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Comparing two statistical ensembles of quadrangulations:

a continued fraction approach

Éric Fusy and Emmanuel Guitter

Abstract. We use a continued fraction approach to compare two statistical ensembles of
quadrangulations with a boundary, both controlled by two parameters. In the �rst ensemble,
the quadrangulations are bicolored and the parameters control their numbers of vertices of
both colors. In the second ensemble, the parameters control instead the number of vertices
which are local maxima for the distance to a given vertex, and the number of those which
are not. Both ensembles may be described either by their (bivariate) generating functions at
�xed boundary length or, after some standard slice decomposition, by their (bivariate) slice
generating functions. We �rst show that the �xed boundary length generating functions are
in fact equal for the two ensembles. We then show that the slice generating functions,
although di�erent for the two ensembles, simply correspond to two di�erent ways of
encoding the same quantity as a continued fraction. This property is used to obtain explicit
expressions for the slice generating functions in a constructive way.
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1. Introduction

The study of planar maps has given rise in the recent years to a lot of remarkable
enumeration results. A particularly fruitful approach consists in taking advantage
of bijections between maps and tree-like objects called mobiles. This technique,
initiated by Schae�er [20, 10] (reinterpreting a bijection by Cori and Vauquelin
[11]) was extended in many di�erent directions [5, 8, 10, 17, 1, 9, 2] to deal with
various re�ned map enumeration problems. It has also been a key tool to show that
random planar maps have an explicit scaling limit called the Brownian map [16, 18,
19, 3]. Besides mobiles, another, slightly di�erent, view on the problem consists in
decomposing the maps into so-called slices, which are particular pieces of maps
with nice combinatorial properties [7]. In particular, the generating functions for
these slices were shown to obey discrete integrable systems of equations and in
most cases, a solution of these equations could be obtained explicitly. Moreover,
the slice decomposition of a map is intimately linked to its geodesic paths and
the knowledge of slice generating functions directly gives explicit answers to a
number of questions regarding the statistics of distances between random points
within maps [4, 5, 6, 15].

A particularly important discovery was made in [7] where it was shown that
slice generating functions happen to be simple coe�cients in a suitable contin-
ued fraction expansion of standard map generating functions, making de facto
a connection between the distance statistics within maps and some more global
properties. On a computational point of view, this discovery provided a construc-
tive way to obtain explicit solutions for the integrable systems at hand, by taking
advantage of known results on continued fractions.

Quite recently, the slice decomposition technique was used in [15] to describe
the distance statistics of general families of bicolored maps, and, in particular, of
bicolored quadrangulations, with some simultaneous control on the numbers of
vertices of both colors. Explicit expressions for the corresponding bivariate slice
generating functions were obtained in a constructive way, leading in particular
to explicit formulas for the distance dependent two-point function within bicol-
ored quadrangulations. Remarkably, the expressions found for slice generating
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functions are very similar to those obtained (via a mobile formalism) in another
problem of quadrangulations considered in [1]. There, the discrimination between
vertices no longer relies on their color but rather on their status with respect to
the graph distance from a �xed origin vertex. Vertices namely come in two types:
those, called local maxima which are further from the origin than all their neigh-
bors, and the others. Bivariate slice generating functions can be de�ned so as to
keep some independent control on the numbers of both types of vertices after the
slice decomposition. Explicit expressions for these new bivariate slice generating
functions were then guessed in [1] and, as just mentioned, their structure is very
similar to that of their bicolored counterparts.

The aim of this paper is twofold: �rst, we establish a strong connection
between the problem of quadrangulations with a control on the vertex color, as
discussed in [15], and that of quadrangulations with a control on local maxima, as
discussed in [1]. Then, we use a continued fraction formalism to re-derive, now in
a constructive way, the explicit expressions found in [1].

The paper is organized as follows: in Section 2, we introduce the two ensem-
bles of quadrangulations that we want to compare and de�ne their generating func-
tions at �xed boundary length. We then derive our �rst fundamental result which
states that the �xed boundary length generating functions are in fact equal for the
two ensembles. Section 3 presents the slice decomposition of the quadrangula-
tions at hand and shows that the corresponding slice generating functions may be
obtained as coe�cients of the same quantity, once expanded as a continued frac-
tion in two di�erent ways. In Section 4, we recall the integrable systems which
determine the slice generating functions of both ensembles as well as the explicit
solutions of these systems obtained in [15] and [1]. Section 5 deals with results on
continued fractions, and shows in particular how to extract their coe�cients from
those obtained via a standard series expansion. In one of the ensembles that we
consider, the knowledge of this series expansion is not su�cient to get all the slice
generating functions, a process which requires the knowledge of some additional
quantity. An explicit expression for this latter quantity is conjectured in Section 6,
based on simpli�cations observed in the case of �nite continued fractions, and we
then show how it allows to recover the explicit formulas for the slice generating
functions found in [1]. Section 7 deals with another aspect of our problem, the
existence of invariants, the so-called conserved quantities, as expected for dis-
crete integrable systems. We show how to derive these invariants combinatorially
for both ensembles and again emphasize the deep similarity existing between the
conserved quantities for the two ensembles. We gather our concluding remarks
in Section 8. Some side results or technical derivations are presented in Appen-
dices A and B.
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2. An equality between two bivariate generating functions

for quadrangulations with a boundary

The aim of this section is to compare the generating functions of planar quadran-
gulations with a boundary weighted in two di�erent ways, each of these weighting
being bivariate, i.e. involving two independent parameters. As we shall see below,
these two weightings, although fundamentally di�erent, are intimately linked and
some of the associated generating functions turn out to be equal.

2.1. Two bivariate generating functions for quadrangulations with a bound-

ary. Recall that a planar quadrangulation with a boundary denotes a connected
graph embedded on the sphere which is rooted, i.e. has a marked oriented edge
(the root-edge) and is such that all its inner faces, i.e. all the faces except that ly-
ing on the right of the root-edge, have degree 4. As for the external face, which is
the face lying on the right of the root-edge, its degree is arbitrary (but necessarily
even). As customary, the origin of the root-edge will be called the root-vertex. Let
us now consider two particular di�erent ways to assign weights to these maps.

XFirst weighting: bicoloring the map. Since all their faces have even degree,
planar quadrangulations with a boundary may be naturally bicolored in black
and white in a unique way, by assigning the black color to the root-vertex and
demanding that no two adjacent vertices have the same color. We way then
enumerate these quadrangulations by assigning a weight t� to each black vertex
and a weight tı to each white vertex. For convenience, the root-vertex receives a
weight 1 instead of t�. We shall then denote by Fn � Fn.t�; tı/ the corresponding
generating function for these maps with a boundary length 2n, i.e. with an external
face of degree 2n.

XSecond weighting: distinguishing local maxima of the distance. Our second
weighting consists in giving a special role to the local maxima of the distance from
the root-vertex. More precisely, we may label each vertex v of the quadrangulation
by its graph distance d.v/ from the root-vertex and look for the local maxima of
this labeling, i.e. those vertices v having only neighbors with label d.v/ � 1 (note
that in all generality, neighbors of a vertex v may only be at distance d.v/ � 1 or
d.v/C 1 from the root-vertex). We decide to give a weight tı to local maxima and
a weight t� to the other vertices (see Figure 1 – left). As before, the root-vertex
receives a weight 1 instead of t� (note that the root-vertex can never be a local
maximum). We shall call Jn � Jn.t�; tı/ the generating function for these maps
with a boundary of length 2n.
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Figure 1. Left: an example of rooted quadrangulation with a boundary of length 10, where
each vertex is labelled by its distance to the root-vertex. The local maxima for this
distance are indicated in gray. Right: the associated rooted general map with a bridgeless
boundary of length 5, obtained by applying the Ambjørn–Budd rule within each inner
face (i.e. connecting the two corners within the face followed clockwise by a larger label)
and, in the external face, connecting cyclically those corners followed by a larger label
counterclockwise around the map.

The generating functions Fn.t�; tı/ and Jn.t�; tı/ may be understood as formal
power series in t� and tı, giving rise to convergent series for small enough t�; tı.
The �rst weighting is quite natural and was described in detail in [15]. We shall
recall some of the corresponding results below. As for the second weighting,
it may seem more arti�cial but, as explained in [1], it arises naturally in two
contexts: �rst, letting tı ! 0 (i.e keeping the linear term in tı) is a way to
suppress local maxima of the distance, selecting quadrangulations arranged into
layers between the root-vertex and a unique local maximum. These so-called
Lorentzian or causal structures display a very di�erent statistics from that of
arbitrary quadrangulations [1]. As recalled below, the second weighting also arises
naturally when enumerating general planar maps with a control on both their
numbers of vertices and faces [1].

2.2. Equality of generating functions. Let us now prove a �rst fundamental
equality, namely that

Jn.t�; tı/ D Fn.t�; tı/: (1)

To this end, let us recall the so-called Ambjørn–Budd bijection of [1] between
quadrangulations and general maps, slightly adapted to the case of quadrangula-
tions with a boundary according to the rules of [6]. Starting with our quadran-



130 É. Fusy and E. Guitter

gulation with a boundary and labeling each vertex v by its distance d.v/ from
the root-vertex, we associate to each inner face an edge as follows (see Figure 1 –
right): looking at the corners1 clockwise around the face, exactly two corners are
followed by a corner with larger label. We connect these two corners by an edge
lying inside the original face. As for the external face, looking again at the corner
labels clockwise around the face, i.e. counterclockwise around the rest of the map,
exactly n corners, including the root-corner (lying immediately to the right of the
the root-edge) are followed by a corner with larger label. We connect the n cor-
ners of this ensemble cyclically clockwise around the map, each edge connecting
two successive corners in the ensemble (see Figure 1). Finally, we mark and ori-
ent away from the root-vertex the edge connecting the root-corner to its successor.
As explained in [1] (and its extension [6]), the obtained edges form a rooted planar
map together with those vertices of the original quadrangulation which were not
local maxima for the distance from the root-vertex. Each inner face of this map
surrounds exactly one of the original local maxima, which get disconnected in the
construction. More precisely, from [1, 6], the above transformation provides a
bijection between planar quadrangulations with a boundary of length 2n and
rooted planar general (i.e. with faces of arbitrary degrees) maps with a bridgeless
boundary2 of length n (i.e. with external face – lying on the right of the root-edge –
of degree n and without bridge). The vertices of the quadrangulation which are
not local maxima for the distance from the root are in one-to-one correspondence
with the vertices of the general map while the vertices of the quadrangulation
which are local maxima are in one-to-one correspondence with the inner faces of
the general map.

We may thus interpret Jn.t�; tı/ as the generating function for rooted planar
general maps with a bridgeless boundary of length n, weighted by t� per non-
root-vertex and tı per inner face.

As for the label d.v/ of a vertex v retained in this new map, it precisely
corresponds to the oriented graph distance from the root-vertex to v on the new
map, using paths oriented from the root-vertex to v which respect the following

1 Recall that a corner is an angular sector between two successive half-edges around a given
vertex. The label of a corner is that of the incident vertex.

2 Strictly speaking, the extension [6] of [1] shows that corners followed by a smaller label
should be connected cyclically within all faces, including the inner faces, so that the resulting
object is a hypermap, made of alternating black and white faces with, in our case, all black
faces of degree 2 but one, of degree n, which we choose as external face. The Ambjørn–Budd
construction that we use here is recovered by squeezing all inner black faces, of degree 2, into
simple edges while the external black face of degree n becomes the external face of the map. As
for any face of a hypermap, its boundary is then necessarily without bridge.
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edge orientation:3 all edges are oriented both ways except for the boundary-edges
(i.e. the edges incident to the external face) which are oriented counterclockwise
around the map.

Forgetting about distances and labels, we may now use a standard construction
to rebuild a quadrangulation with a boundary out of our general map. Coloring
the vertices of the map in black, we simply add a white vertex within each inner
face and connect it to all the corners within the face.4 By doing so, we get a
bicolored quadrangulation with a boundary twice larger as that of the general
map we started from, which we root by picking the edge leaving the root-vertex
within the corner immediately to the left of the root-edge of the general map,
and orienting it from its black to its white extremity (see Figure 2– right). Again
this construction provides a bijection between rooted planar general maps with
a bridgeless boundary of length n and planar quadrangulations with a boundary
of length 2n, equipped with their (unique) bicoloration as de�ned in the previous
section. The vertices of the general map are in one-to-one correspondence with
the black vertices of the quadrangulation while the inner faces of the map are in
one-to-one correspondence with the white vertices of the quadrangulation.

Figure 2. Left: the rooted map on the right of Figure 1, with a bridgeless boundary of
length 5. Right: The associated rooted bicolored quadrangulation with a boundary of length
10 obtained by inserting a white vertex at the center of each inner face of the map and
connecting it to all the incident vertices around the face.

3 In the underlying hypermap structure, the labels correspond to the distance using oriented
paths going clockwise around the black faces. Squeezing the inner black faces of degree 2 results
in simple edges oriented both ways, while the boundary-edges remain oriented oneway only.

4 Note that it is crucial that the boundary of the map be bridgeless for the obtained object to
be connected.
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We may thus interpret Fn.t�; tı/ as the generating function for rooted planar
general maps with a bridgeless boundary of length n, weighted by t� per non-root-
vertex and tı per face. eq. (1) follows.

3. Slice decomposition and continued fractions

3.1. Slice decomposition for maps enumerated by Fn. As explained in [15],
the quadrangulations (with a boundary) enumerated by Fn may be decomposed
into slices by some appropriate cutting procedure.

Labeling each boundary-vertex v by d.v/, the sequence of corner labels, read
counterclockwise around the map starting from the root-corner, forms a directed
path of length 2n, made of elementary steps with height di�erence ˙1, starting
and ending at height 0 and remaining (weakly) above height 0 (see Figure 3).
Drawing, for each boundary-vertex v, its leftmost geodesic (shortest) path to the
root-vertex and cutting along these geodesics results into a decomposition of the
map into pieces, called slices. More precisely, to each descending step i ! i � 1

of the path corresponds an i-slice, de�ned as follows (see [15] for details): it is a
rooted map whose boundary is made of three parts (see Figure 4):

(i) its base consisting of a single root-edge,

(ii) a left boundary of length ` with 1 � ` � i connecting the origin of the root-
edge to another vertex, the apex and which is a geodesic path within the slice,
and

(iii) a right boundary of length ` � 1 connecting the endpoint of the root-edge
to the apex, and which is the unique geodesic path within the slice between
these vertices.

The left and right boundaries do not meet before reaching the apex (which by
convention is considered as part of the right boundary only). As a degenerate case
when ` D 1, the left boundary may stick to the base, in which case the slice is
reduced to a single root-edge.

At this level, it is interesting to note that the distance d.v/ from the root-vertex
to any vertex v in the quadrangulation is directly related to its distance ds.v/,
within the i-slice it lies in, from the apex of this slice via

d.v/ D ds.v/ C i � ` (2)
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Figure 3. An example of directed path of length 2n D 12, made of elementary steps with
height di�erence ˙1, starting and ending at height 0 and remaining (weakly) above height
0. The path is naturally colored in black and white. To compute Fn, we must sum over such
bicolored paths with a weight Bi (resp. Wi ) assigned to each descending step i ! i � 1

starting from a black height (resp. white height).

Figure 4. A schematic picture of an i-slice contributing to Bi (left) and to Wi (right).

if ` is the length of the left boundary of the slice. Indeed, it is clear by construction
of the slices that either the root-vertex is the apex of the i�slice at hand or it does
not belong to the slice at all and any path from v to this root-vertex must �rst reach
one of the boundaries of the slice (possibly at the apex). In the �rst case, we have
d.v/ D ds.v/ and i D ` so that (2) holds. In the second case, since the slice
boundaries are part of geodesic paths to the root-vertex, d.v/ is equal to ds.v/

plus the distance from the apex of the slice to the root-vertex. In other words,
d.v/ � ds.v/ has a constant value within the i-slice, which is obtained by taking
for v the origin of the root-edge of the slice, namely d.v/ � ds.v/ D i � `, and (2)
follows. Note that, in an i-slice, i only acts as an upper bound on the length ` of the
left boundary. The vertices v of an i-slice may then be labelled by non-negative
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integers in two natural ways: either by their distance ds.v/ to the apex or by this
distance plus i � `.

Let us call Bi � Bi .t�; tı/ (resp. Wi � Wi .t�; tı/) the generating function for
i-slices whose root-vertex is black (resp. white), with a weight t� per black vertex
and tı per white vertex except for the vertices of the right boundary (including
the endpoint of the root-edge and the apex) which receive a weight5 1. The slice
decomposition implies that ([15])

Fn D ZC
0;0.2nI ¹Biºi�1; ¹Wiºi�1/ ; (3)

where ZC
0;0.2nI ¹Biºi�1; ¹Wiºi�1/ denotes the generating function of paths of

length 2n, made of elementary steps with height di�erence ˙1, colored alter-
natively in black and white, starting and ending at black height 0 and remaining
(weakly) above height 0, with each descending step from a black height i to a
white height i � 1 weighted by Bi and each descending step from a white height
i to a black height i � 1 weighted by Wi (see Figure 3).

The set of identities (3) for all n > 0 can then be translated [14] into the
continued fraction expression

F.z/ �
X

n�0

Fnzn D 1

1 � z
W1

1 � z
B2

1 � z
W3

1 � z
B4

1 � � � �

(4)

with the convention that F0 D 0 and where F.z/ D F.zI t�; tı/ implicitly depends
on t� and tı.

3.2. Slice decomposition for maps enumerated by Jn. Let us now play the
same game with maps enumerated by Jn, which are the same maps as those
enumerated by Fn, but now with the second weighting. We may again apply the
same slice decomposition, resulting in the same i-slices as before. More precisely,
labeling each boundary-vertex v by d.v/ gives rise to a path of length 2n (from
height 0 to height 0, remaining above height 0) and each descending step i ! i �1

gives rise to an i-slice. To assign the second weighting to the quadrangulation, we
must label each vertex v of the i-slice by its distance d.v/ (in the quadrangulation)
from the root-vertex of the quadrangulation. As explained above, if the i-slice has

5 The reason why these vertices receive a weight 1 is to avoid double weighting upon re-
gluing the slices into a quadrangulation. Indeed, all these vertices are already part of a left
boundary, except for the root-vertex. In the end, only the root-vertex gets a weight 1, as wanted.
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a left boundary length ` (1 � ` � i), this amounts to label v by ds.v/ C i � `

where ds.v/ is its distance (within the slice) from the apex of the slice. To recover
the correct weights, we must �rst give weight 1 to all the vertices of the right
boundary (including the endpoint of their root-edge and the apex) in order to avoid
double weightings after regluing the slices. As for the vertices lying on the left
boundary of the slice and di�erent from the root-vertex of the slice, they cannot, as
part of a geodesic of the original quadrangulation, be local maxima as they have
a neighbor with larger label along the geodesic path. They receive a weight t�

accordingly. Considering now vertices v lying strictly within the slice, they have
all their original neighbors lying in the slice and, from (2), are local maxima for
the distance d.v/ if and only if they are local maxima for the distance ds.v/ within
the slice. For all these vertices, we may thus use the distance ds.v/ within the
slice to detect the local maxima, and give them the weight tı, while vertices that
are not local maxima for ds.v/ get the weight t�. The last vertex to consider is the
origin w of the root-edge of the slice: for this vertex to be a local maximum of
the original distance d.v/, it must both be a local maximum of the distance ds.v/

within the slice and have no neighbor with larger label after regluing. Now two
situations may occur: either the boundary-vertex preceding w along the boundary
(oriented counterclockwise around the quadrangulation) has label d.w/ � 1 and
then the slice at hand sticks to the boundary so that w has all its neighbors within
the slice. Then w is a local maximum for d.v/ if and only if it is a local maximum
for ds.v/. Or the boundary-vertex preceding w has label d.w/ C 1 in which case
w is not a local maximum for d.v/, irrespectively of whether or not it is one for
ds.v/.

To summarize, we are led to consider two di�erent generating functions for
i-slices. In the �rst generating function Qi � Qi .t�; tı/, all the vertices of the
i-slice receive a weight tı or t� according to whether or not they are a local
maximum for the distance ds.v/ from the apex within the slice (in particular the
vertices of the left boundary di�erent from the root-vertex of the slice get a weight
t� as wanted), except for the vertices of the right boundary (including the endpoint
of their root-edge and the apex) which receive a weight 1. In the second generating
function Pi � Pi .t�; tı/, we assign exactly the same weights as in Qi , except for
the root-vertex of the slice, which gets the weight t� irrespectively of whether or
not it is a local maximum for ds.v/ (see Figure 5).

Returning to the slice decomposition, it now implies, for any positive n, that

Jn D yZC
0;0.2nI ¹Piºi�1; ¹Qiºi�1/ ;

where yZC
0;0.2nI ¹Piºi�1; ¹Qiºi�1/ denotes the generating function of paths of

length 2n, made of elementary steps of height di�erence ˙1, starting and ending
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at height 0 and remaining above height 0, with each descending step from height
i to height i � 1 weighted by Pi if it follows a descending step i C 1 ! i and by
Qi if it follows an ascending step i � 1 ! i (see Figure 6).

t

tı

t

tı

1 ` i

Qi Pi

` 1

apex apex

t or tı t

Figure 5. A schematic picture of an i-slice contributing to Qi (left) and to Pi (right).
Vertices that are (resp. are not) local maxima of the distance from the apex are indicated
in gray (resp. in black). The root vertex may be a local maximum or not, and receives the
weight tı or t� accordingly in Qi , while it always gets the weight t� in Pi .

Figure 6. An example of directed path of length 2n D 12, made of elementary steps with
height di�erence ˙1, starting and ending at height 0 and remaining (weakly) above height
0. To compute Jn, we must sum over such paths with a weight Qi (resp. Pi ) assigned to
each descending step i ! i � 1 following an ascent (resp. following a descent).
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Setting J0 D 1 and using the shorthand notation J.z/ D J.zI t�; tı/, this is
summarized into the new continued fraction expansion

J.z/ �
X

n�0

Jnzn

D 1

1 � z.Q1 � P1/ � z
P1

1 � z.Q2 � P2/ � z
P2

1 � z.Q3 � P3/ � z
P3

1 � � � �
(5)

which we may write as

J.z/ D 1

1 � zY1 � z
Y2

1 � zY3 � z
Y4

1 � zY5 � z
Y6

1 � � � �

(6)

upon de�ning

Y2i�1 � Qi � Pi ; Y2i D Pi (7)

for i � 1.

To understand (5), or equivalently (6), we note that, expanding the right hand
side of this latter equation, the term of order zn builds the generating function
LZC

0;0.2nI ¹Yiºi�1/ of paths of length 2n starting and ending at height 0 and re-
maining above height 0, made of elementary (i.e. of horizontal length 1) steps of
height di�erence ˙1 together with “elongated steps” of horizontal length 2 and
height di�erence 0. Each elementary descending step from height i to height i �1

(i � 1) receives a weight Y2i while each elongated step at height i � 1 (i � 1)
receives the weight Y2i�1 (see Figure 7). Deforming each elongated step at height
i � 1 into a sequence of elementary steps i � 1 ! i ! i � 1, we recover paths
made only of elementary steps of height di�erence ˙1, and (after regrouping all
paths with the same deformation) receiving a weight Y2i�1 C Y2i D Qi for each
sequence i � 1 ! i ! i � 1 or equivalently for each descending step i ! i � 1

following an ascent, and a weight Y2i D Pi for those elementary steps i ! i � 1

which are not part of a sequence i � 1 ! i ! i � 1, i.e. follow a descent. In
other words, LZC

0;0.2nI ¹Yiºi�1/ D yZC
0;0.2nI ¹Piºi�1; ¹Qiºi�1/, which explains the

identity (5).
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Figure 7. An example of directed path of length 2n D 12, made of elementary steps with
height di�erence ˙1 and elongated steps (of horizontal length 2) with height di�erence 0,
starting and ending at height 0 and remaining (weakly) above height 0. To compute Jn, we
must sum over such paths with a weight Y2i�1 (resp. Y2i ) assigned to each elongated step
i � 1 ! i � 1 (resp. each descending step i ! i � 1).

To conclude this section, let us rewrite our fundamental equality (1) in the
more compact form

J.zI t�; tı/ D F.zI t�; tı/:

4. Getting the slice generating functions by solving recursion relations

The slice generating functions Bi , Wi , Pi and Qi satisfy systems of non linear
recursive equations which may be derived by performing a slice decomposition
of the slices themselves. Indeed, when the i-slice, of left boundary length `, is
not reduced to a single edge, we may look at the sequence of vertices encountered
clockwise around the face lying on the left of the root-edge of the slice and draw
the leftmost geodesic paths from these vertices to the apex. Using the labeling
ds.v/ C i � ` , the sequence of encountered labels, starting from its root-vertex,
is either i ! i � 1 ! i � 2 ! i � 1 (if i � 2), i ! i � 1 ! i ! i � 1 or
i ! i C 1 ! i ! i � 1 and, upon cutting along the leftmost geodesic paths, a
new slice arises for each descending step of this sequence (see Figure 8).

For the �rst weighting, this decomposition, applied to i-slices enumerated by
Bi and Wi , leads to the system

Bi D t� C Bi .Wi�1 C Bi C WiC1/; (8a)

Wi D tı C Wi .Bi�1 C Wi C BiC1/; (8b)

for i � 1, with B0 D W0 D 0. For the second weighting, this decomposition,
applied to i-slices enumerated by Pi and Qi , leads similarly to the system

Pi D t� C Pi .Pi�1 C Qi C QiC1/; (9a)

Qi D tı C Qi .Pi�1 C Qi / C PiQiC1; (9b)

for i � 1, with P0 D Q0 D 0.
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×

×

×

×

×

Figure 8. A schematic picture of the slice decomposition of a (non-trivial) i-slice into two
slices, leading to the recursion relations (8) and (9).

The solution of (8) was derived in [15]. Parametrizing t� and tı by x and 
 via

t� D x.
 � x/3.1 � 
x3/

.x C x3 C 
 � 6 x2
 C x4
 C x 
2 C x3
2/2
; (10a)

tı D x.
 � x3/.1 � 
x/3

.x C x3 C 
 � 6 x2
 C x4
 C x 
2 C x3
2/2
; (10b)

with6 jxj � 1, it was shown that

B2i D B
.1 � x2i /.1 � 
x2iC3/

.1 � 
x2iC1/.1 � x2iC2/
; (11a)

W2iC1 D W
.1 � 
x2iC1/.1 � x2iC4/

.1 � x2iC2/.1 � 
x2iC3/
; (11b)

B2iC1 D B
.1 � x2iC1=
/.1 � x2iC4/

.1 � x2iC2/.1 � x2iC3=
/
; (11c)

W2i D W
.1 � x2i /.1 � x2iC3=
/

.1 � x2iC1=
/.1 � x2iC2/
; (11d)

6 The parametrization is invariant under .x; 
/ ! .1=x; 1=
/ so we may always choose
jxj � 1.
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for i � 0, where

B D x.
 � x/2

x C x3 C 
 � 6 x2
 C x4
 C x 
2 C x3
2
;

W D x.1 � 
x/2

x C x3 C 
 � 6 x2
 C x4
 C x 
2 C x3
2
:

As for the solution of (9), it was guessed in [1]. Parametrizing now t� and tı by
y and ˛ via

t� D y.1 � ˛y/3.1 � ˛y3/

.1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4/2
; (12a)

tı D ˛y.1 � y/3.1 � ˛2y3/

.1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4/2
; (12b)

with jyj � 1, it was found that

Pi D P
.1 � yi /.1 � ˛yiC3/

.1 � yiC1/.1 � ˛yiC2/
; Qi D Q

.1 � yi /.1 � ˛2yiC3/

.1 � ˛yiC1/.1 � ˛yiC2/
; (13)

for i � 0, where

P D y.1 � ˛y/2

1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4
; (14a)

Q D ˛y.1 � y/2

1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4
: (14b)

Note that the two parametrizations (10) and (12) are actually equivalent providing
we relate y and ˛ to x and 
 via

˛ D 1


2
; y D 
x:

With this correspondence, we immediately deduce that

P D B; Q D W:

This should not come as a surprise since, from (11) and (13), B , W , P and Q

are the i ! 1 limits of Bi , Wi , Pi and Qi , enumerating slices with no bound
on their boundary lengths. From (8) and (9), both pairs .B; W /, and .P; Q/ are
determined by the same closed system, namely:

B D t� C B.B C 2W /; W D tı C W.W C 2B/; (15a)

P D t� C P.P C 2Q/; Q D tı C Q.Q C 2P /: (15b)
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Let us end this section by rewriting the results for Pi and Qi in terms of Yi ,
as de�ned in (7). First, eq. (9) may be rewritten as

Y2i D t� C Y2i .Y2i�2 C Y2i�1 C Y2i C Y2iC1 C Y2iC2/; (16a)

Y2i�1 D .tı � t�/ C Y2i�1.Y2i�2 C Y2i�1 C Y2i /; (16b)

for i � 1, with Y0 D 0. From (13), we immediately deduce the solution

Y2i D P
.1 � yi /.1 � ˛yiC3/

.1 � yiC1/.1 � ˛yiC2/
; Y2iC1 D Y

.1 � yiC1/.1 � ˛yiC3/

.1 � yiC2/.1 � ˛yiC2/
; (17)

for i � 0, with
Y D Q � P:

The aim of this paper is to go beyond the guessing approach of [1] and to provide
a constructive way to obtain this latter formula (17), and consequently (13), upon
using general results for continued fractions of the type (6). This is indeed the
constructive approach used in [15] to obtain the expressions (11) from general
results for continued fractions of the type (4).

5. Getting the slice generating functions

by extracting continued fraction coe�cients: generalities

5.1. The Stieltjes type. Eq. (4) is a continued fraction of the so-called “Stieltjes
type.” Its coe�cients B2i and W2i�1 for i � 1 are known to be related to the
coe�cients Fn via the relations

B2i D h
.0/
i

h
.0/
i�1

.h
.1/
i�1

h
.1/
i�2

; W2i�1 D h
.1/
i�1

h
.1/
i�2

.h
.0/
i�1

h
.0/
i�2

; (18)

for i � 1, in terms of the Hankel determinants

h
.0/
i D det.FnCm/0�n;m�i ; h

.1/
i D det.FnCmC1/0�n;m�i ;

for i � 0, with the convention h
.0/
�1 D h

.1/
�1 D 1. These expressions were used

in [15] to obtain the expressions (11) for B2i and W2iC1 (i � 0). As for the
expressions of B2iC1 and W2i , it is clear from (8) that Bi and Wi play symmetric
roles upon exchanging t� and tı. The expressions (11) for B2iC1 and W2i are
simply deduced upon this transformation, which amounts to a change 
 $ 1=
 ,
B $ W in the formulas (see [15]). At this stage, it is important to note that
the knowledge of the generating functions Fn is not su�cient to determine all
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the Bi ’s and Wi ’s as the associated continued fraction involves only one parity
of the index i (Bi ’s with even index i and Wi ’s with odd index i) and that we
have to rely on a symmetry principle to get the other parity. Otherwise stated, the
derivation of all the Bi ’s and Wi ’s requires in principle the knowledge of a second
family of generating functions. In the present case, these generating functions
are nothing but those of rooted quadrangulations with a boundary of length n,
bicolored in such a way that their root-vertex is white instead of black. Of course,
by symmetry, those are nothing but the Fn.tı; t�/, n � 1 and a simple symmetry
argument is su�cient to conclude.

5.2. The type of eq. (6). When dealing with a continued fraction of the type of
eq. (6), a �rst remark should be emphasized: the knowledge of Jn is not su�cient
to determine the coe�cients Yi . Indeed, expanding in z gives rise to the �rst
equations:

J1 D .Y1 C Y2/; J2 D .Y1 C Y2/2 C Y2.Y3 C Y4/; : : : (19)

and it is easily seen that, at each step, two new Yi ’s appear on the right hand side,
so that the system is clearly underdetermined.

As shown in [12, 13], a full determination of the coe�cients Yi requires, in
addition to the set of Jn for n � 1, the knowledge of Y1 and of a second family of
quantities zJn � zJn.t�; tı/, n � 0, satisfying

zJ .z/ �
X

n�0

zJnzn D 1

1 � z zY1 � z
zY2

1 � z zY3 � z
zY4

1 � z zY5 � z
zY6

1 � � � �

(20)

where we have de�ned (assuming Yi ¤ 0 for all i � 1)

zY2i�1 � 1

Y2i�1

; zY2i � Y2i

Y2i�1Y2iC1

; (21)

for i � 1. Expanding in z now gives rise to the �rst equations:

zJ1 D .Y2 C Y3/

Y1Y3

; zJ2 D .Y2 C Y3/2

.Y1Y3/2
C Y2.Y4 C Y5/

Y1Y 2
3 Y5

; : : : : (22)
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Knowing Y1, the �rst equation of (19) yields Y2, then the �rst equation of (22)
yields Y3, the second equation of (19) yields Y4, and so on. The Yi ’s are now fully
determined and a compact formula may be written as follows: de�ne

jn �

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if n D 0;

Y1Jn�1 if n � 1;

zJ �n if n � �1;

(23)

and the Hankel-type determinants

H
.0/
i D det.jnCm�i�1/1�n;m�i ; (24a)

H
.1/
i D det.jnCm�i /1�n;m�i : (24b)

Then we have, for i � 1, the following formulas, reminiscent of (18),

Y2i D H
.0/
i�1

H
.0/
i

. H
.1/
i

H
.1/
iC1

(25a)

Y2i�1 D H
.1/
i

H
.1/
i�1

. H
.0/
i

H
.0/
i�1

; (25b)

with the convention H
.0/
0 D H

.1/
0 D 0. A proof of these formulas can be found

in [12, 13]. We present a slightly simpler proof in the Appendix A below. To
summarize, when dealing with a continued fraction of the type of eq. (6), we may
extract the coe�cients Yi if, in addition to J.z/, we also know Y1 and zJ.z/. As we
shall see in Section 7 below, getting a simple expression for Y1 combinatorially
may be achieved upon using a so-called conserved quantity. As for zJ.z/, we
have not been able to obtain it via combinatorial arguments (as opposed to the
previous section, we cannot rely here on any symmetry principle to get zJn.t�; tı/

from Jn.t�; tı/). Without the knowledge of zJ.z/, eq. (6) yields a much weaker
system than the recursion equations (16). In fact, any arbitrary choice of zJn will
lead, through (25), to a set of Yi ’s satisfying eq. (6), while the actual Yi ’s, solution
of eqs. (16), correspond to a unique value of the zJn’s, to be determined.

As we shall now explain, we may however conjecture a simple expression for
zJ.z/, based on an explicit solution of the problem in the case of �nite continued
fractions. With this conjectured form of zJ.z/, we may then verify that the obtained
Yi ’s precisely match their actual expressions (17) guessed in [1].
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5.3. The case of �nite continued fractions. In this section, let us brie�y digress
from our combinatorial problem and discuss the case of a �nite continued fraction.
More precisely, let

J.z/ � 1

1 � zY1 � z
Y2

1 � zY3 � z
Y4

: : :

1 � zY2˛�3 � z
Y2˛�2

1 � z Y2˛�1

where Y1; Y2; : : : ; Y2˛�1 denote independent indeterminates. We also de�ne

zJ.z/ � 1

1 � z zY1 � z
zY2

1 � z zY3 � z
zY4

: : :

1 � z zY2˛�3 � z
zY2˛�2

1 � z zY2˛�1

with

zY2i�1 D 1

Y2i�1

for 1 � i � ˛

and

zY2i D Y2i

Y2i�1Y2iC1

for 1 � i < ˛:

The rational function J.z/ is easily seen to be the ratio of a polynomial of degree
˛ � 1 in z by a polynomial of degree ˛ in z, hence characterized by

.˛ � 1 C 1/ C .˛ C 1/ � 1 � 1 D 2˛ � 1

coe�cients (the last two �1’s correspond to removing a global factor in both
the numerator and the denominator, and ensuring that J.0/ D 1), depending
on the 2˛ � 1 indeterminates Y1; Y2; : : : ; Y2˛�1. In this case, the knowledge of
the function J.z/ alone therefore entirely determines all the coe�cients of the
continued fraction. This property may be reconciled with the apparently contrary
statement of the previous section by noting that, in the present case of a �nite
continued fraction, both Y1 and zJ.z/ (de�ned via (20) and (21)) can be deduced
from J.z/. More precisely, we have the following relations, derived in Appendix A
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below:

zJ.z/ D �Y1

z
J

�1

z

�

; Y1 D � 1

lim
z!1

z J.z/
: (26)

Note that zJ.z/ is also a rational function of z and that the expression for Y1 simply
rephrases the desired property that zJ.z/ D 1C O.z/. Knowing J.z/, Y1 and zJ.z/,
we can then deduce the coe�cients jn for all integer n via their de�nition (23) and
get Y2; Y3; : : : ; Y2˛�1 from eqs. (24) and (25) (which are also valid in the case of
a �nite continued fraction – see Appendix A). The relations (26) are proved in the
Appendix A below.

6. Recovering (13) from the continued fraction formalism

6.1. A conjectured expression for Y1 and zJ.z/. Returning now to our enu-
meration problem of i-slices with the second weighting, let us conjecture that,
although our continued fraction is now in�nite, the relations (26) still hold for the
particular choice of Yi we are interested in, namely the solution of (16). More
precisely, J.z/, originally de�ned as a power series in z, is convergent for small
enough real z (namely 0 � z < 1=.

p
Q C

p
P /2, see explicit expressions be-

low – here we assume that t� and tı are small enough positive reals so that P

and Q are positive reals) but may be analytically continued to large enough real z

(z > 1=.
p

Q �
p

P /2). This allows us to de�ne J.1=z/ for small real z (namely
0 � z < .

p
Q �

p
P /2) and our conjecture is that, in this range, zJ.z/ is ob-

tained via the relation zJ.z/ D �.Y1=z/J.1=z/ with a value of Y1 adjusted so that
zJ.0/ D 1. Assuming this property, let us now see if we can then recover the
desired expression (13), or equivalently (17).

Let us start by recalling the expression of F.z/, hence J.z/. From [15],
we know that

Fn D B

t�
.1 � B � W / ZC

0;0.2nI B; W / � B

t�
ZC

0;0.2n C 2I B; W / (27)

where ZC
0;0.2nI B; W / denotes the generating function of paths of length 2n, made

of elementary steps with height di�erence ˙1, colored alternatively in black and
white, starting and ending at black height 0 and remaining (weakly) above height
0, with each descending step from a black height to a white height weighted by B

and each descending step from a white height to a black height weighted by W .
A derivation of this expression via slices is recalled in Section 7 below.
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Equivalently, since Jn D Fn, P D B and Q D W , we have

Jn D A0 ZC
0;0.2nI P; Q/ C A1 ZC

0;0.2n C 2I P; Q/; (28a)

A0 D P

t�
.1 � P � Q/ ; A1 D �P

t�
: (28b)

Let us introduce
Z.zI P; Q/ �

X

n�0

ZC
0;0.2nI P; Q/zn ;

which, by de�nition, is a solution of

Z.zI P; Q/ D 1

1 � z
Q

1 � z P Z.zI P; Q/

: (29)

Note that this (quadratic) equation in Z is equivalent to the equation

Z.zI P; Q/ D 1

1 � z .Q � P / � z P Z.zI P; Q/

so that ZC
0;0.2nI P; Q/ is also the generating function of paths of length 2n,

made of elementary steps with height di�erence ˙1, with each descending step
weighted by Q if it follows an ascending step and by P otherwise. Alternatively,
ZC

0;0.2nI P; Q/ enumerates paths of length 2n, made of elementary steps of hori-
zontal length 1 and height di�erence ˙1, and elongated steps of horizontal length
2 and height di�erence 0, each elongated step receiving the weight Y D .Q � P /

and each elementary descending step the weight P (see Figure 9). As a continued
fraction, we thus have

Z.zI P; Q/ D 1

1 � z Y � z
P

1 � z Y � z
P

1 � z Y � z
P

1 � � � �

; Y D Q � P: (30)

In terms of Z, we may write

J.z/ D A0 Z.zI P; Q/ C A1

Z.zI P; Q/ � 1

z

and, in components

Jn D A0 Œzn�Z.zI P; Q/ C A1 ŒznC1�Z.zI P; Q/ (31)

for n � 0.
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Figure 9. A sketch of the three interpretations of the generating function ZC
0;0

.2nI P; Q/.

At this stage, it is important to note that eq. (29) yields two branches for Z for
real z, namely

Z�.zI P; Q/ D 1 � Y z �
p

.1 � Y z/2 � 4P z

2P z
;

ZC.zI P; Q/ D 1 � Y z C
p

.1 � Y z/2 � 4P z

2P z
; Y D Q � P;

for jzj � 1=.
p

Q C
p

P /2. To recover the coe�cients Jn, we must expand J.z/,
hence Z.zI P; Q/ at small z, which requires to choose

Z.zI P; Q/ D Z�.zI P; Q/:

From Z�.zI P; Q/ D 1 C Qz C O.z2/ we get J.z/ D 1 C O.z/ (since from (15),
A0 C A1 Q D 1), as wanted. Using (26), we �nd that

zJ.z/ D �Y1.A0
NZ.zI P; Q/ C A1 .z NZ.zI P; Q/ � 1//;

where

NZ.zI P; Q/ � 1

z
Z

�1

z
I P; Q

�

:
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Again, we have two possible branches for real z:

NZ�.zI P; Q/ D z � Y �
p

.z � Y /2 � 4P z

2P z
;

NZC.zI P; Q/ D z � Y C
p

.z � Y /2 � 4P z

2P z
; Y D Q � P;

and, to get the zJn’s, we must, depending on whether P > Q or Q > P , choose
the �rst or second branch respectively to get rid of the 1=z term when z ! 0.
Both situations yield actually the same expression for zJn. Assuming for instance
P > Q, we get

zJn D �Y1 A0 Œzn� NZ�.zI P; Q/ � Y1 A1 Œzn�.z NZ�.zI P; Q/ � 1/:

The value of Y1 is obtained by ensuring that zJ0 D 1. Using

NZ�.zI P; Q/ D � 1

Y
C O.z/;

we deduce

Y1

�A0

Y
C A1

�

D 1; (32a)

hence

Y1 D Y

A0 C A1 Y
D .Q � P /.1 � P � 2Q/

1 � 2Q
: (32b)

This value matches that obtained directly via conserved quantities in Section 7.
Using the identity

NZ�.zI P; Q/ D 1

P � Q
Z�

� z

.P � Q/2
I P; Q

�

;

we eventually arrive at

zJn D � Y1

.P � Q/2nC1
.A0Œzn�Z�.zI P; Q/

C A1.P � Q/2Œzn�.zZ�.zI P; Q/ � 1//

D Y1

.Q � P /2nC1
.A0 ZC

0;0.2nI P; Q/ C A1.Q � P /2ZC
0;0.2n � 2I P; Q//

(33)

for n > 0. For Q > P , we must use instead NZC.zI P; Q/ but again in this case,

NZC.zI P; Q/ D � 1

Y
C O.z/
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and

NZC.zI P; Q/ D 1

P � Q
Z�

� z

.P � Q/2
I P; Q

�

so that the expressions (32) and (33) remain unchanged. The �rst line of (33) may
be rewritten as

zJn D Y1

Y

�

A0Œzn�Z�

� z

Y 2
I P; Q

�

C A1Œzn�
�

zZ�

� z

Y 2
I P; Q

�

� 1
��

D Y1

Y

�

A0Œzn� zZ.zI P; Q/ C A1Œzn�1� zZ.zI P; Q/
�

(34)

for n � 1, with

zZ.zI P; Q/ � Z�

� z

Y 2
I P; Q

�

D 1

1 � z zY � z
zP

1 � z zY � z
zP

1 � z zY � z
zP

1 � � � �
where

zY D 1

Y
and zP D P

Y 2
:

Upon de�ning

kn �

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if n D 0;

Y Zn�1 if n � 1;

zZ�n if n � �1;

with the notations

Zn � Œzn�Z.zI P; Q/ D ZC
0;0.2nI P; Q/

and

zZn � Œzn� zZ.zI P; Q/ D ZC
0;0.2nI P; Q/=Y 2n

(n � 0), we may summarize (31), (32), and (34) into

jn D A0

Y1

Y
kn C A1

Y1

Y
knC1

for all integer n.
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6.2. Computation of H
.0/

i
and H

.1/

i
. The above expression for jn for all integer

n opens the way to compute H
.0/
i and H

.1/
i via (24). Indeed, as shown in

Appendix B, the coe�cients kn satisfy a set of linear relations of the form

i�1
X

mD0

kn�iCm.�1/m x
.i�1/
i�1�m

x
.i�1/
i�1

D 0; 2 � n � i; (35)

while, for n D 1 and n D i C 1, we have

i�1
X

mD0

k1�iCm.�1/m x
.i�1/
i�1�m

x
.i�1/
i�1

D P i�1

Y 2.i�1/
(36a)

i�1
X

mD0

k1Cm.�1/m x
.i�1/
i�1�m

x
.i�1/
i�1

D .�1/i�1 P i�1

Y i�2
: (36b)

From these relations, replacing the �rst column .jn�i /1�n�i of H
.0/
i by the linear

combination
�

i�1
X

mD0

jn�iCm.�1/m x
.i�1/
i�1�m

x
.i�1/
i�1

�

1�n�i

of this �rst column with the i � 1 last ones allows us to write

H
.0/
i D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A0

Y1

Y

P i�1

Y 2.i�1/
j�iC2 � � � � � � j0

0 j�iC3 � � � � � � j1

:::
::: : : :

: : : :::

0 j0 : : :
: : :

ji�2

.�1/i�1A1

Y1

Y

P i�1

Y i�2
j1 � � � � � � ji�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D A0Y1

P i�1

Y 2i�1
H

.1/
i�1 C A1Y1

P i�1

Y i�1
H

.0/
i�1:

Alternatively, the coe�cients kn satisfy another set of linear relations of the form
(see Appendix B)

i�1
X

mD0

kn�m.�1/mx0.i�1/
m D 0; 2 � n � i; (37)
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while, for n D 1 and n D i C 1, we have

i�1
X

mD0

k1�m.�1/mx0.i�1/
m D .�1/i�1 P i�1

Y i�2
; (38a)

i�1
X

mD0

kiC1�m.�1/mx0.i�1/
m D YP i�1.Y C P /: (38b)

From these relations, replacing the last column .jn/1�n�i of H
.1/
i by the linear

combination

.

i�1
X

mD0

jn�m.�1/mx0.i�1/
m /1�n�i

of this last column with the i�1 �rst ones, and using x
0.i�1/
0 D 1 (see Appendix B),

allows us to write

H
.1/
i D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�iC2 � � � � � � j0 .�1/i�1A0

Y1

Y

P i�1

Y i�2

j�iC3 � � � � � � j1 0

:::
::: : : :

: : : :::

j0 : : :
: : :

ji�2 0

j1 � � � � � � ji�1 A1

Y1

Y
YP i�1.Y C P /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D A0Y1

P i�1

Y i�1
H

.1/
i�1 C A1Y1P i�1.Y C P /H

.0/
i�1:

To summarize, H
.0/
i and H

.1/
i are fully determined by the system

H
.0/
i D A0Y1

P i�1

Y 2i�1
H

.1/
i�1 C A1Y1

P i�1

Y i�1
H

.0/
i�1;

H
.1/
i D A0Y1

P i�1

Y i�1
H

.1/
i�1 C A1Y1P i�1.Y C P /H

.0/
i�1;

for i � 1 with H
.0/
0 D H

.1/
0 D 1. Upon setting

L
.0/
i �

� Y

P

�
i.i�1/

2

H
.0/
i ; L

.1/
i � 1

Y i�1

� Y

P

�
i.i�1/

2

H
.1/
i ; (39)
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these equations read

L
.0/
i D A0

Y1

Y 2
L

.1/
i�1 C A1Y1 L

.0/
i�1 (40a)

L
.1/
i D A0

Y1

Y
L

.1/
i�1 C A1Y1.Y C P / L

.0/
i�1: (40b)

Using the �rst line to express L
.1/
i in terms of L

.0/
i and re-injecting the result in

the second line yields an equation for L
.0/
i only, namely

L
.0/
iC1 D Y1

�A0

Y
C A1

�

L
.0/
i C A0A1

Y 2
1

Y 2
PL

.0/
i�1

for i � 1 with

L
.0/
0 D 1

and

L
.0/
1 D H

.0/
1 D Y1

�A0

Y
C A1

�

:

Using (32) and setting

w � A0A1

Y 2
1

Y 2
P ;

we recover the well-known equation

L
.0/
iC1 D L

.0/
i C w L

.0/
i�1 (41)

for i � 1 with L
.0/
0 D L

.0/
1 D 1, which allows us to interpret L

.0/
i as the generating

function of hard pieces on a linear graph with i � 1 vertices (see Figure 10),
with a weight w per piece. The solution of this equation is known to be (see
for instance [7] eq. (6.11))

L
.0/
i D 1

.1 C y/i

1 � yiC1

1 � y
where w D � 1

y C y�1 C 2
: (42)

If we instead eliminate L
.0/
i from the system (40), we obtain for L

.1/
i the very same

equation
L

.1/
iC1 D L

.1/
i C w L

.1/
i�1

for i � 1, now with the initial conditions

L
.1/
0 D Y

and

L
.1/
1 D H

.1/
1 D j1 D Y1
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(this value can also be read from (40) as it yields L
.1/
1 D Y1.A0 C A1.Y C P // D

Y1.A0 C A1Q/ D Y1). We immediately deduce

L
.1/
i D Y L

.0/
i C .Y1 � Y /L

.0/
i�1

with the convention L
.0/
�1 D 0. Using (42), we obtain

L
.1/
i D 1

.1 C y/i

1

1 � y

�

Y.1 � yiC1/ C .Y1 � Y /.1 � yi /.1 C y/
�

D 1

.1 C y/i
Y1.1 C d y/

�1 � ˛ yiC2

1 � y

�

;

(43)

where

d � Y1 � Y

Y1

and ˛ � 1

y2

d C y

1 C dy
:

Figure 10. A schematic picture of eq. (41), identifying L
.0/

i
as the generating function of

hard pieces on a linear graph with i � 1 vertices.

6.3. Comparison with formulas (13). Combining (39) and the explicit val-
ues (42) and (43), we obtain from (25) the desired expressions (17). It simply
remains to show that our de�nitions for y and ˛ of Section 6.2, given by (42)
and (43) just above, match their de�nitions of Section 4 given by (12), or equiva-
lently (14) and (15). If so, (17) is equivalent to (13) and we are done.

Using for y and ˛ their de�nitions of Section 4 (through (14) and (15)), we
obtain for Y D Q � P and Y1 (whose value in terms of P and Q is given by (32))
the parametrizations

Y D .˛ � 1/y.1 � ˛y2/

1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4
;

Y1 D .˛ � 1/y.1 � ˛y3/

.1 C y/.1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4/
:
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so that

d D �y.1 � ˛y/

1 � ˛y3
and

1

y2

d C y

1 C dy
D ˛

as wanted to match the de�nition (43) of ˛ of Section 6.2.
As for y, we use the expressions (28) of A0 and A1 to get the parametrizations

A0 D .1 � ˛y2/2

.1 � ˛y/.1 � ˛y3/
;

A1 D �1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4

.1 � ˛y/.1 � ˛y3/
:

so that

w D A0A1

Y 2
1

Y 2
P D � 1

y C y�1 C 2

as wanted to match the de�nition (42) of y of Section 6.2.
A more constructive approach consists in starting instead from the de�nitions

of y and ˛ of Section 6.2 (through (42) and (43)) and recovering the parametriza-
tion (14) of Section 4. From (28) (and t� D P.1 � P � 2Q/), A0 can be expressed
in terms of P and Q, as well as Y (D Q � P ) and Y1 via (32). This leads to

w � A0A1

Y 2
1

Y 2
P D �P.1 � Q � P /

.1 � 2Q/2
D � 1

y C y�1 C 2

hence we deduce the (so-called characteristic) equation

.1 � 2Q/2 � .2 C y C y�1/P.1 � P � Q/ D 0:

This in turn leads to

d � Y1 � Y

Y1

D � P

1 � P � 2Q
; ˛ � 1

y2

d C y

1 C dy
D � P � y.1 � P � 2Q/

y2.1 � P � 2Q � yP /
:

Using this latter equation to express Q in terms of P , y and ˛, namely

Q D �P.1 C y/.1 � ˛y2/

2y.1 � ˛y/
C 1

2
;

and plugging this value in the characteristic equation above, we �nd that P is
determined by

�y.1 � ˛y/2 C P.1 C y C ˛y � 6 ˛y2 C ˛y3 C ˛2y3 C ˛2y4/ D 0;

from which (14) follows.



Comparing two statistical ensembles of quadrangulations 155

7. Conserved quantities

The explicit formulas (11) (resp. (13) or equivalently (17)) are typical expressions
for the solutions of discrete integrable systems. A deeper characterization of the
integrability of the system (8) (resp. (9) or (16)) is the existence of a number of
discrete conserved quantities, i.e. quantities whose expression depends explicitly
on some positive integer (called d below) but whose value turns out to be inde-
pendent of this integer. In the case of bicolored quadrangulations, it has already
been recognized that these conserved quantities may be obtained by looking for
a direct combinatorial derivation of Fn in the slice formalism. Let us �rst recall
this construction and then see how it extends to the case of our second weighting
governed by local maxima.

7.1. Conserved quantities for the �rst weighting. The slice decomposition
described in [7, 15] applies more generally to pointed rooted quadrangulations
with boundaries, that is, quadrangulations with a boundary, having a root-edge on
the boundary oriented with the boundary-face on its right, and having a pointed
vertex (which might not be incident to the boundary-face); the label d.v/ of each
vertex v is now the distance from v to the pointed vertex v0. For Q such a map, the
canonical bicoloration of Q is the vertex bicoloration in black and white where
the root-vertex (origin of the root) is black and any two adjacent vertices have
di�erent colors. As before, a local maximum for the distance is a vertex v such that
d.v/ D d.v0/ C 1 for every neighbor v0 of v. For n � 1 and d � 0, let B.d/

n be the
family of admissible pointed rooted quadrangulations with a boundary of length
2n, where the root-vertex is at distance at most d from v0, and is one (possibly
not unique) of the boundary-vertices that reach the smallest distance from v0.
Let F

.d/
n be the generating function of B.d/

n where each black vertex (resp. white
vertex) receives weight t� (resp. tı) except for the pointed vertex that receives
weight 1. And let ZC

d;d
.2nI ¹Biºi�1; ¹Wiºi�1/ be the generating functions of paths

of length 2n starting and ending at height d and staying at height at least d all
along, made of elementary steps with height di�erence ˙1, with each descending
step from height i to height i � 1 weighted by Bi if i � d mod 2 and weighted by
Wi if i � d C 1 mod 2.

Note that B.0/
n is nothing but the set of rooted quadrangulations with a bound-

ary of length 2n so that F
.0/
n D Fn. Then, as explained in [7, 15], the slice decom-

position described in Section 3.1 for maps in B
.0/
n applies more generally for maps

in B
.d/
n and yields

F .d/
n D ZC

d;d
.2nI ¹Biºi�1; ¹Wiºi�1/:
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Now let yB.d/
n D B

.d/
n n B

.0/
n be the subfamily of B.d/

n where the pointed vertex
is di�erent from the root-vertex, and let yF .d/

n be the generating function for the
subfamily yB.d/

n where the weights are speci�ed as in F
.d/
n . For Q 2 yB.d/

n , with
v0 the pointed vertex and Ev the root-vertex, let e be the �rst edge of the leftmost
geodesic path from Ev to v0. This edge cannot be a boundary-edge as otherwise,
Ev would not reach the smallest distance from v0 among boundary-vertices. We
may cut along e (starting from Ev) so as to duplicate e into two edges e1; e2 (with
e2 before e1 in ccw order around the new map) and duplicate Ev into two vertices
v1; v2 (see Figure 11).

Figure 11. Left: a pointed rooted quadrangulation Q with a boundary. Right: the pointed
rooted quadrangulation yQ obtained by cutting along the �rst edge of the leftmost geodesic
path from the root-vertex to the pointed vertex.

Let yQ be the pointed rooted quadrangulation with a boundary of length 2nC4

that is obtained by erasing e2, taking v1 as the new root-vertex, and keeping v0 as
the pointed vertex. Denoting by d D .d1; : : : ; d2nC4/ the distances from v0 of the
successive boundary-vertices (starting from v1) in ccw order around yQ, we have
the conditions that diC1 D di ˙ 1 for i 2 ¹1; : : : ; 2n C 3º, d1 equals the distance
of Ev from v0 in Q so that d1 � d , di � d1 for all i 2 ¹1; : : : ; 2n C 1º, d2nC1 > d1

(indeed, by the e�ect of cutting along the �rst edge of the leftmost geodesic path,
the distance of v2 from v0 is strictly larger than the distance of v1 from v0), and
d2nC4 D d1 � 1. The bipartiteness of yQ implies that d2nC1 � d1 mod 2, so that
the last entries of d must be .d1 C 2; d1 C 1; d1; d1 � 1/. Hence, if for k � 1

we denote by Z
C;k&
d;d

.2nI ¹Biºi�1; ¹Wiºi�1/ the generating function de�ned as

ZC
d;d

.2nI ¹Biºi�1; ¹Wiºi�1/, but with the restriction that the k last steps of the
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path are descending, then the slice decomposition applied to yQ gives

yF .d/
n D 1

t�
Z

C;2&
d;d

.2n C 2I ¹Biºi�1; ¹Wiºi�1/ � Bd ;

where the factor 1
t�

accounts for the (black) root-vertex being duplicated and the
factor Bd accounts for the last descent d1; d1 � 1. Hence for each n � 1 we have
the conserved quantity

Fn D ZC
d;d

.2nI ¹Biºi�1; ¹Wiºi�1/ � 1

t�
Z

C;2&
d;d

.2n C 2I ¹Biºi�1; ¹Wiºi�1/ � Bd :

(44)
The �rst two conserved quantities, n 2 ¹1; 2º, are (with r D d C 1): for all r � 1

(with B0 D 0)

F1 D Wr � 1

t�
BrC1WrBr�1;

F2 D W 2
r C BrC1Wr � 1

t�
.Wr C BrC1 C WrC2/BrC1WrBr�1:

Shifting in (44) all path heights by �d and replacing Bi and Wi by BiCd and
WiCd so as to compensate this shift, we get, upon sending d ! 1 the identity

Fn D ZC
0;0.2nI B; W / � 1

t�
Z

C;2&
0;0 .2n C 2I B; W / � B (45)

(with some obvious notations) which, using the identities

Z
C;2&
0;0 .2n C 2I B; W / D ZC

0;0.2n C 2I B; W / � ZC
0;0.2nI B; W / � W

and
B D t� C B.B C 2W /;

is easily transformed into (27).

7.2. Conserved quantities for the second weighting. We may now play a sim-
ilar game for the quantities Jn to obtain conserved quantities involving the gener-
ating functions ¹Pr ; Qrºr�1. Let J

.d/
n be the generating function of B.d/

n where
vertices that are (resp. are not) local maxima receives weight t� (resp. tı) except
for the pointed vertex that receives weight 1. And let yZC

d;d
.2nI ¹Piºi�1; ¹Qiºi�1/

be the generating function of paths of length 2n starting and ending at height d

and staying at height at least d all along, made of elementary steps with height
di�erence ˙1, with each descending step from height i to height i � 1 weighted
by Pi if just after a descent and weighted by Qi if just after an ascent.
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Again, the slice decomposition described in Section 3.2 for maps in B
.0/
n

applies more generally for maps in B
.d/
n and yields

J .d/
n D yZC

d;d
.2nI ¹Piºi�1; ¹Qiºi�1/:

Let M.d/
n be the family of rooted pointed general maps with a bridgeless boundary

of length n, where the root-vertex is at distance at most d from the pointed vertex
v0, and is at least as close from v0 as any other boundary-vertex (here boundary-
edges are directed ccw around the map while inner edges are bi-directed; the
distance-label d.v/ is the length of a shortest directed path starting from v0 and
ending at v). The Ambjørn–Budd bijection described in Section 2.2 betweenM

.0/
n

andB.0/
n extends verbatim (using the same local rules, and having the same pointed

vertex and the same root-vertex in corresponding maps, see [1, 6]) to a bijection
between B

.d/
n and M

.d/
n , so that J

.d/
n is also the generating function of maps in

M
.d/
n with a weight t� for each non-pointed vertex and a weight tı for each inner

face.
Let yM.d/

n be the subfamily of M.d/
n where the pointed vertex is di�erent from

the root-vertex, and let yJ .d/
n be the generating function of the subfamily yB.d/

n where
the weights are as in J

.d/
n . Then the Ambjørn–Budd bijection ensures that yJ .d/

n is
also the generating function of yM.d/

n with a weight t� for each non-pointed vertex
and a weight tı for each inner face. For a map M 2 yM.d/

n , let e be the �rst edge
on the leftmost geodesic path from the root-vertex Ev to the pointed vertex v0 (note
that all the edges on this path are inner edges, and all vertices on this path are inner
vertices except for Ev, in particular the tip of e is an inner vertex). Again we can cut
along e (starting from Ev) so as to duplicate e into two edges e1; e2 (with e2 before
e1 in ccw order around the map) and duplicate Ev into two vertices v1; v2, and take
v1 as the new root-vertex (see Figure 12).

Figure 12. Left: a pointed rooted map M with a bridgeless boundary. Middle: the pointed
rooted map yM obtained by cutting along the �rst edge of the leftmost geodesic path from the
root-vertex to the pointed vertex. Right: the associated quadrangulation yQ with a boundary
(see text).
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The map yM thus obtained (as opposed to the quadrangulated case we do not
delete e2) is a general map with a bridgeless boundary of length n C 2. If we
denote by ı1; : : : ; ınC2 the distances from the pointed vertex v0 of the successive
boundary-vertices (starting with v1) in ccw order around yM , then ı1 equals the
distance of Ev from v0 in M so that ı1 � d , ıi � ı1 for i 2 ¹1; : : : ; n C 1º,
ıiC1 � ıi C 1 for i 2 ¹1; : : : ; n C 1º, ınC1 > ı1 (by the e�ect of cutting along
the �rst edge of the leftmost geodesic path) and ınC2 D ı1 � 1. In particular if
we reroot the map at the vertex between e1 and e2, we get a map M 0 2 M

.d�1/
nC2 .

We may then take the image Q0 2 B
.d�1/
nC2 of M 0 by the Ambjørn–Budd bijection,

and denote by yQ the quadrangulation with boundary obtained from Q0 by shifting
the root position by one in ccw order around Q0; note also that the number of
vertices that are (resp. are not) local maxima of yQ equals the number of inner
faces (resp. the number of vertices) of M 0, which is also the number of inner
faces (resp, the number of vertices plus 1) of M . Let again d D .d1; : : : ; d2nC4/

be the distances from the pointed vertex v0 of the successive boundary-vertices
(starting with v1) in ccw order around yQ. By the local rules of the Ambjørn–
Budd bijection, d is obtained from the sequence ı1; : : : ; ınC2 where for each
i 2 ¹1; : : : ; n C 1º, we insert between ıi and ıiC1 the subsequence (of length
ıi � ıiC1 C 1) ıi C 1; ıi ; : : : ; ıiC1 C 1. It is then easy to check that d satis�es the
following conditions: d1 D ı1, diC1 D di ˙ 1 and di � ı1 for i 2 ¹1; : : : ; 2n C 3º,
d2nC4 D ı1 �1, and d ends with ı1 C2; ı1C1; ı1; ı1 �1 (since ınC1 > ı1). Hence,
if for k � 1 we denote by yZC;k&

d;d
.2nI ¹Piºi�1; ¹Qiºi�1/ the generating function

de�ned as yZC
d;d

.2nI ¹Piºi�1; ¹Qiºi�1/, but with the restriction that the k last steps

of the path are descending, then the slice decomposition applied to yQ gives

yJ .d/
n D 1

t�
yZC;2&

d;d
.2n C 2I ¹Piºi�1; ¹Qiºi�1/ � Pd ;

where the factor 1
t�

accounts for the root-vertex of M being duplicated, and the
factor Pd accounts for the last descent ı1; ı1 � 1. Hence for each n � 1 we have
the conserved quantity

Jn D yZC
d;d

.2nI ¹Piºi�1; ¹Qiºi�1/� 1

t�
yZC;2&

d;d
.2nC2I ¹Piºi�1; ¹Qiºi�1/�Pd : (46)

Remarkably this has exactly the same form as the bicolored conserved quanti-
ties (44), up to changing ¹Pi ; Qiºi�1 for ¹Bi ; Wiºi�1 and taking the “hat” variants
of the path generating functions. The �rst two invariants, n 2 ¹1; 2º, are (with
r D d C 1): for all r � 1 (with P0 D 0)

J1 D Qr � 1

t�
QrC1PrPr�1;

J2 D Q2
r C QrC1Pr � 1

t�
..Qr C QrC1/QrC1 C QrC2PrC1/PrPr�1:
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As before, upon sending d ! 1 in (46), we get the expression

Jn D yZC
0;0.2nI P; Q/ � 1

t�
yZC;2&

0;0 .2n C 2I P; Q/ � P

(with straightforward notations). Upon using P D B , Q D W and comparing
with (45), this provides another (computational) proof of the identity Jn D Fn by
noting that

yZC
0;0.2nI P; Q/ D ZC

0;0.2nI P; Q/

and7
yZC;2&

0;0 .2n C 2I P; Q/ D Z
C;2&
0;0 .2n C 2I P; Q/:

Finally, from (9), we get Y1 D .Q1 � P1/ D tı � t� C .Q1 � P1/Q1, hence
Y1 D .tı � t�/=.1 � Q1/. Using the �rst conserved quantity above, we deduce
Q1 D J1 D Q � QP 2=t� so that Y1 D t�.tı � t�/=.t� � t�Q C QP 2/ which upon
expressing t� and tı in terms of P and Q via (15), reproduces the expression (32)
for Y1.

7 The identity
yZC

0;0.2nI P; Q/ D Z
C
0;0.2nI P; Q/

is easily proved by noting that the equation

yZ D
1

.1 � z.Q � P / � zP yZ/

that determines the generating function

yZ �
X

n�0

yZC

0;0.2nI P; Q/zn

is identical to the equation

Z D
1

.1 � zQ=.1 � zP Z//

that determines the generating function

Z �
X

n�0

Z
C
0;0.2nI P; Q/zn;

hence yZ D Z.
The identity

yZC;2&

0;0 .2n C 2I P; Q/ D Z
C;2&

0;0 .2n C 2I P; Q/

follows by noting that

yZC;2&

0;0 .2n C 2I P; Q/ D yZC
0;0.2n C 2I P; Q/ � yZC

0;0.2nI P; Q/ � Q

and similarly

Z
C;2&

0;0 .2n C 2I P; Q/ D ZC
0;0.2n C 2I P; Q/ � ZC

0;0.2nI P; Q/ � Q:
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8. Conclusion

In this paper, we presented a comparative study of two statistical ensembles
of quadrangulations. We �rst showed how the corresponding slice generating
functions (Bi ; Wi for the �rst ensemble and Pi ; Qi for the second) appear as
coe�cients of the same quantity F.z/ D J.z/, expanded as a continued fraction
in two di�erent ways. The slice generating functions may then be written as bi-
ratios of Hankel-type determinants and explicit formulas may be obtained, at the
price of some conjectured expression for some intermediate quantity in the second
ensemble.

To conclude, we would like to emphasize that our two ensembles may be
viewed, in some sense, as the two extremal elements of a very general family
of statistical ensembles as follows: by de�nition, the second ensemble gives a
particular weight to those vertices which are local maxima for the distance to the
root-vertex. Similarly, the �rst ensemble may be viewed as the ensemble which
gives a particular weight to those vertices which are local maxima for the distance
to the root-vertex modulo 2. Indeed, this distance modulo 2 is 0 for black vertices
(recall that the root-vertex is black) and 1 for white vertices so that all white
vertices are local maxima. In this respect, note also that performing the passage
from the quadrangulation to the general map in the bijection of Figure 2 may
be viewed as applying the Ambjørn–Budd rules, taking as labeling the distance
modulo 2.

Denoting by d.v/ the distance from a vertex v to the root-vertex in a rooted
quadrangulation with a boundary, we may more generally consider statistical
ensembles which give a particular weight to those vertices which are local maxima
for some labeling `.d.v//, with d 7! `.d/ some given function. Without loss
of generality, we may set `.0/ D 0 and, if we wish to apply the Ambjørn–
Budd rules to transform our quadrangulation into a general map, we need that
j`.d/ � `.d � 1/j D 1 (it also seems natural to impose that `.d/ remains non
negative so that the root-vertex cannot be a local maximum). It is likely that slice
generating functions in this ensemble may appear as coe�cient of F.z/ D J.z/,
once expanded as a continued fraction with some appropriate structure, being a
mixture of the Stieljes-type and of our new encountered type. At this stage, it
is interesting to notice that, in their study of �nite continued fractions [12, 13],
Di Francesco and Kedem introduced precisely a whole family of such “mixed”
fractions as well as some passage rules on their coe�cients to go from one to
the other without changing the actual value of the fraction. It is very tempting
to speculate that their study may be extended to in�nite continued fractions to
describe our more general ensembles.
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Appendices

A. A proof of formulas (25) and (26)

As in [12, 13], our proof of formulas (25) and (26) is based on the theory of heaps
of pieces. The reader is invited to consult [21] for the basics of this theory.

Let us simply recall what we mean by a heap of pieces on a graphG, supposedly
connected, planar, and drawn in a horizontal plane for simplicity. Imagine to
complete the graph by a set of vertical half-lines, with a half-line starting from
each vertex of the graph. Informally speaking, a heap is a collection of pieces
threaded along these half-lines. Each piece therefore sits on top of a given vertex
and may move freely along the corresponding vertical half-line as long as it does
not meet another piece. More precisely, the pieces are supposed to be designed so
that two pieces may not pass each other if and only if they sit on top of the same
vertex or on top of adjacent vertices.

Given a subset B of the set of vertices of G, a heap of pieces is said to be of
base B if, moving its pieces as far as possible to the bottom of the half-lines, the
set of those vertices hit by a piece forms a subset of B (see Figure 13).

Figure 13. An example of heap of 7 pieces sitting on top of the graph G of Figure 14 with
base ¹1; 8º (we indicated in light blue the “shadow” of those pieces which can move freely
and hit the vertices of the graph). The diameter of the pieces is adjusted so that pieces
sitting on top of vertices which are adjacent in G cannot pass through each other.
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A fundamental remark is that, from the relation (6), J.z/ may be viewed as the
generating function for heaps of pieces on the semi-in�nite graph G of Figure 14,
with a weight zYi per piece sitting at position i along the graph, and whose base
is ¹1; 2º. Similarly, we may interpret zJ.z/ as the generating function for the very
same heaps, but now with a weight z zYi per piece sitting at position i . Let us �nally
introduce the quantity

K.z/ � 1 C z Y1 J.z/ D 1

1 � z
Y1

1 � z
Y2

1 � zY3 � z
Y4

1 � zY5 � z
Y6

1 � � � �

which is the generating function for heaps of pieces on the graph G again with a
weight zYi per piece sitting at position i along the graph, but now with base ¹1º.

Figure 14. The semi-in�nite graph G and the �nite graph G.˛/.

From the de�nition (23) of the jn’s, we have

K.z/ D
X

n�0

jnzn; zJ.z/ D
X

n�0

j�nzn;

so that all the jn’s have a direct interpretation as enumerating heap con�gurations
made of jnj pieces.



164 É. Fusy and E. Guitter

Let us now consider the analogs J .˛/.z/, K.˛/.z/ and zJ .˛/.z/ of J.z/, K.z/

and zJ.z/ respectively, viewed as heap generating functions, now de�ned on the
�nite graph G.˛/ of Figure 14. In other words, we set

J .˛/.z/ � 1

1 � zY1 � z
Y2

1 � zY3 � z
Y4

: : :

1 � zY2˛�3 � z
Y2˛�2

1 � z Y2˛�1

zJ .˛/.z/ � 1

1 � z zY1 � z
zY2

1 � z zY3 � z
zY4

: : :

1 � z zY2˛�3 � z
zY2˛�2

1 � z zY2˛�1

K.˛/.z/ � 1 C z Y1 J .˛/.z/

D 1

1 � z
Y1

1 � z
Y2

1 � zY3 � z
Y4

: : :

1 � zY2˛�3 � z
Y2˛�2

1 � z Y2˛�1

:

We �nally de�ne the analogs j
.˛/
n of jn via

K.˛/.z/ D
X

n�0

j .˛/
n zn;

zJ .˛/.z/ D
X

n�0

j .˛/
�n zn;

so that j
.˛/
n (n � 0) enumerates heap con�gurations of n pieces on G.˛/ with

weights Yi and base ¹1º, and j
.˛/
�n (n � 0) enumerates heap con�gurations of n

pieces on G.˛/ with weights zYi and base ¹1; 2º.
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It is now a standard result of the theory of heaps of pieces [21] that8

K.˛/.z/ D X .˛/.0; �zY2; �zY3; : : : ; �zY2˛�1/

X .˛/.�zY1; �zY2; �zY3; : : : ; �zY2˛�1/
(47a)

zJ .˛/.z/ D X .˛/.0; 0; �z zY3; : : : ; �z zY2˛�1/

X .˛/.�z zY1; �z zY2; �z zY3; : : : ; �z zY2˛�1/
(47b)

where X .˛/.y1; y2; y3; : : : ; y2˛�1/ denotes the generating function of hard pieces
on the graph G.˛/, each piece sitting at position i receiving the weight yi . Recall
that, by de�nition, in a con�guration of hard pieces, each vertex of the graph is
occupied by at most one piece, with no two adjacent vertices occupied simulta-
neously. Note that the positions of the 0’s in the numerators correspond to the
location of the vertices of the corresponding base of the heaps (¹1º and ¹1; 2º
respectively). Clearly, on the graph G.˛/, we can put at most ˛ hard pieces. More-
over, this maximal situation is achieved by a single con�guration with all sites
with odd index occupied (see Figure (15)).

The quantity X .˛/.�zY1; �zY2; �zY3; : : : ; �zY2˛�1/ is therefore a polynomial
of degree ˛ in z that we write

X .˛/.�zY1; �zY2; �zY3; : : : ; �zY2˛�1/ D
X̨

mD0

.�z/mX .˛/
m .Y1; Y2; Y3; : : : ; Y2˛�1/

where X
.˛/
m .y1; y2; y3; : : : ; y2˛�1/ denotes the generating function of exactly m

hard pieces on the graph G.˛/, each piece sitting at position i receiving the
weight yi . Clearly, both

X .˛/.0; �zY2; �zY3; : : : ; �zY2˛�1/ and X .˛/.0; 0; �z zY3; : : : ; �z zY2˛�1/

are polynomials of degree ˛ � 1 in z.

8 A sketch of the proof is as follows: given B, consider pairs .H;HP/ made of a heap
con�guration H of base B together with a con�guration HP of hard pieces, drawn on top of
the heap. For such a pair, let E be the set of pieces that can be moved up freely to in�nity, and
when pushed downward either are blocked by a piece (that has to be in H) or hit a vertex of
the base B. Consider the following transformation: if E is not empty, pick the piece p 2 E of
smallest index and change its status (from H to HP if p 2 H, from HP to H if p 2 HP);
if E is empty do nothing. This transformation is easily seen to be an involution (which leaves E

invariant), and, if we assign a weight z per piece in the heap and �z per piece in the con�guration
of hard pieces, the weight is multiplied by �1 for each con�guration which changes under the
involution. The generating function for the pairs, which is the product of the generating function
for heaps with a weight z per piece times that of con�gurations of hard pieces with a weight �z

per piece, therefore reduces to those pairs for which E is empty. It is easily seen that this situation
corresponds to an empty heap and a con�guration of hard pieces made of pieces which do not
belong to B. The corresponding generating function is nothing but that of con�gurations of hard
pieces with a weight �z per piece not in B and 0 per piece in B.
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Figure 15. The maximally occupied con�guration of hard pieces on the graph G.˛/, made
of ˛ pieces (here represented by gray circles) sitting on all the sites with an odd index.

Let us now come to our fundamental identities. We have

X .˛/
m D X .˛/

˛
zX .˛/

˛�m; (48a)

X .˛/
m .0/ D X .˛/

˛ . zX .˛/
˛�m � zX .˛/

˛�m.0; 0//; (48b)

with the short-hand notations

X .˛/
m � X .˛/

m .Y1; Y2; Y3; : : : ; Y2˛�1/;

X .˛/
m .0/ � X .˛/

m .0; Y2; Y3; : : : ; Y2˛�1/;

zX .˛/
m � X .˛/

m . zY1; zY2; zY3; : : : ; zY2˛�1/;

zX .˛/
m .0; 0/ � X .˛/

m .0; 0; zY3; : : : ; zY2˛�1/:

To explain these identities, let us analyze the structure of a con�guration C of hard
pieces on G.˛/. In C , a number k of pieces occupy even sites 2j1; 2j2; : : : ; 2jk with
1 � j1 < j2 < � � � < jk � ˛ � 1 and j`C1 � j` > 1 for ` D 1; : : : ; k � 1. The set
of available odd sites is

Odd D ¹1; 3; 5; : : : ; 2˛�1ºn¹2j1�1; 2j1C1; 2j2�1; 2j2C1; : : : ; 2jk �1; 2jk C1º

and satis�es

j Odd j D ˛ � 2k:
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A number k0 of pieces occupy a subset ¹2j 0
1 � 1; 2j 0

2 � 1; : : : ; 2j 0
k0 � 1º of this

set. In X
.˛/
m (corresponding to a situation where k C k0 D m), any occupied site i

receives the weight Yi , so the weight of the con�guration C is Y2j1
Y2j2

: : : Y2jk
�

Y2j 0
1

�1Y2j 0
2

�1 : : : Y2j 0
k0 �1. Let us now consider instead the con�guration zC where,

again, the sites 2j1; 2j2; : : : ; 2jk are occupied but now the complementary of
¹2j 0

1�1; 2j 0
2�1; : : : ; 2j 0

k0 �1º in Odd (namely Odd n¹2j 0
1�1; 2j 0

2�1; : : : ; 2j 0
k0 �1º)

is covered by pieces. Clearly, going in from C to zC provides a bijection between
con�gurations C with

k C k0 D m

pieces and con�gurations zC with

k C .˛ � 2k/ � k0 D ˛ � m

pieces. In zX˛�m, the con�guration zC receives the weight

zY2j1
zY2j2

: : : zY2jk
�

Q

i2Odd

zYi

zY2j 0
1

�1
zY2j 0

2
�1 : : : zY2j 0

k0 �1

D Y2j1
Y2j2

: : : Y2jk

Y2j1�1Y2j1C1Y2j2�1Y2j2C1 : : : Y2jk�1Y2jkC1

�
Y2j 0

1
�1Y2j 0

2
�1 : : : Y2j 0

k0 �1
Q

i2Odd
Yi

D
Y2j1

Y2j2
: : : Y2jk

� Y2j 0
1

�1Y2j 0
2

�1 : : : Y2j 0
k0 �1

Y1Y3Y5 : : : Y2˛�1

D
Y2j1

Y2j2
: : : Y2jk

� Y2j 0
1

�1Y2j 0
2

�1 : : : Y2j 0
k0 �1

X
.˛/
˛

since X
.˛/
˛ D Y1Y3Y5 : : : Y2˛�1. From the bijection C 7! zC , we therefore deduce

immediately the �rst equality in (48). To get the second equality, we note that
X

.˛/
m .0/ enumerates con�gurations C with m pieces such that the site 1 is not

occupied by a piece. Two situations may then occur: either site 2 is occupied or
not. In the �rst case, the bijection C 7! zC will generate a con�guration zC where
site 2 is occupied (and site 1 does not belong to Odd) while in the second case, it
will generate a con�guration where site 2 is empty and site 1 (which belongs to
Odd) is necessarily occupied (since it was empty in C and the empty and occupied
sites get exchanged in the bijection for those odd sites belonging to Odd). To
summarize, in the con�guration zC , either site 1 or site 2 must be occupied. The
restriction of zX .˛/

˛�m to these con�gurations yields zX .˛/
˛�m � zX .˛/

˛�m.0; 0/, hence the
second equality.
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Figure 16. Left: an example of con�guration C of hard pieces (represented in gray) on G.˛/.
Right: the associated con�guration zC of hard pieces (represented in light blue), obtained
by keeping the particles sitting on even vertices and, in the ensemble of odd vertices which
are not adjacent to the occupied even vertices, exchanging the occupied and un-occupied
sites.

From (48), we deduce

X .˛/
�

� Y1

z
; �Y2

z
; �Y3

z
; : : : ; �Y2˛�1

z

�

D
�

� 1

z

�˛

X .˛/
˛ � X .˛/.�z zY1; �z zY2; �z zY3; : : : ; �z zY2˛�1/;

X .˛/
�

0; �Y2

z
; �Y3

z
; : : : ; �Y2˛�1

z

�

D
�

� 1

z

�˛

X .˛/
˛ � .X .˛/.�z zY1; �z zY2; �z zY3; : : : ; �z zY2˛�1/

� X .˛/.0; 0; �z zY3; : : : ; �z zY2˛�1//;

and therefore, taking the ratio of the two lines and using (47),

1 C Y1

z
J .˛/

�1

z

�

D K.˛/
�1

z

�

D 1 � zJ .˛/.z/:

The �nite continued fraction case of Section 5.3 corresponds precisely to a sit-
uation where J.z/ D J .˛/.z/ and zJ.z/ D zJ .˛/.z/. The above formula explains
the �rst identity in (26) while the second identity is guaranteed by the relation
zJ .˛/.z/ ! 1 when z ! 0. This concludes the proof of (26).
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We now prove (25) by computing explicitly the determinants H
.0/
i and H

.1/
i in

terms of the Yi ’s. More precisely, let us show that, for i � 1,

H
.0/
i �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�.i�1/ � � � � � � j0

::: : : :
: : :

j1

::: : : :
: : : :::

j0 j1 � � � ji�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
�Y2

Y3

�i�1�Y4

Y5

�i�2

: : :
�Y2i�4

Y2i�3

�2�Y2i�2

Y2i�1

�

;

(49a)

H
.1/
i �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�.i�2/ � � � � � � j1

::: : : :
: : :

j2

::: : : :
: : : :::

j1 j2 � � � ji

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D Y1 Y3 Y5 � � � Y2i�1 H
.0/
i : (49b)

Once these formulas are proved, the relations (25) indeed follow immediately.
A �rst crucial point is the existence of a linear relation between the j

.˛/
n ’s,

namely
X̨

mD0

.�1/mX .˛/
m j .˛/

n�m D 0 for all integers n: (50)

Indeed, writing the �rst identity in (47) as

K.˛/.z/X .˛/.�zY1; �zY2; �zY3; : : : ; �zY2˛�1/

D X .˛/.0; �zY2; �zY3; : : : ; �zY2˛�1/;

and extracting the term of order zn, we immediately see that (50) holds for any
positive integer n � ˛ since X .˛/.0; �zY2; �zY3; : : : ; �zY2˛�1/ is a polynomial
of degree ˛ � 1. Similarly, writing the second identity in (47) as

zJ .˛/.z/ � X .˛/.�z zY1; �z zY2; : : : ; �z zY2˛�1/ D X .˛/.0; 0; �z zY3; : : : ; �z zY2˛�1/;

a polynomial of degree ˛ � 1, we �nd that

X̨

mD0

.�1/m zX .˛/
m j

.˛/

�.n0�m/
D 0 D .�1/˛

X
.˛/
˛

X̨

m0D0

.�1/m0

X
.˛/
m0 j

.˛/

.˛�n0/�m0

for n0 � ˛. Here we have set m0 D ˛ � m and used zX .˛/
˛�m0 D X

.˛/
m0 =X

.˛/
˛ . Set-

ting n D ˛ � n0 � 0, we deduce that (50) also holds for any non-positive integer.
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It remains to show that it is valid in the range 1 � n � ˛ � 1. For n in this range,
we have

X̨

mD0

.�1/mX .˛/
m j .˛/

n�m D
n

X

mD0

.�1/mX .˛/
m j .˛/

n�m C
X̨

mDnC1

.�1/mX .˛/
m j .˛/

n�m

D .�1/nX˛
n .0/ C .�1/˛

˛�n�1
X

pD0

.�1/pX .˛/
˛�p j

.˛/

p�.˛�n/

D .�1/nX˛
n .0/ C .�1/˛X .˛/

˛

˛�n�1
X

pD0

.�1/p zX .˛/
p j

.˛/

�..˛�n/�p/
:

Now since 1 � ˛ � n � ˛ � 1, we also have
˛�n
X

pD0

.�1/p zX .˛/
p j

.˛/

�..˛�n/�p/
D .�1/˛�n zX .˛/

˛�n.0; 0/

so that we eventually get

X̨

mD0

.�1/mX .˛/
m j .˛/

n�m

D .�1/nX˛
n .0/ C .�1/˛X .˛/

˛ ..�1/˛�n zX .˛/
˛�n.0; 0/ � .�1/˛�n zX .˛/

˛�n/

D .�1/n.X˛
n .0/ � X .˛/

˛ . zX .˛/
˛�n � zX .˛/

˛�n.0; 0///

D 0:

The linear relation (50) therefore holds for all integers n, as stated.
Let us now come to the computation of H

.0/
i and H

.1/
i . Since jn, n � 1,

enumerates heaps of n pieces on the graph G with base ¹1º, the pieces cannot
reach sites with index more than 1 for n D 1 and 2n � 2 for n � 2. In other words,
jn enumerate heaps which “live” on G.n/, therefore on G.i�1/ for all n � i � 1.
As for jn, n � �1, it enumerates heaps of jnj pieces on the graph G with base
¹1; 2º so that the pieces cannot reach sites with index more than 2jnj, therefore
“live” on G.jnjC1/, therefore on G.i�1/ for all jnj � i � 2. In other words, we have

jn D j .i�1/
n for n D 0; 1; 2; : : : ; i � 1;

j�n D j .i�1/
�n for n D 0; 1; 2; : : : ; i � 2:

In the determinant H
.0/
i , the only term which does not “live” on G.i�1/ is j�.i�1/

and it is easily seen that

j�.i�1/ D j
.i�1/

�.i�1/
C zY2

zY4 : : : zY2i�2

with an additional term corresponding to the unique heap that hits position 2i �2.
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Using the linear relation (50) for ˛ D i � 1, we may thus rewrite H
.0/
i as

H
.0/
i D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

zY2
zY4 : : : zY2i�2 j�.i�2/ � � � j0

0 j�.i�3/ : : :
j1

::: : : :
: : : :::

0 j1 � � � ji�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D zY2
zY4 : : : zY2i�2 H

.1/
i�1:

Similarly, in the determinant H
.1/
i , the only term which does not “live” on G.i�1/

is ji and it is easily seen that

ji D j
.i�1/
i C Y1.Y2Y4 : : : Y2i�2/

with again an additional term corresponding to the unique heap that hits position
2i � 2. We may thus rewrite H

.1/
i as

H
.1/
i �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j�.i�2/ � � � j0 0
::: : : :

: : : :::

j0 : : :
: : :

0

j1 � � � ji�1 Y1.Y2Y4 : : : Y2i�2/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D Y1.Y2Y4 : : : Y2i�2/ H
.0/
i�1:

Combining the two above formulas and replacing the zYi ’s by their value in terms
of the Yi ’s, we deduce the recursion relation

H
.0/
i D

�Y2

Y3

Y4

Y5

: : :
Y2i�4

Y2i�3

�2 Y2i�2

Y2i�1

H
.0/
i�2

for i � 3 with initial conditions H
.0/
1 D 1 and

H
.0/
2 D j�1j1 � j 2

0 D . zY1 C zY2/Y1 � 1 D Y2

Y3

:

The �rst line of eq (49) follows immediately. As for the second line, it follows
from

H
.1/
i

H
.0/
i

D Y1.Y2Y4 : : : Y2i�2/
H

.0/
i�1

H
.0/
i

D Y1.Y2Y4 : : : Y2i�2/
�Y3

Y2

Y5

Y4

: : :
Y2i�1

Y2i�2

�

D Y1Y3Y5 : : : Y2i�1:

The above derivation of eq. (25) extends verbatim to the case of the �nite continued
fraction of Section 5.3 by limiting to i � ˛ � 1 the range of allowed values for
the index i in H

.0/
i and H

.1/
i . This range is precisely what is needed to compute

Y1; Y2; : : : ; Y2˛�1.
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B. A proof of the formulas (35)–(38)

The quantities Z.zI P; Q/, zZ.zI P; Q/ are specializations of J.z/ and zJ.z/ (viewed
as de�ned from the Yi ’s through their continued fraction expansions) to the case
where

Y2i�1 D Y; Y2i D P; zY2i�1 D 1

Y
D zY; zY2i D P

Y 2
D zP

for all i � 1. Consequently, Zn, zZn, and kn are the corresponding specializations
of Jn, zJn and jn. The analysis of Appendix A applies to arbitrary Yi ’s. In
particular, kn has a direct interpretation in terms of heaps of pieces on the graph
G for all n. For n > 0, kn enumerates heaps of n pieces of base ¹1º, with weights
Y and P for pieces on odd or even sites respectively. For n < 0, kn enumerates
heaps of jnj pieces of base ¹1; 2º, with weights zY and zP for pieces on odd or
even sites respectively. Let us thus introduce the quantities k

.˛/
n (analogs of j

.˛/
n )

corresponding to a restriction of the heaps to the graph G.˛/. From (50), we deduce
immediately

X̨

mD0

.�1/mx.˛/
m k.˛/

n�m D 0 for all integers n;

where x
.˛/
m D X

.˛/
m .Y; P; Y; P; : : : ; Y / is the generating function of con�gurations

of exactly m hard pieces on the graph G.˛/. Setting ˛ D i � 1, this equation reads
equivalently

i�1
X

mD0

k
.i�1/
n�iCm.�1/m x

.i�1/
i�1�m

x
.i�1/
i�1

D 0 for all integers n:

Now, from their heap interpretation, it is clear that kn D k
.i�1/
n for n D 0; 1; : : : ,

i � 1 as well as for n D �1; �2; : : : ; �.i � 2/. For 2 � n � i , all the k
.i�1/
p ’s

appearing in the above formula may thus be replaced by kp’s and (35) follows.
For n D 1, the only term which gets out of the graph G.i�1/ is for m D 0, since
k

.i�1/

�.i�1/
D k�.i�1/ � zP i�1 (the two indeed di�er by the contribution of the heap

made of one piece on each even site from 2 to 2.i � 1/). This explains the right
hand side zP i�1 D P i�1=Y 2.i�1/ in the �rst line of (36). For n D i C 1, the only
term which gets out of the graph G.i�1/ is for m D i �1, since k

.i�1/
i D ki �YP i�1

(the two indeed di�er by the contribution of the heap made of one piece on site
1 and one piece on each even site from 2 to 2.i � 1/). This explains the right
hand side .�1/i�1YP i�1.x

.i�1/
0 =x

.i�1/
i�1 / D .�1/i�1P i�1=Y i�2 in the second line

of (36).
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Eqs. (37) and (38) can be proved in the same way but their proof now relies on
a restriction of the heaps to the graph G0.˛/ of Figure 17.

G
0.˛/

Figure 17. The graph G0.˛/.

Let us �rst analyze the heap generating functions on this graph: denoting, for
n > 0, the generating function j

0.˛/
n of heaps of n pieces on G0.˛/, of base ¹1º and

with weight Yi per piece sitting on site i . It is easily seen that j
0.˛/
n also corresponds

to enumerating heaps of n pieces on the graph G.˛/ provided we assign, instead of
Y2˛�1, a weight Y 0

2˛�1 � Y2˛�1CY2˛ to pieces sitting at position 2˛�1. The same
remark holds for con�gurations of m hard pieces on G0.˛/ which are enumerated
by X

.˛/
m .Y1; Y2; : : : ; Y2˛�2; Y 0

2˛�1/. In order to use directly our previous results
(obtained for G.˛/), we are thus led to de�ne j

0.˛/
n for n < 0 as enumerating

heaps of n pieces with base ¹1; 2º on the graph G.˛/, with weights zYi built via
the same expression (21) as before with Y2˛�1 replaced by Y 0

2˛�1. Getting back
to G0.˛/, j

0.˛/
n for n < 0 therefore enumerates heaps of n pieces with base ¹1; 2º

on this graph, with weights zYi as in (21) for pieces on sites 1; 2; 3; : : : ; 2˛ � 3 and
the special weights Y2˛�2=.Y2˛�3.Y2˛�1 C Y2˛// for pieces on the site 2˛ � 2,
1=.Y2˛�1 C Y2˛/ for pieces on the site 2˛ � 1 and 0 for pieces on the site 2˛. With
this de�nition, we have the analog of (50), namely

X̨

mD0

.�1/mX 0.˛/
m j 0.˛/

n�m D 0 for all integers n:

where X
0.˛/
m enumerates con�gurations of m hard pieces on G0.˛/.



174 É. Fusy and E. Guitter

Let us now specialize this result upon introducing, for n > 0, the generating
function k

0.˛/
n of heaps of n pieces on G0.˛/, of base ¹1º and with weights Y and P

for pieces on odd or even sites respectively. From the above discussion, for n < 0,
k

0.˛/
�n must be de�ned as enumerating heaps of n pieces on G0.˛/ with weight zY for

pieces on odd sites 1; 3; 5; : : : ; 2˛ � 3, zP for pieces on even sites 2; 4; : : : ; 2˛ � 4

and the special weights P=.Y.Y C P // for pieces on the site 2˛ � 2, 1=.Y C P /

for pieces on the site 2˛ � 1 and 0 for pieces on the site 2˛. With these de�nitions
(and k

0.˛/
0 � 1), we have

X̨

mD0

.�1/mx0.˛/
m k0.˛/

n�m D 0 for all integers n

where x
0.˛/
m enumerates con�gurations of m hard pieces on G0.˛/ with weight Y

(resp. P ) per piece sitting on an odd (resp. even) site (in particular x
0.˛/
0 D 1).

Setting ˛ D i � 1, the above equation becomes

i�1
X

mD0

.�1/mx0.i�1/
m k0.i�1/

n�m D 0 for all integers n:

Again, from their heap interpretation, it is clear that kn D k
0.i�1/
n for n D

0; 1; : : : ; i as well as for n D �1; �2; : : : ; �.i � 3/. For 2 � n � i , all the
k

0.i�1/
p ’s appearing in the above formula may thus be replaced by kp’s and (37)

follows. For n D 1, the only term for which this substitution fails is for m D i � 1,
since k

0.i�1/

�.i�2/
D k�.i�2/ � zP i�3. zP � P=.Y.Y C P /// (the two indeed di�er by

the contribution of the last piece, at position 2.i � 2/, in the heap made of one
piece on each even site from 2 to 2.i � 2/). This explains the right hand side
.�1/i�1 zP i�3. zP � P=.Y.Y C P ///x

0.i�1/
i�1 D .�1/i�1P i�1=Y i�2 in the �rst line

of (38) (note that x
0.i�1/
i�1 D Y i�2.Y C P /). For n D i C 1, the only term for which

this substitution fails is for m D 0, since k
0.i�1/
iC1 D kiC1 �YP i�1.Y C P / (the two

indeed di�er by the contribution of the two heaps made of one piece on site 1, one
piece on each even site from 2 to 2.i � 1/ and a last piece at position 2i � 1 or 2i).
This explains the right hand side YP i�1.Y C P / in the second line of (38).
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