1. Let G be a graph. Arbitrarily apply directions to the edges in G, and

let M � be the incidence matrix associated with this digraph; columns indexed by

edges and rows by vertices. Select a vertex w in V.G/, and delete the row indexed

by w in M �. Call this new matrix M . Let k be a positive integer. De�ne a

k-duplicated signed incidence matrix (herein kDSI matrix) of G to be the block
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matrix
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M

M
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M
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7
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>

>

>

=

>

>

>

>

;

k times:

Further, we call w the special vertex in the construction of this kDSI matrix.

Our interests lie in graphs G that have jE.G/j D k.jV.G/j�1/ for some integer

k, as this results in a square kDSI matrix and allows for permanent calculations.

De�nition 2. Let A D .ai;j / be an n-by-n matrix. The permanent of A is

Perm.A/ D
X

�2Sn

n
Y

iD1

ai;�.i/;

where the sum is over all elements of the symmetric group Sn.

If a particular � 2 Sn is such that
Qn

iD1 ai;�.i/ ¤ 0, we will say that it

contributes to the permanent. We may alternately de�ne a contribution from an

appropriate selection of non-zero elements in the matrix.

From the de�nition of the permanent, we see that it is the determinant with

signs not taken into account. In fact, the permanent also can be computed using

cofactor expansion, similar to the determinant. As 1 � �1 .mod 2/, any square

matrix M has Perm.M/ � det.M/ .mod 2/, which suggests that the permanent

may have some interesting properties modulo integers.

Remark 3. From the de�nition of the permanent, it is clear that we may inter-

change two rows or columns without a�ecting the permanent. Further, multiply-

ing a row or column by a constant results in the permanent being multiplied by

that constant.

What happens when a multiple of one row is added to another is less clear,

and in general not well behaved. However, there is greater control with the kDSI

matrix modulo k C 1, which will be examined in Lemma 5 and Corollary 6.

Lemma 4. For an n�n matrix M , if there is a set ¹a1; a2; : : : ; amº such that rows

ra1
; ra2

; : : : ; ram
are equal, there is a factor of mŠ in the permanent of M .

Proof. We may write

Perm.M/ D
X

�2Sn

n
Y

iD1

ai;�.i/ D mŠ
X

�2S�
n

n
Y

iD1

ai;�.i/;
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where S�
n is the set of elements of the symmetric group such that �.a1/ <

�.a2/ < � � � < �.am/, and the mŠ term allows for further permutations of these

elements. �

Lemma 5. Let M be a matrix and ri and rj rows of M , ri ¤ rj as vectors. Suppose

there are k copies of rj in M . Let M 0 be a matrix derived from M by adding a

constant integer multiple of rj to ri . Then Perm.M/ � Perm.M 0/ .mod k C 1/.

Proof. Suppose that

M D .mx;y/ D

2

6

4

r1

r2

:::

3

7

5
; M 0 D .m0

x;y/ D

2

6

6

6

6

6

4

r1

:::

ri C crj

:::

3

7

7

7

7

7

5

:

De�ne N as the matrix M with row i removed. We will use Nt to denote the

matrix N with column t removed. By cofactor expansion along the i th row,

Perm .M/ D

kn
X

tD1

mi;t Perm .Nt / ;

Perm
�

M 0
�

D

kn
X

tD1

m0
i;t Perm.Nt /

D

kn
X

tD1

.mi;t C cmj;t / Perm.Nt /

D Perm .M/ C c Perm

2

6

6

6

6

6

6

6

6

6

4

r1

:::

ri�1

rj

riC1

:::

3

7

7

7

7

7

7

7

7

7

5

:

As this last matrix has k C 1 copies of row rj , it has permanent congruent to zero

modulo k C 1 by Lemma 4. �

Throughout this paper, we will consider only matrix operations performed

simultaneously in all blocks. The following corollary follows immediately from

Lemma 5.
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Corollary 6. Suppose M is a block matrix made of k identical blocks stacked,

and ri and rj are rows of M in a common block, i ¤ j . Let M 0 be a matrix

derived from M by adding a constant integer multiple of rj to ri in each block.

Then Perm.M/ � Perm.M 0/ .mod k C 1/.

Proposition 7. The choice of special vertex only a�ects the overall sign of the

permanent modulo k C 1 in a kDSI matrix. If k is odd, changing the special

vertex results in a sign change. If k is even, changing special vertex has no e�ect

on the permanent.

Proof. For signed incidence matrix M �, let r1; : : : ; rn be the rows associated to

vertices 1; : : : ; n in the original graph G, and suppose vertex i is the special vertex,

i 2 ¹1; : : : ; nº. Then,

ri D �.r1 C r2 C � � � C ri�1 C riC1 C � � � C rn/;

a property of the signed incidence matrix. For all blocks in M , we may therefore

turn row rj , i ¤ j , into row ri using the above equation. By Corollary 6, only the

multiplication of a row in each block by �1 a�ects the permanent modulo k C 1,

�ipping the overall sign once for each block. This produces the kDSI matrix where

j was the special vertex; the permanent is una�ected if there is an even number

of blocks, and multiplied by �1 if there is an odd number of blocks. �

Corollary 8. Any kDSI matrix from a graph G with jV.G/j > 2 and odd k has

permanent invariant under choice of special vertex.

Proof. Consider kDSI matrix M from graph G where v1 is the special vertex, and

suppose v2; v3 2 V.G/nv1. Let Mv!w denote the matrix where the special vertex

has been changed from v to w, as in Proposition 7. If k is odd, then,

Perm.M/ � �Perm.Mv1!v2
/ � Perm

�

.Mv1!v2
/v2!v3

�

.mod k C 1/

Perm.M/ � �Perm.Mv1!v3
/ .mod k C 1/:

As
�

.Mv1!v2
/v2!v3

�

and Mv1!v3
di�er only by interchanged rows,

Perm
�

.Mv1!v2
/v2!v3

�

D Perm.Mv1!v3
/;

and the result follows. �

To understand why the restriction in the previous corollary that jV.G/j > 2 is

necessary, we require the following theorem.
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Wilson’s Theorem. A number p is prime if and only if .p � 1/Š � �1 .mod p/.

For a composite number n > 4, .n � 1/Š � 0 .mod n/.

Theorem 9. Suppose G is a graph such that jE.G/j D k.jV.G/j � 1/. With a

�xed orientation to the edges, the permanent of the kDSI matrix of G is invariant

under choice of special vertex modulo k C 1.

Proof. By Proposition 7 and Corollary 8, the permanent is invariant modulo k C1

under choice of special vertex if k is even or k is odd and jV.G/j > 2. As a graph

with only a single vertex creates an empty matrix, it remains to be shown that the

permanent is invariant if jV.G/j D 2 and k C 1 is even.

Suppose then that G is a graph with two vertices and k parallel edges. Applying

an arbitrary orientation to the edges, the kDSI matrix of this graph has entirely

nonzero entries, each column either all 1 or all �1. Thus, it trivially has permanent

˙kŠ. As k C1 is even, it follows from Wilson’s Theorem that kŠ � 0 .mod k C1/

if k C 1 > 4. Hence, we need only consider k 2 ¹1; 3º. As ˙1Š � 1 .mod 2/

and ˙3Š � 2 .mod 4/, the permanent is invariant under any choice made in

constructing the kDSI matrix, as desired. �

De�nition 10. Let G be a graph with jE.G/j D k.jV.G/j�1/ for some integer k.

Let M be a kDSI matrix of G. The graph permanent of G is ˙ Perm.M/

.mod k C 1/, which we will by convention take as a residue in
�

0; kC1
2

�

.

The fact that we must choose ˙ Perm.M/ is the result of variability in the

choice of underlying edge orientation. In changing the direction of an edge in the

orientation, a column of the matrix is multiplied by negative one, and hence the

permanent changes sign.

3. Graphic interpretation

Consider a graph G with jE.G/j D k.jV.G/j � 1/ and an associated kDSI

matrix M with special vertex v 2 V.G/. For each contribution to the permanent,

precisely one non-zero value is selected from each row and similarly from each

column. Fix such a contribution. Given the block structure that is used to create

matrix M , we may associate each block with a unique colour. Then, each edge

is selected once, and each non-special vertex k times. Assign colour c to an edge

if the contribution uses a value in the associated column that is in the cth block.

For each coloured edge, assign a tag on the edge close to the vertex that uses that

edge in M . Such a contribution and colouring scheme on K4 is given in Figure 1.
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Figure 1. A 2DSI matrix of K4 with special vertex 0 and a contribution to the permanent.

Note from this construction that the special vertex cannot receive a tag.

All other vertices must receive precisely k tags, one on an edge of each colour.

In fact, an arrangement of edge tags and colours on G that assigns each non-special

vertex k tags – one on an edge of each colour – and no tags to the special vertex

can immediately be turned into a selection of non-zero entries in the kDSI matrix.

Remark 11. There is a bijection between these assignments of tags and colours

and the contributions to the permanent.

We will use this bijection in a number of proofs as a way of considering these

contributions as a property of the graph itself.

Remark 12. There are two operations on the tags and colours of the graph that

produce other contributions to the permanent. The �rst is, for any non-special

vertex, we may permute the colours of the k edges that have a tag at that vertex.

There are kŠ ways to perform this permutation. The second, at its most intuitive,

is that we may switch which vertex receives the tag on every edge in a cycle where

all edges have the same colour. Since the colours of edges that have tags at a

common vertex are all interchangeable, though, this may be restated as reversing

the directions of the tags of a cycle C in G such that, in C , each vertex receives

one tag.

Suppose then that the graph G has n vertices. From the colour permuting

operation, each valid con�guration of tags produces .kŠ/n�1 valid colourings.

As the tags determine the position in the original matrix that is selected, choice

of edge colours does not a�ect the value of the contribution. As such, .kŠ/n�1 is

a factor in the permanent, and the colours do not matter.

Proposition 13. For non-prime k C 1, the permanent of any square kDSI matrix

associated to a graph G with jV.G/j > 2 is zero modulo k C 1.
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Proof. If k C 1 is composite and greater than four then by Wilson’s Theorem

kŠ � 0 .mod k C 1/. As kŠ is a factor of the permanent the result follows. If

k C 1 D 4, then kŠ � 2 .mod 4/, and the fact that jV.G/j > 2 means that kŠ2 is a

factor in the permanent. Again, the result follows. �

It is interesting to note, then, that the value of the permanent for a kDSI matrix

is determined completely by the tag assignments.

Proposition 14. For a kDSI matrix, we may produce all contributions to the

permanent from a single contribution and the two operations stated in Remark 12.

Proof. By Remark 12, it is su�cient to show that all valid tag placements can be

obtained. Starting from a �xed orientation, then, consider getting to another by

switching which vertex receives the tag on a set of edges. Since each edge must

receive k tags, it is immediate that this selection of edges must be a collection of

cycles. �

4. Invariance under period preserving operations

We now begin to explore the invariance of the graph permanent under the graph

operations that are known to preserve the Feynman period, as mentioned in the

introduction. Since we are always restricted to graphs G such that jE.G/j D

k.jV.G/j � 1/ for some integer k, we split this section into three subsections,

corresponding to speci�c graph classes that are subsets of this larger class; de-

completed 2k-regular graphs, graphs where jE.G/j D 2.jV.G/j � 1/, and �nally

the intersection of the previous two classes, decompleted 4-regular graphs.

4.1. Decompleted 2k-regular graphs. The following de�nition is generalized

from the introduction.

De�nition 15. For a regular graph � and any v 2 V.�/, the graph G D � � v is

a decompletion of �, and � is the unique completion of G.

Theorem 16. Let � be a 2k-regular graph. For vertices v; w 2 V.�/, let M be

the kDSI matrix of � � v with respect to special vertex w, and N the matrix from

opposite deletion and special vertex. Then, Perm.M/ D ˙ Perm.N /. If k is even

and an edge orientation based on an Eulerian circuit in � is used to construct M

and N , then Perm.M/ D Perm.N /.
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Proof. By Remarks 11 and 12, it su�ces to �nd a bijection between contributions

to the two permanents that is consistent in either maintaining or changing signs.

Hence, consider an extension of the taggings from the decompleted graphs to �

by assuming the decompleted vertex received the tags of all edges incident to

it. By this extension, the special vertex receives no tags, the decompletion vertex

receives 2k, and all other vertices receive k tags. The bijection that arises naturally,

then, is to switch which vertex receives a tag on every edge. By construction, this

switches between extensions of contributions to M and N .

We now consider the signs of the contributions. Consider a �xed orientation

in � from an Eulerian circuit, and use this to de�ne the underlying orientation for

� � v and � � w. Switching the position of a tag on a single edge changes the

sign of an entry of the contribution. Hence, each edge common to both � � v

and � � w causes a sign change. Suppose now that there are l edges between v

and w in �. If l is even, then an even number of changes are ignored in deleting

v or w, and hence this causes no additional sign change. If l is odd, then w in

� � v and v in � � w will be incident with opposite parity number of tags that

disagree with the underlying orientation, causing an additional sign change. In

all cases, it was the structure of the graph, not that actual position of the tags,

that determined sign changes between the two permanents. Hence, this bijection

either preserves the signs of all contributions or changes all signs. Therefore,

Perm.M/ D ˙ Perm.N /, as desired.

If, in addition, k is even, jE.�/j D kjV.�/j is even. Again, supposing that

edge ¹u; vº occurs l times, there are kjV.�/j � 4k C l edges not incident with

either v or w in �. No matter the parity of l , then, an even number of sign changes

made are made in the bijection, and overall sign is preserved. �

Theorem 17. For a �xed 2k-regular graph �, the graph permanents of all possible

decompletions of � are equal.

Proof. By Theorem 9, the choice of special vertex does not a�ect the permanent

up to sign modulo k C 1. From Theorem 16 and the fact that changing the

direction of an edge in the underlying orientation only a�ect the overall sign of the

permanent, the choice of deleted and special vertex may be interchanged without

a�ecting the permanent up to sign. Thus, any two vertices are interchangeable

with any other two as the deleted and special vertex, only potentially changing

overall sign modulo k C 1. As the graph permanent from kDSI matrix M is

˙ Perm.M/ .mod k C 1/, this completes the proof. �
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The extension of edge taggings from decompleted graph G to 2k-regular

completion �, as seen in Theorem 16 provides the framework for a more graph

theoretic look at the taggings. As stated in the introduction, �x a reference

orientation on the edges of �. We say that an arbitrary orientation is odd (even)

if it disagrees with the reference orientation on an odd (even) number of edges.

For distinct vertices s; t 2 V.�/, we call any orientation that has degC.s/ D 2k D

deg�.t / and degC.v/ D k D deg�.v/ for all v 2 V.�/ n ¹s; tº a s-to-t orientation.

Let Es;t (Os;t ) denote the number of even (odd) s-to-t orientations. The following

theorem, mentioned in the introduction, can now be proved.

Theorem 18. Let � be a 2k-regular graph and .s; t /, .s0; t 0/ pairs of distinct

vertices. Then,

Es;t � Os;t � Es0;t 0 � Os0;t 0 .mod k C 1/:

Proof. Consider �rst a contribution to the permanent of a kDSI matrix M from the

decompletion of � created by deleting vertex t and making s special. With each

element selection, we assign a tag that either agrees or disagrees with the reference

orientation. If it agrees, we have selected a 1 from M . Otherwise, we have selected

a �1. As in Theorem 16, we extend the tagging of our decompleted graph to 2k-

regular graph to create an s-to-t orientation where s is the special vertex and t is the

decompleted vertex. Assuming an underlying edge orientation from an Eulerian

circuit, a 2k-regular graph will disagree with an s-to-t orientation on precisely k

edges incident to t . Hence

Perm.M/ D .�1/k.Es;t � Os;t /:

It follows from Theorem 16 that if k is even, Es;t � Os;t D Et;s � Ot;s . From

this construction and Theorem 9, Es;t � Os;t � Es0;t � Os0;t .mod k C 1/ for

any s0 2 V.�/ n t . Hence, using an Eulerian circuit as an underlying orientation,

Es;t � Os;t � Es0;t 0 � Os0;t 0 .mod k C 1/:

For odd k, it was noted in Proposition 13 and the proof of Theorem 9 that if

jV.�/j > 3, or jV.�/j D 3 and k > 3, the permanent of any decompletion is equal

to zero modulo k C1, which completes the proof in this case. Finally, by Wilson’s

Theorem again, if jV.�/j D 3 and k 2 ¹1; 3º, the permanent of any kDSI matrix

is invariant under sign.

We complete the proof by noting that in turning an Eulerian circuit into any

other orientation, each change in the direction of an edge multiplies both sides of

the equation by negative one. �
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Proposition 19. Consider two 2k-regular graphs that di�er by a Schnetz twist,

seen in Figure 2. Decompletions of these graphs have equal graph permanents.

Figure 2. The Schnetz twist.

Proof. As the graph permanent is invariant under choice of special and decom-

pleted vertex, in each graph choose vertex v4 for deletion and v3 as the special

vertex. Using Remark 11 and as in the proof of Theorem 16, we may capture all

contributions to the permanent of the decompleted graph by treating the deleted

vertex as a vertex that has received all tags from incident edges, and the special

vertex as a vertex that has received none. This will allow for a natural bijection,

to be de�ned below, between contributions after the twisting operation. As both

graphs are assumed to be 2k-regular, it must be the case that vertices v3 and v4

have an equal number of edges in the left side of the graph, say d3, and an equal

number of edges in the right side of the graph, which would then be 2k � d3.

We may say the same for vertices v1 and v2, and denote these d1 and 2k � d1.

Suppose then that the left portion of the graph has n vertices contained properly

inside. Then, there are knCd1 Cd3 edges on this side, and hence an equal number

of tags. If vertex v1 receives m tags, then vertex v2 must receive

.kn C d1 C d3/ � .kn C d3 C m/ D d1 � m;

accounting for all tags on this side. Similarly, since all vertices receive k tags,

v1 must receive k � m tags on the right, and v2 must receive k � d1 C m.

After the twist, then, consider switching the sides of the tags on the right side

only. Again, the deleted vertex receives 2k tags and the special vertex receives

none. Further, vertex v1 receives m C ..2k � d1/ � .k C m � d1// D k tags, and

similarly v2 receives .d1 � m/ C ..2k � d1/ � .k � m// D k tags. Hence, this

is a contribution to the permanent. This operation is clearly bijective and at most

changes the overall sign of all contributions, and hence the graph permanents must

be equal. �
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4.2. Graphs G where jE.G/j D 2.jV.G/j � 1/

Proposition 20. For a graph G where jE.G/j D 2.jV.G/j � 1/ and planar

dual G�, the graph permanents for G and G� are equal.

Proof. By Remark 3 and Corollary 6 we may row perform row operations without

a�ecting the graph permanent. After row reduction, we may write the 2DSI matrix

MG D

"

I A

I A

#

:

The permanent of this matrix is 2jAj Perm.A/. Dually, we have 2DSI matrix

MG� D

"

�At I

�At I

#

;

with permanent .�2/jAj Perm.A/. �

Lemma 21. If a square block matrix has a non-square block that is the only block

containing non-zero entries in its particular row and column set, the permanent

is zero.

Proof. This follows immediately from the pigeonhole principle and the de�nition

of the permanent. �

Theorem 22. Consider the graph G and two minors G1 and G2 seen in Figure 3.

If for G� 2 ¹G; G1; G2º, 2jV.G�/j D jE.G�/j � 2, then the graph permanent of

G is equal to the product of the graph permanents of G1 and G2.

Figure 3. Operation on a two vertex cut.
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Proof. Let G be the original graph, and G1 and G2 the minors as seen in Figure 3.

Maintain a constant edge orientation across all graphs, with the edge ¹v1; v2º

oriented towards v2. Choosing v2 as the special vertex for all graphs, the respective

2DSI matrices are

MG D

2

6

6

6

6

6

6

6

4

G1 0

C D

0 G2

G1 0

C D

0 G2

3

7

7

7

7

7

7

7

5

;

MG1
D

2

6

6

6

4

G1 0

C 1

G1 0

C 1

3

7

7

7

5

;

and

MG2
D

2

6

6

6

4

0 G2

1 D

0 G2

1 D

3

7

7

7

5

;

where .C jD/ is the row corresponding to vertex v1.

Using cofactor expansion along the last column, we get

Perm.MG1
/ D Perm

2

4

G1

G1

C

3

5 C Perm

2

4

G1

C

G1

3

5 D 2 Perm

2

4

G1

G1

C

3

5 :

Similarly,

Perm.MG2
/ D 2 Perm

2

4

G2

G2

D

3

5 :

Again, use Nr to denote matrix N with column r deleted. Letting C D .c1; c2; : : : /

and D D .d1; d2; : : : /, we use cofactor expansion along the bottom row to get,

Perm.MG1
/ D 2

X

i

ci Perm

"

G1

G1

#

i

;

Perm.MG2
/ D 2

X

i

di Perm

"

G2

G2

#

i

:
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We now compute Perm.MG/ by cofactor expansion along the two rows .C jD/.

Suppose the block G1 contains n columns and block G2 contains m columns.

Blocks will be square only if in the expansion we have deleted one column in the

�rst n columns and one in the last m. By Lemma 21, then,

Perm.MG/ D 2
X

1�i�n

n<j �nCm

cidj Perm

2

6

6

6

4

G1

G1
0

0
G2

G2

3

7

7

7

5

i;j

D 2
X

1�i�n
1�j �m

ci dj Perm

"

G1

G1

#

i

Perm

"

G2

G2

#

j

� � Perm.MG1
/ Perm.MG2

/ .mod 3/:

Hence, the graph permanent of G is equal to the product of graph permanents of

G1 and G2. �

4.3. Decompleted 4-regular graphs

Corollary 23 (cf. Theorem 22). With 4-regular graphs �, �1, and �2 as in

Figure 4, the graph permanents of any decompletion of � is equal to the product

of graph permanents of decompletions of �1 and �2.

Figure 4. The completed graph with three vertex cut, corresponding to the completion of

the graphs in Figure 3.

Proof. By Theorem 17, graph permanent of a decompleted 4-regular graphs is

invariant under choice of decompletion vertex. Hence, decompleting each at the

vertex labeled with a hollow circle, we produce graphs as in Theorem 22, and the

result follows. �
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Theorem 24. Let graphs �, �1, and �2 in Figure 5 be 4-regular. Construct 2DSI

matrices by deleting the vertices labeled with a hollow circle and making the

vertices labeled with a square the special vertex, all distinct from vertices incident

with the edges in the 4-edge cut. The permanent of the 2DSI matrix associated to

� is equal to the product of the permanents associated to 2DSI matrices of �1

and �2.

Figure 5. The graph permanent reduction for a graph with a 4-edge cut.

Proof. Graph � has associated 2DSI matrix

MG D

2

6

6

6

6

6

6

6

6

6

6

6

6

4

I4 A 0

0 B 0

�I4 0 C

0 0 D

I4 A 0

0 B 0

�I4 0 C

0 0 D

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where blocks A and B correspond to the left side of the graph, and blocks C and

D correspond to the right. Supposing there are l edges in the left subgraph and k

edges in the right, then block B consists of l�4
2

rows and block D has k�8
2

rows.

Consider cofactor expansion along the �rst four columns. By Lemma 21 only

matrix minors where the deleted row meets A produce a non-zero permanent.

Given that each column has two potential values, and since we may interchange

rows freely,

Perm.MG/ D 24 � Perm

2

6

6

6

6

6

6

6

6

6

4

A 0

B 0

0 C

0 D

B 0

0 C

0 D

3

7

7

7

7

7

7

7

7

7

5

D 16 � Perm

2

4

B

A

B

3

5 � Perm

2

6

6

6

4

C

D

C

D

3

7

7

7

5

:
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Notice that

Perm.MG1
/ D Perm

2

6

6

6

4

I4 A

0 B

I4 A

0 B

3

7

7

7

5

D 16 � Perm

2

4

B

A

B

3

5 ;

and

Perm.MG2
/ D Perm

2

6

6

6

4

C

D

C

D

3

7

7

7

5

:

This completes the proof. �

4.4. Relation to Feynman periods. Let � be a 4-regular graph and let G D ��v

for some v 2 V.�/. Once again we are thinking of G as a Feynman diagram,

speci�cally as a 4-point graph in scalar �4 theory. The vertices where G used

to have edges connecting to v are the external edges of G. If we think of G

representing some particle interactions, then the external edges represent the four

particles coming into or out of the process.

To each edge e of G associate a variable ae and de�ne the period of G to be

Z

ai �0

�

‰2
;

where

� D

jE.G/j
X

iD1

.�1/i

jE.G/j
Y

j D1
j ¤i

daj ; ‰ D
X

T
spanning
tree of G

Y

e 62E.T /

ae :

Provided K is internally 6-edge-connected the period integral converges [3].

If K has an internal 4- or 2-edge-cut then we say G has a subdivergence. If G has

no subdivergences then we say it is primitive. In quantum �eld theory, graphs with

subdivergences are more complicated because the subdivergences need to be dealt

with �rst in the renormalization process (in this language see [6]). The period of a

primitive graph is renormalization-scheme independent, but is still an informative

part of the full Feynman integral.

Periods of 4-point graphs in �4 are preserved by the three operations we

have been looking at throughout this paper, namely planar dual, completion fol-

lowed by decompletion, and Schnetz twist [4, 13]. These identities of periods ex-

plain all known cases where two primitive 4-point graphs in �4 have the same
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period (see [13]). Furthermore if � has a 3-vertex cut then the period of any

decompletion of � is equal to the product of the periods of graphs G1 and G2

as seen in Figure 3. Thus, having found a graph invariant which is preserved by

the three operations and with the appropriate product property, namely the graph

permanent, the following conjecture is natural.

Conjecture 1. Suppose G1 and G2 are two primitive 4-point graphs in scalar �4

theory. If G1 and G2 have equal periods, then they have equal graph permanents.

Now consider the case of subdivergences. Internal 2-edge cuts in � are not

very interesting in this context because they automatically yield small vertex cuts

as well. Suppose � has an internal 4-edge cut, as in Figure 5. Decompleting

to G, say G2 is the side which did not have the decompletion vertex. Then G2 is

the subdivergence inside G. The leading term in the renormalized period of G is

the product of the periods of G=G2 and G2, which is what is given by the graph

permanent. This further strengthens the suggestion that the graph permanent is

measuring something about the period, and gives some initial hints of what kind

of thing it could be measuring.

In comparison, there is one two-valued invariant which we have some handle

on, namely whether or not the period is of full transcendental weight (see [8]

and [13]). This invariant has a di�erent behaviour on subdivergences, namely all

subdivergences give weight drop regardless of the weight of their pieces. This

shows that the graph permanent is capturing something di�erent about the period.

We can also compare these two invariants on speci�c graphs. For example, using

names from [13], P6;1 and P6;4 both have graph permanent of 0 while P6;1 is full

weight and P6;4 has weight drop. Alternately, P6;2 and P6;3 both have nonzero

graph permanent while P6;2 is full weight and P6;3 has weight drop. Note that

the names here label the completed graphs, or alternately label families of 4-point

graphs related by completion.

The c2 invariant is conjecturally another graph invariant with the same sym-

metries of the period [7]. It does specialize to capture the question of weight drop

and, relatedly, is 0 on graphs with subdivergences. Thus the graph permanent is

again capturing something di�erent about the period.

Unfortunately, it simply is not clear what about the period the graph permanent

is measuring. The graph permanents for the completion-families of graphs are

given in Appendix A.

A �nal hint at the existence and potential nature of a connection between the

graph permanent and the Feynman period comes from the fact that both of them

are closely related to questions of (momentum) �ows in graphs. This is explained

in the next section after the required graph theory of �ows is presented.
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5. A connection to nowhere-zero �ows

The graph permanent also arises naturally in the study of nowhere-zero �ows on

graphs, and in this section we will develop this interesting connection. To this

end we demonstrate that a graph has a certain orientation (closely related to the

study of �ows) under the assumption that a spanning subgraph has nonzero graph

permanent.

Suppose that G is a graph and (as before) direct the edges of G arbitrarily.

For an abelian group G, a function �W E.G/ ! G has an associated boundary

function @�W V.G/ ! G given by the following rule (here ıC.v/ denotes the edges

directed away from v and ı�.v/ the edges directed to v);

@�.v/ D
X

e2ıC.v/

�.e/ �
X

e2ı�.v/

�.e/:

Note that
P

v2V.G/ @�.v/ D 0 since each edge e contributes �.e/ � �.e/ D 0 to

the total sum. We de�ne � to be a G-�ow if @� is the zero function, and we say

that � is nowhere-zero if 0 62 �.E.G//, where �.E.G// is the range of �. Note

that if � is a nowhere-zero �ow, we may alter the orientation of G by reversing

the direction of some edge e and modify � by replacing �.e/ with its negation,

and this results in another nowhere-zero �ow. Therefore, the question of whether

our graph has a nowhere-zero �ow in a particular group G will be independent

of the chosen orientation. Accordingly, we will say that an undirected graph has

a nowhere-zero �ow if some (and thus every) orientation permits such a map.

Nowhere-zero �ows have a rich history initiated by Tutte who proved all of the

following properties. (Throughout we let Zk D Z=kZ).

Theorem 25 (Tutte [15, 16]). (1) If G and G� are dual planar graphs, then G has

a k-colouring if and only if G� has a nowhere-zero Zk-�ow.

(2) A graph G has a nowhere-zero Zk-�ow if and only if it has a Z-�ow with

range a subset of ¹˙1; ˙2; : : : ; ˙.k � 1/º.

(3) If G has a nowhere-zero G-�ow for a �nite abelian group G, then it has a

nowhere-zero G0-�ow for every abelian group G0 with jG0j � jGj.

In addition, Tutte made three famous conjectures which have motivated a

tremendous amount of investigation, but all remain unsolved.

Conjecture 2 (Tutte). (1) (5-Flow) Every graph without a cut-edge has a nowhere-

zero Z5-�ow.
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(2) (4-Flow) Every graph without a cut-edge and without a Petersen minor has

a nowhere-zero Z4-�ow.

(3) (3-Flow) Every 4-edge-connected graph has a nowhere-zero Z3-�ow.

In his investigations of �ows, Jaeger introduced the following interesting con-

cept. For an (undirected) graph G, de�ne an orientation of its edges to be a modulo

k orientation if every vertex v satis�es jıC.v/j� jı�.v/j � 0 .mod k/. If we have

a modulo k orientation of a graph, then we can obtain a nowhere-zero Zk �ow by

assigning each edge to have �ow value 1. On the other hand, if we have found a

�ow �W E.G/ ! Zk for which �.E.G// � ¹�1; 1º then by reversing the edges

with �ow value �1, we obtain a modulo k orientation. So, in short, a modulo

k orientation is equivalent to the existence of a Zk-�ow with range a subset of

¹�1; 1º. Jaeger o�ered the following unifying conjecture which, if true, is known

to imply both Tutte’s 5-�ow and 3-�ow conjectures.

Conjecture 3 (Jaeger [10]). Every 4k-edge-connected graph has a modulo 2k C1

orientation.

A recent �urry of activity started by Thomassen’s proof of a weak version of

the 3-�ow conjecture [14] has resulted in a proof of a weak version of the above

conjecture. Namely, Lovász, Thomassen, Wu, and Zhang [11] have recently proved

that every .3k � 3/-edge-connected graph has a modulo k orientation.

With an eye toward constructing �ows and modulo k orientations, let us now

return to incidence matrices. As before, we shall use M � to denote the oriented

incidence matrix of G. If we regard M � as a matrix with entries in G, then a �ow

in G is precisely a vector in the nullspace of M �. Since the sum of the rows of M �

is zero, the matrix M � will have the same nullspace as the matrix M which we

obtain from M � by deleting the row corresponding to an arbitrarily chosen special

vertex w. This recasts the problem of �nding a nowhere-zero G �ow in G as one of

�nding a vector in the nullspace of M with no zero entries. Turning our attention

to the special case G D Zk , we note that the existence of a modulo k orientation

in G is equivalent to the existence of a ˙1 valued vector in the nullspace of M .

The main tool we will require for our result is the following “polynomial

method”.

Theorem 26 (Alon and Tarsi [2]). Let F be a �eld and let f .x1; : : : ; xn/ be

a polynomial in FŒx1; : : : ; xn�. Suppose that the coe�cient of x
d1

1 x
d2

2 : : : x
dn
n is

nonzero and that deg.f / D d1Cd2C: : :Cdn. Then for every S1; : : : ; Sn � Fwith

jSi j > di for 1 � i � n, there exist si 2 Si for 1 � i � n so that f .s1; : : : ; sn/ ¤ 0.
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Now we shall restrict our attention to the case when G D Zp for a prime p so

that our matrix M has its entries in a �eld. In this setting, the graph permanent

arises naturally in conjunction with the above theorem to produce a certi�cate for

a graph which guarantees the existence of a modulo p orientation of G. Namely,

we will prove the following result which appears implicitly in [1].

Theorem 27 (Alon, Linial, and Meshulam). Let p be prime, let G be an n vertex

graph, and let H be a spanning subgraph of G with jE.H/j D .p � 1/.n � 1/. If a

.p � 1/DSI matrix for H has nonzero permanent modulo p, then G has a modulo

p orientation.

Proof. Begin by orienting the edges of G arbitrarily. De�ne H 0 D G �E.H/ and

choose �0W E.H 0/ ! ¹�1; 1º arbitrarily. Our goal will be to use the polynomial

method to prove that �0 may be extended to a Zp �ow of G with range a subset

of ¹�1; 1º. To do so, de�ne V 0 D V n ¹wº and for every v 2 V 0 de�ne

Av D Zp n ¹@�0.v/º. Now we shall construct a polynomial f with a variable

xe for every edge e 2 E.H/ by the following rule:

f D
Y

v2V 0

Y

a2Av

�

� a C
X

e2ı
C

H
.v/

xe �
X

e2ı�
H

.v/

xe

�

:

Let us pause to consider what it would mean for this polynomial to be nonzero

on a particular assignment to the variables. Namely, let �W E.H/ ! Zp and

suppose that evaluating f where each variable xe is assigned the value �.e/ gives

a nonzero value. Considering the innermost product in our equation, we see that

in order for f to be nonzero when evaluated at � it must be that @�.v/ is not equal

to a for every a 2 Av. However, this is precisely equivalent to the statement that

@�.v/ D �@�0.v/. Since this must hold at every v 2 V 0 we have that the function

� [ �0 (i.e. the function which maps each e 2 E.H 0/ to �0.e/ and each e 2 E.H/

to �.e/) is a �ow. Indeed, this polynomial evaluated at � will result in a nonzero

value precisely when � [ �0 is a �ow.

Now consider the coe�cient of
Q

e2E.H/ xe in the expansion of f . Since this

term has degree jE.H/j D .p � 1/.n � 1/ we can see that this is the same as the

coe�cient of the same term in the expansion of the polynomial

Y

v2V 0

�

X

e2ı
C
H

.v/

xe �
X

e2ı�
H

.v/

xe

�p�1

:
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However, this is precisely the permanent of the .p � 1/DSI matrix of H with

special vertex w. So, by assumption, this coe�cient is nonzero, and then (since

deg.f / � .p�1/.n�1/) by the Alon–Tarsi theorem, we may choose an assignment

to these variables �W E.H/ ! ¹�1; 1º in such a way that evaluating f on these

inputs is nonzero. As we have seen, this gives us a Zp-�ow � [ �0 with range a

subset of ¹�1; 1º, or equivalently a modulo p orientation of G, as desired. �

Further evidence of the connection between our invariant and the Feynman

integral can be found in the polynomial appearing in the previous proof. Indeed,

just as the period of a graph can be computed using a number of di�erent inte-

grals (one of which features integrating over a basis of the cycle space), so the

polynomial coe�cient in our proof has many essentially equivalent variations.

To give a concrete instance of this, let G D .V; E/ be a graph with jEj D

2jV j � 2 and assume that G is equipped with an arbitrary orientation of the edges.

Following the line of the previous proof, we will construct a polynomial and use

the polynomial technique to show the existence of a nowhere-zero Z3-�ow on G

(under certain additional assumptions). Though the polynomial we construct will

be quite di�erent from that in the proof of the previous theorem, it will turn out

that the coe�cient of interest will be same (up to sign).

Choose a spanning tree T of G and introduce a variable (from Z3) denoted

ye for every edge e 2 E n E.T /. These variables may be viewed as indexing the

Z3-cycle space of G. For f 2 E.T / there is a unique edge-cut in G which contains

f but no other edge of T , called the fundamental cut of f . De�ne C C
f

to be the

set of edges in this cut (other than f ) which are oriented the same as f relative to

this cut, and C �
f

to be those edges in the cut with opposite orientation to f . Using

these, we de�ne the following linear polynomial (with variables ¹yeºe2EnE.T /)

gf D
X

e2C �
f

ye �
X

e2C
C

f

ye:

It follows from basic theory that every assignment to all of the ye variables extends

uniquely to a Z3-�ow of G. Furthermore, for this �ow, the value on an edge

f 2 E.T / is given by gf .

Now we will proceed in our attempt to use the polynomial technique to �nd a

nowhere-zero Z3-�ow in G. To do this, de�ne the polynomial

g D
Y

f 2E.T /

gf :
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If the coe�cient of the monomial
Q

e2EnE.T / ye in the expansion of g is nonzero,

then by Theorem 26, there exists an assignment to the variables using only the

elements ¹�1; 1º so that g evaluates to a nonzero number. However, this is

precisely what is required to have a nowhere-zero �ow. So, in short, we have now

found another polynomial coe�cient which, if nonzero, implies the existence of

a nowhere-zero Z3-�ow in our graph.

Although the polynomial g we have constructed depends on the choice of

spanning tree, the coe�cient of the term
Q

e2EnE.T / ye (up to sign) does not

depend on this choice. Furthermore, (up to sign) this coe�cient is the same as

the coe�cient of
Q

e2E.H/ xe in the expansion of f from the previous proof. To

see this, let M be a matrix obtained from the incidence matrix of G by removing

a row, and assume (for convenience) that the columns of M associated with edges

in T appear before those associated with edges in E n E.T /. It follows from

basic theory that the matrix M may be turned by row operations into a matrix for

which the columns associated with edges in T form an identity matrix. So, by row

operations we may transform M into a matrix of the form
�

I A
�

. Now, working

in the �eld Z3 we have

Perm

"

M

M

#

D ˙ Perm

"

I A

I A

#

D ˙ Perm A:

By the previous proof, the coe�cient of
Q

e2E.H/ xe in the expansion of f is

Perm
�

M
M

�

, and by elementary reasoning, the coe�cient of
Q

e2EnE.T / ye in our

polynomial g is equal to Perm A, thus yielding the desired connection.

This polynomial g is closely related to the Feynman integrand in momentum

space. As before we are taking the simplest possible case of a Euclidean massless

scalar �eld theory. To set up the Feynman integrand in momentum space �rst

take a basis of the cycle space and assign a variable to each cycle in the basis;

in particular the ye are appropriate. These variables represent the momentum

�owing around the cycles and we view them as taking values in R
4. To each edge

associate the signed sum of the variables for the cycles running through that edge;

this is the momentum �owing through that edge and is gf for f 2 T and is ye

itself for e 62 T . Let

Qg D
Y

f 2T

jgf j2
Y

e 62T

jyej2

where the norms are the usual Euclidean norm. The Feynman integrand is 1= Qg

and the integral runs over all values of the ye. After modifying the integral to use

the projective volume measure,
P

.�1/i
Q

j ¤i dyj analogously to Subsection 4.4,

this calculates the same period (see [13] for discussion and proof in close to this

language).



452 I. Crump, M. DeVos, and K. Yeats

Returning to the polynomials, another way to look at the construction of Qg

is to assign a momentum variable to each edge but then impose momentum

conservation at each vertex, which is just di�erent language for the �ow condition.

Furthermore, we see that Qg and g only di�er in two ways. First the norm squared

has replaced the simple appearance of variables which is a natural adjustment to

vector valued variables. Second Qg has a factor for the edges not in T . If we put an

analogous factor in g we would be multiplying g by the product of all the variables.

This has essentially no impact on the use of the polynomial technique as it simply

shifts up all degrees.

Ultimately, this close relationship between �ow calculations in graph theory

and Feynman integrals should not be surprising since the momentum space Feyn-

man integral is the integral over all possible momentum �ows through the graph.

Appendix A. Primitive �4 graphs and their graph permanent

jV j 0 ˙1

5 P3;1

6 P4;1

7 P5;1

8 P6;1; P6;4 P6;2; P6;3

9 P7;3; P7;5; P7;9; P7;10; P7;11 P7;1; P7;2; P7;4; P7;6; P7;7; P7;8

10 P8;5; P8;6; P8;9; P8;14; P8;17;

P8;18; P8;23; P8;25; P8;31; P8;33;

P8;35; P8;39; P8;41

P8;1; P8;2; P8;3; P8;4; P8;7; P8;8;

P8;10; P8;11; P8;12; P8;13; P8;15;

P8;16; P8;19; P8;20; P8;21; P8;22;

P8;24; P8;26; P8;27; P8;28; P8;29;

P8;30; P8;32; P8;34; P8;36; P8;37;

P8;38; P8;40

The notation used comes from [13].
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