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q-randomized Robinson–Schensted–Knuth correspondences

and random polymers

Konstantin Matveev and Leonid Petrov

Abstract. We introduce and study q-randomized Robinson–Schensted–Knuth (RSK)

correspondences which interpolate between the classical (q D 0) and geometric (q % 1)

RSK correspondences (the latter ones are sometimes also called tropical).

For 0 < q < 1 our correspondences are randomized, i.e., the result of an insertion is

a certain probability distribution on semistandard Young tableaux. Because of this ran-

domness, we use the language of discrete time Markov dynamics on two-dimensional in-

terlacing particle arrays (these arrays are in a natural bijection with semistandard tableaux).

Our dynamics act nicely on a certain class of probability measures on arrays, namely, on

q-Whittaker processes (which are t D 0 versions of Macdonald processes of Borodin–

Corwin [8]). We present four Markov dynamics which for q D 0 reduce to the classical

row or column RSK correspondences applied to a random input matrix with independent

geometric or Bernoulli entries.

Our new two-dimensional discrete time dynamics generalize and extend several known

constructions. (1) The discrete time q-TASEPs studied by Borodin–Corwin [7] arise as one-

dimensional marginals of our “column” dynamics. In a similar way, our “row” dynamics

lead to discrete time q-PushTASEPs – new integrable particle systems in the Kardar–Parisi–

Zhang universality class. We employ these new one-dimensional discrete time systems to

establish a Fredholm determinantal formula for the two-sided continuous time q-PushASEP

conjectured by Corwin–Petrov [23]. (2) In a certain Poisson-type limit (from discrete

to continuous time), our two-dimensional dynamics reduce to the q-randomized column

and row Robinson–Schensted correspondences introduced by O’Connell–Pei [59] and

Borodin–Petrov [15], respectively. (3) In a scaling limit as q % 1, two of our four dynamics

on interlacing arrays turn into the geometric RSK correspondences associated with log-

Gamma (introduced by Seppäläinen [70]) or strict-weak (introduced independently by

O’Connell–Ortmann [58] and Corwin–Seppäläinen–Shen [25]) directed random lattice

polymers.
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1. Introduction

1.1. Overview. The classical Robinson–Schensted–Knuth (RSK) correspon-

dence associates to an integer matrix a pair of semistandard Young tableaux of

the same shape [45], [35], [71], [68]. It is informative to view an integer matrix

M D .Mij / as a con�guration of points (“balls”) in cells of the lattice Z2�0, with

Mij balls in the .i; j /-th cell (see Figure 1, left).

j

i

1

1

2

2

3

3

M D

0

B
@

1 0 0

0 4 2

2 0 1

1

C
A

w D .12313/

j cont.

i

1

2

3

� D .514362/

j cont.

i cont.

Figure 1. Left: an integer matrix as an input to the RSK. Center: an integer word as an

input into the RS viewed as a matrix with the continuous j coordinate (at most one ball at

a given horizontal position is allowed; the word encodes vertical positions of consecutive

balls). Right: a permutation viewed as a matrix with both continuous coordinates (at most

one ball at a given horizontal or vertical position is allowed; balls represent the graph of

the permutation).
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There are also simpler correspondences obtained from the RSK if one makes

one or both dimensions of the input continuous, see Figure 1, center and right.

In particular, the Robinson–Schensted (RS) correspondence maps integer words

into pairs of Young tableaux of the same shape, but now one of them is standard.

The idea of applying the RSK correspondence to a random input can be traced

back to [72] where it was used in connection with the asymptotic theory of char-

acters of the in�nite symmetric group (see also [17]). Together with combinatorial

properties of the RSK this idea has been extensively employed in studying various

stochastic systems, e.g., TASEP (= totally asymmetric simple exclusion process),

the last-passage percolation [42], or longest increasing subsequences of random

permutations [1], [2].

Reading the random input matrix column by column adds a dynamical per-

spective to random systems (with j in all three cases on Figure 1 playing the role

of time). This direction has been substantially developed in, e.g., [54], [55], [5].

The geometric version (also sometimes called “tropical”) of the RS and the

RSK correspondences1 has also been employed in the study of stochastic sys-

tems [56], [22], [60], [57]. The systems one obtains at this level are related to

directed random polymers in random media, in particular, to the O’Connell–Yor,

log-Gamma, and strict-weak random polymers introduced in [61], [70], and [58],

[25], respectively. Each such polymer model can be viewed as a positive temper-

ature version of a certain last-passage percolation-like model.

In the stochastic systems mentioned above, the RSK and related constructions

provide a way to observe and understand their integrability. The integrability

property refers to the presence of concise and exact formulas describing observ-

ables, which allows to study the asymptotic behavior of such systems, and also

gives access to exact descriptions of limiting universal distributions, such as the

Tracy–Widom distributions which are features of the Kardar–Parisi–Zhang (KPZ)

universality class [20], [14], [16], [67].

The classical RSK is deeply connected to Schur symmetric functions [52,

Chapter I], while the geometric RSK is relevant to the gln Whittaker func-

tions [49], [28]. Both families of functions are degenerations of more general

Macdonald symmetric functions depending on two parameters .q; t / [52, Chap-

ter VI]: the Schur functions correspond to q D t , and the Whittaker functions

arise in the limit as t D 0 and q % 1, see [38].

1 The geometric RSK maps arrays of positive real numbers into other such arrays in

a birational way, and is obtained from the classical RSK by a certain “detropicalization”,

see [44], [53].
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In the recent years, there has been a progress in understanding analogues of

the RS correspondences at other levels of the Macdonald hierarchy: q-Whittaker

(t D 0 and 0 < q < 1), see [59], [65], [15], and Hall–Littlewood (q D 0 and

0 < t < 1), see [18]. At these levels, the correspondences become randomized, that

is, the image of a deterministic word (as on Figure 1, center) is no longer a �xed pair

of Young tableaux, but rather a random such pair. Because of this randomness,

an appropriate language for describing the correspondences seems to be that of

Markov dynamics on two-dimensional interlacing integer arrays (these arrays are

in a natural bijection with semistandard tableaux, see Remark 1.1 below for more

detail). The dynamics which are analogues of the RS correspondences evolve

in continuous time according to the j axis on Figure 1, center. These dynamics

act nicely on certain families of probability distributions on interlacing arrays,

namely, the Macdonald processes [8].

The q-Whittaker level is relevant to integrable one-dimensional particle sys-

tems such as (continuous time) q-TASEP and the stochastic q-Boson system [69],

[8], [12], [10], [29], and (continuous time) q-PushTASEP (= q-deformed pushing

TASEP) [23].2 In particular, continuous time Markov dynamics on interlacing ar-

rays constructed in [59] and [15] are two-dimensional extensions of, respectively,

the q-TASEP and the q-PushTASEP. That is, the latter one-dimensional processes

are Markovian marginals of the dynamics on two-dimensional interlacing arrays.3

In the present paper we advance further at the q-Whittaker level, and introduce

four q-randomized RSK correspondences, or, in other words, four discrete time

Markov dynamics on interlacing arrays which act nicely on q-Whittaker processes

(these are Macdonald processes with t D 0). These dynamics unify, generalize

and extend all of the above RSK-type constructions.

� When q D 0, our four q-randomized correspondences become usual or

dual, row or column classical RSKs (four classical correspondences in

total). The input matrix M in the usual RSKs has Mij 2 ¹0; 1; 2; : : : º,

and in the dual RSKs one has Mij 2 ¹0; 1º. When one takes Mij to be

independent geometric (for usual) or Bernoulli (for dual) random variables

and applies a suitable classical RSK, the shape of the resulting random

2 These systems are in fact quantum integrable in the sense of the coordinate Bethe ansatz

[4], [50], [3], [10].

3 The two-dimensional dynamics at the Hall–Littlewood level [18], however, do not seem to

lead to any new one-dimensional integrable particle systems.
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Young diagram is distributed according to the Schur measure [63].4 Simi-

larly, our q-randomized correspondences applied to q-geometric or Bernoulli

random inputs (note that the Bernoulli input needs not to be q-deformed) give

rise to q-Whittaker distributed random Young diagrams. The latter property

is an instance of “acting nicely” on q-Whittaker processes (see also (2.17)

in §2 for more detail).

� In a limit from discrete to continuous time, our q-randomized RSKs turn

into the (simpler) q-randomized RS correspondences introduced and studied

in [59], [15].

� The two discrete time q-TASEPs (associated with q-geometric or Bernoulli

random variables) studied by Borodin–Corwin [7] arise as one-dimensional

marginals of our two “column” dynamics on interlacing arrays. In a similar

way, our two “row” dynamics lead to discrete time q-PushTASEPs – new

integrable particle systems in the KPZ universality class.

� In a scaling limit as q % 1, the dynamics on interlacing arrays associated

with the q-geometric random input (these are two out of our four q-random-

ized RSK correspondences) converge to geometric (tropical) RSK correspon-

dences. The latter correspondences (which are deterministic birational maps

between arrays of positive reals) are relevant to the log-Gamma [70], [22],

[60] and strict-weak [25] random lattice polymers.

In §1.2 below we describe one of our four dynamics in detail, and in §1.3

we brie�y discuss other dynamics and results.

1.2. q-randomized row insertion with q-geometric input. Discrete time

Markov dynamics (i.e., the q-randomized RSK correspondences) which we con-

struct in the present paper live on the space of integer arrays � (see Figure 2).

Neighboring levels of the array satisfy certain inequalities which we call the inter-

lacing property (see (2.1) for the de�nition). Each level �.j / D .�.j /1 � � � � � �
.j /
j /

of an array can be viewed as a partition (equivalently, a Young diagram [52, I.1]),

so � is a sequence of interlacing Young diagrams.

4 In the present paper, the word “geometric” is attached to two separate concepts – the

geometric RSKs, and the geometric and q-geometric random variables. To avoid confusion

where it can occur, we will call the correspondences the geometric (tropical) RSKs. See also

Remark 8.10.
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Figure 2. Above: An interlacing array �. We require that �.j/
i
2 Z�0. Below: A con�gu-

ration of particles corresponding to an interlacing array of depth N D 5 (right).

Remark 1.1. Each � can be also viewed as a semistandard Young tableau of shape

�.N/ �lled with numbers from 1 to N . Here “semistandard” means that in this

�lling, numbers increase weakly along rows, and strictly down columns. Then

each �.j / is the portion of the semistandard tableau �lled with numbers from 1

to j , see Figure 3.
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Figure 3. A semistandard Young tableau corresponding to the array on Figure 2, right.
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Let us now de�ne the (q-randomized) operation of inserting a word

w D .1m12m2 : : : NmN / (i.e., the word has m1 ones, m2 twos, etc.) into an

array �. The result is a new, random array �. At the �rst level we have

�
.1/
1 D �

.1/
1 C m1. Then, sequentially at all levels j D 2; : : : ; N , given the ex-

isting change �.j�1/ ! �.j�1/ at the previous level and the old state �.j / at the

current level, construct the new state �.j / as follows. Each move �
.j�1/
i � �.j�1/

i ,

i D 1; : : : ; j � 1, is randomly split into two pieces r
.j�1/
i C `.j�1/

i , and the piece

r
.j�1/
i is added to the new move of the upper right neighbor �

.j /
i , while the piece

`
.j�1/
i is added to the new move of the upper left neighbor �

.j /
iC1. Moreover, �

.j /
1

receives an additional move of size mj . All these splittings and moves at level j

happen in parallel. That is (here and below 1��� stands for the indicator),

�
.j /
i � �

.j /
i D mj 1iD1 C r

.j�1/
i 1i<j C `

.j�1/
i�1 1i>1; i D 1; : : : ; j

(see Figure 4). To complete the de�nition, it now remains to describe the distribu-

tion of the splitting of the move �
.j�1/
i ��.j�1/

i D r .j�1/
i C`.j�1/

i . This is a certain

q-deformed version of the Beta-binomial distribution, namely, r
.j�1/
i is randomly

chosen to be equal to r 2 ¹0; 1; 2; : : : ; �.j�1/
i � �.j�1/

i º with probability

'q�1;qa;qb .r j c/ WD q
ar .q

b�aI q�1/r

.q�1I q�1/r

.qaI q�1/c�r

.q�1I q�1/c�r

.q�1I q�1/c

.qbI q�1/c
; (1.1)

where

a D �.j /i � �
.j�1/
i ; b D �.j�1/

i�1 � �
.j�1/
i ; c D �.j�1/

i � �.j�1/
i ;

.uI q/m D .1 � u/.1 � uq/ : : : .1 � uqm�1/ are the q-Pochhammer symbols, and

we adopt the convention �
j�1
0 D C1. The quantity `

.j�1/
i is simply equal to

�
.j�1/
i � �.j�1/

i � r .j�1/
i .

The quantities (1.1) de�ne a probability distribution in r for a � b, c � b (these

conditions follow from the interlacing). Moreover, this distribution is supported

on ¹0; 1; : : : ; cº \ ¹c � a; c � a C 1; : : : ; b � a � 1; b � aº, which in fact ensures

that the new array � is also interlacing (see lemma 6.2 for details).
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Figure 4. Splitting of the move at level j � 1 and its propagation to the level j . Here we

are using the particle interpretation of interlacing arrays as on Figure 2, right.
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Remark 1.2. The interlacing array � plays the role of the insertion tableau in our

q-randomized RSK correspondence (cf. Remark 1.1). One can readily de�ne an

accompanying recording tableau in the same way as it is done for the classical

RSK correspondences. In the present paper we will not focus on recording

tableaux.

Now, let us take the insertion word w D .1m12m2 : : :NmN / to be random

itself. More precisely, let mj , j D 1; : : : ; N , be independent q-geometric random

variables:

Prob.mj D k/ D
˛k

.qI q/k
.˛I q/1; k D 0; 1; 2; : : : ; 0 < ˛ < 1: (1.2)

Inserting this random word w into an array � de�nes one step of a discrete time

Markov chain on interlacing arrays. We denote this Markov chain by Q
q
rowŒ˛�.

Theorem 1.3. Start the Markov dynamics Q
q
rowŒ˛� from the interlacing array with

all �
.j /
i .0/ D 0. Then the distribution of the array �.T / after T steps of this

dynamics is given by the q-Whittaker process:

Prob.�.T / D �/

D .˛I q/TN1 P�.1/.1/P�.2/=�.1/.1/ : : : P�.N/=�.N�1/.1/Q�.N/.˛; ˛; : : : ; ˛
„ ƒ‚ …

T

/:

Here P�=� and Q� are the q-Whittaker polynomials, see §2 for more detail.

Theorem 1.3 follows from Theorem 6.4 which we prove in §6.2.

Remark 1.4. In fact, we can (and will) consider a more general situation when

the parameters ˛ in (1.2) may depend on j and on the time step as ˛taj . Then the

q-Whittaker process above takes the form

� N
Y

jD1

T
Y

tD1

.˛taj I q/1
�

P�.1/.a1/P�.2/=�.1/.a2/ : : :P�.N/=�.N�1/.aN /

Q�.N/.˛1; ˛2; : : : ; ˛T /:

We omit the dependence on j and t in Introduction.

Let us now describe three degenerations of the dynamics Q
q
rowŒ˛�.

� For q D 0, the splitting distributions (1.1) become supported at a single

r 2 ¹0; 1; : : : ; cº, so the randomness in the insertion disappears, and the

insertion itself turns into the classical RSK row insertion (we recall its

de�nition in §4.3). The q-geometric random variables mj (1.2) become
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geometric, and the q-Whittaker polynomials in Theorem 1.3 turn into the

Schur polynomials. This justi�es our treatment of the dynamics Q
q
rowŒ˛� as

the q-randomized row RSK correspondences.

� Fix 0 < q < 1. When ˛ & 0 in (1.2) and one rescales time from dis-

crete to continuous time (see §6.7 for details on this scaling), the random

input matrix turns into N independent Poisson processes running in parallel

(i.e., we are passing from the left to the center situation on Figure 1).

Then in the splitting distributions one has c D 0 or 1, and the dynamics

Q
q
rowŒ˛� turns into a continuous time dynamics on q-Whittaker processes

which was introduced in [15]. The latter continuous time dynamics should

be viewed as a q-randomized row RS correspondence.

� Let q D e�� and ˛ D e��� with � & 0 and � > 0. De�ne the positive

random variables yRj
k
.t; �/ via the scaling

�
.j /

k
.t / D .t C j � 2k C 1/��1 log ��1 C ��1 log. yRj

k
.t; �//:

If the quantities �
.j /

k
evolve under the dynamics Q

q
rowŒ˛� started from all

�
.j /

k
.0/ D 0, then the rescaled quantities yRj

k
.t; �/ converge to certain ratios

of partition functions in the log-Gamma lattice polymer model (see §8.1

and Theorem 8.7 in particular for details). Moreover, under this scaling the

randomness in the splitting (1.1) disappears, and the q-randomized insertion

described above turns into the geometric RSK insertion.

Remark 1.5. It is worth noting that there is also a strong connection between

the geometric (tropical) RSK and representation theory, cf. [5], [19]. At the

q-randomized level this connection does not (yet) seem to be present.

When restricted to the rightmost particles �
.j /
1 , j D 1; : : : ; N , of the inter-

lacing array, the dynamics Q
q
rowŒ˛� induces a marginally Markovian evolution

which we call the (discrete time) geometric q-PushTASEP. This is a new inte-

grable particle system in the KPZ universality class. In the shifted coordinates

xi .t / WD ��
.i/
1 .t /� i (so xN < � � � < x1), the evolution of this system during time

step t ! t C 1 looks as follows. Sequentially for i D 1; 2; : : : ; N , each particle xi

jumps to the left by mi C r
.i�1/
1 , wheremi is an independent q-geometric random

variable (1.2), and r
.i�1/
1 is a random variable with distribution

'q�1;qa;0.r j c/ D q
ar .qaI q�1/c�r

.q�1I q�1/c

.q�1I q�1/r.q�1I q�1/c�r
;
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where

a D xi�1.t /� xi .t /� 1; and c D xi�1.t C 1/ � xi�1.t /

(this is simply the splitting distribution (1.1) with b D C1). Note that if c > a,

then r
.i�1/
1 chosen according to the above distribution will be at least c � a.

See Figure 5.

xi�1.t C 1/ xi�1.t/xi .t/

a D xi�1.t/� xi .t/ � 1 D 7

c D xi�1.t C 1/ � xi�1.t/ D 4
r
.i�1/
1

mi

Figure 5. The discrete time geometric q-PushTASEP.

In a continuous time limit as ˛ & 0, the geometric q-PushTASEP turns into

the continuous time q-PushTASEP of [15], [23]. The q-moments of the form

E qk.xn.t/Cn/ (and more general such moments) of both q-PushTASEPs are given

in terms of nested contour integrals. For the geometric q-PushTASEP only �nitely

many such moments exist (i.e., the expectation is in�nite for su�ciently large

k), and for the continuous time q-PushTASEP the moments grow too fast and

also do not determine the distribution of xn.t /. However, it is still possible to

write down a Fredholm determinantal formula for the distribution of xn.t / for

both processes (started from the step initial con�guration xi .0/ D �i) using the

theory of Macdonald processes [8], see [9, Theorem 3.3]. We refer to §7 for further

details.

1.3. Other dynamics and results. Besides the dynamics Q
q
rowŒ˛� discussed

in §1.2 above, we introduce three other dynamics on q-Whittaker processes.

� Q
q

colŒ˛� (§6.4 and Theorem 6.11). At q D 0 this dynamics becomes the clas-

sical RSK column insertion applied to a geometric random input Q
qD0
col Œ˛�

(§4.3). In a scaling limit as q % 1, Q
q

colŒ˛� turns into a geometric (tropi-

cal) RSK associated with the strict-weak lattice polymer introduced in [25]

(Theorem 8.8). In a continuous time limit, Q
q

colŒ˛� turns into the q-ran-

domized column RS correspondence introduced in [59]. Under Q
q

colŒ˛�, the

leftmost particles �
.j /
j of the interlacing array evolve according to the discrete

time geometric q-TASEP of [7].
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� Q
q
rowŒ Ǒ� (§5.1 and Theorem 5.2). At q D 0 this dynamics becomes the

dual RSK row insertion applied to a Bernoulli random input Q
qD0
row Œ Ǒ� (§4.3).

In a continuous time limit, Q
q
rowŒ Ǒ� turns into the q-randomized row RS

correspondence [15]. Under Q
q
rowŒ Ǒ�, the rightmost particles �

.j /
1 of the

interlacing array evolve according to a new particle system, the discrete time

Bernoulli q-PushTASEP (De�nition 7.1).

� Q
q

colŒ
Ǒ� (§5.4 and Theorem 5.7). At q D 0 this dynamics becomes the dual

RSK column insertion applied to a Bernoulli random input Q
qD0
col Œ
Ǒ� (§4.3).

In a continuous time limit, Q
q
rowŒ Ǒ� turns into the q-randomized column RS

correspondence of [59]. Under Q
q
rowŒ Ǒ�, the leftmost particles �

.j /
j of the

array evolve according to the discrete time Bernoulli q-TASEP [7].5

Remark 1.6. We do not attempt a full classi�cation of q-randomized RSK

correspondences as it was done for the RS correspondences by solving certain

linear equations for transition probabilities in [15]. Similar equations for the dis-

crete time situation seem to be much more involved, and in this paper we demon-

strate particular solutions to these equations which lead to discrete time Markov

dynamics (see also §2.6.1 for further discussion).

We however believe that the four dynamics we construct are the most “natural”

discrete time dynamics on q-Whittaker processes having all the desired properties

and prescribed degenerations:

� the update in the dynamics is sequential, from lower to upper levels of the

interlacing array.

� The dynamics act nicely on q-Whittaker measures and processes;

� the continuous time limits (˛ or ˇ ! 0) of the dynamics coincide with

continuous time RS dynamics of [59] or [15];

� for q D 0, the dynamics degenerate to the ones related to the classical RSK

correspondences.

� In the q % 1 limit, the .˛/ dynamics converge to the ones related to the

geometric (tropical) RSKs.

5 In contrast with Q
q
rowŒ˛� and Q

q

colŒ˛�, there is (yet) no known polymer-like limits of Q
q
rowŒ Ǒ�

or Q
q

colŒ
Ǒ�.
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The dynamics Q
q
rowŒ Ǒ� and Q

q

colŒ
Ǒ� are related to each other via a straightfor-

ward procedure we call complementation (§5.3) which shortens the proofs for

Q
q

colŒ
Ǒ�. Moreover, one can say that this procedure provides a direct link be-

tween the column and the row q-randomized RS correspondences of [59] and [15]

(which are continuous time limits of Q
q

colŒ
Ǒ� and Q

q
rowŒ Ǒ�, respectively). This also

provides a direct coupling between the Bernoulli q-TASEP and q-PushTASEP

(Proposition 7.3).

We employ the discrete time Bernoulli processes to obtain a Fredholm de-

terminantal formula for the continuous time q-PushTASEP and for its two-sided

extension, the continuous time q-PushASEP (the latter formula was conjectured

in [23]), see Theorem 7.10. See also a related discussion in the end of §1.2.

1.4. Outline. In §2 we recall the necessary background on Macdonald and

q-Whittaker symmetric functions and q-Whittaker processes, and also write down

and discuss main linear equations which must be satis�ed by our Markov dynamics

on interlacing arrays. In §3 we discuss two particular types of Markov dynamics,

namely, push-block and RSK-type dynamics, and explain the di�erences between

them. In §4 we illustrate our main de�nitions and concepts in the q D 0 situation,

when the q-Whittaker polynomials reduce to the simpler Schur polynomials, and

the dynamics on interlacing arrays are relevant to the classical RSK correspon-

dences. In §5 and §6 we explain in detail the constructions of four discrete time

RSK-type dynamics on interlacing arrays, and prove that these dynamics act on

the q-Whittaker processes in desired ways. In §7 we discuss moment and Fred-

holm determinantal formulas for our one-dimensional interacting particle systems.

In §8 we consider scaling limits as q % 1 of our two .˛/ dynamics on interlacing

arrays, and show that they turn into the geometric RSK correspondences associ-

ated with log-Gamma or strict-weak directed random lattice polymers.
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2. Macdonald processes and Markov dynamics

In this section we collect main notation and de�nitions related to Macdonald

processes used throughout the paper, and also write down and discuss linear

equations satis�ed by Markov dynamics on q-Whittaker processes which we aim

to construct.

2.1. Preliminaries. A signature6 of length N � 1 is a nonincreasing collection

of integers � D .�1 � � � � � �N / 2 ZN . We will work with signatures which have

only nonnegative parts, i.e., �N � 0 (in which case they are also called partitions).

Denote the set of all such objects by GTC
N . Let also GTC WD

S1
ND1GTC

N , with

the understanding that we identify � [ 0 D .�1; : : : ; �N ; 0; 0; : : : ; 0/ 2 GTC
NCM

(M zeros) with � 2 GTC
N for any M � 1.

We will use two ways to depict signatures (see Figure 6):

(1) any signature � 2 GTC
N can be identi�ed with a Young diagram (having at

most N rows) as in [52, I.1];

(2) a signature� 2 GTC
N can also be represented as a con�guration ofN particles

on Z�0 (with the understanding that there can be more than one particle at a

given location).

We denote by j�j WD
PN
iD1 �i the number of boxes in the corresponding Young

diagram, and by `.�/ the number of nonzero parts in � (which is �nite for all

� 2 GTC). For �; � 2 GTC we will write � � � if (after possibly appending �

and � by zeros) we have �i � �i for all i 2 Z>0. In this case, the set di�erence of

Young diagrams � and � is denoted by �=� and is called a skew Young diagram.

Two signatures �; � 2 GTC are said to interlace if one can append them by

zeros such that � 2 GTC
N�1 and � 2 GTC

N for some N , and

�1 � �1 � �2 � �2 � � � � � �N�1 � �N�1 � �N : (2.1)

In terms of Young diagrams, this means that � is obtained from � by adding a

horizontal strip (or, equivalently, that the skew diagram �=� is a horizontal strip

which is, by de�nition, a skew Young diagram having at most one box in each

vertical column), and we denote this by � �h �.

6 These objects are also sometimes called highest weights, cf. [74], as they are the highest

weights of irreducible representations of the unitary group U.N/.
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� D 0 1 2 3 4 5 6

Figure 6. Young diagram � D .5; 3; 3; 2/ 2 GT
C
4

, and the corresponding particle con�gu-

ration. Note that there are two particles at location 3.

Let �0 denote the transposition of the Young diagram �. For the diagram on

Figure 6, we have �0 D .4; 4; 3; 1; 1/. If �=� is a horizontal strip, then �0=�0 is

called a vertical strip. We will denote the corresponding relation by �0 �v �
0.

2.2. Macdonald polynomials. Probability measures and Markov dynamics

studied in the present paper are based on Macdonald polynomials. Here let us

brie�y recall their de�nition and properties which are essential for us. An excel-

lent exposition and much more details may be found in [52, Chapter VI]. We also

refer to [8, §2] for a discussion of specializations of Macdonald polynomials.

De�nition 2.1. Let q; t 2 Œ0; 1/ be two parameters. Consider the �rst order

q-di�erence operator acting on functions in N variables:

.D .1/f /.x1; : : : ; xN / WD

N
X

iD1

Y

j¤i

txi � xj
xi � xj

f .x1; : : : ; xi�1; qxi ; xiC1; : : : ; xN /:

This operator preserves the space Q.q; t /Œx1; : : : ; xN �
S.N/ of symmetric polyno-

mials with coe�cients which are rational functions in q and t .

Eigenfunctions of D
.1/ are given by the Macdonald symmetric polynomials

P�.x1; : : : ; xN j q; t/ indexed by � 2 GTC
N , with eigenvalues

D
.1/P� D .q

�1 tN�1 C q�2 tN�2 C � � � C q�N�1 t C q�N /P�

(which are pairwise distinct for generic q; t ). The polynomials P� are homoge-

neous, and form a linear basis for Q.q; t /Œx1; : : : ; xN �
S.N/.

The Macdonald polynomials are stable in the sense that for any � 2 GTC
N ,

P�[0.x1; : : : ; xN ; 0 j q; t/ D P�.x1; : : : ; xN j q; t/:

Therefore, one may speak about Macdonald symmetric functions P�.x1; x2; : : : j

q; t/ in in�nitely many variables, indexed by arbitrary � 2 GTC. These are

elements of the algebra of symmetric functions, which may be viewed as a free
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unital algebra Sym D Q.q; t /Œp1; p2; : : : � generated by the Newton power sums

pk.x1; x2; : : : / D
P1
jD1 x

k
j . In other words, symmetric functions can be viewed

as usual polynomials in p1; p2; : : : . Note that P�.x1; : : : ; xN / � 0 if `.�/ > N .

The Macdonald symmetric functions admit an equivalent alternative de�nition.

De�nition 2.2. Let .�; �/q;t be the scalar product on Sym de�ned on products of

power sums p� D p�1p�2 : : : as

.p�; p�/q;t D 1�D�z�.q; t /; z�.q; t / WD
� Y

i�1

imi .mi /Š
�

�
� `.�/Y

iD1

1� q�i

1 � t�i

�

;

where � D .1m12m2 : : : /means that � hasm1 parts equal to 1,m2 parts equal to 2,

etc.

The P�’s form a unique family of homogeneous symmetric functions such that

(1) they are pairwise orthogonal with respect to the scalar product .�; �/q;t ;

(2) for every �, we have

P�.x1; x2; � � � j q; t/

D x�11 x
�2
2 : : : x

�`.�/
`.�/

C lower monomials in lexicographic order:

The dependence on the parameters .q; t / is in coe�cients of the lexicograph-

ically lower monomials.7

Set b�.q; t / WD 1=.P�; P�/q;t ; this is an explicit quantity determined via the

shape of the Young diagram �. Then the symmetric functions Q�.� j q; t/ WD

b�.q; t /P�.� j q; t/ are biorthonormal with the P�’s: .P�; Q�/q;t D 1�D�.

De�nition 2.3. The skew Macdonald symmetric functions Q�=�, �; �;2 GTC,

are de�ned as the only symmetric functions for which

.Q�=�; P�/q;t D .Q�; P�P�/q;t

for any � 2 GTC. The “P ” versions are given byP�=� D .b�.q; t /=b�.q; t //Q�=�.

These skew functions are identically zero unless � � �.

7 Lexicographic order means that, for example, x21 is higher than const � x1x2 which is in

turn higher than const � x22 .
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The skew Macdonald symmetric functions enter the following recurrence re-

lations:

P�.x1; : : : ; xN / D
X

�2GT
C
N�K

P�=�.x1; : : : ; xK/P�.xKC1; : : : ; xN /; (2.2)

with � 2 GTC
N and K � 1 (and similarly for theQ�’s). This may be viewed as an

alternative de�nition of the skew Macdonald polynomials P�=� in �nitely many

variables. If K D 1 in (2.2), then the summation is over the interlacing signa-

tures � �h �. In this case P�=�.x1/ is proportional to x
j�j�j�j
1 by homogeneity

(cf. (2.4) below), and (2.2) is also sometimes referred to as the branching rule for

the Macdonald polynomials.

From now on let us set the second Macdonald parameter t to zero. Then

P�.� j q; 0/ are known as the q-Whittaker functions, i.e., the q-deformed gln
Whittaker functions, cf. [38] and [8, §3].

Remark 2.4. Other notable degenerations of the Macdonald polynomials include

the Hall–Littlewood polynomials (for q D 0, t > 0), and the Schur polynomials

(for q D t ). We refer to [52] and [43] for details.

We will use q-binomial coe�cients and q-Pochhammer symbols

�
n

kq

�

WD
.qI q/n

.qI q/k.qI q/n�k
; (2.3a)

.aI q/m WD

8

ˆ̂
<

ˆ̂
:

.1� a/.1� aq/ : : : .1 � aqm�1/; m > 0;

1; m D 0;

.1� aq�1/�1.1 � aq�2/�1 : : : .1� aqm/�1; m < 0;

(2.3b)

to record certain explicit q-dependent quantities related to q-Whittaker functions.8

We have

P�=�.x1 j q; 0/ D  �=�x
j�j�j�j
1 ; (2.4a)

 �=� D  �=�.q/ WD 1��h�

`.�/
Y

iD1

�
�i � �iC1
�i � �i

�

q

I (2.4b)

8 In the q-Pochhammer symbol,mmay be C1 since 0 � q < 1. Note also that in all cases,

.aIq/m D .aIq/1=.aq
mIq/1
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Q�=�.x1 j q; 0/ D ��=�x
j�j�j�j
1 ; (2.5a)

��=� D ��=�.q/ WD 1��h�

1

.qI q/�1��1

`.�/
Y

iD1

�
�i � �iC1
�i � �iC1

�

q

: (2.5b)

De�nition 2.5. A specialization of the algebra of symmetric functions Sym is an

algebra morphism Sym ! C. This is a generalization of the operation of taking

the value of a symmetric function at a point. We will deal with specializations

A D .˛IˇI 
/, where ˛ D .˛1 � ˛2 � � � � � 0/ ˇ D .ˇ1 � ˇ2 � � � � � 0/,


 � 0, and
P

i .˛i C ˇi / <1, which may be de�ned via the generating function

corresponding to signatures .n/ 2 GTC
1 :

1
X

nD0

Q.n/.A/ � u
n D e
u

1
Y

iD1

1C ˇiu

.˛iuI q/1
WD ….uIA/: (2.6)

Under these specializations, we have P�=�.A/ � 0 for any �; � 2 GTC (nonnega-

tivity). The Kerov’s conjecture (see [43, §2.9.3]) states that the specializations of

the form A D .˛IˇI 
/ exhaust all nonnegative specializations.

Remark 2.6. The specialization with all ˇi D 0 and 
 D 0 is the same as

assigning values to the formal variables, xj D j̨ . We will refer to this as the

pure .˛/ specialization, and to the parameters j̨ as the usual parameters.

If we go back to the case of the nonzero t parameter, then the correspond-

ing specialization with all j̨ D 0 and 
 D 0 would send P�=�.� j q; t/ to

Q�0=�0.ˇ1; ˇ2; � � � j t; q/, the value of the usual specialization into .ˇ1; ˇ2; : : : /

with q and t swapped. (Formula (2.6) for nonzero t contains an additional factor
Q1
iD1.t˛iuI q/1.) Hence we will refer to such specializations as pure . Ǒ/ special-

izations, and to the parameters ˇi as the dual parameters (though setting t D 0 as

we do in the rest of the paper eliminates the “full” dual nature of these parameters).

Finally, 
 will be called the Plancherel parameter, and the corresponding

specialization can be de�ned as a limit of the specializations with, e.g., ˇi D 
=L,

i D 1; : : : ; L (and all other parameters zero), as L!1.

The present paper mostly deals with specializations with 
 D 0. A treatment

of the case ˛ D ˇ D 0, 
 > 0 may be found in [15], [18].
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Let A[B denote the union of specializations (a generalization of concatenating

the sets of variables). Formally it is de�ned as pk.A [ B/ D pk.A/ C pk.B/,

k � 1. An obvious generalization of the recurrence relation (2.2) allows to express

P�.A [ B/ through P�=�.A/ and P�.B/. Thus, we can equivalently say that the

specialization into usual parameters is completely determined by (2.4) (or (2.5))

and (2.2). Similarly, the specialization into dual parameters is determined by the

same recurrence (2.2), but with a di�erent one-parameter formula:

Q�=�.ˇ1 j q; 0/ D  
0
�=�ˇ

j�j�j�j
1 ; (2.7a)

 0
�=� D  

0
�=�.q/ WD 1��v�

Y

i�1W �iD�i ; �iC1D�iC1C1

.1 � q�i��iC1/: (2.7b)

We will also need Cauchy identities for q-Whittaker symmetric functions

recorded below. Similar identities (involving t ) also exist for the general Mac-

donald symmetric functions:

X

�2GT
C

P�.a1; : : : ; aN /Q�.A/ D ….a1IA/ : : :….aN IA/I (2.8)

X

~2GT
C

P~=�.A/Q~=�.B/ D ….AIB/
X

�2GT
C

Q�=�.B/P�=�.A/: (2.9)

In (2.9), ….AIB/ is given by

….AIB/ D exp
� 1

X

nD1

1

n

1

1� qn
pn.A/pn.B/

�

: (2.10)

For the proofs see [52, VI.(2.6) and VI.7, Example 6]. This de�nition agrees

with (2.6) when one of the specializations is into a single usual parameter. Note

also that ….A [ BIC/ D ….AIC/….BIC/.

Finally, we will need the Pieri rules. For any r � 1,

P.1r /P� D
X

�W �=� is a vertical r-strip

 0
�=�P�; (2.11a)

Q.r/P� D
X

�W �=� is a horizontal r-strip

��=�P� (2.11b)

(an r-strip means a strip consisting of r boxes). Here P.1r / D er is in fact equal

to the r-th elementary symmetric function er .x1; x2; : : : / D
P

i1<���<ir
xi1 : : : xir

(note that e1 D p1), and the Q.r/’s are the quantities entering the generating

function (2.6).
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2.3. q-Whittaker processes. The (depth N ) q-Whittaker processes are proba-

bility measures on sequences of interlacing signatures

� D .�.1/ �h �
.2/ �h � � � �h �

.N//;

where �.j / 2 GTC
j . Such sequences are sometimes referred to as Gelfand–

Tsetlin schemes, or patterns, they �rst appeared in connection with representa-

tion theory of unitary groups [37].9 We will depict sequences � as interlacing

integer arrays, and also associate to them con�gurations of particles ¹.�.k/j ; k/W

k D 1; : : : ; N; j D 1; : : : ; kº on N horizontal copies of Z. See Figure 2. Let us

denote the set of all interlacing arrays � of depth N by GT.N/.

The q-Whittaker process M
Ea
A depends on a nonnegative specialization10

A D .˛IˇI 
/ (De�nition 2.5) and on additional parameters Ea D .a1; : : : ; aN /

with aj > 0, satisfying ˛iaj < 1 for all possible i and j (this ensures the �niteness

of the normalizing constant ….EaIA/ in (2.14) below). The probability weights

M
Ea
A.�/ of interlacing arrays � may be de�ned via the generating function11

X

�D.�.1/�h����h�.N//

M
Ea
A.�/

�u1

a1

�j�.1/j�u2

a2

�j�.2/j�j�.1/j
: : :

�uN

aN

�j�.N/j�j�.N�1/j

D
….EuIA/

….EaIA/
;

(2.12)

plus a certain q-Gibbs property requiring that the quantities

M
Ea
A
.�/

P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.N/=�.N�1/.aN /
(2.13)

depend only on the top row �.N/, and not on �.1/; : : : ; �.N�1/. Note that setting

Eu D Ea turns (2.12) into an identity stating that the sum of all probability weights

is 1.

Remark 2.7. It is natural to call the property involving quantities (2.13) “q-Gibbs”

because for q D 0 and a1 D � � � D aN D 1 it reduces to the following

9 This justi�es the notation “GT” we are using.

10 In the rest of the paper, we will speak only about nonnegative specializations, and omit the

word “nonnegative”.

11 In (2.12), ….EuI A/ D ….u1I A/ : : :….uN I A/, and similarly for the denominator (cf. (2.6)

and (2.10)). Here the aj ’s are regarded as constants, and the uj ’s as variables.
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Gibbs property: the conditional distribution of the interlacing array � under

M
Ea
A
.�/jqD0; aj�1 obtained by �xing the top row �.N/ 2 GTC

N is the uniform

distribution on the set of all interlacing arrays � 2 GT.N/ with �xed top row �.N/

(note that the latter set is �nite). For general q and Ea, the conditional distribution

will not be uniform, but instead each interlacing array will have the conditional

weight proportional to P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.N/=�.N�1/.aN /.

By the Cauchy identity (2.8) and the fact that the q-Whittaker polynomials

form a linear basis, de�nition (2.12)–(2.13) is equivalent to

M
Ea
A.�/ D

1

….EaIA/
P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.N/=�.N�1/.aN /Q�.N/.A/;

(2.14)

which is a more traditional de�nition of the measure (�rst given in [8], and earlier

in [64] in the Schur case). To see this, one also has to note that

P�.1/.u1/ : : : P�.N/=�.N�1/.uN /

P�.1/.a1/ : : : P�.N/=�.N�1/.aN /

is equal to the product of .uj =aj /
j�.j/j�j�.j�1/j in the left-hand side of (2.12)

(provided that the �.j /’s satisfy the interlacing constraints).

The marginal distribution of the top row �.N/ under M
Ea
A is the q-Whittaker

measure MM
Ea
A which is de�ned by either of the following equivalent ways:

X

�2GT
C
N

MM
Ea
A.�/

P�.Eu/

P�.Ea/
D
….EuIA/

….EaIA/
; (2.15)

MM
Ea
A.�/ D

P�.Ea/Q�.A/

….EaIA/
: (2.16)

2.4. Markov dynamics. One of the main goals of the present paper is the

construction of Markov dynamics preserving the family of q-Whittaker processes.

More precisely, we will deal with in�nite matrices QŒB� (with rows and columns

indexed by interlacing arrays) such that

M
Ea
AQŒB� DM

Ea
A[B;

X

�

M
Ea
A.�/QŒB�.� �! �/ DM

Ea
A[B.�/; � 2 GT.N/

(2.17)
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(the second formula is simply an expansion of the matrix notation in the �rst

formula). It su�ces to consider three elementary cases for the specialization B

which is added by the dynamics:

8

ˆ̂

<̂

ˆ̂
ˆ
:

(1) B D .˛/ is a specialization into one usual parameter ˛,

(2) B D . Ǒ/ is a specialization into one dual parameter ˇ,

(3) B is a specialization with ˛ D ˇ � 0 and 
 > 0.

(2.18)

Indeed, applying a sequence of the above elementary steps one can get a general

specialization B (if the number of parameters ˛i or ǰ is in�nite, this also requires

a relatively straightforward limit transition).

Remark 2.8. Note that setting all parameters in a specialization to zero leads to

an empty specialization ¿. The corresponding q-Whittaker process M
Ea
¿

is simply

a delta measure on the zero con�guration �
.k/
j D 0 for all k; j . Note also that

QŒ¿� is the identity matrix.

The third case in (2.18) leads to continuous time Markov dynamics, in which

the parameter 
 plays the role of time. These continuous time dynamics were

studied in detail in [15] (see also [59]). They are simpler than the discrete time

processes (corresponding to the �st two cases in (2.18)) considered in the present

paper.

We will thus not focus on continuous time dynamics, and will deal with

construction of matrices QŒ˛� and QŒ Ǒ� whose elements QŒ˛�.� ! �/ and

QŒ Ǒ�.� ! �/ are transition probabilities from � to � (where �; � 2 GT.N/)

in one step of the discrete time. These matrix elements are nonnegative, and
P

� QŒ˛�.� ! �/ D 1 for all � (and similarly for the second matrix). It is also

helpful to view QŒ˛� and QŒ Ǒ� as (Markov) operators acting on functions in the

spatial variables � (e.g., these operators act in the space of bounded functions).

Adding a specialization B D .˛/ or . Ǒ/ to A as in (2.17) corresponds to

multiplying the right-hand side of (2.12) by

N
Y

jD1

.˛aj I q/1

.˛uj I q/1
or

N
Y

jD1

1C ˇuj
1C ˇaj

; (2.19)

respectively, since ….uIA/….uI ˛/ D ….u;A [ .˛// and ….uIA/….uI Ǒ/ D

….u;A [ . Ǒ//. (Factors containing aj correspond to normalization, and it is the

dependence on uj in these expressions which is crucial.) The problem of �nding

Markov operators QŒ˛� and QŒ Ǒ� can thus be informally restated as the problem of
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turning (by virtue of (2.12)) the multiplication operators in the variables Eu (2.19)

into operators acting in the spatial variables �.

A similar problem of turning multiplication operators (2.19) into operators

acting in the spatial variables � 2 GTC
N may be posed for the generating function

for the q-Whittaker measures (2.15), (2.16). In this case, the problem of �nding

the corresponding matrices P Œ˛� and P Œ Ǒ� (with rows and columns indexed by

signatures � 2 GTC
N ) has a unique solution.

Proposition 2.9. There exist unique transition matrices P Œ˛� and P Œ Ǒ�which add

specializations .˛/ or . Ǒ/, respectively, to the q-Whittaker measure MM
Ea
A for an

arbitrary nonnegative specialization A, in the sense similar to (2.17):

MM
Ea
AP Œ˛� DMM

Ea
A[.˛/; MM

Ea
AP Œ Ǒ� DMM

Ea

A[. Ǒ/
:

Their matrix elements are given by

P Œ˛�.� �! �/ D
N

Y

jD1

.˛aj I q/1
P�.Ea/

P�.Ea/
��=�˛

j�j�j�j1��h� ; (2.20)

P Œ Ǒ�.� �! �/ D
N

Y

jD1

1

1C ˇaj

P�.Ea/

P�.Ea/
 0
�=�ˇ

j�j�j�j1��v� ; (2.21)

where ��=� and  0
�=�

are explicit quantities given in (2.5) and (2.7), respectively.

Transition operators P Œ˛� and P Œ Ǒ� were introduced in [8], see also [6] for a

similar construction for the Schur measures (cf. §4.1 below).

Proof. Let us consider only the case of . Ǒ/, the case of .˛/ is analogous.

Multiply both sides of (2.15) by
QN
jD1

1Cˇuj
1Cˇaj

. By the very de�nition of the

q-Whittaker measures, the right-hand side can be rewritten as

….EuIA[ . Ǒ//

….EaIA[ . Ǒ//
D

X

�2GT
C
N

MM
Ea

A[. Ǒ/
.�/

P�.Eu/

P�.Ea/
:

In the left-hand side, use the well-known property

N
Y

jD1

.1C ˇuj / D

N
X

rD0

er.u1; : : : ; uN /ˇ
r
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of the elementary symmetric functions [52, I.(2.2)] together with the �rst Pieri

rule (2.11) to write

P�.Eu/
N

Y

jD1

.1C ˇuj / D
X

�W ��v�

P�.Eu/ 
0
�=�ˇ

j�j�j�j:

(In the .˛/ case, one needs to use the generating function (2.6) and the second

Pieri rule.) Then the left hand side of (2.15) multiplied by
QN
jD1

1Cˇuj
1Cˇaj

becomes

N
Y

jD1

1

1C ˇaj

X

�2GT
C
N

X

�W ��v�

MM
Ea
A.�/

P�.Eu/ 
0
�=�
ˇj�j�j�j

P�.Ea/
:

Collecting the coe�cients by P�.Eu/=P�.Ea/, one can rewrite this as

X

�2GT
C
N

P�.Eu/

P�.Ea/

X

�W ��v�

MM
Ea
A.�/P Œ

Ǒ�.� �! �/;

where the operator P Œ Ǒ� is given by (2.21).

Since P�.Eu/=P�.Ea/ are linearly independent as polynomials in Eu,

MM
Ea

A[. Ǒ/
.�/ D

X

�W ��v�

MM
Ea
A.�/P Œ

Ǒ�.� �! �/ D
X

�

MM
Ea
A.�/P Œ

Ǒ�.� �! �/

for all � 2 GTC
N . To show uniqueness suppose there is another operator P Œ Ǒ�0 that

satis�es

MM
Ea
AP Œ Ǒ�0 DMM

Ea

A[. Ǒ/
:

Pick �0 and �0, such that P Œ Ǒ�.�0 ! �0/ ¤ P Œ Ǒ�0.�0 ! �0/. For any

specialization A,
X

�2GT
C
N

MM
Ea
A.�/.P Œ

Ǒ�.� �! �0/ � P Œ Ǒ�0.� �! �0// D 0:

Take A to be a pure specialization into usual parameters .˛1; : : : ; ˛N / and multiply

both sides by ….EaIA/ to get
X

�2GT
C
N

P�.Ea/Q�.˛1; : : : ; ˛N /.P Œ Ǒ�.� �! �0/ �P Œ Ǒ�0.� �! �0// D 0

for any ˛1; : : : ; ˛N � 0 (in fact, this sum is only over � �v �0 and thus is

�nite), which contradicts the fact that Q�.˛1; : : : ; ˛N / are linearly independent

as polynomials in ˛1; : : : ; ˛N . �
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It follows from (2.9) that both operators P Œ Ǒ� and P Œ˛� are stochastic, i.e. for

any � 2 GTC
N

X

�2GT
C
N

P Œ Ǒ�.� �! �/ D
X

�2GT
C
N

P Œ˛�.� �! �/ D 1: (2.22)

Remark 2.10. If N D 1 in Proposition 2.9, then both dynamics P Œ˛� and P Œ Ǒ�

(living on Z�0 D GTC
1 ) are rather simple. Namely, under both dynamics, at

each discrete time step the only particle �
.1/
1 2 Z�0 D GTC

1 jumps to the right

according to

(1) the q-geometric distribution with parameter ˛a1, i.e.,12

p˛a1.n/ WD .˛a1I q/1
.˛a1/

n

.qI q/n
; n D 0; 1; 2; : : :

in the case of dynamics P Œ˛�, or

(2) the Bernoulli distribution with parameter ˇa1 in the case of dynamics P Œ Ǒ�:

the particle jumps to the right by one with probability ˇa1=.1 C ˇa1/, and

stays put with the complementary probability13 1=.1C ˇa1/.

More generally, one can show that under the dynamics on GTC
N , the quantities

j�.N/j evolve as follows. For P Œ˛�, at each discrete time step j�.N/j is increased

by the sum of N independent q-geometric random variables with parameters

˛a1; : : : ; ˛aN . For P Œ Ǒ�, at each discrete time step j�.N/j is increased by the

sum ofN independent Bernoulli random variables with parameters ˇa1; : : : ; ˇaN .

To see this, use (2.22) to write

X

�2GT
C
N

P�.Ea/

P�.Ea/
��=�˛

j�j�j�j1��h� D
N
Y

jD1

1

.˛aj I q/1
;

X

�2GT
C
N

P�.Ea/

P�.Ea/
 0
�=�ˇ

j�j�j�j1��v� D
N
Y

jD1

.1C ˇaj /

12 The fact that this is indeed a probability distribution follows from the q-binomial theorem.

13 This parametrization of Bernoulli random variables will be used throughout the paper.
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for any � 2 GTC
N . Substituting ˛u instead of ˛ (or ˇu instead of ˇ) in these

equalities leads to

X

�2GT
C
N

P Œ˛�.� �! �/uj�j�j�j D
N
Y

jD1

.˛aj I q/1
.˛ajuI q/1

;

X

�2GT
C
N

P Œ Ǒ�.� �! �/uj�j�j�j D

N
Y

jD1

1C ˇaju

1C ˇaj
:

The observation follows, since both left hand sides are probability generating

functions of j�j � j�j in the formal variable u, and the right-hand sides expand as

probability generating functions of sums of independent q-geometric or Bernoulli

random variables.

We will call the dynamics P Œ˛� and P Œ Ǒ� the univariate dynamics, and the

corresponding dynamics on interlacing arrays QŒ˛� and QŒ Ǒ� (which we aim to

construct) the multivariate dynamics. In a way, multivariate dynamics on arrays

� D .�.1/ �h � � � �h �.N// stitch together univariate dynamics on all levels

�.j /, j D 1; : : : ; N . Namely, started from a q-Gibbs distribution, the multivariate

evolution of the array � reduces to the corresponding univariate dynamics on each

of the levels �.j /, j D 1; : : : ; N . This fact follows from the proof of Theorem 2.13

below, see also [15, §2.2] for a related discussion.

Instead of the case of univariate dynamics (driven by identity (2.15)), the

problem of constructing multivariate dynamics (involving identity (2.12)) has a

whole family of solutions. This phenomenon was known in the Schur (q D 0)

case for some time, with the presence of the RSK-type (e.g., see [54], [55])

and the push-block [13] dynamics (see §4 below for more detail). A similar

phenomenon was investigated in [15] for continuous time dynamics increasing the

parameter 
 in the q-Whittaker processes. In that simpler continuous time setting,

a classi�cation result was established in the latter paper.

Remark 2.11. Since the q-Whittaker polynomialsP�.Ea/ entering (2.20) and (2.21)

are not given by an especially nice formula, transition probabilities of the univari-

ate dynamics are harder to analyze. On the other hand, RSK-type multivariate

dynamics which we construct in the present paper turn out to have simpler tran-

sition probabilities. Note also that multivariate dynamics on q-Gibbs distribu-

tions can be used to “simulate” the univariate ones, cf. the above discussion about

“stitching”.
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2.5. Main equations. Here we write down linear equations whose solutions cor-

respond to multivariate discrete time Markov dynamics on q-Whittaker processes.

Let us �rst narrow down the class of dynamics Q on interlacing arrays which we

consider.

De�nition 2.12. A dynamics Q on interlacing arrays will be called a sequential

update dynamics if its one-step transition probabilities from � to �, �; � 2 GT.N/,

have a product form

Q.� �! �/ D U1.�
.1/ �! �.1//U2.�

.2/ �! �.2/ j �.1/ �! �.1// : : :

UN .�
.N/ �! �.N/ j �.N�1/ �! �.N�1//;

(2.23)

where Uj ’s are conditional probabilities of transitions at levels j D 1; : : : ; N

satisfying14

Uj .�
.j / �! �.j / j �.j�1/ �! �.j�1// � 0; (2.24a)

X

�.j/2GT
C
j

Uj .�
.j / �! �.j / j �.j�1/ �! �.j�1// D 1: (2.24b)

In words, the transition � ! � looks as follows. First, update �.1/ ! �.1/ at the

bottom level GTC
1 according to the distribution U1. Then for each j D 2; : : : ; N ,

given the transition �.j�1/ ! �.j�1/ at the previous level, update �.j / ! �.j / at

level GTC
j according to the conditional distribution Uj . We see that the evolution

of several �rst levels �.1/; : : : ; �.k/ of the interlacing array does not depend on

what is happening at the upper levels �.kC1/; : : : ; �.N/.

This setting of sequential update dynamics is not too restrictive as it covers

all previously known examples of dynamics on Macdonald (in particular, on

q-Whittaker and Schur) processes, cf. [15]. For a sequential update dynamics it

su�ces to describe the evolution at any two consecutive levels j � 1 and j .

14 By agreement, for j D 1 we mean

Uj .�
.j/ �! �.j/ j �.j�1/ �! �.j�1// � U1.�

.1/ �! �.1//:
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Theorem 2.13. A sequential update dynamics Q de�ned via (2.23)–(2.24)

preserves the class of q-Whittaker processes M
Ea
A

and adds a new usual parameter

˛ to the specialization A if and only if
X

N�2GT
C
j�1

Uj .� �! � j N� �! N�/.˛aj /
j�j�j�j�.j N�j�j N�j/ �= N�� N�= N� D .˛aj I q/1 �= N���=�

(2.25)

for any j D 1; 2; : : : ; N and any �; � 2 GTC
j , N� 2 GTC

j�1, such that the four

signatures N�; N�; �; � are related as on Figure 7, left (in particular, the above

summation is taken only over N� satisfying N� �h N�, N� �h �). For j D 1 we

take N� D N� D ¿ in this equation and it becomes equivalent to U1 D P Œ˛� at level

GTC
1 (as in Remark 2.10).

Similarly, a dynamics Q preserves the class of q-Whittaker processes and adds

a new dual parameter ˇ to the specialization A if and only if

X

N�2GT
C
j�1

Uj .� �! � j N� �! N�/.ˇaj /
j�j�j�j�.j N�j�j N�j/ �= N� 

0
N�= N�
D

1

1C ˇaj
 �= N� 

0
�=�

(2.26)

for any j D 1; 2; : : : ; N and any �; � 2 GTC
j , N� 2 GTC

j�1, such that the four

signatures N�; N�; �; � are related as on Figure 7, right (in particular, the above

summation is taken only over N� satisfying N� �v N�, N� �h �). For j D 1 we take
N� D N� D ¿ in this equation and it becomes equivalent to U1 D P Œ Ǒ� at level

GTC
1 (as in Remark 2.10).

.˛/

j � 1

j � �

N� N�

�
h

�
h

�h

�h

��������������!
time

. Ǒ/

j � 1

j� �

N� N�

�
h

�
h

�v

�v

��������������!
time

Figure 7. Squares of four signatures on two consecutive levels relevant to conditional

transition � ! � on the upper level given the transition N� ! N� on the lower level, under

dynamics QŒ˛� (left) and QŒ Ǒ� (right). Note the similarity to blocks in Fomin’s growth

diagrams (about the latter, see [30], [31], [32], [33]).

The proof of these equations was already established in [15, §2.2] using a more

general framework of Gibbs-like measures. However, for the sake of complete-

ness, we reproduce it here in our particular setting of the q-Whittaker processes.
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Proof. Let us consider only the case of adding .˛/, as the case of . Ǒ/ is analogous.

The fact that a sequential update dynamics Q de�ned via (2.23)–(2.24)

preserves the class of q-Whittaker processes M
Ea
A

and adds a new usual param-

eter ˛ to the specialization A means that

X

�

1

….EaIA/
P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.N/=�.N�1/.aN /Q�.N/.A/

U1.�
.1/ �! �.1//U2.�

.2/ �! �.2/ j �.1/ �! �.1// : : :

UN .�
.N/ �! �.N/ j �.N�1/ �! �.N�1//

D
1

….EaIA[ .˛//
P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.N/=�.N�1/.aN /Q�.N/.A [ .˛//

(2.27)

for every � and A. Using (2.2), we can rewrite (2.27) as

X

�

� N
Y

jD1

Uj .�
.j / �! �.j / j �.j�1/ �! �.j�1//

a
.j�.j/j�j�.j/j/�.j�.j�1/j�j�.j�1/j/
j  �.j/=�.j�1/

�

Q�.N/.A/

D
� N

Y

jD1

.˛aj I q/1 �.j/=�.j�1/

� X

�2GT
C
N

Q�.A/˛
j�.N/j�j�j��.N/=�:

for every � and A. Since Q�.A/ are linearly independent as polynomials in

u1; : : : ; uN for a specialization A into usual variables .u1; : : : ; uN /, this is equiv-

alent to saying that

X

�W �.N/D�

N
Y

jD1

Uj .�
.j / �! �.j / j �.j�1/ �! �.j�1//

.˛aj /
.j�.j/j�j�.j/j/�.j�.j�1/j�j�.j�1/j/ �.j/=�.j�1/

D ��.N/=�.N/

N
Y

jD1

.˛aj I q/1 �.j/=�.j�1/

(2.28)

for all � and �.
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For the proof in one direction, suppose that U1 D P Œ˛� at level GTC
1 , and

Uj .�
.j / ! �.j / j �.j�1/ ! �.j�1// satisfy (2.25) for 2 � j � N . Then we can

show by induction on k, that

X

�W �.k/D�

k
Y

jD1

Uj .�
.j / �! �.j / j �.j�1/ �! �.j�1//

.˛aj /
.j�.j/j�j�.j/j/�.j�.j�1/j�j�.j�1/j/ �.j/=�.j�1/

D ��.k/=�.k/

k
Y

jD1

.˛aj I q/1 �.j/=�.j�1/

(2.29)

for all 1 � k � N , � D .�.1/ �h �
.2/ �h � � � �h �

.k//, � 2 GTC
k

. Base for

k D 1 follows from the fact that U1 D P Œ˛� at level GTC
1 , while the inductive

step follows from (2.25). So (2.28) holds.

For the other direction, suppose that (2.28) (and hence (2.27)) holds.

For 1 � k � N by summing (2.27) over �.kC1/; : : : ; �.N/ and applying (2.9)

we get

X

�

1

….a1; : : : ; akIA/
P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.k/=�.k�1/.ak/Q�.k/.A/

U1.�
.1/ �! �.1//U2.�

.2/ �! �.2/ j �.1/ �! �.1// : : :

Uk.�
.k/ �! �.k/ j �.k�1/ �! �.k�1//

D
1

….a1; : : : ; akIA[ .˛//
P�.1/.a1/P�.2/=�.1/.a2/ : : : P�.k/=�.k�1/.ak/

Q�.k/.A [ .˛//

for every � and A, which implies (2.29). For k D 1 it means that U1 D P Œ˛� at

level GTC
1 , while for k � 2 using (2.29) for both k and k � 1 implies (2.25). �

In a continuous time setting, there also exist linear equations governing mul-

tivariate dynamics, cf. [15, §2.4]. In fact, the latter equations arise as small ˛ or

small ˇ limits of (2.25) or (2.26), respectively. Markov dynamics on q-Whittaker

processes corresponding to solutions to these continuous time equations were con-

structed in [59], [15], [18].

2.6. Discussion of main equations. Let us make a number of general remarks

about the main equations of Theorem 2.13.
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2.6.1. The paper [15] contains a classi�cation result in continuous time setting,

which was achieved by further restricting the class of dynamics by imposing cer-

tain nearest neighbor interaction constraints. Under these constraints, putting to-

gether continuous time linear equations (which look similarly to (2.25) and (2.26))

with �xed � and N� in a generic position, at level j one arrives at a system of j lin-

ear equations with 3j �2 variables. Solutions of such a system admit a reasonable

classi�cation.

It remains unclear how to impose (preferably, natural) constraints on solutions

of discrete time equations (2.25) or (2.26) so that the family of all solutions

would admit a reasonable description. Indeed, for example, in the case of a

usual parameter (2.25), the number of variables is in�nite while the number of

available equations is �nite. Therefore, in §5 and §6 below we devote our attention

to constructing certain particular multivariate discrete time dynamics satisfying

equations (2.26) and (2.25), respectively.

2.6.2. Note that summing (2.25) or (2.26) over � 2 GTC
j leads to the skew

Cauchy identity with both specializations being into one parameter (cf. (2.9)):

X

N�2GT
C

P�= N�.aj /Q N�= N�.B/ D
1

….aj IB/

X

�2GT
C

P�= N�.aj /Q�=�.B/; B D .˛/ or . Ǒ/:

(2.30)

Identity (2.30) may also be interpreted as a certain commutation relation

between the univariate Markov operators P Œ˛� or P Œ Ǒ� (of Proposition 2.9) and

Markov projection operators (or links)15

ƒ
j
j�1.�;

N�/ WD
P N�.a1; : : : ; aj�1/

P�.a1; : : : ; aj /
P
�= N�.aj /; � 2 GTC

j ;
N� 2 GTC

j�1;

in the sense that

P Œ˛�.j /ƒ
j
j�1 D ƒ

j
j�1P Œ˛�

.j�1/; (2.31)

and similarly for P Œ Ǒ�. Indices j and j � 1 in P Œ˛� above mean the level of the

interlacing array at which the transition operator of the univariate dynamics acts.

One can thus say that each solution to the main equations (2.25) or (2.26)

(and, therefore, each discrete time Markov dynamics on q-Whittaker processes)

corresponds to a re�nement of the skew Cauchy identity (2.30) (or of the commu-

tation relation (2.31)).

15 These links in fact determine the q-Gibbs property (2.13); e.g., see [15, §2] for more detail.
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Remark 2.14. When B D .˛/ is a usual specialization, one may check that all

quantities entering both sides of (2.30) can be viewed as generating series in q,

˛, and aj with nonnegative integer coe�cients. It would be very interesting to

understand whether there is a bijective mechanism behind identity (2.30) similar

to the one existing in the classical (q D 0) case (see also the discussion after

Theorem 4.7). We are very grateful to Sergey Fomin for this comment.

2.6.3. The parameters a1; : : : ; aj�1 (but not aj ) essentially do not contribute to

the main equations (2.25), (2.26): they enter the equations only as a requirement

that N� 2 GTC
j�1 and �; � 2 GTC

j . Thus, equations (2.25), (2.26) essentially

depend on two specializations: a specialization into one usual parameter ƒ D .aj /

which corresponds to increasing the level number, and a specialization B D .˛/

or . Ǒ/ which corresponds to time evolution. This allows to think of diagrams

as on Figure 7, as well as of main equations, for any specializations ƒ and B

(see Figure 8).

� �

N� N�

�
ƒ

�
ƒ

�B

�B

��������������!
time

le
v
el

��
�
�
��
�
�
��
�
�
�!

Figure 8. A square of four signatures corresponding to arbitrary specializations ƒ and B.

Notation N� �ƒ � means that P�= N�.ƒ/ > 0, and similarly for �B. When the specialization

ƒ is into a single usual or dual parameter, �ƒ reduces to �h or �v, respectively.

It su�ces to consider three elementary cases for ƒ and B as in (2.18). This

yields 9 possible systems of equations for dynamics. If one of the specializations is

pure Plancherel (case (3) in (2.18)), then the corresponding Markov dynamics on

q-Whittaker processes were essentially constructed in [15], [18]. This leaves four

systems of equations in which both ƒ and B are specializations into a single usual

or dual parameter. In this paper we address two of these four cases corresponding

to ƒ D .aj /, which in particular give rise to two new discrete time q-PushTASEPs

(as marginally Markovian projections of dynamics on interlacing arrays, see §5.2

and §6.3).
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2.6.4. In fact, one can de�ne the quantities  �=�.q; t /, ��=�.q; t /,  
0
�=�

.q; t /

for the general Macdonald parameters .q; t / (see [52, Chapter VI]), and thus

write down the corresponding main linear equations for any specializations ƒ

and B. (In particular, for t ¤ 0 the right-hand side of the identity (2.6) de�ning a

specialization should be multiplied by
Q1
iD1.t˛iuI q/1.) It is not known whether

there exist other solutions to the main equations for general .q; t / yielding honest

Markov dynamics (i.e., having nonnegative transition probabilities) except the

push-block solution (see §3 below for the de�nition). We do not address this

question in the present paper.

There is a rather simple transformation of the main equations for general

.q; t / (related to transposition of Young diagrams) which interchanges q $ t

and swaps usual and dual parameters in both specializations ƒ and B [18]. This

transformation relates the q-Whittaker (t D 0) and the Hall–Littlewood (q D 0)

settings.

The remaining two cases of the (q-Whittaker) main equations mentioned above

(corresponding to ƒ D . Ob/, a specialization into a dual parameter) should thus

be thought of as discrete time versions of the continuous time equations of [18]

(relevant to the Hall–Littlewood setting). As such, (conjectural) solutions to

the former equations leading to discrete time dynamics on interlacing arrays are

unlikely to produce new marginally Markovian TASEP-like particle systems in

one space dimension (see also discussion in [15, §8.3]). In the present paper, we

do not address these two remaining cases corresponding to the Hall–Littlewood

setting.

3. Push-block and RSK-type dynamics

3.1. Push-block dynamics. There is a rather straightforward general construc-

tion (dating back to an idea of [26]) leading to certain particular multivariate dy-

namics. Namely, assume that the conditional probabilities Uj .� ! � j N� ! N�/

entering the main equations (Theorem 2.13) do not depend on N�. Then each equa-

tion (corresponding to �xed �; � 2 GTC
j , and N� 2 GTC

j�1) contains only one

unknown Uj .�! � j N�/. With this restriction the main equations admit a unique

solution. Let us consider the case of a usual parameter ˛ (2.25). Observe that the
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left-hand side of (2.25) takes the following form (where signatures satisfy condi-

tions on Figure 7, left):

Uj .� �! � j N�/
X

N�2GT
C
j�1

.˛aj /
j�j�j�j�.j N�j�j N�j/ �= N�� N�= N�

D Uj .� �! � j N�/ ˛j�j�j�ja
�j�jCjN�j
j

X

N�2GT
C
j�1

P�= N�.aj /Q N�= N�.˛/

D Uj .� �! � j N�/ .˛aj I q/1
X

~2GT
C
j

.˛aj /
j~j�j�j ~= N��~=�;

where we have used the skew Cauchy identity (2.30). Then (2.25) yields the

solution

Uj .� �! � j N�/ D
.˛aj /

j�j �= N���=�
X

~2GT
C
j

.˛aj /
j~j ~= N��~=�

: (3.1)

In (3.1) as well as in the above computation, it should be � �h �, N� �h � and

� �h ~, N� �h ~, see Figure 7, left.

Similarly, the solution of (2.26) not depending on N� looks as

Uj .� �! � j N�/ D
.ˇaj /

j�j �= N� 
0
�=�

X

~2GT
C
j

.ˇaj /
j~j ~= N� 

0
~=�

: (3.2)

The signatures have to be related as on Figure 7, right, i.e., � �v �, N� �h �,

and � �v ~, N� �h ~.

De�nition 3.1. We will call the multivariate dynamics de�ned by (3.1) or (3.2)

the (discrete time) push-block dynamics on q-Whittaker processes adding a spe-

cialization .˛/ or . Ǒ/, respectively. About the name see §4.2 below. We denote

these dynamics by Q
qD0
pb Œ˛� and Q

qD0
pb Œ Ǒ�.
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The construction of push-block dynamics can be equivalently described as

follows. Recall the commutation relation between the univariate dynamics P and

the stochastic links ƒ
j
j�1 (2.31). Then one can say that the multivariate dynamics

chooses � at random according to the distribution of the middle signature in a

chain of Markov operators

�
P
.j/

�����! �
ƒ
j

j�1
�����! N�;

conditioned on the �rst signature � and the last signature N�. Denominators in

formulas (3.1) and (3.2) re�ect this conditioning.

The push-block dynamics (in the Schur case) �rst appeared in [13], see also

§4.2 below. For analogous dynamics in continuous time and space in which the

univariate dynamics is the Dyson’s Brownian motion see [73]. As shown in [41],

the latter dynamics is a di�usion limit of the discrete-space dynamics from [13].

3.2. RSK-type dynamics. Let us now de�ne an important subclass of multi-

variate dynamics which is central to the present paper.

De�nition 3.2. A multivariate sequential update dynamics Q (which corresponds

to conditional probabilities Uj .� ! � j N� ! N�/ satisfying (2.24) and the main

equations (2.25) or (2.26)) is called RSK-type if

Uj .� �! � j N� �! N�/ D 0 unless j�j � j�j � jN�j � j N�j;

for all �; � 2 GTC
j , N�; N� 2 GTC

j�1.

In the above de�nition, j N�j � j N�j is the total distance traveled by particles at

level j � 1, and similarly j�j� j�j is the total distance traveled by particles at level

j . Informally, under an RSK-type dynamics all movement at level j � 1 must

propagate further to level j (and, consequently, to all upper levels of the array).

By Remark 2.10, under an RSK-type dynamics the quantity j�.j /j � j�.j�1/j

(for any j D 1; : : : ; N ) at each step of the discrete time is increased by adding

a q-geometric random variable with parameter ˛aj (in the case of QŒ˛�), or a

Bernoulli random variable with parameter ˇaj (in the case of QŒ Ǒ�).

Remark 3.3. This feature of RSK-type dynamics separates them from the push-

block dynamics of §3.1. Indeed, under a push-block dynamics movements at level

j � 1 generically do not propagate upwards because the quantities Uj .� ! � j
N� ! N�/ do not depend on N�. More precisely, the only steps at level j � 1 that

can propagate to level j correspond to the situation N� 6�h �. Then a part of
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the movement � ! � is mandatory, as it is dictated by the need to immediately

(i.e., during the same time step of the multivariate dynamics) restore the interlac-

ing between the levels j � 1 and j .

RSK-type dynamics on q-Whittaker processes that we construct in §5 and §6

give rise to discrete time q-TASEPs and q-PushTASEPs as their Markovian

marginals. On the other hand, discrete time push-block dynamics do not seem

to produce any TASEP-like processes.16 Note also that in general the denomi-

nator in (3.1) or (3.2) does not seem to be given by an explicit formula, so the

discrete time push-block dynamics are not easy to work with (cf. Remark 2.11).

This provides an additional motivation for constructing and studying RSK-type

dynamics.

4. Schur case

In this section we discuss the Schur (q D 0) case, and explain how in this case the

RSK-type multivariate dynamics are related to the classical Robinson–Schensted–

Knuth correspondences.

4.1. Univariate dynamics in the Schur case. When q D 0, the q-Whittaker

polynomials P� andQ� reduce to the simpler Schur polynomials s�. In particular,

we have  �=� D ��=� D 1��h� and  0
�=�

D 1��v�. Univariate discrete

time dynamics on the �rst level GTC
1 D Z�0 look as in Remark 2.10 with the

understanding that the q-geometric distribution in the case of P Œ˛� has to be

replaced by the usual geometric distribution p˛a1.n/jqD0 D .1 � ˛a1/.˛a1/
n,

n D 0; 1; 2; : : : .

Remark 4.1. The continuous time dynamics on GTC
1 increasing the parameter


 of the specialization is the usual Poisson process which can be obtained from

either of the discrete time dynamics P Œ˛� or P Œ Ǒ� in a small ˛ or small ˇ limit,

respectively. In fact, this observation is also true in the general q > 0 case.

16 The continuous time push-block dynamics on q-Whittaker processes has lead to the dis-

covery of the continuous time q-TASEP in [8]. A continuous time RSK-type dynamics on

q-Whittaker processes was later employed in [15] to discover the continuous time q-PushTASEP,

a close relative of the q-TASEP (see also §5.6 below). In fact, q-PushTASEP and q-TASEP

can be uni�ed to produce another nice particle system on Z, namely, the q-PushASEP (see §7.5

below), which also extends to a certain dynamics on interlacing arrays [23].
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The univariate dynamics P Œ˛� and P Œ Ǒ� at any higher level GTC
N ,

N D 2; 3; : : : (described in a q D 0 version of Proposition 2.9), can be obtained

from the N D 1 dynamics via the Doob’s h-transform procedure. Informally,

to get the dynamics of N distinct particles .x1 > � � � > xN / on Z�0 (this state

space is the same as GTC
N up to a shift xi D �i C N � i), one should consider

the dynamics of N independent particles xj each of which evolves according to

the corresponding N D 1 dynamics, and then impose the condition that the par-

ticles never collide and have relative asymptotic speeds a1; : : : ; aN , respectively.

This conditioning gives rise to the presence of the factors s�.Ea/=s�.Ea/ in transi-

tion probabilities (cf. Proposition 2.9). We refer to, e.g., [48], [47], [55], [62] for

details on noncolliding dynamics.

It is worth noting that the Dyson’s Brownian motion coming fromN �N GUE

random matrices [27] arises via a similar procedure by considering noncolliding

Brownian particles. One may thus think that the univariate dynamics P Œ˛� and

P Œ Ǒ� on GTC
N are certain discrete analogues of the Dyson’s Brownian motion.

4.2. Push-block dynamics in the Schur case. Setting q D 0 greatly simpli�es

formulas (3.1) and (3.2) thus leading to nice push-block multivariate dynamics on

interlacing arrays. They were introduced and studied in [13].

Due to the sequential nature of multivariate dynamics (2.23), we will consider

evolution at consecutive levels j � 1 and j . Assuming that the movement N�! N�

at level j � 1 and the old con�guration � at level j are given, we will describe the

probability distribution of � 2 GTC
j corresponding to Uj .�! � j N�! N�/.

1 1 2C 1 4C 1

0C Y3 1C 0 2C Y2 2C 1 7C Y1

N�C . N� � N�/

�C .� � �/

C1block

Figure 9. An example of a step of Q
qD0
pb Œ Ǒ� at levels 4 and 5. Here � D .7; 2; 2; 1; 0/,

N� D .4; 2; 1; 1/, and N� D .5; 3; 1; 1/. The move �2 D 2 ! �2 D 2C 1 on the upper level

is dictated by the corresponding move N�2 D 2 ! N�2 D 2 C 1 on the lower level (due to

the short-range pushing mechanism), so no further move of �2 is possible. The particle

�4 D 1 cannot move because it is blocked by N�3 D �4. All other particles are free to

move (including �3 which was blocked before the movement at the lower level), and their

jumps Y1; Y2; Y3 are independent identically distributed Bernoulli random variables with

P.Y1 D 0/ D 1=.1C ˇaj /.
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Let us �rst focus on the case of Q
qD0
pb Œ Ǒ� (see Figure 9).17 In this case (3.2)

simpli�es to

Uj .� �! � j N�/ D
.ˇaj /

j�j1 N��h�1��v�
P

~2GT
C
j

.ˇaj /j~j1 N��h~1��v~

;

i.e. for any �0; �00 2 GTC
j , such that N� �h �

0; � �v �
0 and N� �h �

00; � �v �
00,

Uj .� �! �0 j N�/

Uj .� �! �00 j N�/
D .ˇaj /

j�0j�j�00j:

It is clear that the only dynamics with such property �ts the following description.

During one step of the dynamics, each particle �i , 1 � i � j , can either stay, or

jump to the right by one, according to the rules.

(1) Short-range pushing. If N�i D �i C 1, then the move �i ! �i D �i C 1 is

mandatory to restore the interlacing (which was broken by the move N�! N�)

during the same step of the discrete time.

(2) Blocking. If �i D N�i�1, then the particle �i is blocked and must stay, i.e., �i

is forced to be equal to �i .

(3) Independent jumps. All other particles �i which are neither pushed nor

blocked, jump to the right by 0 or 1 according to an independent Bernoulli

random variable with probability of staying 1=.1C ˇaj /.

1 1 2C 2 4C 4

0C Y4 1C 0 2C Y3 2C 2C Y2 7C 1C Y1

N�C . N� � N�/

�C .� � �/

C2 C1block

Figure 10. An example of a step of Q
qD0
pb

Œ˛� at levels 4 and 5. The move N�1 D 4! N�1 D

4 C 4 forces �1 to move to the right by 1, and similarly the move N�2 D 2 ! N�2 D 2C 2

forces �2 to move to the right by 2 (short-range pushing); note that these forced moves do

not exhaust all possible distance traveled by �1 or �2. The particle �4 D 1 is blocked by

N�3 D �4 and thus cannot move. All other parts of the movement � ! � are determined

by independent identically distributed geometric random variables Yi , 1 � i � 4 with

parameter ˛aj , where each variable is conditioned to stay in the maximal interval not

breaking the interlacing: Y1 � 0 (i.e., no conditioning), 0 � Y2 � 4, 0 � Y3 � 2,

0 � Y4 � 1.

17 To simplify pictures, here and below we will display interlacing arrays of integers (cf.

Figure 2), but will still speak about particles jumping to the right.
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By the same explanation the dynamics Q
qD0
pb Œ˛� at two consecutive levels looks

as follows (see Figure 10). Each particle �i , 1 � i � j , independently jumps to the

right by a random distance which has the geometric distribution with parameter

˛aj conditioned to stay in the interval from . N�i � �i/C WD max¹0; N�i � �iº to

N�i�1 � �i (with the agreement that �0 D C1).18 This conditioning corresponds

to the denominator in (3.1).

4.3. RSK-type dynamics in the Schur case. Let us now discuss four discrete

time multivariate RSK-type dynamics Q
qD0
row Œ˛�, Q

qD0
row Œ Ǒ�, Q

qD0
col Œ˛�, Q

qD0
col Œ
Ǒ� on

Schur processes. The former two dynamics arise from the row RSK algorithm19

applied to geometric or Bernoulli random input, respectively (cf. Remark 4.5

below). Similarly, the latter two dynamics correspond to the column RSK

algorithm applied to the same random inputs. We refer to [45], [35], [71] for

relevant background and details on RSK correspondences (though descriptions

of dynamics below in this subsection may serve as equivalent de�nitions of RSK

algorithms). See also [15, §7] for a “dictionary” between interlacing arrays and

semistandard Young tableaux viewpoints.

Let us �rst recall two elementary operations of deterministic long-range

pulling and pushing from [15] (in the language of semistandard Young tableaux

they correspond to row and column bumping, respectively).

De�nition 4.2 (deterministic long-range pulling, Figure 11). Let j D 2; : : : ; N ,

and signatures N�; N� 2 GTC
j�1, � 2 GTC

j satisfy N� �h �, N� D N� C Nei , where

Nei D .0; 0; : : : ; 0; 1; 0; : : : ; 0/ (for some i D 1; : : : ; j � 1) is the i th basis vector of

length j � 1. De�ne � 2 GTC
j to be

� D pull.� j N� �! N�/ WD

´

�C ei if N�i D �i ;

�C eiC1 otherwise:

Here ei and eiC1 are basis vectors of length j .

In words, the particle N�i at level j � 1 which moved to the right by one

generically pulls its upper left neighbor �iC1, or pushes it upper right neighbor

�i if the latter operation is needed to preserve the interlacing. Note that the long-

range pulling mechanism does not encounter any blocking issues.

18 Due to the memorylessness of the geometric distribution, this description is equivalent to

what is illustrated on Figure 10.

19 The row RSK is the most classical version of the Robinson–Schensted–Knuth algorithm.



q-randomized RSK correspondences and random polymers 39

2C 1 4

1 2C 1 7

C1

2C 1 4

1C 1 3 7

C1

Figure 11. An example of pulling mechanism for i D 2 at levels 2 and 3 (i.e., j D 3).

Left: N�2 D �2, which forces the pushing of the upper right neighbor. Right: in the generic

situation N�2 < �2 the upper left neighbor is pulled.

De�nition 4.3 (deterministic long-range pushing, Figure 12). As in the previous

de�nition, let j D 2; : : : ; N , N�; N� 2 GTC
j�1, � 2 GTC

j be such that N� �h � and

N� D N�C Nei . De�ne � 2 GTC
j to be

� D push.� j N� �! N�/ WD �C em;

where m D max¹pW 1 � p � i and �p < N�p�1º.

In words, the particle N�i at level j �1which moved to the right by one, pushes

its �rst upper right neighbor �m which is not blocked (and therefore is free to move

without violating the interlacing). Generically (when all particles are su�ciently

far apart) �m D �i , so the immediate upper right neighbor is pushed.

1 2C 1 4 6

0 1 4 6 7C 1

N�C . N� � N�/

�C .� � �/

C1block block

Figure 12. An example of pushing mechanism for i D 3 at levels 4 and 5 (i.e., j D 5). Since

the particles �3 D N�2 and �2 D N�1 are blocked, the �rst particle which can be pushed is �1.

Remark 4.4 (Move donation). It is useful to equivalently interpret the mechanism

of De�nition 4.3 in a slightly di�erent way. Namely, let us say that when the

particle N�i at level j �1moves, it gives the particle �i at level j a moving impulse.

If �i is blocked (i.e., if �i D N�i�1), this moving impulse is donated to the next

particle �i�1 to the right of �i . If �i�1 is blocked, too, then the impulse is donated

further, and so on. Note that the particle �1 cannot be blocked, so this moving

impulse will always result in an actual move.
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Let us now describe four RSK-type dynamics on Schur processes. Under each

of the dynamics the interlacing array � is updated sequentially (cf. (2.23)) at

each level j D 1; : : : ; N . At each step of the discrete time corresponding to

an update � ! �, new randomness is introduced via N independent random

variables V1; : : : ; VN , which are either geometric random variables (belonging

to Z�0) with parameters ˛a1; : : : ; ˛aN in the case of Q
qD0
row Œ˛� and Q

qD0
col Œ˛�, or

Bernoulli random variables 2 ¹0; 1º with parameters ˇa1; : : : ; ˇaN in the case of

Q
qD0
row Œ Ǒ� and Q

qD0
col Œ

Ǒ�. These random variables are resampled during each time

step.

Remark 4.5. We see that all randomness in each of the four RSK-type dynamics

can be organized into a matrix .V
.t/
j /1�j�N; tD1;2;::: (with appropriate distribution

of the V
.t/
j ’s). Such matrices containing nonnegative integers are usually thought

of as inputs for classical Robinson–Schensted–Knuth correspondences.

Under each of the four dynamics, the particle at the �rst level of the array is

updated as �
.1/
1 D �

.1/
1 C V1. Then, for each j D 2; : : : ; N , assume that we are

given signatures N�; N� 2 GTC
j�1, � 2 GTC

j satisfying relations as on Figure 7

(note that these relations depend on the type (˛) or . Ǒ/ of the dynamics). Let us

represent the movement N�! N� at level j � 1 as

N� � N� D

j�1
X

iD1

ci Nei ;

8

<

:

ci 2 Z�0 in the case of Q
qD0
row Œ˛� and Q

qD0
col Œ˛�;

ci 2 ¹0; 1º in the case of Q
qD0
row Œ Ǒ� and Q

qD0
col Œ

Ǒ�

(recall that Nei is the i th basis vector of length j � 1). Also denote jcj WD
Pj�1
iD1 ci .

Depending on the dynamics, we will construct the signature � 2 GTC
j (which

also �ts into relations on Figure 7) as follows.

� Q
qD0
row Œ˛� (Figure 13). First, do jcj operations pull (De�nition 4.2) in order

from left to right, starting from position j � 1 all the way up to position 1.

In more detail, let �.j � 1; 0/ WD � and for p D 1; : : : ; cj�1 let

�.j � 1; p/ WD pull.�.j � 1; p � 1/ j N�C .p � 1/ Nej�1 �! N�C p Nej�1/;

then let �.j � 2; 0/ WD �.j � 1; cj�1/ and for p D 1; : : : ; cj�2 let

�.j � 2; p/ WD pull.�.j � 2; p � 1/ j N�C cj�1 Nej�1 C .p � 1/ Nej�2

�! N�C cj�1 Nej�1 C p Nej�2/;

etc., all the way up to �.1; c1/ WD pull.�.1; c1 � 1/ j N� � Ne1 ! N�/. (Clearly,

if some ci D 0, then the steps corresponding to �.i; �/ should be omitted.)
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After these jcj operations, de�ne � WD �.1; c1/ C Vj e1. That is, let the

rightmost particle at level j jump to the right by Vj (which is a geometric

random variable with parameter ˛aj ).

3C 2 6 6C 1 7C 3

1C 1 4C 1 6 6C 3 9C 1C Vj

N�C . N� � N�/

�C .� � �/

C1 C1 C1 C2 C1

Figure 13. An example of a step of Q
qD0
row Œ˛� at levels 4 and 5. Propagation steps (represented

by numbers on arrows) are performed from left to right, according to pull operation. After

that, the rightmost particle at level j jumps to the right by Vj .

� Q
qD0
row Œ Ǒ� (Figure 14). First, de�ne �.1; 0/ WD � C Vj e1. That is, let the

rightmost particle at level j jump to the right by Vj (which is a Bernoulli

random variable with parameter ˇaj ).

After that, perform jcj operations pull (De�nition 4.2) in order from right

to left, starting from position 1 all the way up to position j � 1 (details are

analogous to the above dynamics Q
qD0
row Œ˛�). Then set � WD �.j � 1; cj�1/.

3 5C 1 6C 1 7C 1

1 4C 1 6C 1 6C 1 7C Vj

N�C . N� � N�/

�C .� � �/

C1C1C1

3 5C 1 6C 1 7C 1

1 4C 1 6 6C 1 7C Vj C 1

N�C . N� � N�/

�C .� � �/

C1C1C1

Figure 14. An example of a step of Q
qD0
row Œ Ǒ� at levels 4 and 5. Propagation steps are

performed from right to left, according to pull operation. Above: Vj D 1. Below: Vj D 0.

� Q
qD0
col Œ˛� (Figure 15). First, the leftmost particle �j at level j receives Vj

moving impulses (here Vj is a geometric random variable with parameter

˛aj ). Each moving impulse means that �j tries to jump to the right by one,

and if it is blocked (i.e., if �j D N�j�1), then the moving impulse is donated

to �j�1, etc. (see Remark 4.4). Denote the signature at level j arising after

these Vj moving impulses by �.j � 1; 0/.
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After that, perform jcj operations push (De�nition 4.3), in order from left

to right, starting from position j � 1 all the way up to position 1 (details are

analogous to the above). Then we set � WD �.1; c1/.

3C 2 6 6C 3 9C 1

1C 2 4C .Vj � 2/C 1 6 7C 1C 1 11C 2C 1

N�C . N� � N�/

�C .� � �/C1

C1 C1 C1 C2 C1

Figure 15. An example of a step of Q
qD0
col Œ˛� at levels 4 and 5. We have Vj D 3, which

means that initially the particle �5 jumps to the right by 2 and the particle �4 jumps by 1

(because of move donation). After that, propagation steps are performed from left to right,

according to push operation.

� Q
qD0
col Œ
Ǒ� (Figure 16). First, perform jcj operations push (De�nition 4.3), in

order from right to left, starting from position 1 all the way up to position

j � 1 (details are analogous to what is done above). Let �.j � 1; cj�1/ be

the signature at level j arising after these jcj operations.

After that, let the leftmost particle at level j receives Vj moving impulses

(here Vj is a Bernoulli random variable with parameter ˇaj ). That is, if

Vj D 0, then set � WD �.j � 1; cj�1/. Otherwise, if Vj D 1, the j th particle

at level j tries to jump to the right by one. If it is blocked, the impulse is

donated to the .j � 1/th particle at level j , etc. In this case, denote by � the

signature at level j arising after this moving impulse.

3 6C 1 6 7C 1

3 6C Vj 6 6C 1 8C 1

N�C . N� � N�/

�C .� � �/

C1C1

C1

Figure 16. An example of a step of Q
qD0
col

Œ Ǒ� at levels 4 and 5. Propagation steps are

performed from right to left, according to push operation. We have Vj D 1, and the jump

of the rightmost particle at level j is donated to the right.

The above four rules of constructing the signature � 2 GTC
j complete the

description of the RSK-type dynamics Q
qD0
row Œ˛�, Q

qD0
row Œ Ǒ�, Q

qD0
col Œ˛�, and Q

qD0
col Œ
Ǒ�,

respectively.
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Remark 4.6. By the very construction, at each step of any of the four above

RSK-type dynamics the quantity j�.N/j is increased by V1C� � �CVN , as it should

be (cf. the discussion before Remark 3.3).

Theorem 4.7. The RSK-type dynamics Q
qD0
row Œ˛�, Q

qD0
col Œ˛�, Q

qD0
row Œ Ǒ�, and Q

qD0
col Œ

Ǒ�

described above satisfy q D 0 versions of the main equations of Theorem 2.13 and

hence act on Schur processes by adding a new usual parameter ˛ or a new dual

parameter ˇ, respectively (as in (2.17)).

Proof. This statement follows from bijective properties of RSK correspondences

(brie�y discussed below in this section), or, equivalently, it may be regarded as

q D 0 degeneration of our main results about RSK-type dynamics on q-Whittaker

processes (Theorems 5.2, 5.7, 6.4, and 6.11). �

Each of four RSK-type dynamics described above gives rise to a certain bijec-

tion between sets ¹�; N�; N�; Vj º and ¹�; �; N�º (at each time step and at each level j of

the interlacing array). In more detail, each of the dynamics Q
qD0
row Œ˛� and Q

qD0
col Œ˛�

(see Figure 13 and 15) produces a bijection between the following sets:

¹�; N�; N�W� �h N� �h N�º [ ¹Vj 2 Z�0º  ! ¹�; �; N�W� �h � �h N�º: (4.1)

Similarly, each of the dynamics Q
qD0
row Œ Ǒ� and Q

qD0
col Œ

Ǒ� (Figure 14 and 16) estab-

lishes a bijection between the sets

¹�; N�; N�W� �h N� �v N�º [ ¹Vj 2 ¹0; 1ºº  ! ¹�; �; N�W� �v � �h N�º: (4.2)

In (4.1) and (4.2) we have N�; N� 2 GTC
j�1 and �; � 2 GTC

j , as usual.

The understanding of RSK correspondences via bijections as in (4.1) and (4.2)

was presented in [34].20 It also implies that �xing � and N� and taking gener-

ating functions of both sets in (4.1), by weighting elements of the left set by

.aj˛/
VjCjN�j�j N�j, and of the right set by .aj˛/

j�j�j�j (under the bijections, these

powers are equal to each other), one recovers the skew Cauchy identity (2.30)

for B D .˛/. Similarly, (4.2) leads to (2.30) with B D . Ǒ/. This observation

agrees with the understanding of multivariate dynamics as re�nements of the skew

Cauchy identity (§2.6.2).

20 Starting multivariate dynamics from initial condition �.j/
i

� 0 for all 1 � i � j � N

and considering all levels of an interlacing array, bijections (4.1) and (4.2) extend to bijective

correspondences between certain integer matrices and pairs of semistandard Young tableaux (in

agreement with the well-known understanding of RSK correspondences).
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Remark 4.8. In RSK-type dynamics on q-Whittaker processes considered in §5

and §6 below, a part of new randomness at each step also comes from indepen-

dent random variables V1; : : : ; VN (having q-geometric or Bernoulli distribution,

cf. Remark 2.10). Moreover, for q > 0 the bijective mechanisms (4.1), (4.2) will

be q-randomized (i.e. will no longer be deterministic bijections). This would lead

to four q-randomized RSK correspondences: the row and column .˛/, and the row

and column . Ǒ/. In fact, for q > 0 the step-by-step nature of the q D 0 case (when

push or pull operations are performed one at a time) will be broken, and certain

series of push or pull operations will be clumped together and q-randomized as a

whole. This will make the dynamics at the q-Whittaker level more complicated.

Each of the four RSK-type dynamics possesses a marginally Markovian projec-

tion (onto the leftmost or the rightmost particles of the interlacing array) leading

to a certain discrete time particle system on Z. Namely, Q
qD0
row Œ˛� and Q

qD0
row Œ Ǒ�

give rise to the geometric and Bernoulli PushTASEPs, respectively, on the right-

most particles �
.j /
1 , j D 1; : : : ; N . Similarly, Q

qD0
col Œ˛� and Q

qD0
col Œ
Ǒ� lead to the

geometric and Bernoulli TASEPs, respectively, on the leftmost particles �
.j /
j . The

q-deformed dynamics of §5 and §6 below would lead to q-deformations of these

four particle systems.

Remark 4.9. By imposing some reasonable nearest neighbor constraints on dis-

crete time multivariate dynamics, one may seek a full classi�cation of solutions of

the main equations of Theorem 2.13 in the Schur (q D 0) case. Such classi�cation

in continuous time setting was obtained in [15]. We do not pursue this direction

here.

5. RSK-type dynamics Q
q
rowŒ Ǒ� and Q

q

col
Œ Ǒ� adding a dual parameter

In this section we explain the construction of two RSK-type dynamics on

q-Whittaker processes adding a dual parameter ˇ to the specialization (in the

sense of (2.17)). For q D 0, these dynamics degenerate to . Ǒ/ dynamics on Schur

processes arising from row and column RSK insertion. We also discover that for

0 < q < 1, the row and column dynamics Q
q
rowŒ Ǒ� and Q

q
colŒ
Ǒ� are related by a cer-

tain transformation (we call it complementation). Moreover, in a small ˇ limit the

complementation provides a direct connection between continuous time RSK-type

dynamics on q-Whittaker processes introduced in [59] (column version) and [15]

(row version).
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5.1. Row insertion dynamics Q
q
rowŒ Ǒ�. Let us now describe one time step

�! � of the multivariate Markov dynamics Q
q
rowŒ Ǒ� on q-Whittaker processes of

depthN . A part of randomness during this step comes from independent Bernoulli

random variables V1; : : : ; VN 2 ¹0; 1ºwith parameters ˇa1; : : : ; ˇaN , respectively

(these random variables are resampled during each time step).

The bottommost particle of the interlacing array is updated as �
.1/
1 D �

.1/
1 CV1

(as it should be, cf. Remark 2.10). Next, sequentially for each j D 2; : : : ; N , given

the movement N� ! N� at level j � 1, we will randomly update � ! � at level j .

To describe this update, write

N� � N� D

j�1
X

iD1

ci Nei ; ci 2 ¹0; 1º

(Nei are basis vectors of length j � 1), and say that numbers .k;m/, where 1 � k �

m � j � 1, form island.k;m/ if

ck�1 D 0 (or k D 1),

ck D ckC1 D � � � D cm D 1;

cmC1 D 0 (or m D j � 1):

That is, all particles that have moved at level j�1 split into several disjoint islands.

Also denote for any i D 1; : : : ; j � 1:

fi D fi. N�; �/ WD
1 � q�i�N�iC1

1 � q N�i�1�N�iC1
; gi D gi. N�; �/ WD 1 � q

�i�N�iC1 (5.1)

(by agreement, let N�0 WD C1). Note that all these quantities are between 0 and 1.

The update�! � at level j goes as follows (see Figure 17). First, the rightmost

particle jumps to the right by Vj , i.e., �1 D �1 C Vj e1. Then, independently for

every island.k;m/ of particles that have moved at level j�1, perform the following

updates.

(1) If Vj D 1 and k D 1 (i.e., the particle �1 has already moved, and the island

contains the �rst particle at level j �1), then move the particles �2; : : : ; �mC1

at level j to the right by one with probability 1.

(2) If Vj D 1 and k > 1, or Vj D 0 (i.e., island.k;m/ does not interfere with

the movement of �1 coming from Vj , or there is no independent movement

of �1), then island.k;m/ triggers the movement (to the right by one) of all

particles �k ; : : : ; �mC1 except one. The particle which does not move is

chosen at random:
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� �k is chosen not to move with probability

fk D
1 � q�k�N�kC1

1� q N�k�1�N�kC1
I (5.2)

� each �s, k C 1 � s � m, is chosen not to move with probability

.1� fk/.1� gkC1/ : : : .1� gs�1/gs

D
q�k�N�kC1 � q N�k�1�N�kC1

1� q N�k�1�N�kC1
q

Ps�1
iDkC1.�i�N�iC1/.1 � q�s�N�sC1/I

(5.3)

� �mC1 is chosen not to move with probability

.1� fk/.1� gkC1/ : : : .1 � gm�1/.1� gm/

D
q�k�N�kC1 � q N�k�1�N�kC1

1� q N�k�1�N�kC1
q

Pm
iDkC1.�i�N�iC1/:

(5.4)

Probabilities (5.2), (5.3), and (5.4) are nonnegative, and their sum telescopes

to 1.

This completes the description of the . Ǒ/ row insertion RSK-type dynamics

Q
q
rowŒ Ǒ�. Clearly, thus de�ned conditional probabilities Uj , j D 1; : : : ; N ,

for this dynamics satisfy (2.24).

2C 1 3C 1 5 5C 1 6C 1

2C 1 3 3C 1 5C 1 5C 1 7C Vj

N�C . N� � N�/

�C .� � �/

C1C1C1C1

2C 1 3C 1 5 5C 1 6C 1

2C 1 3C 1 5 5 6C 1 8C Vj C 1

N�C . N� � N�/

�C .� � �/

C1C1C1C1

Figure 17. An example of a step of Q
q
rowŒ Ǒ� at levels 5 and 6. There are two islands, .1; 2/

and .4; 5/, moving at level j � 1. Above: Vj D 1, and the probability of the displayed

transition is 1 � .1� f4/g5 D 1� q (note that here the particle �4 D 3 cannot be chosen not

to move because f4 D 0). Below: Vj D 0, and the probability of the displayed transition is

.1 � f1/.1 � g2/ � f4 D q3 (note that here the particle �4 D 5 must be chosen not to move

because f4 D 1).
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Remark 5.1. The q-deformed probabilities (5.2), (5.3), and (5.4) ensure that

mandatory pushing and blocking mechanisms (built into De�nitions 4.2 and 4.3)

work automatically:

� if �s D N�s � 1 for any k � s � m, then the particle �s cannot be chosen

not to move. This agrees with the mandatory pushing of �s by the move of
N�s D �s which is necessary to restore the interlacing;

� if �k D N�k�1 (i.e., �k is blocked), then fk D 1, so �k must be chosen not

to move. This means that in this dynamics no move donations ever arise

(cf. Remark 4.4).

Theorem 5.2. The dynamics Q
q
rowŒ Ǒ� de�ned above satis�es the main equa-

tions (2.26), and hence preserves the class of q-Whittaker processes and adds

a new dual parameter ˇ to the specialization A as in (2.17).

Proof. We need to prove (2.26) for any �xed j D 2; : : : ; N and �; � 2 GTC
j ,

N� 2 GTC
j�1, where � �v � �h N� (cf. Figure 7, right). For a subset

I � ¹1; 2; : : : ; j � 1º, set

UI WD .1C ˇaj /Uj .� �! � j N� �! N�/
 
�= N� 

0
N�= N�

 �= N� 
0
�=�

;

where
N� D N� �

X

i2I

Nei ;

i.e., N� 2 GTC
j�1 is obtained from N� by shifting back (by one) all particles with

indices belonging to I . By agreement, if I is such that N� does not satisfy

� �h N� �v N� (cf. Figure 7, right), then UI D 0. With this notation, the desired

identity (2.26) turns into

X

I�¹1;2;:::;j�1º

UI .ˇaj /
j�j�j�j�.j N�j�j N�j/ D 1: (5.5)

Note that the denominator .1Cˇaj / coming from the Bernoulli distribution of Vj

will always cancel the corresponding factor in all UI ’s.
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First, let us consider a particular case when � D � C
Pm
iDk ei , i.e., the

movement � ! � involves a consecutive group of particles from k to m, where

1 � k � m � j � 1. There are four subcases.

1. If k > 1 and m < j , then necessarily Vj D 0, and (5.5) becomes

UŒk�1;m�1� C
m�1
X

sDk

UŒk�1;s�1�[ŒsC1;m� C UŒk;m� D 1 (5.6)

(here and below by Œk � 1;m � 1�, etc., we mean the corresponding interval of

indices). See Figure 18.

N�mC1 N�m C 1
. . .

N�sC1 C 1 N�s N�s�1 C 1
. . .

N�k�1 C 1

�mC1 �m C 1 . . . �sC1 C 1 �s C 1 . . . �k C 1 �k�1

C1C1C1C1C1C1

Figure 18. Situation corresponding to the s-th term in (5.6).

Using (2.4) and (2.7), we have (as before, here and below in the proof we agree

that N�0 D C1)

UŒk�1;m�1� D fk�1. N�; �/
„ ƒ‚ …

Uj

�
�m � �mC1

�m � N�m

�

q
�
�m C 1 � �mC1

�m C 1 � N�m

�

q

�
�k�1 � �k

�k�1 � N�k�1 C 1

�

q
�
�k�1 � �k � 1

�k�1 � N�k�1

�

q
„ ƒ‚ …

 
�= N�= �= N�

1� q N�k�2�N�k�1C1

1� q�k�1��k
„ ƒ‚ …

 0
N�= N�

= 0
�=�

D
1 � q�k�1�N�k�1C1

1� q N�k�2�N�k�1C1

1 � q�m�N�mC1

1� q�m��mC1C1

1� q�k�1��k

1� q�k�1�N�k�1C1

1 � q N�k�2�N�k�1C1

1 � q�k�1��k

D
1� q�m�N�mC1

1 � q�m��mC1C1
:
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Also for any k � s � m � 1,

UŒk�1;s�1�[ŒsC1;m�

D fk�1. N�; �/ � .1� fsC1. N�; �//.1� gsC2. N�; �// : : : .1� gm. N�; �//
„ ƒ‚ …

Uj

�
�m � �mC1

�m � N�m C 1

�

q
�
�m C 1� �mC1

�m C 1 � N�m

�

q

�
�s � �sC1
�s � N�s

�

q
�
�s � �sC1
�s C 1 � N�s

�

q

�
�k�1 � �k

�k�1 � N�k�1 C 1

�

q
�
�k�1 � �k � 1

�k�1 � N�k�1

�

q
„ ƒ‚ …

 
�= N�= �= N�

.1 � q N�k�2�N�k�1C1/.1� q N�s�N�sC1C1/

1� q�k�1��k
„ ƒ‚ …

 0
N�= N�

= 0
�=�

D
1� q�k�1�N�k�1C1

1� q N�k�2�N�k�1C1

q�sC1�N�sC1C1 � q N�s�N�sC1C1

1� q N�s�N�sC1C1
q

Pm
iDsC2.�i�N�iC1/

1� q N�m��mC1

1� q�mC1��mC1

1 � q�sC1�N�s

1 � q N�s��sC1

1 � q�k�1��k

1 � q�k�1�N�k�1C1

.1� q N�k�2�N�k�1C1/.1 � q N�s�N�sC1C1/

1 � q�k�1��k

D
.1� q�sC1�N�s /.1� q N�m��mC1/

1 � q�mC1��mC1
q

Pm
iDsC1.�i�N�iC1/;

and

UŒk;m� D .1 � fk. N�; �//.1� gkC1. N�; �// : : : .1� gm. N�; �//
„ ƒ‚ …

Uj

�
�m � �mC1

�m � N�m C 1

�

q
�
�m C 1 � �mC1

�m C 1 � N�m

�

q

�
�k�1 � �k
�k�1 � N�k�1

�

q
�
�k�1 � �k � 1

�k�1 � N�k�1

�

q
„ ƒ‚ …

 
�= N�= �= N�

1 � q N�k�1�N�kC1

1� q�k�1��k
„ ƒ‚ …

 0
N�= N�

= 0
�=�
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D
q�k�N�kC1 � q N�k�1�N�kC1

1 � q N�k�1�N�kC1
q

Pm
iDkC1.�i�N�iC1/

1 � q N�m��mC1

1 � q�mC1��mC1

1� q�k�1��k

1� q N�k�1��k

1 � q N�k�1�N�kC1

1� q�k�1��k

D
1 � q N�m��mC1

1 � q�mC1��mC1
q

Pm
iDk.�i�N�iC1/:

The summation in (5.6) thus telescopes and gives 1 as desired (similarly to the sum

of expressions (5.2), (5.3), and (5.4)).

2. If k > 1 and m D j , then also necessarily Vj D 0, and there is only one I ,

namely, Œk � 1; j � 1�, contributing to (5.5). We have

UŒk�1;j�1� D fk�1. N�; �/ �

�
�k�1 � �k

�k�1 � N�k�1 C 1

�

q
�
�k�1 � �k � 1

�k�1 � N�k�1

�

q

1 � q N�k�2�N�k�1C1

1 � q�k�1��k

D
1� q�k�1�N�k�1C1

1� q N�k�2�N�k�1C1

1 � q�k�1��k

1 � q�k�1�N�k�1C1

1� q N�k�2�N�k�1C1

1 � q�k�1��k

D 1;

so we see that (5.5) holds.

3. If k D 1 and m < j , then Vj can be either 0 or 1, and (5.5) now looks as

UŒ1;m� C .ajˇ/
�1

m�1
X

sD1

UŒ1;s�1�[ŒsC1;m� C .ajˇ/
�1UŒ1;m�1� D 1:

This identity is established similarly to the subcase 1. Namely, one readily sees

that

UŒ1;m� D
1 � q N�m��mC1

1 � q�m��mC1C1
q

Pm
iD1.�i�N�iC1/;

UŒ1;s�1�[ŒsC1;m� D .ajˇ/
.1� q N�m��mC1/.1� q�s�N�sC1/

1 � q�m��mC1C1
q

Pm
iDsC1.�i�N�iC1/;

UŒ1;m�1� D .ajˇ/
1 � q�m�N�mC1

1� q�m��mC1C1
;

and the sum of these quantities telescopes and gives 1.
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4. If k D 1 and m D j , this means that necessarily Vj D 1, and the only term

that enters (5.5) is UŒ1;j�1� D ˇaj , so the desired identity also holds.

We have now established the desired identity in the particular case � D

� C
Pm
iDk ei . In the general case there could be several consecutive groups of

particles forming the move � ! � at level j . Let there be gaps of at least two

not moving particles between neighboring moving groups. Then, by the product

nature of the quantities  and  0 (2.4), (2.7), as well as by the independence of

propagation for di�erent islands at level j � 1, cf. Figure 17, the sum in the left-

hand side of (5.5) can clearly be represented as a product of sums corresponding

to individual groups of moving particles. Each such individual sum is the same as

in one of the subcases 1–4 above, and therefore is equal to 1. This implies (5.5) in

the case when moving groups at level j are su�ciently far apart.

Finally, it remains to check (5.5) in the case when there could be moving groups

at level j separated by one not moving particle. Consider two such neighboring

groups. The only con�guration of moves at level j �1 (corresponding to these two

groups at level j ) that could prevent the sum in (5.5) to be of product form is given

on Figure 19. However, one readily sees that the contribution of this con�guration

is the same as the product of contributions of two con�gurations on Figure 20.

N�m�1 C 1 N�s C 1 N�s�1 C 1
. . .

N�k C 1

�m C 1 . . . �s . . . . . . �k C 1

C1C1C1C1C1

Figure 19. Two islands at level j corresponding to a single island at level j � 1.

N�m�1 C 1 N�s C 1 N�s�1

�m C 1 �sC1 C 1 �s . . .

C1C1

N�s N�s�1 C 1
. . .

N�k C 1

. . . �s �s�1 C 1 . . . �k C 1

C1C1C1

Figure 20. Two con�gurations giving the same contribution as the one on Figure 19.
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Indeed, factors involving the quantities  are already in a product form, and

the remaining factors (coming from Uj and the quantities  0) are

q�k�N�k � q
N�k�1�N�k

1� q N�k�1�N�k
q

Ps�1
iDkC1.�i�

N�i /.1 � q�s�N�s /

„ ƒ‚ …

.1� fk/.1� gkC1/ : : : .1� gs�1/gs on Figure 19

1 � q
N�k�1�N�k

.1� q�k�1��k /.1 � q�s��sC1/

D
1� q�s�N�s

1� q N�s�1�N�s
„ ƒ‚ …

fs on Figure 20, above

1� q
N�s�1�N�s

1� q�s��sC1

q�k�N�k � q
N�k�1�N�k

1 � q N�k�1�N�k
q

Ps�1
iDkC1.�i�

N�i /

„ ƒ‚ …

.1� fk/.1� gkC1/ : : : .1� gs�1/ on Figure 20, below

1� q
N�k�1�N�k

1� q�k�1��k
:

Note that we have expressed everything in terms of signatures � and N� because

the signatures N� di�er on Figure 19 and Figure 20.

Therefore, in the last remaining case we can still rewrite (5.5) in a product

form. This completes the proof of the theorem. �

Remark 5.3 (Schur degeneration). If one sets q D 0, then in a generic situation

(when particles at levels j � 1 and j are su�ciently far apart from each other)

all quantities fi and gi become equal to one, see (5.1). One readily sees that the

dynamics Q
q
rowŒ Ǒ� reduces to the dynamics Q

qD0
row Œ Ǒ� on Schur processes. The latter

dynamics is based on the classical Robinson–Schensted–Knuth row insertion

(§4.3).

5.2. Bernoulli q-PushTASEP. One can readily check that under the dynamics

Q
q
rowŒ Ǒ� we have just constructed, the rightmost N particles �

.j /
1 of the interlacing

array evolve in a marginally Markovian manner (i.e., their evolution does not

depend on the dynamics of the rest of the interlacing array). Namely, at each

discrete time step t ! t C 1 the bottommost particle is updated as �
.1/
1 .t C 1/ D

�
.1/
1 .t /C V1, and for any j D 2; : : : ; N :

� if �
.j�1/
1 has not moved, then the rightmost particle at level j is updated as

�
.j /
1 .t C 1/ D �.j /1 .t /C Vj I



q-randomized RSK correspondences and random polymers 53

� if �
.j�1/
1 has moved to the right by one, then the same particle is updated as

�
.j /
1 .t C 1/ D �.j /1 .t /C Vj C .1� Vj / � 1pushing by �.j�1/

1

;

where pushing by �
.j�1/
1 happens with probability 1� f1 D q

�
.j/
1
.t/��.j�1/

1
.t/

which depends only on the rightmost particles of the array.

(Recall that the Vi ’s are independent Bernoulli random variables which are inde-

pendently resampled each step of the discrete time.) This evolution of the right-

most particles �
.j /
1 , 1 � j � N , leads to a new interacting particle system on Z

which we call the (discrete time) Bernoulli q-PushTASEP. We discuss this process

in detail in §7 below.

5.3. Complementation. Let us take another look at propagation rules employed

in the de�nition of the row insertion dynamics Q
q
rowŒ Ǒ� on q-Whittaker processes

(see the beginning of §5.1). These rules state that, generically, an island of moving

particles at level j � 1 splits (at random) into two moving islands at level j

separated by exactly one staying particle (either of two moving islands at level

j is allowed to be empty). Now consider the pattern of staying particles at levels

j � 1 and j . We see that an island.k;m/ (where k � m) of staying particles at

level j � 1 always gives rise to an island.k C 1;m/ of staying particles at level

j , plus one more staying particle somewhere to the right of k (but to the left

of the next staying particle at level j ). The latter staying particle (whose index is

chosen at random) is precisely the one separating the two moving islands at level j .

See Figure 21.

C1 C1 C1 C1 C1 C1 C1 C1 C1

C1 C1 C1 C1 C1 C1 C1 C1 C1

Figure 21. Complementation of propagation rules turning the dynamics Q
q
rowŒ Ǒ� (with move

propagation given by thin solid arrows) into Q
q

colŒ
Ǒ� (corresponding to thick dashed arrows).

The transformation of propagation rules of Q
q
rowŒ Ǒ� that we just described

informally in fact leads to a new RSK-type multivariate dynamics on q-Whittaker

processes. Let us work in a more general setting.
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De�nition 5.4 (complementation of a dynamics). Assume that Q is a multivariate

sequential update dynamics on q-Whittaker processes adding a specialization . Ǒ/.

For j D 2; : : : ; N and signatures �; � 2 GTC
j , N�; N� 2 GTC

j�1 satisfying conditions

on Figure 7, right, let Uj .� ! � j N� ! N�/ be the corresponding conditional

probabilities. Assume that the dynamics is translation invariant, i.e., that the

values Uj .� ! � j N� ! N�/ do not change if one adds the same number to all

coordinates of all four signatures.

For S a su�ciently large positive integer, de�ne the complement conditional

probabilities as

U
0
j .� �! � j N� �! N�/

WD .ajˇ/
�2.j�j�j�j�j N�jCjN�j/�1

Uj .ŒS � �� �! ŒS C 1 � �� j

ŒS � N�� �! ŒS C 1 � N��/;

where

ŒS � �� WD .S � �j � S � �j�1 � � � � � S � �1/

is the complement of the Young diagram � in the j � S rectangle, and similarly

for ŒS C 1 � ��, ŒS � N��, and ŒS C 1 � N�� (hence the name “complementation”).

Note that these four new signatures also satisfy conditions on Figure 7, right.

Let us denote by Q
0 the dynamics on interlacing arrays corresponding to U

0
j ,

j D 2; : : : ; N . Note that due to translation invariance, the complement dynamics

Q
0 does not depend on S provided that S is large enough.

Lemma 5.5. Let S be su�ciently large. For N� 2 GTC
k�1, � 2 GTC

k
such that

N� �h �, we have

 ŒS���=ŒS� N�� D  �= N�:

For �; ~ 2 GTC
k

such that � �v ~, we have

 0
ŒSC1�~�=ŒS��� D  

0
~=�:

Proof. A straightforward veri�cation using de�nitions (2.4) and (2.7). �

Proposition 5.6. If Q is a multivariate sequential update dynamics adding a

specialization . Ǒ/, then so is the complement dynamics Q
0.
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Proof. One can show that the complement dynamics Q
0 satis�es the same main

equations (2.26) as the original dynamics Q. Indeed, Lemma 5.5 ensures that the

coe�cients  
�= N� 

0
N�= N�

and  �= N� 
0
�=�

do not change under complementation, and

powers of .ajˇ/ also transform as they should:

U
0
j .� �! � j N� �! N�/.ajˇ/

j�j�j�j�j N�jCjN�j

D .ajˇ/
�j�jCj�jCj N�j�j N�j�1

Uj .ŒS � �� �! ŒS C 1� �� j

ŒS � N�� �! ŒS C 1� N��/

D .ajˇ/
jŒS���j�jŒSC1���j�jŒS�N��jCjŒSC1�N��j

Uj .ŒS � �� �! ŒS C 1� �� j

ŒS � N�� �! ŒS C 1� N��/:

This establishes the main equations for the complement dynamics. �

5.4. Column insertion dynamics Q
q

col
Œ Ǒ�. Clearly, the row insertion dynamics

Q
q
rowŒ Ǒ� on q-Whittaker processes is translation invariant (in the sense of De�ni-

tion 5.4), so one can de�ne the complement dynamics. Denote it by Q
q

colŒ
Ǒ�. Let

us describe (in an explicit way) the evolution of the interlacing array under this

new dynamics during one step of the discrete time. See Figure 22 for an example.

2 3C 1 3C 1 6 7C 1

0 3 3C 1 5 7C 1 7C 1

N�C . N� � N�/

�C .� � �/

C1 C1 C1

2 3C 1 3C 1 6 7C 1

0 3C Vj 3C 1 6 7C 1 7C 1

N�C . N� � N�/

�C .� � �/

C1 C1 C1

Figure 22. An example of a step of Q
q

col
Œ Ǒ� at levels 5 and 6. Above: Vj D 0, and the

probability of the displayed transition is 1 � f0
3
D .q C q2/=.1C q C q2/. Below: Vj D 1,

and the probability of the displayed transition is .1 � g0
6
/.1 � f0

3
/ D q2. Note that in the

latter case the particle �3 D 6 cannot be chosen to move because it is blocked by N�2 D �3
which is not moving; this agrees with f0

3
D 0.
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As before, a part of randomness comes from independent Bernoulli random

variables Vj 2 ¹0; 1º with P.Vj D 0/ D 1=.1 C ˇaj /, j D 1; : : : ; N . The

bottommost particle of the interlacing array is updated as �
.1/
1 D �

.1/
1 C V1.

Sequentially for each j D 2; : : : ; N , given the movement N� ! N� at level j � 1,

we will randomly update �! � at level j . Let us denote (as usual, N�0 D C1)

f0k D f0k. N�; �/ WD
1 � q N�k�1��k

1 � q N�k�1�N�kC1
; g0

s D g0
s. N�; �/ WD 1 � q

N�s�1��s : (5.7)

The update �! � looks as follows.

(1) Consider a pair of moved particles . N�r ; N�k/ at level j � 1, where 0 � r <

k � j � 1, such that the particles N�rC1; : : : ; N�k�1 in between did not move

(by agreement, r D 0 corresponds to N�k being the rightmost moved particle

at level j�1). Regardless of the value ofVj , each such pair of moved particles

at level j � 1 triggers the move (to the right by one) of exactly one particle

�s, r C 1 � s � k, between them at level j . If r C 1 D k, then there is

only one choice s D k, so �k must move. Otherwise, the moving particle

�s is chosen at random (independently of everything else) with the following

probabilities:

� if s D k, then �s is chosen to move with probability

f0k D
1� q N�k�1��k

1� q N�k�1�N�kC1
I (5.8)

� if r C 1 < s < k, then �s is chosen to move with probability

.1 � f0k/.1� g
0
k�1/ : : : .1� g

0
sC1/g

0
s

D
q N�k�1��k � q N�k�1�N�kC1

1 � q N�k�1�N�kC1
q

Pk�2
iDs .N�i��iC1/.1� q N�s�1��s /I

(5.9)

� if s D r C 1, then �s is chosen to move with probability

.1� f0k/.1� g
0
k�1/ : : : .1� g

0
rC3/.1� g

0
rC2/

D
q N�k�1��k � q N�k�1�N�kC1

1 � q N�k�1�N�kC1
q

Pk�2
iDrC1.N�i��iC1/:

(5.10)

Clearly, these probabilities are nonnegative, and their sum telescopes to 1.
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(2) If Vj D 1, then in addition to the moves described above, exactly one more

particle at level j is chosen to move (to the right by one). Namely, let N�m be

the leftmost moved particle at level j � 1. If m D j � 1, then the additional

moving particle at level j is �j , the leftmost particle. If m < j � 1, then

one of the particles �s with m C 1 � s � j is randomly chosen to move

(independently of everything else) with the following probabilities:

� if s D j , then �s is chosen to move with probability

g0
j D 1 � q

N�j�1��j I (5.11)

� if mC 1 < s < j , then �s is chosen to move with probability

.1� g0
j /.1� g

0
j�1/ : : : .1� g

0
sC1/g

0
s D .1� q

N�s�1��s /q
Pj�1
iDs .N�i��iC1/I

(5.12)

� if s D mC 1, then �s is chosen to move with probability

.1� g0
j /.1� g

0
j�1/ : : : .1� g

0
mC3/.1� g

0
mC2/ D q

Pj�1
iDmC1.N�i��iC1/:

(5.13)

The sum of these probabilities also telescopes to 1.

This completes the description of the . Ǒ/ column insertion RSK-type dynamics

Q
q
colŒ
Ǒ�.

Theorem 5.7. The dynamics Q
q

colŒ
Ǒ� de�ned above satis�es the main equa-

tions (2.26), and hence preserves the class of q-Whittaker processes and adds

a new dual parameter ˇ to the specialization A as in (2.17).

Proof. One can readily check that Q
q
colŒ
Ǒ� is the complement of Q

q
rowŒ Ǒ�. Then

the desired statement follows from Theorem 5.2 and Proposition 5.6. �

Remark 5.8. Similarly to Q
q
rowŒ Ǒ� (cf. Remark 5.1), probabilities (5.8)–(5.13)

employed in the de�nition of Q
q

colŒ
Ǒ� ensure the mandatory pushing, blocking, and

move donation mechanisms (described in De�nitions 4.2 and 4.3 and Remark 4.4).

Namely, observe that

� if N�k D �k for some k and N�k has moved at level j � 1, then f0
k
D 1, which

means that �k is chosen to move with probability 1;
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� if �s D N�s�1, and N�s�1 has not moved, then g0
s D f0s D 0, so according to (5.8)

and (5.9) the particle �s at level j cannot be chosen to move. If, moreover,
N�s has moved at level j � 1, then this move will trigger some other particle

to the right of �s at level j to move. In other words, the moving impulse

coming from N�s ! N�s D N�s C 1 will be donated further to the right of �s.

Remark 5.9 (Schur degeneration). When q D 0, one readily sees from (5.7) that

generically (i.e., when particles at levels j � 1 and j are su�ciently far apart)

we have f0
k
D g0

s D 1. This implies that the dynamics Q
q
colŒ
Ǒ� degenerates to the

multivariate dynamics Q
qD0
col Œ

Ǒ� on Schur processes. The latter is based on the

classical Robinson–Schensted–Knuth column insertion (§4.3).

5.5. Bernoulli q-TASEP. Under the dynamics Q
q

colŒ
Ǒ�, the leftmostN particles

�
.j /
j of the interlacing array evolve in a marginally Markovian manner. Indeed,

one can readily check that at each discrete time step t ! t C 1 the bottommost

particle is updated as �
.1/
1 .t C 1/ D �.1/1 .t /C V1, and for any j D 2; : : : ; N :

� if �
.j�1/
j�1 has moved, then the leftmost particle at level j is updated as

�
.j /
j .t C 1/ D �.j /j .t /C Vj I

� if �
.j�1/
j�1 has not moved, then the same particle is updated as

�
.j /
j .t C 1/ D �.j /j .t /C Vj � 1�.j/

j
is chosen to move

;

where �
.j /
j is chosen to move with probability g0

j D 1 � q�
.j�1/
j�1 .t/��.j/

j
.t/

which depends only on the leftmost particles of the array.

This evolution of the leftmost particles �
.j /
j , 1 � j � N , is the (discrete time)

Bernoulli q-TASEP which was introduced and studied in [7].

5.6. Small ˇ continuous time limit. If one sends the parameter ˇ to zero

and simultaneously rescales time from discrete to continuous, then both dynam-

ics Q
q
rowŒ Ǒ� and Q

q

colŒ
Ǒ� turn into certain continuous time Markov dynamics on

q-Whittaker processes. At the level j D 1 (cf. Remark 2.10), this limit transition

coincides with the one bringing the (one-sided) discrete time random walk to the

continuous time Poisson process. In continuous time setting, at most one particle

can move at each level j D 1; : : : ; N during an instance of continuous time.

The continuous time limit of Q
q
rowŒ Ǒ� looks as follows. Each rightmost particle

�
.j /
1 of the interlacing array has an independent exponential clock with rate aj .

When the clock rings, the particle jumps to the right by one.
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There is also a jump propagation mechanism present: if at level j � 1 some

particle �
.j�1/
m has moved (to the right by one), then this move instantaneously

triggers the move of the upper left neighbor �
.j /
mC1 with probability21

fm D
1� q�

.j/
m ��.j�1/

m

1� q�
.j�1/
m�1 ��.j�1/

m

;

or the move of the upper right neighbor �
.j /
m with the complementary probability

1�fm. This dynamics was introduced in [15] (Dynamics 8). Under it, the rightmost

particles of the array also evolve in a marginally Markovian manner. This leads to

the continuous time q-PushTASEP on Z, see [15, §8.3], [23].

The continuous time limit of Q
q

colŒ
Ǒ� looks as follows. Each particle �k,

1 � k � j , at level j has an independent exponential clock with rate

8

ˆ̂

<̂

ˆ
ˆ̂
:

aj g
0
j ; k D j;

aj .1� g
0
j /.1� g

0
j�1/ : : : .1� g

0
kC1/g

0
k
; 1 < k < j;

aj .1� g
0
j /.1� g

0
j�1/ : : : .1� g

0
3/.1 � g

0
2/; k D 1:

These quantities correspond to (5.11)–(5.13) with N� D N� (because if an indepen-

dent jump occurs at level j then at level j �1 there could be no movement). When

the clock of �k rings, this particle jumps to the right by one. Note that the move

donation mechanism described in Remark 4.4 follows from the above probabili-

ties.

There is also a jump propagation mechanism: if a particle N�k has moved at

level j � 1, then it triggers the move (to the right by one) of exactly one particle

�s , 1 � s � k, at level j , where s is chosen at random with probabilities

8

ˆ
ˆ̂
<

ˆ̂

:̂

f0
k
; s D k;

.1� f0
k
/.1� g0

k�1/ : : : .1� g
0
sC1/g

0
s; 1 < s < k;

.1� f0
k
/.1� g0

k�1/ : : : .1� g
0
3/.1 � g

0
2/; s D 1:

21 Note that here we are rewriting fm through the particle coordinates before the move at level

j � 1 (cf. (5.1)) so that the probabilistic meaning is clearer. One could also similarly rewrite all

other formulas for fm; gm; f
0
m; g

0
m above in this section, but for the purposes of checking the main

equations of Theorem 2.13 it is more convenient to use the notation involving the coordinates N�

after the jump.
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The above probabilities are given by (5.8)–(5.10) where N� di�ers from N� as

N� D N� C Nek. This dynamics on q-Whittaker processes was introduced in [59].

Under it, the leftmost particles of the interlacing array evolve in a marginally

Markovian manner as a q-TASEP. This continuous time particle system was

introduced in [8]. See also, e.g., [12], [10], [29] for further results on the q-TASEP.

Thus, the two continuous time dynamics on q-Whittaker processes (or, in other

words, q-randomized Robinson–Schensted correspondences) introduced in [59]

and [15] are the ˇ ! 0 degenerations of Q
q
colŒ
Ǒ� and Q

q
rowŒ Ǒ�, respectively. On the

other hand, complementation (§5.3) provides a straightforward link between the

two latter discrete time dynamics.

6. RSK-type dynamics Q
q
rowŒ˛� and Q

q

col
Œ˛� adding a usual parameter

In this section we explain the construction of two RSK-type dynamics Q
q
rowŒ˛� and

Q
q

colŒ˛� on q-Whittaker processes adding a usual parameter ˛ to the specialization

(as in (2.17)). For q D 0, these dynamics degenerate to .˛/ dynamics on

Schur processes arising from row and column RSK insertion. As in the case of

Q
q
rowŒ Ǒ� and Q

q

colŒ
Ǒ� dynamics, in a small ˛ limit the dynamics Q

q
rowŒ˛� and Q

q

colŒ˛�

degenerate to continuous time RSK-type dynamics from [59] (column version)

and [15] (row version).

6.1. The q-deformed Beta-binomial distribution. We will use the following

quantities.

De�nition 6.1. Let y 2 ¹0; 1; 2; : : : º [ ¹C1º, and s 2 ¹0; 1; : : : ; yº. Recall the

q-notation from (2.3). Let

'q;�;�.s j y/ WD �
s .�=�I q/s.�I q/y�s

.�I q/y

.qI q/y
.qI q/s.qI q/y�s

: (6.1)

If y D C1, the limits of the above quantities are

'q;�;�.s j C1/ D �
s .�=�I q/s

.qI q/s

.�I q/1

.�I q/1
: (6.2)
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An important property of the quantities (6.1) and (6.2) is that for all y 2

¹0; 1; 2; : : : º [ ¹C1º, we have

y
X

sD0

'q;�;�.s j y/ D 1: (6.3)

This statement may be rewritten as the q-Chu–Vandermonde identity for the basic

hypergeometric series 2�1. For the proof and more details see [36], [21]. Recall

that in general the unilateral basic hypergeometric series j�k is de�ned via

j�k

"

a1 : : : aj

b1 : : : bk
I q; z

#

WD
1

X

nD0

.a1; : : : ; aj I q/n
.b1; : : : ; bk; qI q/n

0

B
B
@
.�1/nq

�

n

2

�1

C
C
A

1Ck�j

zn;

(6.4)

where .c1; : : : ; cmI q/n D
Qm
iD1.ci I q/n. Later on in this section to prove some

identities we will need to apply transformation formulas for certain hypergeomet-

ric series.

Therefore, for all values of the parameters .q; �; �/ for which 'q;�;�.s j y/ is

well-de�ned and nonnegative for every 0 � y � s, (6.1) de�nes a probability

distribution on ¹0; 1; : : : ; yº. One such family of parameters is 0 � q < 1,

0 � � � � < 1, cf. [66], [21]. Another choice of parameters leading to a

probability distribution which we will use is 'q�1;qa;qb .� j c/, where a � b, c � b

are nonnegative integers.

The distribution 'q;�;� appears (under a simple change of parameters) as the

orthogonality weight of the classical q-Hahn orthogonal polynomials [46, §3.6],

and is also related to a very natural q-deformation of the Polya urn scheme [40].

As such, 'q;�;� may be regarded as a q-deformed Beta-binomial distribution, since

the latter is the orthogonality weight for the Hahn orthogonal polynomials, and

also arises from the ordinary Polya urn scheme. We can also directly see by

taking q D e��; � D e�˛�; � D e�.˛Cˇ/� and letting � ! 0C, that 'q;�;�.s j y/

converges to

�.˛ C ˇ/

�.˛/�.ˇ/

�.˛ C y � s/�.ˇ C s/

�.˛ C ˇ C y/

�
y

s

�

;

which is the probability of s under the beta-binomial distribution with parameters

y; ˛; ˇ.
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Let us now record two straightforward observations which we will be using

below. First,

�
n

k

�

q�1

D q�k.n�k/

�
n

k

�

q

: (6.5)

Second, if a � b, c � b are nonnegative integers (b might also be C1), then for

any s 2 ¹0; 1; : : : ; cº one has

lim
q&0

'q�1;qa;qb .s j c/ D 1sDmax¹c�a;0º: (6.6)

Indeed, in this case

'q�1;qa;qb .s j c/ D q
s.a�cCs/ .q

aI q�1/c�s.q
b�aI q�1/s

.qbI q�1/c

�
s

c

�

q

:

If a > c, as q ! 0 this converges to 1 for s D 0 and to 0 for s > 0. If a � c,

as q ! 0 this converges to 0 for 0 � s < c � a, since .qaI q�1/c�s vanishes, to 0

for s > c � a, since a positive power of q tends to 0, and to 1 for s D c � a.

6.2. Row insertion dynamics Q
q
rowŒ˛�. Let us now describe one time step

�! � of the multivariate Markov dynamics Q
q
rowŒ˛� on q-Whittaker processes of

depth N . A part of randomness a time step comes from independent q-geometric

random variables V1; : : : ; VN 2 Z�0 with parameters ˛a1; : : : ; ˛aN , respectively

(these random variables are resampled during each time step).

The bottommost particle of the interlacing array is updated as �
.1/
1 D �

.1/
1 CV1.

Next, sequentially for each j D 2; : : : ; N , given the movement N� D �.j�1/ ! N� D

�.j�1/ at level j � 1, we will randomly update � D �.j / ! � D �.j / at level j .

To describe this update, write

N� � N� D

j�1
X

iD1

ci Nei ; ci 2 Z�0

(Nei are basis vectors of length j � 1). Note that by interlacing, it must be that

ci � N�i�1 � N�i .

Sample independent random variables W1; : : : ; Wj�1, such that each Wi 2

¹0; 1; : : : ; ciº is distributed according to

'q�1;�i ;�i
.� j ci /; where �i WD q

�i�N�i and �i WD q
N�i�1�N�i (6.7)

(this is a probability distribution because �i � N�i � N�i�1� N�i and ci � N�i�1� N�i ,

cf. §6.1). We will use the conventions N�0 D C1 and �1 D 0. De�ne a sequence
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of signatures

� D �.0/; �.1/; : : : ; �.j � 1/

via

�.i/ WD �.i � 1/CWj�iej�i C .cj�i �Wj�i /ej�iC1 for 1 � i � j � 1

(where ei are basis vectors of length j ). Finally, de�ne � WD �.j � 1/ C Vj e1,

this is our new signature at level j .

In words, each i th particle on the .j � 1/-st level which has moved by ci ,

must trigger a total of ci moves (to the right by one) at level j (this the RSK-

type property, see De�nition 3.2). Each such particle at level j � 1 independently

from the others, in parallel, splits contribution from its jump between its nearest

neighbors on the level j , according to the distribution (6.7). After this pushing,

the rightmost particle on the j -th level additionally performs an independent

jump according to the q-geometric distribution with parameter ˛aj . Clearly,

thus de�ned conditional probabilities Uj , j D 1; : : : ; N , for this dynamics are

nonnegative and satisfy (2.24). See Figure 23.

One must verify that the interlacing properties (as on Figure 7, left) are pre-

served by this dynamics:

Lemma 6.2. if N� �h N�, N� �h � and Uj .� ! � j N� ! N�/ > 0, then N� �h � and

� �h �.

Proof. Observe that for a � b and c � b

'q�1;qa;qb .s j c/ D 0 if s > b � a or c � s > a: (6.8)

Apply this for a D �i � N�i , b D N�i�1 � N�i , c D ci to get ci � �i C N�i � Wi �
N�i�1 � �i .

Since �i D �i CWi C ci�1 �Wi�1, we have

�i � �i C N�i�1 � �i C ci�1 �Wi�1D N�i�1 C ci�1 �Wi�1D N�i�1 �Wi�1� N�i�1

and N�i D N�i C ci � �i CWi � �i , so � �h N�. Moreover, we can also write

�i � �i C N�i�1 � �i C �i�1 � N�i�1 D �i�1; �i � �i

which implies that � �h �. �

This veri�cation completes the description of the .˛/ row insertion RSK-type

dynamics Q
q
rowŒ˛�.
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Remark 6.3 (Schur degeneration). If one sets q D 0, then the dynamics Q
q
rowŒ˛�

reduces to the dynamics Q
qD0
row Œ˛� on Schur processes based on the classical

Robinson–Schensted–Knuth row insertion (§4.3). To see this, observe that (6.6)

implies

'q�1;�i ;�i
.s j ci / �! 1sDmax¹ci��iCN�i ;0º as q �! 0;

that is, eachWi becomes equal to max¹ci��iCN�i ; 0º in the q & 0 limit. Therefore,

the update �! � is reduced to applying ci operations pull at positions i from j �1

to 1, plus an additional independent jump of the rightmost particle according to

the geometric distribution with parameter ˛aj .

2C 3 8 12C 4 19C 5 29C 4

0C 2 6C 1 9C 2 15C 5 25C 5 35C 1C Vj

N�C . N� � N�/

�C .� � �/

C2 C1 C2 C2 C3 C2 C3 C1

Figure 23. An example of a step of Q
q
rowŒ˛� at levels 5 and 6, with Vj D 3. The probability

of this update is equal to

'q�1;q4;q6.1 j 3/'q�1;q3;q7.2 j 4/'q�1;q6;q10.2 j 5/'q�1;q6;0.1 j 4/.˛a6I q/1
.˛a6/

3

.qIq/3
:

Note that, e.g., 'q�1;q3;q7.0 j 4/ D 0, which ensures the mandatory pushing (by at least 1)

of �3 by the move of N�3.

Theorem 6.4. The dynamics Q
q
rowŒ˛� de�ned above satis�es the main equa-

tions (2.25), and hence preserves the class of q-Whittaker processes and adds

a new usual parameter ˛ to the specialization A as in (2.17).

Proof. We will prove (2.25) by induction on j . Case j D 1 is straightforward

because N� is empty (cf. Remark 2.10).

Assume now that (2.25) holds for signatures �; � having length j � 1, and let

us prove this identity for �; � or length j . The idea is to expand each term in the

sum in the left-hand side of (2.25) with respect to what happens to the leftmost

particle on the .j � 1/-st level (and its neighborhood), and then use the inductive

assumption and the fact that the '’s sum to 1.

For a signature � D .�1 � � � � � �m/ we denote by �� the signature

.�1 � � � � � �m�1/ obtained by deleting the smallest part of �, and by �C Œs�lm
the signature .�1 � � � � � �m�1 � �m C s/ obtained by adding s to the smallest
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part of � (for s � �m�1 � �m). To simplify certain notations below, also denote

Vj .� �! � j N� �! N�/ WD Uj .� �! � j N� �! N�/
.˛aj /

j�j�j N�j�j�jCjN�j

.˛aj I q/1
: (6.9)

Temporarily let t stand for cj�1 D N�j�1�N�j�1 which is the move of the leftmost

particle on the .j � 1/-st level. In order to have at least one nonzero summand in

the left-hand side of (2.25), we need to have (see Figure 24):

� t � �j ��j , since the jump of the leftmost particle on the j -th level happens

due to contribution of a part of the jump of the leftmost particle on the

.j � 1/-st level,

� t � �j � �j C N�j�1 � �j�1, since 'q�1;�j�1;�j�1
.t � �j C �j j t / > 0 implies

by (6.8) that �j � �j � �j�1 � N�j�1 C t ,

� t � N�j�1 � �j , since we must have N�j�1 � �j ,

� t � �j�1��j�1C�j��j , since the contribution from the jump of the leftmost

particle on the .j � 1/-st level is split between particles �j and �j�1 at the

level j .

Denote the interval of t satisfying the above inequalities by I . We also must have

� t � N�j�2 � �j�1C �j � �j , since 'q�1;�j�1;�j�1
.t � �j C �j j t / > 0 implies

by (6.8) that t ��j C�j � N�j�2��j�1. For j D 2 this last inequality should

be omitted.

We will use the notation Q� WD N��. Denote by J.t/ the set of signatures Q� of length

j � 2, such that Q� �h N�, Q� �h �
�, and Q�j�2 � t C �j�1 � �j C �j . For j D 2 this

set consists of just the empty signature ¿. If N� is such that N� �h N�, N� �h � and

Vj .�! � j N�! N�/ ¤ 0, then N�� 2
F

t2I J.t/.

Figure 24. We expand sum with respect to the jump t D cj�1 D N�j�1 � N�j�1 of the

leftmost particle on the .j � 1/-st level. Note that the signatures �; �; N� are �xed, while the

positions of particles N�i vary in the sum.
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Set

Q WD
.q�j�1�N�j�1Ct I q�1/�j��j .q

Q�j�2��j�1 I q�1/t��jC�j

.q
Q�j�2�N�j�1Ct I q�1/t

:

The left-hand side of (2.25) divided by the right-hand side of the same equation

is equal to

X

N�

Vj .� �! � j N� �! N�/
 �= N�� N�= N�

 �= N���=�

D
X

t2I

X

Q�2J.t/

�
t

�j � �j

�

q�1

Q q.�j�1�N�j�1Ct/.t��jC�j /

„ ƒ‚ …

'
q�1;q

Q�j�2��j�1;q
Q�j�2� N�j�1Ct .t��jC�j jt/

Vj�1.�
� C Œt � �j C �j �lm �! �� j Q� �! N��/

 
��CŒt��jC�j �lm=Q�� N��=Q�

 ��= N�����=��CŒt��jC�j �lm
�

�j�1 � �j
N�j�1 � t � �j

�

q
�

�j�1 � �j
N�j�1 � �j

�

q

�
Q�j�2 � N�j�1 C t

t

�

q
�

�j�1 � �j
�j � �j

�

q

.q
�j�1��j�1 Iq�1/t��jC�j

.q
Q�j�2��j�1 Iq�1/t��jC�j

„ ƒ‚ …

 
�= N�

 ��= N��

 
��CŒt��jC�j �lm=

Q�
 �= N�

�
N�= N�

���=��CŒt��jC�j �lm
��=�� N��= Q�

D
X

t2I

�

'
q�1;q

�j�1� N�j�1 ;q
�j�1��j .t � �j C �j j �j�1 � �j�1/

X

Q�2J.t/

Vj�1.�
� C Œt � �j C �j �lm �! �� j Q� �! N��/

 
��CŒt��jC�j �lm=Q�� N��=Q�

 ��= N�����=��CŒt��jC�j �lm

�

D
X

t2I

'
q�1;q

�j�1� N�j�1 ;q
�j�1��j .t � �j C �j j �j�1 � �j�1/

D 1:
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Above Vj�1 and Vj have the same value of the parameter a D aj . We have also

used the fact that

j�j � j�j � jN�j C jN�j D j��j � j��j C �j � �j � jN�
�j C jN��j � N�j�1 C N�j�1

D j��j � j�� C Œt � �j C �j �lmj � jN�
�j C jN��j;

hence Vj .�! � j N�! N�/ involves the same power of ˛aj as

Vj�1.�
� C Œt � �j C �j �lm �! �� j N�� �! N��/:

Also, (6.8) implies that

'
q�1;q

�j�1� N�j�1 ;q
�j�1��j .t � �j C �j j �j�1 � �j�1/

is nonzero only for t 2 I , hence one gets 1 after summing these quantities over

t 2 I .

This concludes the proof, and also establishes Theorem 1.3 from Introduction.

�

6.3. Geometric q-PushTASEP. Under the dynamics Q
q
rowŒ˛� we have just con-

structed, the rightmost N particles �
.j /
1 of the interlacing array evolve in a

marginally Markovian manner (i.e., their evolution does not depend on the dy-

namics of the rest of the interlacing array). Namely, at each discrete time step

t ! t C 1 the bottommost particle is updated as �
.1/
1 .t C 1/ D �

.1/
1 .t /C V1, and

for any j D 2; : : : ; N if we let gapj .t / D �
.j /
1 .t / � �.j�1/

1 .t / be the gap between

the rightmost particles on the .j � 1/-st and the j -th levels at time t , then

�
.j /
1 .t C 1/ D �.j /1 .t /C Vj CWj;t

for an independent random variable Wj;t distributed according to

'
q�1;q

gapj .t/;0
.� j �.j�1/

1 .t C 1/ � �.j�1/
1 .t //:

The random variable Vj (recall that it has the q-geometric distribution with pa-

rameter ˛aj which is resampled during each time step) represents an independent

jump of �
.j /
1 . The variable Wj;t represents the pushing of �

.j /
1 by the move of

�
.j�1/
1 .

This evolution of the rightmost particles �
.j /
1 , 1 � j � N , leads to a new

interacting particle system on Z which we call the (discrete time) geometric

q-PushTASEP.
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6.4. Column insertion dynamics Q
q

col
Œ˛�, description and discussion. Let us

now describe one time step �! � of the multivariate Markov dynamics Q
q
colŒ˛�

on q-Whittaker processes of depth N . As in the previous case, the bottommost

particle of the interlacing array is updated as �
.1/
1 D �

.1/
1 C X for a q-geometric

random variableX with parameter ˛a1. Next, sequentially for each j D 2; : : : ; N ,

given the movement N�! N� at level j �1, we will randomly update �! � at level

j . To describe this update we write, as usual,

N� � N� D

j�1
X

iD1

ci Nei ; ci 2 Z�0:

All randomness during this update comes from a collection of 3j dependent

random variables X1; : : : ; Xj ; Y1; : : : ; Yj ; Z1; : : : ; Zj (they are resampled during

each time step), and

�j�iC1 � �j�iC1 D Xi
„ƒ‚…

voluntary jump

C Yi
„ƒ‚…

push from N�j�iC1

C Zi
„ƒ‚…

push from the “stabilization fund”

;

for i D 1; : : : ; j . (It will be convenient to let i represent the position of the particle

counted from the left.) Observe that Y1 must be identically zero. The “stabilization

fund” means the leftover push from the �rst i � 2 particles from the left at level

j � 1 (i.e., from N�j�1; : : : ; N�j�iC2) (in particular, Z1 and Z2 are identically zero).

Let us �rst formally de�ne the distribution of all the parts of the jumps.

(1) Set �1 WD 1. For i from 1 to j sample Xi according to

Xi � 'q;˛aj �i ;0. � j
N�j�i � �j�iC1/ (6.10)

and set

�iC1 WD �iq
N�j�i��j�iC1�Xi :

The jump Xi comes from the input Vj , see Remark 6.7 below. Here the

convention N�0 D C1 applies when i D j .

(2) Set Y1 WD 0. For i from 2 to j � 1 take Yi D y with probability

Yi � '
q�1;q

cj�iC1 ;q
N�j�i� N�j�iC1

. N�j�i � �j�iC1 �Xi � y j

N�j�i � �j�iC1 �Xi /:
(6.11)

Finally, set Yj WD c1.
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(3) Set r1 D r2 D 1 and Z1 D Z2 WD 0. Set r3 WD r2q
cj�1�Y2 . For i from 3 to

j � 1 take Zi D z with probability

Zi � 'q�1;ri ;0
. N�j�i � �j�iC1 �Xi � Yi � z j N�j�i � �j�iC1 �Xi � Yi/

(6.12)

and set

riC1 WD riq
cj�iC1�Yi�Zi :

Finally, let Zj WD logq rj .

Remark 6.5. For �xed s; u; d � 0 (possibly u D1) and D !1 observe that

'q�1;qs ;quCD .D � d j D/

D q.s�d/.D�d/.qsI q�1/d

�
D

d

�

q

.quCD�sI q�1/D�d

.quCDI q�1/D
�! 1dDs :

Therefore, the de�nitions of Zj D logq rj and Yj D c1 are consistent with the

de�nitions of Zi and Yi (i < j ), respectively. In words, the consistency for Zj

means that the stabilization fund is depleted for the push of the rightmost particle

on the j -th level. The consistency for Yj means that the whole value of the jump of

the rightmost particle on the .j �1/-st level is transferred to the rightmost particle

on the j -th level via immediate pushing.

Figure 25. An example of a step of Q
q

colŒ˛� at levels 4 and 5.

Lemma 6.6. If N� �h N�, N� �h � and Uj .� ! � j N� ! N�/ > 0, then N� �h � and

� �h �.
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Proof. It is straightforward from the de�nition of the dynamics Q
q
colŒ˛� that

�j�iC1 � N�j�i � min. N�j�i ; �j�i/. Also for 2 � i � j , (6.11) together

with (6.8) implies that N�j�i � �j�iC1 �Xi � Yi � N�j�i � N�j�iC1 � cj�iC1, hence

�j�iC1 � �j�iC1 C Xi C Yi � N�j�iC1. It follows that the interlacing properties

are preserved. �

In the rest of this subsection we will describe the column insertion dynamics

in words, and also discuss its various properties. The (rather involved) proof that

this dynamics acts on q-Whittaker processes in a desired way is postponed to the

next subsection.

There are two stages of the update of particle positions �j ; �j�1; : : : ; �1,

performed in order from left to right, which we will describe below.

During the �rst stage of the update, the particles at level j level make voluntary

jumps in order from left to right. The value Xi of the voluntary jump of �jC1�i

depends on the previous jump Xi�1, where 2 � i � j . Indeed, this dependence

comes from the parameters �i (note that they are nonincreasing in i), see (6.10).

Note that unlike the Q
q
rowŒ˛� case, in which all random movements not coming

from pushing are restricted to the right edge, in the case of Q
q

colŒ˛� any particle

might make a voluntary jump.

Remark 6.7. The random variableX1C� � �CXj has the q-geometric distribution

with parameter ˛aj , as it should be by Remark 2.10 and the discussion of §3.2.

This is seen by applying inductively the next Lemma.

Lemma 6.8. Let A and B be random variables such that A is distributed accord-

ing to 'q;˛;0.� j a/, and B given A is distributed according to 'q;˛qa�A;0.� j b/

(where b might beC1). Then ACB is distributed according to 'q;˛;0.� j aC b/.

Proof. Indeed, we have

Prob.AC B D y/

D

y
X

sD0

Prob.A D s/Prob.B D y � s j A D s/

D

y
X

sD0

˛s.˛I q/a�s

�
a

s

�

q

.˛qa�s/y�s.˛qa�s I q/b�yCs

�
b

y � s

�

q

D

y
X

sD0

˛y.˛I q/aCb�yq
a.y�s/ .q

aI q�1/s.q
bI q�1/y�s

.qI q/y
q�s.y�s/

�
y

s

�

q
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D ˛y.˛I q/aCb�y

�
aC b

y

�

q

y
X

sD0

'q�1;qa;qaCb .y � s j y/

D 'q;˛;0.y j aC b/;

which establishes the desired statement. �

The second stage of the update consists of pushing, in order from left to right.

We start an initially empty stabilization fund, which will collect impulses not

immediately used for pushing, and will be a source of the pushesZi . The value of

the stabilization fund just before the movement of �jC1�i is logq ri (by agreement,

r1 D r2 D 1 always). For each i ranging from 2 to j , the following three steps

happen.

8

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
:

(1) The particle �jC1�i gets a push Yi from its lower left neighbor
N�jC1�i . The size of this push (distributed according to (6.11)) is

at most cj�iC1.

(2) Then �jC1�i gets a push from the stabilization fund (if it is not

empty) of size not exceeding the current value of the stabilization

fund. This push is distributed according to Zi (6.12).

(3) Finally, the amount of pushing not used in (1) above, that is,

cj�iC1 � Yi , is added to the stabilization fund.

(6.13)

One can also think that the above two update stages are performed together for

each particle �j ; �j�1; : : : ; �1.

Proposition 6.9. One can switch the order of the lower left neighbor pushing and

stabilization fund pushing (i.e., steps (1) and (2) in (6.13)) without changing the

dynamics.22

Proof. Fix k D 2; : : : ; j . Suppose that after the voluntary displacement stage the

distance from the k-th particle from the left at level j (denote this particle by P )

to N�jC1�k is h WD N�j�k � �j�kC1 � Xj�kC1. Also set ` WD N�j�kC1 � N�j�kC1,

b WD N�j�k � N�j�kC1, and let the current size of the stabilization fund be R.

22 Here for the version with interchanged steps (1) and (2) the distributions of the jump

components are changed asZi � 'q�1;ri ;0
. N�j�i ��j�iC1�Xi � � j N�j�i ��j�iC1�Xi/ and

Yi � '
q�1;q

cj�iC1 ;q
N�j�i� N�j�iC1

. N�j�i � �j�iC1 �Xi �Zi � � j N�j�i � �j�iC1 �Xi �Zi/.



72 K. Matveev and L. Petrov

If the steps (1) and (2) in (6.13) are not interchanged, then the probability that

P jumps by s � 0 is

s
X

yD0

'q�1;q`;qb .h � y j h/'q�1;qR;0.h � s j h � y/:

If the steps (1) and (2) in (6.13) are interchanged, then the same probability is

given by

s
X

yD0

'q�1;qR;0.h � s C y j h/'q�1;q`;qb .h � s j h � s C y/:

After dividing each of these two expressions by

q.RC`/.h�s/.qb�`I q�1/h�s

.qbI q�1/h�s

�
h

s

�

q�1

we arrive to the following identity we need to verify:

s
X

yD0

�
s

y

�

q�1

q`.s�y/.q`I q�1/y.q
RI q�1/s�y.q

b�`�hCsI q�1/s�y

D
s

X

yD0

�
s

y

�

q�1

qRy.q`I q�1/y.q
RI q�1/s�y.q

b�hC1I q/s�y:

(6.14)

We are very grateful to Christian Krattenthaler for providing us with a proof of

the q-binomial identity (6.14), which we reproduce below.

First, use a transformation formula for 3�2 series [36, (III.12)]:

3�2

�
q�n; b; c

d; e
I q; q

�

D
.e=cI q/n
.eI q/n

cn3�2

�
q�n; c; d=b

d; cq1�n=e
I q;

bq

e

�

:

Sending b ! 0 we obtain

3�2

�
q�n; 0; c

d; e
I q; q

�

D
.e=cI q/n
.eI q/n

cn2�2

�
q�n; c

d; cq1�n=e
I q;

dq

e

�

: (6.15)

Multiply both sides of (6.15) by c�n.d I q/n.eI q/n to obtain

c�n
n

X

yD0

.q�nI q/y
.qI q/y

.cI q/y.dq
n�1I q�1/n�y.eq

n�1I q�1/n�yq
y

D
n

X

yD0

.q�nI q/y.e=cI q/n
.qI q/y.cq1�n=eI q/y

.cI q/y.dq
n�1I q�1/n�y.�1/

yqy.y�1/=2.dq=e/y :
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This equality can be rewritten as

n
X

yD0

�
n

y

�

q�1

cy�n.c�1I q�1/y.dq
n�1I q�1/n�y.eq

n�1I q�1/n�y

D
n

X

yD0

�
n

y

�

q�1

.e=cI q/n�y.c
�1I q�1/y.dq

n�1I q�1/n�y.dq
n�1/y :

Now make the substitution n WD s, d WD q1CR�s, c WD q�`, e WD q1Cb�h�`

to arrive to (6.14). �

Remark 6.10 (Schur degeneration). If one sets q D 0, then the dynamics Q
q
colŒ˛�

reduces to the dynamics Q
qD0
col Œ˛� on Schur processes based on the classical

Robinson–Schensted–Knuth column insertion (§4.3). Indeed, observe that

lim
q�!0

'q;uqt ;0.s j g/ D 1sD0 for t > 0;

and

lim
q�!0

'q;u;0.s j g/ D .1 � uC u1sDg/u
s :

Thus, the �rst update stage (voluntary movements) reduces to the propagation of

the impulse the leftmost particle receives (which has geometric distribution with

parameter ˛aj ). The lower left neighbor pushing due to (6.6) and the stabilization

fund pushing together degenerate to performing cj�1 C � � � C c1 operations push

(De�nition 4.3) in order from left to right.

6.5. Column insertion dynamics Q
q

col
Œ˛�, proof

Theorem 6.11. The dynamics Q
q
colŒ˛� de�ned above satis�es the main equa-

tions (2.25), and hence preserves the class of q-Whittaker processes and adds

a new usual parameter ˛ to the specialization A as in (2.17).

Proof. We aim to prove the desired statement by induction on j . To apply this

induction, we will need a more general statement. To describe it, introduce the

following notation. For a nonnegative integerh, use U
h
j .�! � j N�! N�/ to denote

the probability that transition N�! N� on the .j�1/-st level spurs a transition �! �

on the j -th level according to the rules of Q
q

colŒ˛� speci�ed above, but modi�ed

so that Z2 D z with probability

'q�1;r2;0
. N�j�2 � �j�1 �X2 � Y2 � z j N�j�2 � �j�1 �X2 � Y2/; r2 WD q

h:
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Note that the original dynamics Q
q
colŒ˛� has r2 D 1. In other words, the mod-

i�cation U
h
j means that we introduce an additional impulse of size h which is

distributed among particles at level j (except for �j ), as if coming from (nonex-

istent) particles preceding the leftmost particle on the .j � 1/-st level.

Let � WD j��j � j��j � jN�j C jN�j (recall that the notation �� means � without

the last coordinate). Under the modi�ed probabilities U
h
j as above, � �h is a sum

of voluntary movements of particles on the j -th level except for the leftmost one.

Note also that U
h
j .�! � j N�! N�/ D 0 for h > � .

For the purposes of the proof, let (see Figure 26)

a WD �j ; k WD �j � �j ; b WD N�j�1; t WD N�j�1 � N�j�1;

c WD �j�1; d WD N�j�2; s WD N�j�2 � N�j�2;

` WD �j�1 � �j�1; x WD X2 y WD Y2:

Figure 26. We expand sum with respect to jump t D cj�1 D N�j�1 � N�j�1 of the leftmost

particle on the .j � 1/-st level, voluntary movement x of the second leftmost particle on

the j -th level and push y from the leftmost particle on the .j � 1/-st level.

For a nonnegative integer H de�ne

zUH
j .� �! � j N� �! N�/

WD
H

X

hD0

�
H

h

�

q�1

q.H�h/�Ch.b�t�a�k/
U
h
j .� �! � j N� �! N�/:

(6.16)

In particular, zU0
j .� ! � j N� ! N�/ D Uj .� ! � j N� ! N�/. In general, the

quantities zUH
j are not probability distributions in �. Their only meaning is that

they come up in the inductive proof below.

With all the above notation we are now able to describe and prove the gener-

alized statement which we will prove by induction:

X

N�2GT
C
j�1

zVH
j .� �! � j N� �! N�/

 �= N�� N�= N�

 �= N���=�
D 1 for any H � 0. (6.17)
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Here and below zVH
j is related to zUH

j as in (6.9). For H D 0 this statement gives

us (2.25).

For j D 1 we have � D 0, so only the term h D 0 contributes to (6.16).

Therefore, checking this induction base is the same as in the proof for Q
q
rowŒ˛�

dynamics.

Let us now perform the inductive step. Denote by I the range of .t; x; y; h/,

such that

t; x; y; h � 0; x C y � `; hC t C x � ` � 0; t � b � a � k:

Then we may write (see Figure 26)

X

N�2GT
C
j�1

zVH
j .� �! � j N� �! N�/

 �= N�� N�= N�

 �= N���=�

D
X

.t;x;y;h/2I

.qI q/H
.qI q/h.qI q/H�h

.qI q/c�a

.qI q/b�t�a.qI q/c�bCt

.qI q/b�a�k.qI q/cC`�b

.qI q/cC`�a�k

.qI q/d�s�bCt

.qI q/t.qI q/d�s�b

.qI q/k.qI q/c�a�k

.qI q/c�a

.qI q/b�t�a

.qI q/k.qI q/b�t�a�k

.qI q/d�s�c

.qI q/x.qI q/d�s�c�x

.qI q/d�s�c�x

.qI q/y.qI q/d�s�c�x�y

.qt I q�1/y.q
d�s�bI q�1/d�s�c�x�y

.qd�s�bCt I q�1/d�s�c�x

.qI q/d�s�c�x�y

.qI q/`�x�y.qI q/d�s�c�`
.qhI q�1/`�x�y

q�h.H�h/�y.d�s�c�x�y/�.d�s�c�`/.`�x�y/Ct.d�s�c�x�y/

qh.d�s�c�`/C.H�h/�Ch.b�t�a�k/C.b�t�a�k/xC.b�t�a�kC`�x/.��x�h/

X

Q�2GT
C
j�2

V
hCtCx�`
j .�� �! �� j Q� �! N��/

 
��=Q�� N��=Q�

 ��= N�����=��
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D
HCB
X

rD0

�
H C B

r

�

q�1

q.HCB�r/.��`Ct/Cr.d�s�c�`/

X

Q�2GT
C
j�2

V
r
j .�

� �! �� j Q� �! N��/
 
��=Q�� N��=Q�

 ��= N�����=��

D
X

Q�2GT
C
j�2

QVHCB
j .�� �! �� j Q� �! N��/

 
��=Q�� N��=Q�

 ��= N�����=��

D 1:

Here we have applied Proposition 6.12 (see below) with A D H , B D b � a � k,

C D c � bC `, where r WD hC t � `Cx is the value of the stabilization fund just

before the push of the third leftmost particle on the j -th level plus the value of the

additional impulse in the inductive assumption. This completes the inductive step

in proving (6.17), and thus implies the theorem. �

Proposition 6.12. For A;B; C; `; r � 0, such that A C B � r and B C C � `,

one has

B
X

tD0

X̀

xD0

`�x
X

yD0

��
`

x; y

�

q�1

�
B

t

�

q�1

.qt I q�1/y.q
rC`�xI q�1/t .q

rC`�t�xI q�1/`�x�y

.qI q/r

.qI q/rC`�x

.qI q/A

.qI q/ACB

.qACB�r I q�1/B�tC`�x.q
CCt I q�1/`.q

C I q�1/`�x�y

.qBCC I q�1/`.qCCt I q�1/`�x

qt.`�x�y/C.rC`�x/.B�t/C.ACB�r/x

�

D 1:

Here and thereafter we use q-multinomial notation

�
n

m; k

�

q

WD
.qI q/n

.qI q/k.qI q/m.qI q/n�m�k
:

We are extremely grateful to Christian Krattenthaler for providing us with a

proof of this proposition. We reproduce the proof below.
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Proof. The left hand side of the equality can be expressed as a power series in

qA; qr ; qC , hence we can set ˛ D qA, ˇ D qr , 
 D qC and prove a more general

equality:

B
X

tD0

X̀

xD0

`�x
X

yD0

��
`

x; y

�

q�1

�
B

t

�

q�1

.qt I q�1/y
.ˇq`�x I q�1/tC`�x�y

.ˇq`�x I q�1/`�x

.˛qB=ˇI q�1/B�tC`�x.
q
t I q�1/`.
 I q

�1/`�x�y

.˛qB I q�1/B.
qB I q�1/`.
qt I q�1/`�x

˛xˇB�t�xq�tyCB`

�

D 1:

By �rst summing over y, the left hand side can be written as

B
X

tD0

X̀

xD0

�

3�2

�
q�t ; 0; q�`Cx

ˇq1�t ; 
q1�`Cx
I q; q

��
`

x

�

q�1

�
B

t

�

q�1

.ˇq`�xI q�1/tC`�x

.ˇq`�x I q�1/`�x

.˛qB=ˇI q�1/B�tC`�x.
q
t I q�1/`.
 I q

�1/`�x

.˛qB I q�1/B.
qB I q�1/`.
qt I q�1/`�x
� ˛xˇB�t�xqB`

�

:

We now apply transformation formula (6.15) to rewrite this as

D
B

X

tD0

X̀

xD0

�

2�2

�
q�t ; q�`Cx

ˇq1�t ; q�t=

I q; ˇq1C`�t�x=


��
`

x

�

q�1

�
B

t

�

q�1

.ˇq`�x I q�1/tC`�x

.ˇq`�xI q�1/`�x

.
qI q/t

.
q1�`Cx I q/t

.˛qB=ˇI q�1/B�tC`�x.
q
t I q�1/`.
 I q

�1/`�x

.˛qB I q�1/B.
qB I q�1/`.
qt I q�1/`�x
˛xˇB�t�xqB`�`tCtx

�

D
B

X

tD0

X̀

xD0

min¹t;`�xº
X

yD0

�

.�1/y
.q�t I q/y.q

�`CxI q/y
.q�t=
 I q/y.ˇq1�t I q/y.qI q/y

�
`

x

�

q�1

�
B

t

�

q�1

.
qI q/t

.
q1�`Cx I q/t

.ˇI q�1/t .˛q
B=ˇI q�1/B�tC`�x.
q

t I q�1/`.
 I q
�1/`�x

.˛qB I q�1/B.
qB I q�1/`.
q
t I q�1/`�x

˛xˇB�t�xCy
�yqB`C`y�`tCtxCy2=2Cy=2�ty�xy

�
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D
B

X

tD0

X̀

yD0

�

1�1

�
q�`Cy

˛q1�`Ct=ˇ
I q; ˛q1Ct�y=ˇ

�

.�1/y
.q�`I q/y.q

�t I q/y
.q�t=
 I q/y.ˇq1�t I q/y.qI q/y

�
B

t

�

q�1

.ˇI q�1/t .˛q
B=ˇI q�1/B�tC`.
q

t I q�1/`

.˛qB I q�1/B.
qB I q�1/`

ˇB�tCy
�yqB`�`tC`yCy2=2Cy=2�ty

�

:

The last equality is obtained by summing over x. We now use the summation

formula [36, (II.5)],

1�1

�
a

c
I q; c=a

�

D
.c=aI q/1
.cI q/1

;

and by summing over y rewrite our expression as

D
B

X

tD0

�

3�2

�
q�`; ˇq�t=˛; q�t

ˇq1�t ; q�t=

I q; ˛q1C`=


�

�
B

t

�

q�1

.ˇI q�1/t .˛q
B=ˇI q�1/B�tC`.
q

t I q�1/`

.˛qt=ˇI q�1/`.˛q
B I q�1/B.
qB I q�1/`

ˇB�tqB`�`t
�

:

We now aim to use the transformation formula [36, (III.13)],

3�2

�
q�n; b; c

d; e
I q; deqn=bc

�

D
.e=cI q/n

.eI q/n
3�2

�
q�n; c; d=b

d; cq1�n=e
I q; q

�

: (6.18)

Applying it, we can rewrite our expression as

D
B

X

tD0

�

3�2

�
q�`; q�t ; ˛q

ˇq1�t ; 
q1�`
I q; q

��
B

t

�

q�1

A ˇB�tqB`�`t
�

D
B

X

tD0

X̀

yD0

��
B

t

�

q�1

B ˇB�tqB`Cy
�

D
X̀

yD0

B
X

tDy

"
�
B � y

t � y

�

q�1

ˇB�t .ˇI q�1/t�y.˛q
B=ˇI q�1/B�t

.˛qB I q�1/B�y

�
`

y

�

q�1

qB.`�y/.
 I q�1/`�y.q
B I q�1/y

.
qB I q�1/`

#

;
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where

A D
.1=
 I q/`.ˇI q

�1/t .˛q
B=ˇI q�1/B�tC`.
q

t I q�1/`

.˛qt=ˇI q�1/`.˛q
B I q�1/B.
qB I q�1/`.q

�t=
 I q/`.qI q/y
and

B D
.q�`I q/y.q

�t I q/y.˛qI q/y.
 I q
�1/`�y.ˇq

y I q�1/t .˛q
B=ˇI q�1/B�tC`

.˛qt=ˇI q�1/`.˛q
B I q�1/B.
qB I q�1/`.ˇq

y I q�1/y.qI q/y
:

The fact that this expression is equal to 1 now follows by applying (6.3) twice. �

6.6. Geometric q-TASEP. Under the dynamics Q
q

colŒ˛�, the leftmost N parti-

cles �
.j /
j of the interlacing array evolve in a marginally Markovian manner.

Namely, let gapj .t / WD �
.j�1/
j�1 .t /� �.j /j .t / be the gap between the consecutive

leftmost particles at time t . We assume gap1.t / D C1. Then at each discrete

time step t ! t C 1 the leftmost particle on the j -th level is updated as

�
.j /
1 .t C 1/ D �.j /1 .t /CWj;t

for an independent random variable Wj;t distributed according to 'q;˛aj ;0. � j

gapj .t //.

This evolution of �
.j /
j , 1 � j � N , is the (discrete time) geometric q-TASEP

which was introduced and studied in [7].

6.7. Small ˛ continuous time limit. Let us send the parameter ˛ to zero and

simultaneously rescale time from discrete to continuous. Namely, set ˛ WD

.1� q/�, and let each discrete time step correspond to continuous time �. In the

limit � ! 0, both dynamics Q
q
rowŒ˛� and Q

q
colŒ˛� turn into the same continuous

time Markov dynamics on q-Whittaker processes as in §5.6 above. That is, the

limit of Q
q
rowŒ˛� is the dynamics introduced in [15], same as for Q

q
rowŒ Ǒ�. The limit

of Q
q
colŒ˛� is the dynamics introduced in [59], same as for Q

q
colŒ
Ǒ�. To see this,

note that repeated q-geometric trials can be approximated by (continuous time)

Poisson processes in this scaling.

7. Moments and Fredholm determinants

In this section we brie�y discuss moment and Fredholm determinantal formulas

for the Bernoulli q-PushTASEP started from the step initial con�guration (corre-

sponding to �
.j /
1 .0/ D 0, j D 1; : : : ; N ). The Fredholm determinantal formula

which we extract from moment formulas in a way similar to [12] allow us to prove
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(in a small ˇ continuous time limit, cf. §5.6) the conjectural Fredholm determi-

nantal formula [23, Conjecture 1.4] for the continuous time q-PushASEP (which

is a two-sided dynamics unifying continuous time q-TASEP and q-PushTASEP).

7.1. Bernoulli q-PushTASEP on the line. In this section it will be convenient

to work in the shifted coordinates

xi WD ��
.i/
1 � i; i D 1; : : : ; N;

so that x1 > � � � > xN . We will think that the xj ’s encode positions of particles on

the line Z which jump to the left. Let us reformulate the de�nition of the Bernoulli

q-PushTASEP (§5.2) in these terms.

De�nition 7.1. Each discrete time step t ! t C 1 of the Bernoulli q-PushTASEP

consists of the following sequential updates (see Figure 27).

(1) The �rst particle x1 jumps to the left by one with probability a1ˇ
1Ca1ˇ

, and stays

put with the complementary probability 1
1Ca1ˇ

.

(2) Sequentially for j D 2; : : : ; N :

(a) if the particle xj�1 has not jumped, then xj jumps to the left by one with

probability
aj ˇ

1Caj ˇ
, and stays put with the complementary probability

1
1Cajˇ

;

(b) if the particle xj�1 has jumped (to the left by one), then xj jumps to

the left by one with probability
aj ˇCqgapj .t/

1Caj ˇ
, and stays put with the

complementary probability 1�qgapj .t/

1Cajˇ
, where gapj .t / WD xj�1.t / �

xj .t / � 1 is the number of holes between the particles before the jump

of23 xj�1.

We will assume that the Bernoulli q-PushTASEP starts from the step initial

con�guration xi .0/ D �i , i D 1; : : : ; N .

Remark 7.2. Similarly to [7], one could readily make the parameter ˇ of the

process depend on time, so that at each discrete time step t ! t C 1, a new

parameter ˇtC1 is used. This will not a�ect the presence and the general structure

of moment and Fredholm determinantal formulas. Below we will use a �xed

parameter ˇ.

23 Note that if xj�1 has jumped and xj .t/ D xj�1.t/� 1, then the probability that xj jumps

is equal to one, as it should be.
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Figure 27. Bernoulli q-PushTASEP (on this picture, gap2.t/ D 6).

7.2. Connection to the Bernoulli q-TASEP. The Bernoulli q-PushTASEP

looks quite similar to the Bernoulli q-TASEP introduced in [7] (see also §5.5 above

for an explanation of how the latter process arises from the dynamics Q
q

colŒ
Ǒ� on

q-Whittaker processes).

Moreover, there exists a direct coupling between the two processes which we

now explain. Recall that under the Bernoulli q-TASEP (we will denote its particles

with tildes: Qx1.t / > � � � > QxN .t /) particles jump to the right by one according to

the rules on Figure 28. Let this process also start from the step initial con�guration

Qxi .0/ D �i , i D 1; : : : ; N .

Figure 28. Bernoulli q-TASEP (on this picture, gap2.t/ D 6).
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Proposition 7.3. Let ¹xi .t /ºtD0;1;::: be the Bernoulli q-PushTASEP started from

the step initial con�guration and depending on parameters ¹aiº and ˇ.

Then the evolution of the process ¹tCxi.t /ºtD0;1;::: coincides with the Bernoulli

q-TASEP ¹ Qxi.t /ºtD0;1;::: started from the step initial con�guration and depending

on the parameters ¹a�1
i º and ˇ�1.

Proof. The process ¹t C xi .t /º jumps to the right, and, moreover, each of its

particles makes a jump precisely when the corresponding q-PushTASEP particle

xi .t / stays put. In particular, the �rst particle x1.t / stays put with probability

1=.1Ca1ˇ/ D .a
�1
1 ˇ�1/=.1Ca�1

1 ˇ�1/. Next, if x1.t / stayed put, then x2.t / stays

put with probability 1=.1C a2ˇ/ D .a
�1
2 ˇ�1/=.1C a�1

2 ˇ�1/. Otherwise, if x1.t /

jumped to the left, then x2.t / stays put with probability

1 �
a2ˇ C q

gap2.t/

1C a2ˇ
D
1� qgap2.t/

1C a2ˇ
D
a�1
2 ˇ�1.1� qgap2.t//

1C a�1
2 ˇ�1

:

We see that the particles ¹t C xi .t /º indeed perform the Bernoulli q-TASEP

evolution with the desired parameters. �

One can think that this coupling between the two particle systems on Z

comes from the complementation procedure (§5.3) relating the corresponding

two-dimensional dynamics.

7.3. Nested contour integral formulas for q-moments. The above coupling

between the Bernoulli q-PushTASEP and the Bernoulli q-TASEP allows to readily

write down moment formulas for the former process.

Theorem 7.4. Let ¹xi .t /ºtD0;1;::: be the Bernoulli q-PushTASEP jumping to the

left, started from the step initial con�guration. Fix k � 1. For all t D 0; 1; 2; : : :

and all integers N � n1 � n2 � � � � � nk � 0,

Estep
� k

Y

iD1

qxni .t/Cni
�

D
.�1/kq

k.k�1/
2

.2�i/k

I

� � �

I
Y

1�A<B�k

zA � zB
zA � qzB

k
Y

jD1

� njY

iD1

1

1 � aizj

��1C q�1ˇz�1
j

1C ˇz�1
j

�t dzj

zj
;

(7.1)

where the contour of integration for each zA contains a�1
1 ; : : : ; a�1

N , and the

contours ¹qzBºB>A, but not poles 0 or .�ˇ/.

Proof. Immediately follows from Proposition 7.3 and [7, Theorem 2.1.(3)]. �
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Remark 7.5. Since xi .t / C i � �t for any i D 1; : : : ; N and any t � 0,

the q-moments in (7.1) admit an a priori bound. Therefore, for a �xed t � 0

they determine the distribution of the random variables .x1.t /; : : : ; xN .t //.

Remark 7.6. The moment formula (7.1) readily leads (similarly to [12]) to a

Fredholm determinantal formula for the q-Laplace transform of xn.t / for any

n. A similar Fredholm determinantal formula already appeared in [9] (based on

the technique of Macdonald di�erence operators, cf. [8]). We discuss this and

more general two-sided formulas in §7.5 below (in particular, see Proposition 7.15.

See also §7.4 for a related discussion of the case of the geometric q-PushTASEP.

Remark 7.7. One can also establish the nested contour integral formula (7.1)

directly, similarly to [7] (see also [24]). Indeed, denote

It . Ey/ WD q
t.y1Cy2C���CyN /Estep

� N
Y

iD0

qyi .xi .t/Ci/
�

;

where .y0; : : : ; yN / 2 ZN�0 and, by agreement, the product is zero if24 y0 > 0.

One can directly show that these quantities satisfy certain linear equations in the

yj ’s. For each i D 1; : : : ; N , consider the following di�erence operators acting

on functions in Ey:

ŒHq;� �if . Ey/ WD

yiX

siD0

'q;a�1
i
�;0.si j yi /

f .y0; y1; : : : ; yi�2; yi�1 C si ; yi � si ; yiC1; : : : ; yN /:

(7.2)

Here the quantities ' are de�ned in (6.1).

Also, denote by Hq;� the operator which acts as ŒHq;� �i in each variable yi :

H
q;� WD ŒHq;� �N ŒH

q;� �N�1 : : : ŒH
q;� �1: (7.3)

Applying operators ŒHq;� �i in this order corresponds to �rst changing y1

(by decreasing it by s1), then y2 (by sending s2 to y1 � s1), etc., up to yN .

In other words, these changes (encoded by s1; : : : ; sN ) happen in parallel, simul-

taneously with each of y1; y2; : : : ; yN .

One can then show that for any t D 0; 1; 2; : : : and any Ey D .y0; y1; : : : ; yN / 2

ZNC1
�0 , the quantities It . Ey/ satisfy

Hq;�ˇ�1
ItC1. Ey/ D Hq;�qˇ�1

It . Ey/:

24 One should think that the variables yj encode the ni ’s in (7.1): each yj denotes the number

of ni ’s which are equal to j .
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These linear equations can then be solved by the coordinate Bethe ansatz

technique, because the action of each of the operators Hq;�ˇ�1
and Hq;�qˇ�1

reduces to the action of a free operator (i.e., which acts on each of the variables

ni separately; note the identi�cation of the yj ’s and ni ’s in the previous footnote)

plus two-body boundary conditions. This immediately leads to the desired nested

contour integral formula.

7.4. Remark: geometric q-PushTASEP formulas. There are also nested con-

tour integral formulas for q-moments of the geometric q-PushTASEP (§6.3). They

can be obtained directly using the de�nition of the dynamics, similarly to the ap-

proach outlined in Remark 7.7. The moment formulas (for the geometric q-Push-

TASEP jumping to the left) will have the same form as in (7.1), with the following

replacement of factors:

k
Y

jD1

�1C q�1ˇz�1
j

1C ˇz�1
j

�t

�!
k

Y

jD1

1

.1� ˛q�1z�1
j /t

:

However, because particles in the geometric q-PushTASEP can jump arbitrarily

far to the left (at least as far as by independent q-geometric jumps), only a �nite

number of q-moments of the form Estep
� Qk

iD1 q
xni .t/Cni

�

exists. Therefore, these

q-moments do not determine the distribution of the geometric q-PushTASEP.

One can overcome this issue and write down a Fredholm determinantal for-

mula for the distribution of the geometric q-PushTASEP via a certain analytic

continuation from the Bernoulli case. This analytic continuation is performed in

[9, Section 3] and heavily relies on properties of q-Whittaker symmetric func-

tions. Namely, [9, Theorem 3.3] contains a Fredholm determinantal expression

for the distribution of the particle �
.N/
1 under a q-Whittaker process. Our results

on RSK-type dynamics (§6) show that the same distribution arises under the geo-

metric q-PushTASEP started from the step initial con�guration,25 thus [9, The-

orem 3.3] provides a Fredholm determinantal formula for the geometric q-Push-

TASEP.

7.5. Fredholm determinantal formula for the continuous time q-PushASEP.

The moment formulas of Theorem 7.4 combined with certain spectral ideas allow

us to establish Conjecture 1.4 from [23] concerning a Fredholm determinantal

formula for the continuous time q-PushASEP.

25 In other words, the geometric q-PushTASEP provides a coupling of the quantities �.N/1

arising from q-Whittaker processes M
Ea
A (§2.3) di�ering by adding usual parameters to the

specialization A.
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For simplicity, from now on we assume that all parameters aj � 1. Let us

recall the de�nition of the q-PushASEP.

De�nition 7.8. The continuous time q-PushASEP x.�/ depending on parameters

L;R � 0 lives on particle con�gurations .xN < xN�1 < � � � < x1/ on Z and

evolves in continuous time � as follows.

� Each particle xi jumps to the right by one at rate R.1 � qxi�1.�/�xi .�/�1/

(by agreement, x0 � C1).

� Each particle xi jumps to the left by one at rate L. If a particle xi has

jumped to the left, then it has the possibility to push its left neighbor xiC1

with probability qxi .�/�xiC1.�/�1. (Pushing means that xiC1 instantaneously

moves to the left by one.) If the pushing of xiC1 has occured, then xiC1 may

push xiC2 with the corresponding probability qxiC1.�/�xiC2.�/�1, and so on.

We are assuming that this process starts from the step initial con�guration

xi .0/ D �i .

Remark 7.9. When ˇ & 0 and one rescales the discrete time to the continuous

one as � �=ˇ, the Bernoulli q-TASEP (Figure 28) clearly converges to L D 0,

R D 1 version of the above process (this is the pure, one-sided q-TASEP). Under

the same limit, the Bernoulli q-PushTASEP (Figure 27) becomes the L D 1,

R D 0 version (pure q-PushTASEP).

Theorem 7.10 ([23, Conjecture 1.4]). Let xn.�/ be the n-th particle of the

q-PushASEP started from the step initial con�guration. For all � 2 C n R>0,

E
� 1

.�qxn.�/CnI q/1

�

D det.I CK�/: (7.4)

Here det.I C K�/ is the Fredholm determinant of K� WL
2.C1/ ! L2.C1/, where

C1 is a small positively oriented circle containing 1, andK� is an integral operator

with kernel

K�.w; w
0/

D
1

2�i

Z i1C1=2

�i1C1=2

�

sin.��s/
.��/s

.wqsI q/n1
.wI q/n1

e�Rw.q
s�1/e�Lw

�1.q�s�1/

qsw � w0
ds:
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The L D 0 case of the above theorem corresponds to the q-TASEP and

was established in [8], [12]. The R D 0 case (one-sided q-PushTASEP) with

di�erent contours is contained in [9, Theorem 3.3], and it is obtained by an

analytic continuation from the Bernoulli case.26 This analytic continuation relies

on algebraic properties of q-Whittaker symmetric functions. The corresponding

algebraic picture for the two-sided dynamics is not developed (cf. the discussion

in [23, Appendix A]). To establish the above theorem we will utilize a certain two-

sided process at the Bernoulli level whose ˇ & 0 limit leads to the distribution of

particles under the two-sided q-PushASEP at any given time � > 0.

The rest of this subsection is devoted to the proof of the above theorem.

De�nition 7.11. Fix t 2 Z�0, and let �.ˇ/.t / D .�.ˇ/N .t / < � � � < �.ˇ/1 .t // 2 ZN be

a random vector which encodes positions of particles started from �
.ˇ/
i .0/ D �i

(i D 1; : : : ; N ), which have evolved according to the Bernoulli q-TASEP (with

right jumps) for btRc steps,27 and then according to the Bernoulli q-PushTASEP

(with left jumps) for btLc steps. Both discrete time processes are now assumed to

depend on the same parameter ˇ (also recall that aj � 1).

It is possible to write down q-moments of this random vector.

Proposition 7.12. Fix k � 1. For all t D 0; 1; 2; : : : and all N � n1 � n2 �

� � � � nk � 0,

Estep
� k

Y

iD1

q�
.ˇ/
ni
.t/Cni

�

D
.�1/kq

k.k�1/
2

.2�i/k

I

� � �

I
Y

1�A<B�k

zA � zB
zA � qzB

k
Y

jD1

1

.1� zj /nj

�1C qˇzj
1C ˇzj

�btRc�1C q�1ˇz�1
j

1C ˇz�1
j

�btLcdzj

zj
;

(7.5)

where the contour of integration for each zA contains 1, and the contours

¹qzBºB>A, but not poles 0 or .�ˇ/˙1.

26 The contours used in [9] seem to be more suitable to the particular type of asymptotic

analysis performed in that paper. Here we do not pursue further discussion of integration

contours.

27 Here and below, b� � � c means the �oor function.
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Proof. Let Tright and Tleft denote the one-step transition operators of the Bernoulli

q-TASEP and the Bernoulli q-PushTASEP acting in Ex variables, respectively.

Also denote

H.Ex; Ey/ WD
N
Y

iD0

qyi .xi .t/Ci/

(by agreement, the product is zero if y0 > 0).

Then it follows from the results of [7] and the discussion of Remark 7.7 that28

TrightH D H..Hq;�ˇ /�1Hq;�qˇ /transpose

and

TleftH D H.q�.y1C���CyN /.Hq;�ˇ�1
/�1Hq;�qˇ�1

/transpose;

where the operators Hq;� are de�ned in (7.2)–(7.3), and q�.y1C���CyN / is the

multiplication operator. Observe that the operators Hq;� applied to H do not

change y1 C � � � C yN and hence commute with this multiplication operator.

The inverse operators above exist on a certain space Wmax of functions in Ey,

see [24].

Applying the Plancherel theory [10] (see also [24]), we now see that the appli-

cation of the product .Tleft/
btLc.Tright/

btRc which is needed to compute the expec-

tation in the left-hand side of (7.5), reduces to multiplication by the corresponding

eigenvalue
Qk
jD1

�1Cqˇzj
1Cˇzj

�btRc�1Cq�1ˇz�1
j

1Cˇz�1
j

�btLc
under the nested contour integral.

This completes the proof. �

Remark 7.13. Similarly to Remark 7.5, one sees that the q-moments (7.5)

determine the distribution of the vector �.ˇ/.t /. This implies that any powers of

operators Tright and Tleft (de�ned above) commute when applied to the step initial

con�guration, i.e., they yield the same probability distribution regardless of the

order of application.

Proposition 7.14. As ˇ & 0, the random variables �
.ˇ/
n .b�=ˇc/ de�ned above

converge in distribution to xn.�/ (the latter is the particle position coming from

the continuous time q-PushASEP started from the step initial con�guration).

28 We are writing “transpose” simply to indicate that the operators in the right-hand side act

in variables Ey.
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Proof. Let Gright denote the in�nitesimal generator of the pure q-TASEP process

(with only right jumps) corresponding to De�nition 7.8 with L D 0, R D 1.

Similarly, let Gleft denote the in�nitesimal generator of the pure q-PushTASEP

(with only left jumps) corresponding to L D 1, R D 0.

It follows from Remark 7.13 that the semigroups e�Gright and e�Gleft commute

when applied to the step initial con�guration (in the same sense as in Remark 7.13).

This means that the semigroup of the two-sided q-PushASEP has the form

e�.RGrightCLGleft/ D e�RGrighte�LGleft

(when applied to the step initial con�guration). Therefore, xn.�/ has the same

distribution as if it arises by �rst running the pure Gright process for time �R, and

then the pure Gleft process for time �L. The latter two-part evolution clearly is the

ˇ & 0 limit of �
.ˇ/
n .b�=ˇc/ (cf. Remark 7.9), as desired. �

Proposition 7.15. Recall the random vector �.ˇ/.t / of De�nition 7.11. For all

� 2 C nR>0,

E
� 1

.�q�
.ˇ/
n .t/CnI q/1

�

D det.I CK.ˇ/

�
/: (7.6)

Here det.I C K
.ˇ/

�
/ is the Fredholm determinant of K

.ˇ/

�
WL2.C1/ ! L2.C1/,

where C1 is a small positively oriented circle containing 1, andK
.ˇ/

�
is an integral

operator with kernel

K
.ˇ/

�
.w; w0/

WD
1

2�i

Z i1C1=2

�i1C1=2

�

sin.��s/
.��/s

.wqsI q/n1
.wI q/n1

�1C ˇqsw

1C ˇw

�btRc�1C ˇ.qsw/�1

1C ˇw�1

�btLc 1

qsw � w0
ds:

(7.7)

Proof. The passage from the moment formulas (7.5) to the desired Fredholm

determinantal formula is done similarly to [12] (based on [8]). Namely, for j�j

su�ciently small, the Fredholm determinant can be obtained by purely algebraic

manipulations. Then one must show that the resulting right-hand side of (7.6) is

analytic in � 2 C n R>0, which follows from bounds like in [12, Proposition 3.6]

and can be readily checked in our situation. The left-hand side of (7.6) is also

analytic in � because the function � 7! .�I q/1 is uniformly bounded away from

zero and analytic once � is bounded away from R>0. Therefore, the desired claim

holds. �
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Theorem 7.10 now follows by observing that the kernels K
.ˇ/

�
converge, as

ˇ & 0 and t D b�=ˇc, to the kernel K� from Theorem 7.10, because qs and w

are uniformly bounded on our contours. This also implies the convergence of the

corresponding Fredholm determinants. On the other hand, by Proposition 7.14,

we know that the left-hand sides of (7.6) converge to the left-hand side of (7.4).

This establishes Theorem 7.10.

8. Polymer limits of .˛/ dynamics on q-Whittaker processes

In this section we explain how the two .˛/ dynamics on q-Whittaker processes

behave in the limit as q % 1. This leads to discrete time stochastic processes

related to geometric RSK correspondences and directed random polymers.

8.1. Polymer partition functions. Let us �rst describe the polymer models we

will be dealing with. They are based on inverse-Gamma random variables.

De�nition 8.1. A positive random variableX has Gamma distribution with shape

parameter � > 0 if it has probability density

P.X 2 dx/ D
1

�.�/
x��1e�xdx:

We abbreviate this by X � Gamma.�/. Then X�1 has probability density

P.X�1 2 dx/ D
1

�.�/
x���1e�1=xdx;

which is called inverse-Gamma distribution and denoted by Gamma�1.�/.

We recall partition functions of two models of log-Gamma polymers in 1C 1

dimensions studied previously in [70], [11], [22], [60], [58], [25] (see also [56]

for a continuous time version). Both models are de�ned on the lattice strip

¹.t; j / j t 2 ¹0; 1; 2; : : : º; j 2 ¹1; 2; : : : ; nºº. One should think of t as time.

Suppose we have two collections of real numbers �j for j 2 ¹1; 2; : : : ; nº and
O�t for t 2 ¹0; 1; 2; : : :º, such that �j C O�t > 0 for all j and t .

De�nition 8.2 (log-Gamma polymer [70]; Figure 29, left). Each vertex .t; j / in

the strip is equipped with a random weight dt;j . These weights are independent,

and dt;j is distributed according to Gamma�1.�j C O�t /. The log-Gamma polymer

partition function with parameters �j ; O�t is given by

R
j
1 .t / WD

X

�W .1;1/�!.t;j /

Y

.s;i/2�

ds;i ; (8.1)



90 K. Matveev and L. Petrov

where the sum is over directed up/right lattice paths � from .1; 1/ to .t; j /,

which are made of horizontal edges .s; i/ ! .s C 1; i/ and vertical edges

.s; i/! .s; iC1/. Extend this de�nition to denote byR
j

k
.t / for t � k the weighted

sum over all k-tuples of nonintersecting up/right lattice paths starting from

.1; 1/; .1; 2/; : : : ; .1; k/ and going respectively to .t; j � k C 1/; .t; j � k C 2/; : : : ;

.t; j /. The weight of a tuple of paths is de�ned by taking a product of weights of

vertices of these paths. The inequality t � k ensures that R
j

k
.t / is positive.

De�nition 8.3 (strict-weak polymer [25], [58];29 Figure 29, right). Each hori-

zontal edge e in the strip is equipped with a random weight de . These weights are

independent, and d.t�1;j /!.t;j / is distributed according to Gamma.�j C O�t /. The

strict-weak polymer partition function with parameters �j ; O�t is given by

L
j
1.t / WD

X

�W .0;1/�!.t;j /

Y

e2�

de; (8.2)

where the sum is over directed lattice paths from .0; 1/ to .t; j / which are made

of horizontal edges .s; i/! .sC 1; i/ and diagonal moves .s; i/! .sC 1; i C 1/.

The product is taken only over horizontal edges of the path. Extend this de�nition

to denote by L
j

k
.t / for t � j � k the weighted sum over all k-tuples of the

corresponding nonintersecting lattice paths starting from .0; 1/; .0; 2/; : : : ; .0; k/

and going respectively to .t; j � k C 1/; .t; j � k C 2/; : : : ; .t; j /. The weight of

a tuple of paths is de�ned by taking a product of weights of horizontal edges of

these paths. The inequality t � j � k ensures that L
j

k
.t / is positive.

Distributions of ratios of the polymer partition functions de�ned above are

sometimes called Whittaker processes (or, to be more precise, ˛-Whittaker pro-

cesses), cf. [8]. They arise as limits (as q, the aj ’s and the ˛t ’s simultaneously

go to 1) of suitably rescaled particle positions in an interlacing integer array dis-

tributed according to the q-Whittaker process M
Ea
A (§2.3), where

A D .˛1; : : : ; ˛t /; Ea D .a1; : : : ; an/:

The convergence of q-Whittaker processes to Whittaker processes is known in

the literature, see [8, Thm. 4.2.4]. Since both dynamics Q
q
rowŒ˛� and Q

q
colŒ˛�

constructed in §6 sample the q-Whittaker processes, we can employ them to give

another proof of this limit transition. Moreover, we also establish the convergence

of the corresponding stochastic dynamics.

29 These two papers independently introduce essentially the same model. We will be using

the notation of [25].
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Figure 29. Paths and tuples of paths that contribute to the polymer partition functions:

R5
1
.9/ (top left), R5

3
.9/ (bottom left), L6

1
.8/ (top right), L6

3
.8/ (bottom right).

Let us �rst de�ne the appropriately scaled pre-limit dynamics. In what follows,

for � > 0 and �j ; O�t as above, we set q WD e��, aj D e
��j � and ˛t WD e

� O�t�.

De�nition 8.4 (scaled Q
q
rowŒ˛� dynamics). Start the dynamics Q

q
rowŒ˛� from the

zero initial condition (that is, �
.j /
i .0/ � 0). Denote by rj;k.t; �/ the position of

the k-th particle from the right on the j -th level of the array after t steps of the

dynamics (at each time step t ! tC1, apply the dynamics Q
q
rowŒ˛�with parameter

˛ D ˛tC1). For t � k, de�ne the random variables yRj
k
.t; �/ via

rj;k.t; �/ D .t C j � 2k C 1/�
�1 log ��1 C ��1 log. yRj

k
.t; �//:

The reason for the restriction t � k comes from the fact that rj;k.t; �/ D 0 for

t < k.

We will view the collection of random variables ¹ yRj
k
.t; �/º as a stochastic

process yR.t; �/ which at a �xed time t becomes an array yRj
k
.t; �/, 1 � k � j � n

for t � n, or a truncated array yRj
k
.t; �/, 1 � k � min¹t; j º � n for 0 < t < n.
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De�nition 8.5 (scaled Q
q
colŒ˛� dynamics). Start the dynamics Q

q
colŒ˛� from the

zero initial condition, and denote by j̀;k.t; �/ the position of the k-th particle from

the left on the j -th level of the array after t steps of the dynamics (again, at each

time step t ! t C 1, apply the dynamics Q
q
colŒ˛� with parameter ˛ D ˛tC1). For

t � j � k C 1, de�ne the random variable yLj
k
.t; �/ via

j̀;k.t; �/ D .t � j C 2k � 1/�
�1 log ��1 � ��1 log.yLj

k
.t; �//:

The reason for the restriction t � j �kC 1 comes from the fact that j̀;k.t; �/ D 0

for t < j � k C 1.

We will view the collection of random variables ¹ yLj
k
.t; �/º as a stochastic

process yL.t; �/, which at a �xed time t becomes an array yLj
k
.t; �/, 1 � k � j � n

for t � n, or a truncated array yLj
k
.t; �/, 1 � k � j � min¹n; k C t � 1º for

0 < t < n.

Remark 8.6. Observe that for a �xed time t , the array rj;k.t; �/ has the same

distribution as the array j̀;j�kC1.t; �/ (by Theorems 6.4 and 6.11, they are dis-

tributed as q-Whittaker processes). Hence the (possibly truncated) arrays yRj
k
.t; �/

and 1=yLj
j�kC1.t; �/ for 1 � k � min¹t; j º � n have the same distribution.

However, these arrays will not be identically distributed as stochastic processes

in t since they come from di�erent multivariate dynamics.

In the setting of polymer partition functions, de�ne random processes yR.t/ and
yL.t/ on (possibly truncated) arrays via

yRj
k
.t / WD Rj

k
.t /=R

j

k�1.t /; for 1 � k � min¹t; j º � n

and

yLj
k
.t / WD Lj

k
.t /=L

j

k�1.t /; for 1 � k � j � min¹n; k C t � 1º:

They are well de�ned, becauseR
j

k
.t /; R

j

k�1.t / > 0 for t � k andL
j

k
.t /; L

j

k�1.t / >

0 for t � j � k C 1.

We are now in a position to formulate results on the limiting behavior of

dynamics Q
q
rowŒ˛� and Q

q
colŒ˛�. In this section we prove the following results.

Theorem 8.7. As � ! 0, the process yR.t; �/ of De�nition 8.4 converges in

distribution to the process yR.t/.

Theorem 8.8. As � ! 0, the process yL.t; �/ of De�nition 8.5 converges in

distribution to the process yL.t/.
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Corollary 8.9. The (possibly truncated) arrays yRj
k
.t / and 1=yLj

j�kC1.t / for

1 � k � min¹t; j º � n have the same distribution.

In particular, 1= yRjj .t / and yLj1.t / have the same distribution. The latter fact

was proven in [58], and was used to analyze the strict-weak polymer partition

function via the geometric RSK row insertion (see §8.2.1 below), and to establish

the Tracy–Widom asymptotics for the strict-weak polymer.

See also [58] for the close relation between the log-gamma and strict-weak

polymers, where it is explained that one is the complement of the other at the level

of lattice paths. To the best of our knowledge, the full statement of Corollary 8.9

has not previously appeared in the literature.

Let us provide a brief outline of our proofs of Theorems 8.7 and 8.8 which are

presented in the rest of this section. First, in §8.2 we describe the constructions

of the geometric RSK correspondences, which will serve as � ! 0 limits of

elementary steps used in dynamics Q
q
rowŒ˛� and Q

q

colŒ˛�. Then in §8.3 we prove a

number of lemmas concerning � ! 0 behavior of the q-distributions from §6.1.

Finally, in §8.4 we use these ingredients to establish the desired statements.

8.2. Geometric RSKs. As we already know, the dynamics on q-Whittaker pro-

cesses constructed in §6 degenerate for q D 0 into the dynamics Q
qD0
row Œ˛� and

Q
qD0
col Œ˛� based on the classical RSK row or column insertion, respectively. In this

subsection we describe the corresponding geometric Robinson–Schensted–Knuth

insertions, which will serve as building blocks for understanding q % 1 limits of

the dynamics on q-Whittaker processes.

The q D 0 and q % 1 pictures (i.e., the classical and the geometric RSK corre-

spondences) are related via a certain procedure called detropicalization. Namely,

the geometric RSK row insertion introduced in [44] is obtained by detropicalizing

the classical RSK row insertion by replacing the .max;C/ operations in its de�ni-

tion by .C;�/. About the geometric RSK row insertion see also, e.g., [53], [22],

[60], and [19].

By analogy with the geometric RSK row insertion, one can de�ne the geomet-

ric RSK column insertion, by detropicalizing the classical RSK column insertion,

this time replacing the .min;C/ operations by .C;�/.

Remark 8.10 (Names and notation). The geometric RSK correspondences are

also sometimes called tropical RSK correspondences [44], [53], [22], despite the

fact that they come from the process of detropicalization. We adopt a convention
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of calling them the geometric RSK correspondences (following, e.g., [60], [19],

[57]). The latter name arises in connection with geometric crystals (see [19] for

more background).

Note that the word “geometric” in the name of the geometric RSK correspon-

dences should be distinguished from the same word in the names of the geometric

q-PushTASEP and the geometric q-TASEP (described in §6.3 and §6.6, respec-

tively). The former refers to detropicalization of the classical RSK correspon-

dences, while the latter is attached to the q-geometric jump distribution.

Below in this section, by �; �; : : : we will denote vectors (words) with contin-

uous components, and not signatures as before. To indicate the di�erence, we will

use superscripts to denote their components.

8.2.1. Geometric RSK row insertion. Consider a triangular array z
j

k
(1 � k �

j � n) of nonnegative real numbers, such that a word zk D .zk
k
; : : : ; zn

k
/ either

has all positive entries or is equal to .1; 0; : : : ; 0/ (in which case we call it an empty

word).

First, de�ne the geometric row insertion of a nonempty word a D .ak; : : : ; an/

into a nonempty word � D .�k; : : : ; �n/ as an operation that takes the pair ¹�; aº

as input, and produces a pair of words ¹� D .�k; : : : ; �n/; b D .bkC1; : : : ; bn/º

as output via the following rule:

a

b

� �

�j D

j
X

iDk

�iai : : : aj

bj D aj
�j�j�1

�j�1�j

If � is an empty word, then by de�nition b is not produced, while

� WD .ak ; akakC1; : : : ; akakC1 � � �an/

is produced according to the same rule. The word b is also not produced for k D n.

Observe that always �j D .�j C �j�1/aj for k < j � n and �k D �kak .

De�nition 8.11. The geometric RSK row insertion of a word a D .a1; : : : ; an/

into an array z
j

k
is de�ned by consecutively modifying the words z1; : : : ; zn via

the insertion according to the diagram on Figure 30. The bottom output word

a.1/; a.2/; : : : of each insertion is then used as a top input word for the next

insertion. If after some insertion no bottom output word is produced, then no

further insertions are performed.
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Figure 30. Geometric RSK row insertion.

The geometric RSK row insertion is related to the polymer partition functions

of §8.1 in the following way.

Proposition 8.12 ([53]). If we start with an array z of empty words, and consec-

utively insert into it nonempty �xed words a1; : : : ; at , ai D .a1i ; : : : ; a
n
i /, via the

geometric RSK row insertion, then in the obtained array we have

z
j

k
.t / D

R
j

k
.t /.a1; : : : ; at /

R
j

k�1.t /.a1; : : : ; at /
for all t � k.

Here with a slight abuse of notation we denote by R
j

k
.t /.a1; : : : ; at / the same

weighted sum over k-tuples of nonintersecting paths as in De�nition 8.2, but in a

strip in which each node .s; i/ has a deterministic weight ais (see Figure 31).

Figure 31. Array and strip for the geometric RSK row insertion.
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8.2.2. Geometric RSK column insertion. Consider a triangular array y
j

k

(1 � k � j � n) of nonnegative real numbers, such that in each word

yk D .yk
k
; : : : ; yn

k
/ either all entries are positive, or there is k � j � n, such

that y
j

k
D 1, yi

k
D 0 for j < i � n and yi

k
> 0 for k � i � j . We again call

.1; 0; : : : ; 0/ an empty word.

To de�ne the geometric RSK column insertion �rst de�ne the insertion of a

word a D .ak; : : : ; an/ with positive entries into a word � D .�k; : : : ; �n/ as

an operation that takes the pair ¹�; aº as input, and produces a pair of words

¹� D .�k; : : : ; �n/; b D .bkC1; : : : ; bn/º as output via the following rule:

a

b

� �

�k D ak�k

�j D �jaj C �j�1 for k < j � n

bj D

8

ˆ
ˆ̂
<

ˆ̂

:̂

aj
�j�j�1

�j�1�j
if �j > 0;

aj�j�1 if �j D 0 and �j�1 > 0;

aj if �j�1 D 0:

De�nition 8.13. The geometric RSK column insertion of a word into an array is

de�ned similarly to the row insertion (De�nition 8.11), by consecutively perform-

ing the column insertion operations de�ned above, in order as on Figure 30.

Note that y
j

k
in this de�nition corresponds to �

.j /

j�kC1 in the classical RSK

column insertion. We will need the following fact which is analogous to Proposi-

tion 8.12.

Proposition 8.14. If we start with an array y of empty words, and consecutively

insert into it words a1; : : : ; at with positive entries via the geometric RSK column

insertion, then in the obtained array we have

y
j

k
.t / D

L
j

k
.t /.a1; : : : ; at /

L
j

k�1.t /.a1; : : : ; at /
for all t � j � k C 1:

Here again we denote by L
j

k
.t /.a1; : : : ; at / the same weighted sum over k-tuples

of nonintersecting paths as in De�nition 8.3, but in a strip in which each edge

.s � 1; i/! .s; i/ has a deterministic weight ais (see Figure 32).
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Figure 32. Array and strip for the geometric RSK column insertion.

Proof. Our proof is similar to that of Proposition 8.12 (the latter is given in [53]).

For a D .a1; : : : ; an/, denote byH.a/ the n�nmatrix such thatH.a/i;i WD a
i ,

H.a/i;iC1 D 1, and other entries are 0. For a D .ak ; : : : ; an/, denote by Hk.a/

the n� n matrix of the form
�

Idk�1 0
0 H.a/

�

: For � D .�k; : : : ; �n/ such that �i > 0

for k � i � j and �i D 0 for j < i � n, denote by G.�/ the n � n matrix of the

form
0

@

Idk�1 0 0

0 G 0

0 0 Idn�j

1

A ;

where G is the upper-triangular .j � k C 1/ � .j � k C 1/ matrix with

Gp;r D
�rCk�1

�pCk�2
for 1 � p � r � j � k C 1.

Assume �k�1 D 1.

The key to the proof is the commutation relation

G.�/Hk.a/ D HkC1.b/G.�/; (8.3)

whenever a pair of words � D .�k ; : : : ; �n/; b D .bkC1; : : : ; bn/ is obtained by

inserting a D .ak ; : : : ; an/ into � D .�k ; : : : ; �n/.

To check (8.3), denote its left-hand side by L and right-hand side by R. Clearly,

Li;i D Ri;i D 1 for 1 � i � k � 1 and Li;i D Ri;i D ai for j C 2 � i � n, and

LjC1;jC2 D RjC1;jC2 D 1. Otherwise Li;m D Ri;m D 0 unless k � i � j C 1 and

k � m � j C 1. Let us thus assume that the two latter inequalities hold. On the

diagonal, for k < i < j C 1, we have

Li;i D a
i �

i

�i�1
D bi

�i

�i�1
D Ri;i ; Lk;k D a

k�k D �k D Rk;k ;
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and

LjC1;jC1 D a
jC1 D

bjC1

�j
D RjC1;jC1:

Above the diagonal, for k < i < m � j C 1, we have

Li;m D
�m�1

�i�1
C

�m

�i�1
am D

�m

�i�1
D bi

�m

�i�1
C
�m

�i
D Ri;m;

since bi

�i�1
C 1

�i
D 1

�i
.ai �i

�i�1
C 1/ D 1

�i�1
, and �nally

Lk;m D �
m�1 C �mam D �m D Rk;m:

This completes the proof of the commutation relation (8.3).

By applying the commutation relation multiple times according to the geomet-

ric column RSK insertion (De�nition 8.13), we get

G.yn.t // � � � � �G.y1.t // D H.a1/ � � � � �H.at /: (8.4)

Observe that the .i; j /-entry of the right-hand side above is equal to the sum of

weights of all directed strict-weak (as on Figure 29, right) paths from .0; i/ to

.t; j /, where the weight of a path is given by the product of weights of horizontal

edges, as before. Indeed, this entry is equal to

X

1�i1;:::;itC1�nW i1Di;itC1Dj

t
Y

`D1

H.a`/i`;i`C1

D
X

1�i1;:::;itC1�nW i1Di;itC1Dj

t
Y

`D1

.1i`Di`C1�1 C a`1i`Di`C1
/:

By the Lindström–Gessel–Viennot principle [51], [39], the determinant of the

minor of the right-hand side at the intersection of the �rst k rows, and columns

from .j � k C 1/-st to j -th, is L
j

k
.t /.a1; : : : ; at /.

Next, observe that for 1 � s � k, j � k C 1 � p � j , the .s; p/-entry of the

left-hand side of (8.4) is equal to the sum of weights of directed up/right (as on

Figure 29, left) lattice paths from .k C 1 � s; s/ to .min¹k C t C 1 � p; kº; p/

in the array as on Figure 33 (the left picture if t � j , and the right one if

j � k C 1 � t < j ).



q-randomized RSK correspondences and random polymers 99

Figure 33. Arrays used in the proof of Proposition 8.14.

The weight of each path is de�ned to be the product of weights of all nodes

along the path. By Lindström–Gessel–Viennot principle, the determinant of the

minor of the left-hand side of (8.4) at the intersection of the �rst k rows, and

columns from .j � kC 1/-st to j -th, is equal to the sum of weights of all k-tuples

of nonintersecting paths from .k; 1/; : : : ; .2; k � 1/; .1; k/ to

.min¹2k C t � j; kº; j � k C 1/;

:::

.min¹k C t C 2� j; kº; j � 1/;

.min¹k C t C 1� j; kº; j /:

There is only one such tuple, which covers all points on Figure 33 and has weight
Qk
iD1 y

min¹iCt;j º
i .

Therefore,

L
j

k
.t /.a1; : : : ; at / D

k
Y

iD1

y
min¹iCt;j º
i ; t � j � k C 1;

which establishes the desired statement. �
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8.3. Asymptotics of q-deformed Beta-binomial distributions. We will need

several lemmas about the limiting properties of the distributions 'q;�;�.s j y/,

see (6.1).

Lemma 8.15. Let X� be a Z�0-valued random variable with

Prob.X� D j / D .˛I q/1
˛j

.qI q/j
for ˛ D e��� and q D e��.

Then as � ! 0, � exp¹�X�º converges in distribution to Gamma�1.�/.

Lemma 8.16. Let n.�/ be a function R�0 ! Z�0, such that

lim
��!0

��1 exp¹��n.�/º D ':

Let X� be a Z�0-valued random variable with

Prob.X� D j / D 'q;˛;0.j j n.�// for ˛ D e��� and q D e��.

Then as � ! 0, ��1 exp¹��X�º converges in distribution to ' C Gamma.�/.

These two lemmas were both proven in [25] (Lemma 2.1 and a part of proof of

Theorem 1.4, respectively). In the next three lemmas, parameters of distributions

which are not explicitly �xed are assumed to depend on �, and sometimes might

also be random themselves.

Lemma 8.17. Fix C and 0 < � < 1. Let Y � be a Z�0-valued random

variable distributed according to 'q�1;�;�.� j n/ with q D e��, �q�n ! � ,

n � ��1 log ��1 � ��1C , and log � C 2n� � log � . Then as � ! 0,

�Y � ! log.1C �/.

Proof. The fact that 'q�1;�;� with such parameters is indeed a probability distri-

bution for � small enough follows from inequalities in the statement of the lemma.

Let A.�/ WD .e��I e��/1. By [8, Corollary 4.1.10],

.e��I e��/b��1 log ��1�C��1c � A.�/C
0

for all � small enough and some constant C 0 that depends only on C . As � ! 0,

� log.e��I e��/dr=�e �!

Z r

0

log.1� e�x/dx;
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since the left-hand side is a Riemann sum for the right-hand side integral, hence

we have

� log
.e��I e��/1

.e�r I e��/1
�!

Z r

0

log.1� e�x/dx:

(Note that although this integral blows up at 0, it is still �nite and convergence

holds.)

Fix ı > 0. For � small enough,

Prob.Y � D k/ D .�q�nCk/k
.�=�I q�1/k.�I q

�1/n�k

.�I q�1/n

�
n

k

�

q

�
.�q�n/ke��k2C 0

.e��I e��/k

�
.2�/ke��k2C 0

.e��I e��/k

� C 0 exp

�

k log 2� � �k2 �
1

�

Z k�

0

log.1� e�x/dx

�

� e�T 2=2� for T large enough and k � T=�.

Hence

Prob.Y � � T=�/ �
1

X

kDdT=�e

e��k2=2 � e�T 2=2�
1

X

iD0

e�T i ;

which can be made less than ı=2 for all � small enough by choosing su�ciently

large T .

Observe that for k � T=� and � small enough there is some constant C0 that

depends only on C and T , such that

C�1
0 �

.�=�I q�1/k

.�qI q/1.�I q�1/n

.qI q/n
.qI q/n�k

� C0:

Let

f . / WD � 2 C .log �/ �

Z  

0

log.1� e�x/dx �

Z  �log�

0

log.1� e�x/dx

for  � 0. Then

f 0. / D �2 C log � � log.1� e� / � log.1 � e� Clog� /;

which is strictly decreasing, and f 0.log.1C �// D 0. Hence f attains a unique

maximum at log.1C �/, so one can chooseM1 > M2 > M3 > M4 such that

f . / > M1 for  2 .log.1C �/ � ı=2; log.1C �/C ı=2/
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and

f . / < M4 for  … .log.1C �/ � ı; log.1C �/C ı/,

and for � small enough

Prob.�Y � 2 .log.1C �/ � ı=2; log.1C �/C ı=2// � C�1
0

�ı

�
� 1

�

A.�/eM2=�

and

Prob.�Y � … .log.1C �/ � ı; log.1C �/C ı/ [ ŒT;1//

� C0
�T � 2ı

�
C 2

�

A.�/eM3=�:

Therefore, for � small enough

Prob.�Y � 2 .log.1C �/ � ı; log.1C �/C ı// � 1 � ı;

and this completes the proof. �

Lemma 8.18. Fix C and 0 � � < 1. Let Y � be a Z�0-valued random variable

with

Prob.Y � D j / D 'q;˛;0.j j n/

for ˛ ! � as � ! 0, q D e�� and n � ��1 log ��1 � ��1C . Then as � ! 0,

�Y � ! � log.1� �/.

Proof. Suppose � > 0 and �x ı > 0. We can write

Prob.Y � D k/ D
˛k

.e��I e��/k

.˛I e��/n�k.e
��; e��/n

.e��I e��/n�k

�
˛k

.e��I e��/k

� exp

�
1

�

��1

2
log �

�

T �

Z T

0

log.1� e�x/dx

��

� e.log�/T=4�

for T large enough and � small enough, such that k � T=�. Hence

Prob.Y � � T=�/ � e.log�/T=4�
1

X

iD0

e
i log�
4

which is less than ı=2 for T large enough.
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For � small enough, k � T=�, and some constant C0 that depends only on C ,

T , and � , one can write

C�1
0 .˛I e��/1 �

.˛I e��/n�k.e
��I e��/n

.e��I e��/n�k
� C0.˛I e

��/1:

Let

f . / WD .log �/ �

Z  

0

log.1� e�x/dx

for  � 0. Then

f 0. / D log � � log.1� e� /;

which is strictly decreasing, and f 0.� log.1� �// D 0. Hence f attains a unique

maximum at � log.1� �/, so one can chooseM1 > M2 > M3 > M4 such that

f . / > M1 for  2 .� log.1� �/ � ı=2;� log.1 � �/C ı=2/

and

f . / < M4 for  … .� log.1� �/ � ı;� log.1 � �/C ı/,

and for � small enough

Prob.�Y � 2 .� log.1� �/ � ı=2;� log.1� �/C ı=2//

� C�1
0

�ı

�
� 1

�

.˛I e��/1e
M2=�

and

Prob.�Y � … .� log.1� �/ � ı;� log.1� �/C ı/ [ ŒT;1//

� C0
�T � 2ı

�
C 2

�

.˛I e��/1e
M3=�:

Therefore, for � small enough we can write

Prob.�Y � 2 .� log.1� �/ � ı;� log.1� �/C ı// � 1 � ı;

and this completes the proof for the case � > 0.
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If � D 0, �x arbitrary u > 0. For all large enough U , such that

Uu >
1

2
Uu �

Z 1

0

log.1� e�x/dx;

� small enough, and k � u
�
,

Prob.Y � D k/ �
˛k

.e��I e��/k

� exp

�
1

�

�

� Uk� �

Z 1

0

log.1� e�x/dx

��

� e�Uu
2� :

So,

Prob.�Y � � u/ � e�Uu
2�

1
X

iD0

e�Ui=2;

which can be made less than any given ı > 0 for U large enough. Thus, we have

convergence �Y � ! 0 in distribution. �

Lemma 8.19. Fix ˛; � 2 .0; 1/ such that ˛.1C �/ < 1. Let Y � be a Z�0-valued

random variable with Prob.Y � D j / D 'q�1;˛;0.j j n/ for n� ! log.1C �/ as

� ! 0, q D e��. Then as � ! 0, �Y � ! log.1C ˛�/.

Proof. ˛.1 C �/ < 1 ensures that this is indeed a probability distribution for �

small enough. This distribution looks as

Prob.Y � D k/ D
.qI q/n

.qI q/k.qI q/n�k
.˛qk�n/k.˛I q�1/n�k:

Let

f . / WD �

Z  

0

log.1 � e�x/dx �

Z log.1C�/� 

0

log.1� e�x/dx

C  log˛ �  2 C  log.1C �/

C

Z � log˛

� log˛�log.1C�/C 
log.1 � e�x/dx for log.1C �/ �  � 0.

Then

f 0. / D � log.1� e� /C log
�

1�
e 

1C �

�

C log˛ � 2 

C log.1C �/ � log.1� ˛.1C �/e� /;
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which is strictly decreasing, and f 0.log.1C ˛�// D 0. Hence f attains a unique

maximum at log.1C ˛�/, so one can chooseM1 > M2 such that

f . / > M1 for  2 .log.1C ˛�/ � ı=2; log.1C ˛�/C ı=2/

and

f . / < M2 for  … .log.1C ˛�/ � ı; log.1C ˛�/C ı/.

Hence for � small enough,

Prob.�Y � 2 .log.1C ˛�/ � ı=2; log.1C ˛�/C ı=2//

�
�ı

�
� 1

�

.e��I e��/ne
M1=�;

and

Prob.�Y � … .log.1C ˛�/ � ı; log.1C ˛�/C ı//

�
� log.1C �/ � 2ı

�
C 2

�

.e��I e��/ne
M2=�:

Thus, for � small enough, we have

Prob.�Y � 2 .log.1C ˛�/ � ı; log.1C ˛�/C ı// � 1� ı;

and this completes the proof. �

8.4. Proofs of Theorems 8.7 and 8.8. In our proofs, we denote by

A.�/; B.�/; C.�/;D.�/;E.�/; F.�/

possibly random positive valued functions tending to deterministic constants

A;B; C;D;E; F , respectively, as � ! 0. This notation will be repeatedly used

in the arguments below for de�ning conditional probabilities.

8.4.1. Proof of Theorem 8.7. We must show that for �xed .t; k; j /, such that

k � min¹t; j º and j � n, the random variable yRj
k
.t; �/ conditioned on

yRJK.T; �/ ! XJK.T / for all .T;K; J / < .t; k; j / in the lexicographic order,30

converges as � ! 0 to yRj
k
.t / conditioned on yRJK.T / D XJK.T / for all

.T;K; J / < .t; k; j / in the lexicographic order. Here XJK.T / are some �xed

constants. In the rest of the proof we will always assume this conditioning.

30 That is, T < t , or T D t and K < k, or T D t;K D k and J < j .
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Right edge (k D 1). The Markovian projection of the Q
q
rowŒ˛� dynamics on the

right edge is the geometric q-PushTASEP (§6.3), hence the proof of the theorem

for the right edge is the same as showing that suitably rescaled positions of

particles in the geometric q-PushTASEP converge to the partition functions of

the log-Gamma polymer (De�nition 8.2).

a) If t D 1, then rj;1.1; �/ D rj�1;1.1; �/C an independent random movement d

distributed according to 'q;aj ˛1;0.d j 1/ (assume r0;1.1; �/ D 0 and X01 .1/ D 1).

By Lemma 8.15,

log. yRj1 .1; �// D rj;1.1; �/� � j log ��1

D rj�1;1.1; �/� � .j � 1/ log ��1 C d� � log ��1

�! log.X
j�1
1 .1//C log.�/

for an independent random variable � D a
j
1 distributed according to

Gamma�1.�j C O�1/, which is consistent with yRj1 .1/ D X
j�1
1 .1/a

j
1 .

b) If j D 1 and t � 2, then r1;1.t; �/ D r1;1.t � 1; �/ C an independent random

movement d distributed according to 'q;a1˛t ;0.d j 1/. By Lemma 8.15,

log. yR11.t; �// D r1;1.t; �/� � t log ��1

D r1;1.t � 1; �/� � .t � 1/ log ��1 C d� � log ��1

�! log.X11 .t � 1//C log.�/

for an independent random variable � D a1t distributed according to

Gamma�1.�1 C O�t /, which is consistent with yR11.t / D X
1
1 .t � 1/a

1
t .

c) Assume t � 2 and j � 2. Condition on

rj;1.t � 1; �/ D .t C j � 2/�
�1 log ��1 C ��1 logA.�/; so X

j
1 .t � 1/ D A;

rj�1;1.t � 1; �/ D .t C j � 3/�
�1 log ��1 C ��1 logB.�/; so X

j�1
1 .t � 1/ D B;

rj�1;1.t; �/ D .t C j � 2/�
�1 log ��1 C ��1 logC.�/; so X

j�1
1 .t / D C :

The movement of the rightmost particle on the j -th level during the time step

t � 1! t which happens due to the pushing by the rightmost particle at level

j � 1 behaves as ��1 log
�

1C C
A

�

(by Lemma 8.17). The independent movement
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of the rightmost particle on the j -th level behaves as ��1 log� C ��1 log ��1

(by Lemma 8.15), for an independent random variable � D a
j
t distributed

according to Gamma�1.�j C O�t /. Therefore,

log. yRj1 .t; �// �! logAC log
�

1C
C

A

�

C log� D log..AC C/�/;

which is consistent with yRj1 .t / D .X
j
1 .t � 1/CX

j�1
1 .t //a

j
t .

k-th edge from the right for k � 2

a) Assume t D k. We have rj;k.k; �/ D rj�1;k.k; �/ C a movement due to

pulling from the .k � 1/-st particle from the right on the .j � 1/-st level (assume

rk�1;k.k; �/ D 0 and Xk�1
k

.k/ D 1). Condition on

rj�1;k�1.k � 1; �/ D .j � k C 1/�
�1 log ��1 C ��1 logD.�/;

so X
j�1
k�1 .k � 1/ D D,

rj�1;k�1.k; �/ D .j � k C 2/�
�1 log ��1 C ��1 logE.�/;

so X
j�1
k�1 .k/ D E,

rj;k�1.k � 1; �/ D .j � k C 2/�
�1 log ��1 C ��1 logF.�/;

so X
j

k�1.k � 1/ D F .

By Lemma 8.17, this movement times � and minus log ��1 converges to

log.E=D/ � log.1CE=F /. Therefore,

log. yRj
k
.k; �// D rj;k.k; �/� � .j � k C 1/ log ��1

�! log.X
j�1
k

.k//C log.E=D/ � log.1CE=F /

D log
�X

j�1
k

.k/EF

.F CE/D

�

;

which is consistent with

yRj
k
.k/ D

X
j�1
k

.k/X
j�1
k�1 .k/X

j

k�1.k � 1/

.X
j

k�1.k � 1/CX
j�1
k�1 .k//X

j�1
k�1 .k � 1/

:
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Indeed, if we insert (via the geometric row insertion) a nonempty word

b D .bk ; : : : ; bn/ into the empty word �k D .1; 0; : : : ; 0/, where b is itself the

bottom output of the insertion of a D .ak�1; : : : ; an/ into

�k�1 D .�
k�1
k�1; : : : ; �

n
k�1/ D .X

k�1
k�1 .k � 1/; : : : ; X

n
k�1.k � 1//;

then we get

�
j

k
D �j�1

k
bj D �j�1

k

aj�
j

k�1�
j�1
k�1

�
j�1
k�1�

j

k�1

D �j�1
k

�
j

k�1

�
j�1
k�1

�
j�1
k�1

�
j�1
k�1 C �

j

k�1

;

which is the same as the expression for yRj
k
.k/ above.

b) Assume t � k C 1 and k < j � n. Condition on

rj;k.t � 1; �/ D .t C j � 2k/�
�1 log ��1 C ��1 logA.�/;

so X
j

k
.t � 1/ D A,

rj�1;k.t � 1; �/ D .t C j � 2k � 1/�
�1 log ��1 C ��1 logB.�/;

so X
j�1
k

.t � 1/ D B ,

rj�1;k.t; �/ D .t C j � 2k/�
�1 log ��1 C ��1 logC.�/;

so X
j�1
k

.t / D C ,

rj�1;k�1.t � 1; �/ D .t C j � 2k C 1/�
�1 log ��1 C ��1 logD.�/;

so X
j�1
k�1 .t � 1/ D D,

rj�1;k�1.t; �/ D .t C j � 2k C 2/�
�1 log ��1 C ��1 logE.�/;

so X
j�1
k�1 .t / D E,

rj;k�1.t � 1; �/ D .t C j � 2k C 2/�
�1 log ��1 C ��1 logF.�/;

so X
j

k�1.t � 1/ D F .
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Movement of rj;k during time step t � 1! t due to pushing by the k-th

particle from the right on the .j � 1/-st level behaves as ��1 log.1 C C
A
/ (by

Lemma 8.17). The movement due to the pulling (by the .k � 1/-st particle from

the right on the .j �1/-st level) times ��1 minus log ��1 by the same lemma tends

to log.E
D
/ � log.1C E

F
/. Hence we may write

log. yRj
k
.t; �// �! logAC log

�

1C
C

A

�

C log
�E

D

�

� log
�

1C
E

F

�

D log
� .AC C/EF

.F C E/D

�

;

which is consistent with

yRj
k
.t / D

.X
j

k
.t � 1/CXj�1

k
.t //X

j�1
k�1 .t /X

j

k�1.t � 1/

.X
j

k�1.t � 1/CX
j�1
k�1 .t //X

j�1
k�1 .t � 1/

:

Indeed, if we insert (via the geometric row insertion) a nonempty word

b D .bk ; : : : ; bn/ into a nonempty word

�k D .�
k
k; : : : ; �

n
k/ D .X

k
k .t � 1/; : : : ; X

n
k .t � 1//;

where b is itself the bottom output of the insertion of a D .ak�1; : : : ; an/ into

�k�1 D .�
k�1
k�1; : : : ; �

n
k�1/ D .X

k�1
k�1 .t � 1/; : : : ; X

n
k�1.t � 1//;

then we get

�
j

k
D .�j�1

k
C �j

k
/bj

D .�j�1
k
C �j

k
/
aj�

j

k�1�
j�1
k�1

�
j�1
k�1�

j

k�1

D .�j�1
k
C �j

k
/
�
j

k�1

�
j�1
k�1

�
j�1
k�1

�
j�1
k�1 C �

j

k�1

;

which is the same as the expression for yRj
k
.t / above.

c) Finally, if j D k and t � k C 1, then the previous argument carries out with

the exception that in this case the leftmost particle on the j -th level experiences

only pulling of the leftmost particle on the .j � 1/-st level, hence we should take

C D 0 in the formulas from part b).

This completes the proof of Theorem 8.7.
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8.4.2. Proof of Theorem 8.8. We must show that for �xed .t; k; j /, such that

k � j � t C k � 1 and j � n, the random variable yLj
k
.t; �/, condi-

tioned on yLJK.T; �/ ! Y JK .T / for all .T;K; J / < .t; k; j / in the lexicographic

order, converges as � ! 0 to yLj
k
.t /, conditioned on yLJK.T / D Y JK .T / for

.T;K; J / < .t; k; j / in the lexicographic order (here Y JK .T / are some �xed con-

stants). In the rest of the proof we will always assume this conditioning.

Left edge .k D 1/. The Markovian projection of the Q
q

colŒ˛� dynamics on the

left edge is the geometric q-TASEP (§6.6), hence the proof of the theorem for the

left edge is the same as showing that suitably rescaled positions of particles in the

geometric q-TASEP converge to the partition functions of the strict-weak polymer

(De�nition 8.3). This was already done in [25], but we still include this part in the

proof for the reader’s convenience.

a) If t D j D 1, then by Lemma 8.15, log.yL11.1; �// D log ��1 � `1;1.1; �/�

converges in distribution to log� for a random variable � D a11 distributed

according to Gamma.�1 C O�1/.

b) Assume t D j > 1. Then m D j̀;1.j; �/ is distributed according to

'q;aj j̨ ;0.m j j̀�1;1.j � 1; �//. If we condition on

j̀�1;1.j � 1; �/ D �
�1 log ��1 � ��1 logF.�/; so Y

j�1
1 .j � 1/ D F ;

then by Lemma 8.16,

log.yLj1.j; �// D log ��1 � j̀;1.j; �/� �! log.F C �/

for an independent random variable � D a
j
j distributed according to

Gamma.�j C O�j /, which is consistent with yLj1.j / D a
j
j C Y

j�1
1 .j � 1/.

c) Let t > j D 1. By Lemma 8.15, the quantities

log.yL11.t; �//� log.yL11.t � 1; �// D log ��1 � .`1;1.t; �/� `1;1.t � 1; �//�

converge in distribution to log� for a random variable � D a1t distributed

according to Gamma.�1 C O�t /, which is consistent with yL11.t / D a
1
t Y

1
1 .t � 1/.

d) Assume t > j > 1. Condition on

j̀;1.t � 1; �/ D .t � j /�
�1 log ��1 � ��1 logA.�/; so Y

j
1 .t � 1/ D A,

j̀�1;1.t � 1; �/ D .t � j C 1/�
�1 log ��1 � ��1 logF.�/; so Y

j�1
1 .t � 1/ D F :
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By Lemma 8.16, the movement of the leftmost particle on the j -th level during the

time step t � 1! t times � and minus log ��1 converges to � log
�
F
A
C �

�

for an

independent random variable � D a
j
t distributed according to Gamma.�j C O�t /.

Therefore,

log.yLj1.t; �// �! logAC log.F=AC �/ D log.F C A�/;

which is consistent with yLj1.t / D Y
j�1
1 .t � 1/C ajt Y

j
1 .t � 1/.

Second edge from the left .k D 2/

a) If j D 2, t D 1, then we have to look at `2;2.1; �/ D `1;1.1; �/ C a jump m

distributed according to 'q;a2˛1;0.m j 1/. By Lemma 8.15,

log.yL22.1// � log.yL11.1// D log ��1 �m� �! log�;

where � D a21 is an independent random variable distributed according to

Gamma.�2 C O�1/, which is consistent with yL22.1/ D a
2
1Y

1
1 .1/.

b) Assume j > 2, t D j � 1. We have j̀;2.j � 1; �/ D m1 Cm2, where m1 is

an independent move distributed according to 'q;aj j̨�1;0.m1 j j̀�1;2.j � 2; �//,

and m2 is the push from the leftmost particle on the .j � 1/-st level distributed

according to

'
q�1;q j̀�1;1.j�1;�/

;q j̀�1;2.j�2;�/. j̀�1;2.j �2; �/�m1�m2 j j̀�1;2.j �2; �/�m1/:

Condition on

j̀�1;1.j � 1; �/ D �
�1 log ��1 � ��1 logE.�/; so Y

j�1
1 .j � 1/ D E;

j̀�1;2.j � 2; �/ D 2�
�1 log ��1 � ��1 logF.�/; so Y

j�1
2 .j � 2/ D F :

By Lemma 8.16, log ��1 � m1� ! log�, where � D a
j
j�1 is an independent

random variable distributed according to Gamma.�j C O�j�1/. By Lemma 8.17,

log.yLj2.j � 1; �// D 2 log ��1 � j̀;2.j � 1; �/�

�! logF C log
�

1C
E�

F

�

D log.F CE�/;

which is consistent with Y
j
2 .j � 1/ D Y

j�1
2 .j � 2/C ajj�1Y

j�1
1 .j � 1/.
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c) Let j D 2, t > 1. Then

`2;2.t; �/ D `2;2.t � 1; �/C `1;1.t; �/� `1;1.t � 1; �/Cm;

where the jump m is distributed according to

'
q;a2˛tq

`1;1.t�1;�/�`2;1.t;�/;0
.m j 1/:

Condition on

`2;2.t � 1; �/ D t�
�1 log ��1 � ��1 logA.�/; so Y 22 .t � 1/ D AI

`1;1.t � 1; �/ D .t � 1/�
�1 log ��1 � ��1 logB.�/; so Y 11 .t � 1/ D BI

`1;1.t; �/ D t�
�1 log ��1 � ��1 logC.�/; so Y 11 .t / D C I

`2;1.t; �/ D .t � 1/�
�1 log ��1 � ��1 logE.�/; so Y 21 .t / D E:

By Lemma 8.18, m� ! � log
�

1 � B
E

�

, hence

log.yL22.t; �// D `2;2.t; �/� � .t C 1/ log ��1 �! log
�

A
�

1 �
B

E

�C

B

�

;

which is consistent with

yL22.t / D Y
2
2 .t � 1/

�

1 �
Y 11 .t � 1/

Y 21 .t /

� Y 11 .t /

Y 11 .t � 1/
:

Indeed, we have

yL22.t / D yL
2
2.t � 1/a

2
t

yL21.t � 1/
yL11.t /

yL11.t � 1/
yL21.t /

D yL22.t � 1/
yL21.t / � yL

1
1.t � 1/

yL21.t � 1/

yL21.t � 1/yL
1
1.t /

yL11.t � 1/
yL21.t /

D yL22.t � 1/
�

1 �
yL11.t � 1/

yL21.t /

� yL11.t /

yL11.t � 1/
:

d) Assume j > 2, t > j � 1. Condition on

j̀;2.t � 1; �/ D .t � j C 2/�
�1 log ��1 � ��1 logA.�/; so Y

j
2 .t � 1/ D AI

j̀�1;1.t � 1; �/ D .t � j C 1/�
�1 log ��1 � ��1 logB.�/; so Y

j�1
1 .t � 1/ D BI

j̀�1;1.t; �/ D .t � j C 2/�
�1 log ��1 � ��1 logC.�/; so Y

j�1
1 .t / D C I

j̀;1.t; �/ D .t � j C 1/�
�1 log ��1 � ��1 logE.�/; so Y

j
1 .t / D EI

j̀�1;2.t � 1; �/ D .t � j C 3/�
�1 log ��1 � ��1 logF.�/; so Y

j�1
2 .t � 1/ D F :
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Denote by m the independent move of the particle which is the second from the

left on the j -th level. This move is distributed according to

'
q;aj ˛tq j̀�1;1.t�1;�/� j̀;1.t;�/;0

.m j j̀�1;2.t � 1; �/ � j̀;2.t � 1; �//:

As in the previous case, by Lemma 8.18, m� ! � log
�

1� B
E

�

.

Thus, we see that j̀;2.t; �/ D j̀�1;2.t � 1; �/ � M , where M is distributed

according to

'q�1;Q1;Q2
.M j j̀�1;2.t � 1; �/ � j̀;2.t � 1; �/�m/;

where

Q1 WD q j̀�1;1.t;�/� j̀�1;1.t�1;�/;

Q2 WD q j̀�1;2.t�1;�/� j̀�1;1.t�1;�/

Hence by Lemma 8.17, M� !
�

1� B
E

�
1
F
C
B
AC 1. Therefore,

log.yLj2.t; �// D j̀;2.t; �/� .t � j C 3/�
�1 log ��1

�! log
��

1�
B

E

�C

B
AC F

�

;

which is consistent with

yLj2.t / D
�

1 �
Y
j�1
1 .t � 1/

Y
j
1 .t /

� Y
j�1
1 .t /

Y
j�1
1 .t � 1/

Y
j
2 .t � 1/C Y

j�1
2 .t � 1/:

Indeed, one checks that

yLj2.t / D
yLj2.t � 1/a

j
t

yLj1.t � 1/
yLj�1
1 .t /

yLj�1
1 .t � 1/yLj1.t /

C yLj�1
2 .t � 1/

D yLj2.t � 1/
yLj1.t /�

yLj�1
1 .t � 1/

yLj1.t � 1/

yLj1.t � 1/
yLj�1
1 .t /

yLj�1
1 .t � 1/yLj1.t /

C yLj�1
2 .t � 1/

D yLj2.t � 1/
�

1 �
yLj�1
1 .t � 1/

yLj1.t /

� yLj�1
1 .t /

yLj�1
1 .t � 1/

C yLj�1
2 .t � 1/:
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k-th edge from the left for k > 2

a) Start with assuming that j D k, t D 1. We have

`k;k.1; �/ D `k�1;k�1.1; �/Ca jump m distributed

according to 'q;ak˛1;0.m j 1/.

By Lemma 8.15,

log.yLkk.1// � log.yLk�1
k�1.1// D log ��1 �m� �! log�;

where � D ak1 is an independent random variable distributed according to

Gamma.�k C O�1/, which is consistent with yLk
k
.1/ D ak1Y

k�1
k�1 .1/.

b) Let j > k, t D j�kC1. We have j̀;k.j�kC1; �/ D m1Cm2, wherem1 is an

independent move distributed according to 'q;aj j̨�kC1;0.m1 j j̀�1;k.j � k; �//,

and m2 is the push from the .k � 1/-st particle from the left on the .j � 1/-st level

distributed according to

'q�1;Q3;Q4
. j̀�1;k.j � k; �/�m1 �m2 j j̀�1;k.j � k; �/�m1/;

where

Q3 WD q j̀�1;k�1.j�kC1;�/;

Q4 WD q j̀�1;k.j�k/:

Condition on

j̀�1;k�1.j � k C 1; �/ D .k � 1/�
�1 log ��1 � ��1 logE.�/;

so Y
j�1
k�1 .j � k C 1/ D E,

j̀�1;k.j � k; �/ D k�
�1 log ��1 � ��1 logF.�/;

so Y
j�1
k

.j � k/ D F .

By Lemma 8.15, log ��1�m1� ! log�, where � D aj
j�kC1 is an independent

random variable distributed according to Gamma.�j C O�j�kC1/. By Lemma 8.17,

log.yLj
k
.j � k C 1; �// D k log ��1 � j̀;k.j � k C 1; �/�

�! logF C log
�

1C
E�

F

�

D log.F CE�/;

which is consistent with

Y
j

k
.j � k C 1/ D Y j�1

k
.j � k/C aj

j�kC1Y
j�1
k�1 .j � k C 1/:
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c) Assume j D k, t � k. Condition on (for 1 � i � k � 1)

`k�1;i .t � 1; �/ D .t � k C 2i � 1/�
�1 log ��1 � ��1 logBi .�/;

so Y k�1
i .t � 1/ D Bi ,

`k�1;i .t; �/ D .t � k C 2i/�
�1 log ��1 � ��1 logCi .�/;

so Y k�1
i .t / D Ci ,

`k;i .t � 1; �/ D .t � k C 2i � 2/�
�1 log ��1 � ��1 logDi .�/;

so Y ki .t � 1/ D Di ,

`k;i .t; �/ D .t � k C 2i � 1/�
�1 log ��1 � ��1 logEi .�/;

so Y ki .t / D Ei .

By Lemma 8.18, the independent move of the rightmost particle on the k-th

level times � converges to 0, while the push from the previous particles times �

and minus log ��1 converges to

� log

0

B
B
B
B
B
@

k�1
Y

iD2

Di

k�1
Y

iD1

Ci

k�1
Y

iD2

Ei

k�1
Y

iD1

Bi

�

1�
B1

E1

�

1

C
C
C
C
C
A

;

which is consistent with

Y kk .t / D
yLkk.t � 1/

k�1
Y

iD1

Di

k�1
Y

iD1

Ci

k�1
Y

iD1

Ei

k�1
Y

iD1

Bi

�
E1 � B1
D1

:

For t D k we take D1 D 1.

d) Let j D k, k > t > 1. Make the same conditioning as in the previous part,

but with di�erent ranges of indices: k � t C 1 � i � k � 1 for Di , Ei , and

k � t � i � k � 1 for Bi , Ci . Take Bk�t D Dk�tC1 D 1. The independent move

of the rightmost particle on the k-th level times � converges to 0, while the push
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from the previous particles times � and minus log ��1 converges to

� log

0

B
B
B
B
B
@

k�1
Y

iDk�tC1

Di

k�1
Y

iDk�t

Ci

k�1
Y

iDk�tC1

Ei

k�1
Y

iDk�t

Bi

akt

1

C
C
C
C
C
A

;

which is consistent with

Y kk .t / D
yLkk.t � 1/

k�1
Y

iDk�tC1

Di

k�1
Y

iDk�tC1

Ci

k�1
Y

iDk�tC1

Ei

k�1
Y

iDk�tC1

Bi

.Ek�tC1 � Bk�tC1/:

e) Let j > k, t � j . Condition on

j̀�1;i .t � 1; �/ D .t � j C 2i � 1/�
�1 log ��1 � ��1 logBi .�/;

so Y
j�1
i .t � 1/ D Bi for 1 � i � k,

j̀�1;i .t; �/ D .t � j C 2i/�
�1 log ��1 � ��1 logCi .�/;

so Y
j�1
i .t / D Ci for 1 � i � k � 1,

j̀;i .t � 1; �/ D .t � j C 2i � 2/�
�1 log ��1 � ��1 logDi.�/;

so Y
j
i .t � 1/ D Di for 1 � i � k,

j̀;i .t; �/ D .t � j C 2i � 1/�
�1 log ��1 � ��1 logEi .�/;

so Y
j
i .t / D Ei for 1 � i � k � 1.

The independent move of the k-th particle from the left on the j -th level times

� converges to 0. Denote by m1 the distance from this particle to j̀�1;k.t � 1; �/

after the push from the .k � 1/-st particle from the left on the .j � 1/-st level. Let

m2 be this distance after pushes from other particles. By Lemma 8.17,

m1� �! log
�

1C
Ck�1Dk

Bk�1Bk

�

:



q-randomized RSK correspondences and random polymers 117

By Lemma 8.19,

m2� �! log

0

B
B
B
B
B
@

1C
Ck�1Dk

Bk�1Bk

k�1
Y

iD2

Di

k�2
Y

iD1

Ci

k�1
Y

iD2

Ei

k�2
Y

iD1

Bi

�

1 �
B1

E1

�

1

C
C
C
C
C
A

:

This is consistent with

yLj
k
.t / D Bk C Y

j

k
.t � 1/

k�1
Y

iD1

Di

k�1
Y

iD1

Ci

k�1
Y

iD1

Ei

k�1
Y

iD1

Bi

E1 � B1
D1

:

f) Finally, assume that j > k, j > t > j � k C 1. Make the same conditioning

as in the previous part, but with di�erent ranges of indices: j � t C 1 � i � k for

Di , Dj�tC1 D 1, j � t C 1 � i � k � 1 for Ei , j � t � i � k for Bi , Bj�t D 1,

and j � t � i � k � 1 for Ci . The independent move of the k-th particle from the

left on the j -th level times � converges to 0. Denote by m1 the distance from this

particle to j̀�1;k.t � 1; �/ after the push from the .k � 1/-st particle from the left

on the .j � 1/-st level. Let m2 be this distance after pushes from other particles.

By Lemma 8.17,

m1� �! log
�

1C
Ck�1Dk

Bk�1Bk

�

:

By lemma 8.19,

m2� �! log

0

B
B
B
B
B
@

1C
Ck�1Dk

Bk�1Bk

k�1
Y

iDj�tC1

Di

k�2
Y

iDj�t

Ci

k�1
Y

iDj�tC1

Ei

k�2
Y

iDj�t

Bi

a
j
t

1

C
C
C
C
C
A

:

This is consistent with

yLj
k
.t / D Bk C Y

j

k
.t � 1/

k�1
Y

iDj�tC1

Di

k�1
Y

iDj�tC1

Ci

k�1
Y

iDj�tC1

Ei

k�1
Y

iDj�tC1

Bi

.Ej�tC1 � Bj�tC1/:

This completes the proof of Theorem 8.8.
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