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The distance-dependent two-point function

of triangulations:

a new derivation from old results

Emmanuel Guitter

Abstract. We present a new derivation of the distance-dependent two-point function of
random planar triangulations. As it is well-known, this function is intimately related
to the generating functions of so-called slices, which are pieces of triangulation having
boundaries made of shortest paths of prescribed length. We show that the slice generating
functions are fully determined by a direct recursive relation on their boundary length.
Remarkably, the kernel of this recursion is some quantity introduced and computed by Tutte
a long time ago in the context of a global enumeration of planar triangulations. We may
thus rely on these old results to solve our new recursion relation explicitly in a constructive
way.
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1. Introduction

The combinatorics of planar maps, i.e. connected graphs embedded on the sphere,

is making constant progress since the seminal work of Tutte in the 60’th. In

the more recent years, a growing interest was shown for metric properties of

maps endowed with their graph distance, and especially for the corresponding

distance statistics within ensembles of random maps. An emblematic result was

the computation, for several families of maps, of the distance-dependent two-

point function which, so to say, measures the distribution of distances between

two points (vertices or edges) picked at random on the map. Explicit expressions

for this two-point function were obtained for ensembles of planar maps with

controlled face degrees [2, 4] as well as for maps (or hyper-maps) with arbitrary

face degrees but with controlled edge (or hyper-edge) and face numbers [1, 3].

A �rst way to solve these questions was the use of bijections between maps and

decorated trees, as �rst discovered by Schae�er [9] (upon reformulating a bijection

by Cori and Vauquelin [5]). In a second, intimately related, approach, the problem

of computing the distance-dependent two-point function was reduced to that of

enumerating slices, which are particular pieces of maps bordered by shortest paths

of prescribed length, meeting at some “apex.” In a �rst stage, the computation of

either decorated trees or slice generating functions relied on �nding the solutions

of particular integrable systems of equations satis�ed by the generating functions

at hand. No general technique however was developed to solve these equations

and all the explicit expressions obtained in this way were the result of a simple

guessing of the solution. The recourse to decorated trees or slices took on its full

dimension when it was later discovered that their generating functions could be

obtained mechanically as coe�cients in suitable continued fraction expansions for

standard map generating functions. This property was exploited in [4] to obtain

a constructive derivation of the distance dependent two-point function for maps

with controlled face degrees.

In this paper, we revisit the problem of computing the distance-dependent two-

point function of random planar triangulations, i.e planar maps whose all faces

have degree 3. These maps were extensively studied in the past as they form one of

the simplest natural families of maps. Their two-point function was �rst obtained

in [6] by guessing the solution of the associated integrable system. It was then re-

obtained in [4] as a particular example of the general continued fraction formalism.

Here, we present a new recursive approach which consists in directly relating the

generating function of slices whose border has (maximal) length k to that of slices

whose border has (maximal) length k�1 (see eq. (3) below). Remarkably enough,

the “kernel” of our recursion relation is some particular generating function of
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triangulations, already introduced by Tutte as early as in his �rst paper [10] on

triangulations. We may thus directly use the old results of [10] to write our new

recursion relation in a very explicit form which we can solve in a constructive way.

The paper is organized as follows: in Section 2, we recall the de�nition of slices
and their connection with the distance-dependent two-point function of random
planar triangulations. We also recall the standard integrable system obeyed by the
slice generating functions, whose solution was guessed in [6]. Section 3 is devoted
to the derivation of our new recursion relation between the generating function Tk

for slices with (maximal) border length k and Tk�1. This new recursion is based
on the existence of some particular dividing line which, so to say, delimits in
the slice a region whose vertices are at distance strictly larger than k � 1 from
the apex of the slice. As just mentioned, the kernel of our recursion is some
particular generating function computed by Tutte in his seminal paper [10] on
triangulations. In order to stick to Tutte’s original results, we make in Section 4
a detour to the family of simple triangulations, i.e. triangulations with neither
loops nor multiple edges. As shown, a simple substitution procedure makes the
correspondence between this simpli�ed family and the family of all triangulations
that we are interested in. We then use in Section 5 the explicit form given by Tutte
for the kernel of our recursion relation to rewrite this recursion in a particularly
simple and classical form (see eq. (20) below), whose solution is easily obtained
by classical techniques. We �nally return in Section 6 to the case of general (not
necessarily simple) triangulations by performing the required substitution. This
leads us to our �nal explicit expressions for Tk and for the distance-dependent
two-point function. We gather our concluding remarks in Section 7.

2. Slice generating functions: reminders

2.1. De�nitions. The distance-dependent two-point function of planar triangula-
tions may be expressed in terms of the generating functionsRk and Sk forR-slices

and S -slices of maximal size k (see eq. (1) below). Slices are particular families of
triangulations with a boundary, namely planar rooted (i.e. with a marked oriented
edge, the root-edge) maps whose all faces have degree 3, except for the outer face
(i.e. the face lying on the right of the root-edge) which may have arbitrary degree.
The inner faces form what it called the bulk while the edges incident to the outer
face (visited, say clockwise around the bulk) form the boundary whose length is
the degree of the outer face. R- and S -slices are de�ned as follows:
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� R-slices have a boundary of length 2` (` � 1) and satisfy (see �gure 1):

– the (graph) distance from the origin of the root-edge (the root-vertex)
to the apex, which is the vertex reached from the root-vertex by making
` elementary steps along the boundary clockwise around the bulk, is
`. In other words, the left boundary of the slice, which is the part of its
boundary lying between the root-vertex and the apex clockwise around
the bulk is a shortest path between its endpoints within the map;

– the distance from the endpoint of the root-edge to the apex is ` � 1.
In other words, the right boundary of the slice, which is the part of
the boundary lying between the endpoint of the root-edge and the
apex counterclockwise around the bulk is a shortest path between its
endpoints within the map;

– the right boundary is the unique shortest path between its endpoints
within the map;

– the left and right boundaries do not meet before reaching the apex.

We call Rk � Rk.g/ (k � 1) the generating function of R-slices with
1 � ` � k, enumerated with a weight g per inner face.

Figure 1. An example of R-slice (left) and S-slice (right). In both cases, the left boundary
is a shortest path within the map between the root-vertex and the apex and has length `. As
for the right boundary, it is in both cases the unique shortest path within the map between
the endpoint of the root-edge and the apex, with length `� 1 for the R-slice (` � 1), and `
for the S-slice (` � 0).
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� S -slices have a boundary of length 2`C 1 (` � 0) and satisfy (see �gure 1):

– the distance from the root-vertex to the apex, which is the vertex reached
from the root-vertex by making ` elementary steps along the boundary

clockwise around the bulk, is `. In other words, the left boundary of the
slice (which is the part of the boundary lying between the root-vertex
and the apex clockwise around the bulk) is a shortest path between its
endpoints within the map;

– the distance from the endpoint of the root-edge to the apex is `. In other
words, the right boundary of the slice (which is the part of the boundary
lying between the endpoint of the root-edge and the apex counterclock-
wise around the bulk) is a shortest path between its endpoints within
the map;

– the right boundary is the unique shortest path between its endpoints
within the map;

– the left and right boundaries do not meet before reaching the apex.

We call Sk � Sk.g/ (k � 0) the generating function of S -slices with
0 � ` � k, enumerated with a weight g per inner face.

Note that the map reduced to a single root-edge and an outer face of degree 2 is
an R-slice with ` D 1 and contributes a term 1 to Rk for any k � 1.

Of particular interest are the generating functionsR1 andS0, with the following
interpretations: by de�nition, R1 enumerates R-slices with ` D 1, therefore with
a boundary of length 2. The right boundary has length 0, hence the apex is the
endpoint of the root edge. The left boundary, of length 1, connects the extremities
of the root-edge, which are necessarily distinct. The function R1 may therefore be
interpreted as the generating function of rooted triangulations with a boundary of

length 2 connecting two distinct vertices (the extremities of the root-edge). Note
that in such maps, the edges connecting the extremities of the root edge within the
map form in general what we shall call a a bundle of p edges for some p � 1 (see
�gure 2).

The function R1 therefore enumerates bundles of edges. As for S0, it enumer-
ates S -slices with ` D 0, in which case both extremities of the root-edge coincide
with the apex. In particular, the root-edge forms a loop. The function S0 may thus
be interpreted as the generating function of rooted triangulations with a boundary

of length 1 (see �gure 2).
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Figure 2. A schematic picture of maps enumerated by R1 and S0. The domains in light-
blue are to be completed with inner vertices and edges so as to be �lled with triangles
only. In the case of R1, we represented inner edges connecting the two boundary vertices
to emphasize that such edges may be present in arbitrary number.

For later use, we also introduce the generating function

Tk � Sk � S0

for k � 0. This generating function enumerates S -slices with a left-boundary
length ` satisfying 1 � ` � k. These are precisely the S -slices contributing to
Sk and whose root-edge does not form a loop (recall indeed that the left and right
boundary of an S -slice are required to meet only at the apex, so that the root-edge
forms a loop if and only if ` D 0). Note that T0 D 0 by de�nition.

2.2. The distance dependent two-point function. For k � 0, we de�ne the
distance-dependent two-point function of planar triangulations as the generating
function Gk for pointed (i.e. with a marked vertex) rooted (i.e. with a marked ori-
ented edge) planar triangulations (i.e planar maps whose all faces have degree 3)
for which the marked vertex is at graph distance k from the root-vertex (i.e. the
origin of the root-edge). Let us show the following identity for k � 1:

Gk D .S2
k � S2

k�1/C .Rk �Rk�1 � ık;1/C .RkC1 �Rk/

D S2
k � S2

k�1 CRkC1 �Rk�1 � ık;1

(1)

with the convention R0 D 0. Maps enumerated by Gk may indeed be classi�ed
into three classes according to the distance from their marked vertex to the end-
point of the root-edge. This distance may be k, k � 1 or kC 1 and the three terms
in the middle expression in (1) above correspond to the enumeration of the three
classes. If the two extremities of the root-edge are at distance k from the marked
vertex, we draw the leftmost shortest paths to the marked vertex, starting from the
middle of the root-edge in both directions (see �gure 3). Cutting along these paths
results into two S -slices, whose root-edge is the original root-edge with its origi-
nal orientation for one slice and with the reversed orientation for the other. Note
that the choice of leftmost shortest paths ensures that the right boundary of each
piece is the unique shortest path between its endpoints within the piece. As for the
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left boundaries, they are also shortest paths between their endpoints, with lengths
less than or equal to k (corresponding to situations enumerated by S2

k
) and with

at least one of these lengths equal to k, hence are enumerated by S2
k

�S2
k�1

(since
the situations where both lengths are strictly less than ` are enumerated by S2

k�1
).

If the endpoint of the root-edge is at distance k � 1 from the marked vertex, we
draw the leftmost shortest path form the root-vertex to the marked vertex, taking
the root-edge as �rst step (see �gure 4). Cutting along this path results into an
R-slice whose root-edge is the original root-edge, with left boundary length equal
to k, and moreover di�erent from the single root-edge if k D 1. Such slices are
enumerated by .Rk � 1/ � .Rk�1 � 1/ D Rk � Rk�1 for k � 2 and by R1 � 1

for k D 1, i.e. by Rk � Rk�1 � ık;1 with our convention that R0 D 0. Finally,
if the endpoint of the root-edge is at distance k C 1 from the marked vertex, we
reverse the orientation of the root-edge to get back to the previous situation with
k ! kC 1. Such maps are thus enumerated by RkC1 �Rk, hence the relation (1).
As already mentioned, the knowledge of bothRk and Sk leads immediately via (1)

to a expression for the distance-dependent two-point function Gk . As a �nal re-
mark, for k D 0, G0 enumerates rooted triangulations and adapting the above
argument immediately yields

G0 D S2
0 C R1 � 1:

Figure 3. A schematic picture of the one-to-one correspondence between pointed rooted
triangulations whose root-edge has its both extremities at distance k from the marked vertex
(in red) and a pair of S-slices with left-boundary lengths ` and `0 satisfying max.`; `0/ D k.
The green lines on the left side are the leftmost shortest paths to the marked vertex from the
middle of the root-edge in both directions. Cutting along these paths creates the two slices
on the right. The choice of leftmost shortest paths ensures that the right boundaries of the
slices are the unique shortest paths between their endpoints within the slice. Note that we
reversed the original orientation of the root-edge to obtain the root-edge of the grey slice.
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Figure 4. A schematic picture of the one-to-one correspondence between a pointed rooted
triangulation whose root-edge has its origin and endpoint at respective distance k and k�1
from the marked vertex (in red) and an R-slices with left-boundary lengths ` D k. The
green line on the left side is the leftmost shortest paths to the marked vertex from the the
root-vertex (with the root-edge as �st step). Cutting along this path creates the desired
R-slice on the right.

2.3. Classical relations for slice generating functions. A �rst set of relations
for the slice generating functions may be obtained by classifying the slices accord-
ing to the nature of the inner face lying immediately on the left of the root-edge.
In the case of an R-slice not reduced to a single root-edge, this triangular face is
incident to the two extremities of the root-edge, at respective distances ` and `� 1
from the apex, and to an intermediate vertex at distance ` � 1 or ` (note that this
vertex may possibly be identical to one of the two others). Drawing the leftmost
shortest path from this intermediate vertex1 to the apex separates the map into two
slices: anR-slice and an S -slice (see �gure 5). As for S -slices, the triangular face
on the left of the root-edge has its intermediate vertex at distance ` or `˙ 1 from
the apex. In the latter case, removing the triangle directly results into an R-slice
while, in the former case, drawing the leftmost shortest path from the intermediate
vertex to the apex separates the map into two S -slices (see �gure 6). Taking into
account the boundary length constraints, we immediately arrive at the classical
system

8

<

:

Rk D 1C g Rk.Sk�1 C Sk/ k � 1;

Sk D g .S2
k

C Rk C RkC1/ k � 0;
(2)

with again our convention R0 D 0.

1 Strictly speaking, having a well-de�ned notion of leftmost path requires that we start from

a given oriented edge rather than from a given vertex. Here, considering again the triangle lying

immediately on the left of the root-edge, we take as starting point the side edge of this triangle

oriented from the origin of the root-edge to the intermediate vertex. Note that this initial edge

only serves as a reference for deciding which shortest path is the leftmost one but is not itself

part of the leftmost shortest path which really starts at the intermediate vertex.
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Figure 5. A schematic picture explaining the �rst line of eq. (2). If not reduced to a single
edge, the R-slice with 1 � ` � k is decomposed by removing the triangle immediately on
the left of the root-edge, whose intermediate vertex is at distance `� 1 or ` from the apex,
and by cutting along the leftmost shortest path from this vertex to the apex.

Figure 6. A schematic picture explaining the second line of eq. (2). The S-slice with
0 � ` � k is decomposed by removing the triangle immediately on the left of the root-
edge, whose intermediate vertex is at distance ` or ` � 1 (in which case it lies on the right
boundary) or `C1 from the apex, and, in the �rst case, by cutting along the leftmost shortest
path from this vertex to the apex.
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Note that this system is not strictly speaking recursive since we don’t know the
value of S0. Still it is recursive order by order in g if we impose Rk D 1CO.g2/

for all k � 1 and Sk D O.g/ for all k � 0, as required by the de�nition of
Rk and Sk as slice generating functions. The solution of this system was �rst
found in [6] by simple guessing, leading to explicit expressions for Rk and Sk,
hence for the distance dependent two-point functionGk via eq. (1). Later on, these
explicit expressions were re-derived in a constructive way without recourse to the

system (2) or to any other recursion relation, but by instead relating Rk and Sk to
the distance-independent generating functions of triangulations with a boundary
of �xed length [4].

In the next section, we shall introduce a new set of recursion relations for Rk

and Sk, which we shall then solve explicitly in a constructive way.

3. A new approach by recursion

3.1. Construction of a dividing line. We shall now derive a new set of recursion
relations for Rk and Sk (or more precisely Tk) based on a new decomposition of
the slices. This decomposition makes use of a particular dividing line drawn on
the slice, which we de�ne now. We start for convenience with an R-slice whose
left boundary has some length ` � 2. Its dividing line will then be made of a
sequence of edges linking the right and left boundaries of the slice and connecting
only vertices at distance ` � 1 from the apex. It is de�ned recursively as follows
(see �gure 7): consider the face on the left of the �rst edge of the right boundary,
i.e. the edge linking the endpoint v of the root-edge, at distance ` � 1 from the
apex to its neighbor v0 along the right boundary, at distance ` � 2 from the apex.
The third vertex incident to this face, v00, is necessarily di�erent from v and v0 as
otherwise, we would have a second edge linking v and v0 within the map, hence
a second shortest path from v to the apex, lying strictly to the left of the right
boundary. Moreover, v00 is necessarily at distance ` � 1 from the apex: indeed
the only allowed values for the distance are ` � 2 and ` � 1 but the value ` � 2 is
forbidden as again it would lead to the existence of another shortest path from v to
the apex, strictly on the left of the right boundary. We conclude that v is incident
to at least one edge leading to a distinct neighbor at distance `� 1 from the apex.
Let us pick the leftmost such edge e1 and call v1 its endpoint. Assuming that v1

does not belong to the left boundary, we draw the leftmost shortest path P1 from
v1 to the apex and call v0

1 the vertex onP1 at distance `�2 from the apex. Consider
again the face on the left of the �rst edge of P1, linking v1 to v0

1. It is incident to
a third vertex v00

1 , necessarily di�erent from v1 and v0
1 and at distance ` � 1 from



A new derivation from old results 187

the apex (for the same reasons as above). We thus conclude that v1 is incident to
at least one edge leading to a distinct neighbor at distance ` � 1 from the apex.
As before, we pick the leftmost such edge e2 and call v2 its endpoint. We may
repeat the procedure as long as we do not reach the left boundary, thus creating an
oriented line .e1; e2; : : : / linking only vertices at distance `�1 from the apex with
moreover, on the right of each vertex along the line, an edge linking this vertex
to a vertex at distance ` � 2 from the apex (see �gure 8 – top). It is easy to see
that this line cannot make a loop. Indeed, let us assume that the line revisits some
already visited vertex and pick the �rst such vertex. If this vertex is reached from
the left, this contradicts the fact that, in our construction, we always picked the
leftmost edge to a neighbor at distance ` � 1 from the apex (see �gure 8-bottom
left).

Figure 7. Construction of the dividing line (in red and fat) in an R-slice (see text).
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Figure 8. Top: a schematic picture of the dividing line. Bottom: if this line forms a loop,
we end up with a contradiction at the �rst revisited vertex vi : if the loop closes from the
left (bottom left), it means that, at step i , we should have picked the edge leading to viCm,
not to viC1; if the loop closes from the right (bottom right), it encloses vertices at distance
` � 2 from the apex (marked 0), which is inconsistent with the fact that all the vertices on
the dividing line are at distance `� 1 from the apex.

If it is reached from the right, this creates a closed region surrounded by
vertices at distance `�1 from the apex, which does dot contain the apex and which
contains vertices at distance ` � 2 from the apex, a contradiction (see �gure 8 –
bottom right). The line thus necessarily ends after a �nite number p of steps at
the vertex vp lying on the left boundary at distance `� 1 from the apex (note that
Pp is then the part of the left boundary lying between vp and the apex). The open
line .e1; e2; : : : ; ep/ from v to vp constitutes our dividing line with the following
property: it is a simple curve linking the right and left boundaries, visiting only
vertices at distance `� 1 from the apex, dividing de facto the map in two parts, an
upper part containing the apex and a lower part containing the root-vertex. Finally,
by construction, we have the following property:

Property 1. Two vertices of the dividing line cannot be linked by an edge lying

strictly inside the lower part.

Indeed, violating Property 1 would contradict the fact that, in our construction,
we always picked the leftmost edge leading to a neighbor at distance ` � 1.
We could similarly have started with an S -slice whose left boundary has some
length ` � 2. The dividing line would then be de�ned exactly in the same way,
now starting from the vertex v of the right boundary at distance ` � 1 from the
apex (see �gure 10 for an illustration).
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In the following, we shall recourse to the dividing line to decompose R-slices
enumerated by Rk and S -slices enumerated by Tk. Both families of slices have a
left-boundary length ` satisfying 1 � ` � k. So far we de�ned the dividing line
only for ` � 2. For ` D 1, we take the convention that the dividing line is reduced
to a single vertex equal to the apex.

3.2. A new set of recursion relations. We shall now derive a new set of recur-
sion relations for Rk and Tk, based on a new decomposition of slices intimately
linked to their dividing line. We start again for convenience with an R-slice and
draw its dividing line, as de�ned above. We then note that the root-vertex, at dis-
tance ` from the apex, is adjacent, in all generality, to a number of vertices of the
dividing line. These include the two extremities of the line, plus possibly some of
its internal vertices.

In general, such adjacency with a given vertex of the dividing line is moreover
achieved by a bundle of edges, as we de�ned it, which we view as a rooted
triangulation with a boundary of length two (the boundary being made of the two
outermost edges performing the connection), hence which is enumerated by R1.
For each vertex of the dividing line adjacent to the root-vertex, we cut the map
along the leftmost edge of the associated bundle and along the leftmost shortest
path from this vertex to the apex. This cutting decomposes the slice into a sequence
of blocks (see �gure 9), each of which being formed of (1) a bundle enumerated
by R1, (2) a triangulation with a boundary of some arbitrary length i � 3, lying
in the lower part of the slice in-between two successive bundles, and enumerated
by a generating function hi � hi .g/ that we shall analyze just below, and (3) a
set of i � 2 S -slices whose root-edge does not form a loop. If we start with an
R-slice enumerated by Rk, hence with 1 � ` � k, then the ` D 1 contribution
yields the empty sequence of blocks (since the dividing line is reduced to the
apex in this case), while the ` � 2 contribution yields non-empty sequences
of blocks whose S -slice components have some arbitrary left-boundary length
between 1 and ` � 1, hence between 1 and k � 1, as enumerated by Tk�1 (since
their root-edge cannot form a loop). To summarize, each block of the (possibly
empty) sequence is enumerated by R1

P

i�3 hi T
i�2
k�1

. Finally, we are left with
a �nal bundle connecting the two extremities of the root-edge and enumerated
by R1 (see �gure 9). If we now start instead with an S -slice enumerated by Tk,
hence satisfying 1 � ` � k, a similar decomposition produces a (possibly empty)
sequence of the same blocks, now completed by a �nal portion of map enumerated
by R2

1

P

i�3 hi T
i�3
k�1

(see �gure 10).
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Figure 9. The decomposition of an R-slice enumerated by Rk into a sequence of blocks.
The �rst block is indicated in gray. Each block is formed of a bundle (enumerated by R1),
a rooted triangulation with a boundary of some arbitrary length i � 3 and with particular
properties (see text), enumerated by hi , and a set of i � 2 attached S-slices enumerated
by Tk�1. The generating function of a block is thus R1

P

i�3 hi T
i�2
k�1

. The sequence
of blocks is to be completed by a �nal bundle (enumerated by R1, here in light-blue)
connecting the extremities of the root-edge.
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Figure 10. The decomposition of an S-slice enumerated by Tk into blocks similar to those
of �gure 9, each enumerated by R1

P

i�3 hi T
i�2
k�1

. The sequence of blocks is now to be
completed by a �nal portion (in light-blue) formed of two bundles (each enumerated by
R1), a rooted triangulation with a boundary of some arbitrary length j � 3, enumerated
by hj , and a set of j � 3 S-slices enumerated by Tk�1. The generating function of the last
portion is thus R2

1

P

j �3 hj T
j �3

k�1
.
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We arrive at the relations

8

ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
:

Rk D R1

1� R1

P

i�3

hi T
i�2
k�1

D R1

1� R1 Tk�1ˆ.Tk�1/

Tk D
R2

1

P

i�3

hi T
i�3
k�1

1� R1

P

i�3

hi T
i�2
k�1

D R2
1 ˆ.Tk�1/

1� R1 Tk�1ˆ.Tk�1/

(3)

with

ˆ.T / � ˆ.T; g/ D
X

i�3

hi .g/ T
i�3: (4)

Note in particular the relation

Rk �R1 D Tk�1 Tk: (5)

We give in �gure 11 for illustration an example of decomposition of some particular
R-slice along the lines above.

So far we did not discuss the precise de�nition of hi � hi.g/ (i � 3). By
construction, the maps enumerated by hi correspond to a part of the slice lying
below the dividing line and in-between two consecutive bundles. This part forms
a rooted triangulation with a boundary of length i made of a segment formed by
i � 2 consecutive edges of the dividing line and of 2 extra edges connecting the
extremities of this segment to the root-vertex (we may then decide for instance to
root the map at its rightmost edge from the root vertex to the dividing line, oriented
away from the root-vertex). This boundary forms by construction a simple curve.
Moreover, we have the property:

Property 2. In the maps enumerated by hi , two vertices of the boundary cannot

be linked by an edge lying strictly inside the map.

For a pair of boundary vertices belonging to the dividing line, this property
follows immediately from Property 1 above. As for the root vertex, the only
boundary vertices to which it is connected are the two extremities of the segment
of the dividing line and each of this connection is performed by a single boundary
edge.
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Figure 11. The decomposition of an R-slice with a left-boundary length ` D 5 by cutting
along the dividing line (in red and fat). Here, the lower part is decomposed into a map
contributing to h3 (in light-blue) to which corresponds an S-slice (in turquoise) in the
upper part, and a map contributing to h5 (in light-yellow) to which correspond three S-
slices (in gold, yellow and orange) in the upper part. All the S-slices in the upper part have
a left-boundary length between 1 and 4, hence contribute to T4. The numbers indicate the
distance to the apex of the various vertices.
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Conversely, any map satisfying Property 2 forms an acceptable contribution
to hi . To summarize, hi � hi .g/ is the generating function of rooted triangulations
with a boundary of length i (i � 3) forming a simple curve, and with Property 2
above. It is interesting to note that, even if, in the construction, the root-vertex and
the vertices of the dividing line play very di�erent roles, all boundary vertices
eventually play symmetric roles in the maps enumerated by hi .

Assuming that we know ˆ.T /, the second line of (3) is a direct recursion on
k which, from the initial condition T0 D 0, �xes Tk recursively for all k � 0 as
a function of R1. Then the �rst line of (3) gives access to Rk for all k � 1 as a
function of R1 and, using Sk D Tk CS0, to the two-point function Gk via (1) as a
function of both R1 and S0. Note that the values of R1 and S0 themselves are not
�xed by our new recursion but we shall explain in Section 6 how to get rid of this
problem.

As we will see, the knowledge of ˆ.T / will transform, after suitable changes
of variables, the system (3) into the simple homographic recursion relation (20),
easily solved by standard techniques.

3.3. Back to Tutte’s seminal paper. The natural question as this stage is: do
we have an expression for ˆ.T /? Remarkably, the answer is yes, as shown in
Tutte’s seminal paper [10] on the enumeration of triangulations. There Tutte in-
troduces precisely the same notion of triangulations having a boundary forming a
simple curve of arbitrary length at least 3 and satisfying Property 2 above. To be
precise, Tutte considers what are called simple triangulations, i.e. triangulations
required to have no loops nor multiple edges. The quantity considered by Tutte is
therefore a slight reformulation of ˆ.T /, called  .x; y/ in [10] , but the passage
from  .x; y/ to ˆ.T / is straightforward and can be obtained via a simple substi-
tution procedure. This correspondence will be made explicit in Section 4 below.
With this correspondence, Tutte’s result immediately translates into the following
equation

R1 T
2ˆ2.T /C.g R2

1Cg R3
1 h3 T �T �g R1 T

2/ ˆ.T /C.g T �g R2
1 h3/ D 0 (6)

which, as shown in [10], entirely �xes ˆ.T / as a function of T , g and R1 (see
Section 5 below for an explicit expression). We thus have at our disposal all
the ingredients to solve our new recursion relation, a task that will be performed
explicitly in the next sections.
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Before we solve our recursion relation, it is interesting to explore what we may
learn by simply making the system (3) consistent with the more classical system (2).
The �rst line in (3) may be rewritten as

Tk�1ˆ.Tk�1/ D 1

R1

� 1

Rk

while the �rst line of (2) leads to

1

Rk

D 1 � g .Sk C Sk�1/ D 1 � 2g S0 � g .Tk C Tk�1/

and in particular

1

R1

D 1 � 2g S0 � g T1 D 1 � 2g S0 � g R2
1 h3

since T0 D 0 and T1 D h3R
2
1. This later relation is easily understood by noting

that T1 enumerates S -slices with ` D 1, which are rooted triangulations with a
boundary of length 3 forming a simple curve (see �gure 12). On the other hand,
h3 also enumerates rooted triangulations with a boundary of length 3 and the only
di�erence is that, in T1, both the root edge and the left boundary edge may be
doubled by a bundle of edges (the right boundary edge cannot be doubled by a
bundle as it is the unique shortest path to the apex). In other words, to get T1, we
must multiply h3 twice by the bundle generating function R1, hence the relation.

Combining the above equations, we deduce

Tk�1ˆ.Tk�1/ D g .Tk C Tk�1/ � g R2
1 h3

D g
� R2

1 ˆ.Tk�1/

1 �R1 Tk�1ˆ.Tk�1/
C Tk�1

�

� g R2
1 h3

where we have used the second line of (3) to express Tk in terms of Tk�1. Equating
the left and right terms above the leads precisely to equation (6) for the speci�c
value T D Tk�1. This equation being valid for any positive integer k, we may
reasonably infer that it holds for anyT (small enough so thatˆ.T / is well-de�ned).
Indeed the explicit dependence of Tk�1 in k (see below) allows to formally extend
Tk�1 to non-integer values of k, so that Tk�1 now varies continuously with real
k. To summarize, making the systems (3) and (2) consistent is yet another way to
understand Tutte’s equation (6).
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Figure 12. A schematic explanation of the relation T1 D R2
1
h3.

4. A detour via simple triangulations

4.1. Substitution. As already mentioned, the analysis of [10] deals with simple
triangulations, i.e. triangulations with neither loops nor multiple edges (here a
loop stands for an edge with identical extremities). Let us therefore introduce
the generating functions rk , tk (k � 1) and Qhi (i � 3), de�ned as Rk, Tk and
hi respectively, but with the constraint that the map contains neither loops nor
multiple edges. It is easy to see that, for maps enumerated by Rk , Tk and hi , the
presence of a loop automatically implies the presence of a multiple edge. Indeed,
a loop separates the map into two regions, its exterior, which contains the outer
face and its interior. One loop is then said to be included in another if it lies in its
interior. This inclusion de�nes a partial ordering of the loops and we may consider
one of the largest elements for this ordering, i.e. a loop which is not contained in
the interior of any other loop. The face incident to the edge forming this loop and
lying in its exterior is necessarily a triangle of the bulk. Indeed, the boundary
of maps enumerated by Rk , Tk or hi cannot contain loops. The two remaining
edges of this triangle necessarily form a multiple edge surrounding the loop by
connecting the endpoint of the loop to a distinct vertex in the exterior of the loop
(the other possibility, namely that the two remaining edges of the triangle form two
loops, is ruled out as, if so, one of these two loops would encircle the supposedly
largest loop, a contradiction).

To suppress both loops and multiple edges in maps enumerated by Rk, Tk and
hi , it is thus su�cient to suppress multiple edges only. This translates into a simple
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substitution procedure to go from rk, tk, Qhi to Rk, Tk and hi : maps in the second
family are directly obtained by simply replacing the edges in the maps of the �rst
family by bundles of edges, as enumerated by R1. Note that the substitution is to
be performed for each edge except for some of the boundary edges: in the case of
rk and tk , edges of the right boundary must be left untouched as duplicating some
of them would create a shortest path strictly on the left of the right-boundary. In
the case of Qhi , none of the boundary edges can be duplicated since we have to
enforce Property 2 on maps enumerated by hi .

Let us now describe in details the consequences of the substitution procedure.
Consider a simple triangulation with a simple boundary of length L and callE, V
and F its numbers of inner edges, vertices and inner faces respectively. From the
relation 3F D 2ECL and the Euler relation F CV �E�L D 1, we immediately
deduce

V D LC F

2
C 1; E D 3F � L

2
: (7)

The case of hi vs Qhi . In this case, we haveL D i and the substitution requires
a weightR1 per inner edge of the simple triangulation. These edges are in number
.3F � i/=2 D 3F=2 � i=2, hence we should give an extra weight R3=2

1 per face,
resulting in a total face weight

G D g R
3=2
1 (8)

together with a global factor R�i=2
1 . In other words, we have

hi .g/ D R
�i=2
1

Qhi .G/: (9)

The case of Tk vs tk . For a slice enumerated by tk, of arbitrary left-boundary
length ` (between 1 and k), we have L D 2` C 1 and the substitution requires
a weight R1 for each inner edge of the simple slice, as well as for the base
edge and for the edges of the left boundary (as already mentioned, there is no
substitution attached to the edges of the right boundary as this boundary must be
the unique shortest path between its extremal vertices). These edges are in number
.3F � .2`C 1//=2C `C 1 D 3F=2C 1=2, hence we should give an extra weight
R

3=2
1 per face as before, hence a total weightG, together with a global factorR1=2

1 .
In other words, we now have

Tk.g/ D R
1=2
1 tk.G/:

The case of Rk vs rk . For a slice enumerated by rk, of arbitrary left-
boundary length ` (between 1 and k), we have L D 2` and the substitution re-
quires a weight R1 for each inner edge of the simple slice, as well as for the
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base edge and for the edges of the left boundary. These edges are in number
.3F � 2`/=2C `C 1 D 3F=2C 1, hence we should again give a total weight G to
each face, together with a global factor R1. In other words, we have

Rk.g/ D R1 rk.G/:

Introducing
Q̂ .t / � Q̂ .t; G/ D

X

i�3

Qhi .G/ t
i�3 ;

we read from (9) the correspondence

ˆ.T / D R
�3=2
1

Q̂ .t /; T D R
1=2
1 t: (10)

With the above correspondence, the system (3) is equivalent to the relations

8

ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
:̂

rk D 1

1�
X

i�3

Qhi t
i�2
k�1

D 1

1 � tk�1
ẑ .tk�1/

;

tk D

X

i�3

Qhi t
i�3
k�1

1�
X

i�3

Qhi t
i�2
k�1

;D
ẑ .tk�1/

1� tk�1
Q̂ .tk�1/

(11)

which determine rk and tk recursively from the initial condition t0 D 0, while (5)

becomes

rk D 1C tk�1 tk: (12)

Note that all these latter equations could have been obtained directly by applying
the decompositions used in Section 3 directly to maps enumerated by rk and tk.
Note also that considering simple triangulations is a way to get rid of R1 (as well
as of S0), which disappeared from our recursion relations. As a �nal remark, it
would be tempting to believe that the distance-dependent two-point function of
simple triangulations is given by a formula as simple as eq. (1), say by simply
replacing Rk and Sk by rk and tk. This is however not true since, in the cutting
procedure illustrated in �gures 3 and 4, the requirement of having no loop nor
multiple edge encircling the marked vertex introduces non-trivial constraints on
the associated slices, which are di�cult to handle. So our detour in the ensemble
of simple triangulations should here be viewed as a simple trick to simplify our
recursion and to directly use the results of [10].
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4.2. Equation for ẑ .t/. With the correspondence (8), (9), and (10), eq. (6) is
fully equivalent to the following equation for ẑ :

t2 ẑ 2.t /C .G CG zh3 t � t �G t2/ ẑ .t /C .G t �G Qh3/ D 0 (13)

where Qh3 D R
3=2
1 h3 from (9).

Let us recall here how to derive this equation, following Tutte’s argument
in [10]. Consider a map enumerated by Qhi (i � 3): for i D 3, the bulk of the
map may possibly be reduced to a single triangle, contributing G to Qh3. In all
the other cases, in order to guarantee Property 2, the triangle on the left of the
root-edge of the map is incident to a vertex v lying strictly inside the bulk (see
�gure 13).

i

i1

i2

i3

G

v

Figure 13. The decomposition of a map enumerated by hi (i � 3) into .p C 1/ domains
(here p D 2) enumerated by hi1

, hi2
, : : : ; hipC1

respectively. The boundary lengths of the

domains satisfy im � 3 for m D 1; : : : ; p C 1 and
PpC1

mD1.im � 2/ D i � 1.

This vertex is in all generality connected to a number p � 0 of the i�2 bound-
ary vertices di�erent from the extremities of the root-edge. These connections are
moreover performed by p single edges. Removing the triangle on the left of the
root-edge and cutting along these p single edges gives rise to p C 1 domains
which are triangulations with boundaries of lengths i1; i2; : : : ; ipC1, all larger than
3, satisfying

pC1
X

mD1

.im � 2/ D i � 1:
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The boundaries of these triangulations are simple curves and two boundary ver-
tices cannot be linked by an internal edge. So them-th piece is enumerated by Qhim .
This leads to the identity

Qhi D G ıi;3 CG
X

p�0

X

.i1;:::;ipC1/

im�3 ;mD1;:::;pC1

pC1P

mD1

.im�2/Di�1

Qhi1 : : :
QhipC1

:

Multiplying by t i�3 and summing over i � 3, this rewrites as

ẑ .t / D G C G

t2

X

p�0

X

.i1;:::;ipC1/

im�3 ;mD1;:::;pC1

pC1P

mD1

.im�2/�2

. Qhi1 t
i1�2/ : : : . QhipC1

t ipC1�2/

D G C G

t2

� X

p�0

� X

i�3

Qhi t
i�2

�pC1

� Qh3 t
�

:

Note the subtracted term corresponding to p D 0 and i1 D 3, which, for arbitrary
p � 0 and im � 3 is the only case for which the condition

PpC1
mD1.im � 2/ � 2 is

not satis�ed. We end up with

ẑ .t / D G C G

t2

� t ẑ .t /
1� t ẑ .t /

� Qh3 t
�

D G C G

t

� ẑ .t /
1 � t ẑ .t /

� Qh3

�

which immediately leads to (13), and after substitution to the announced equa-
tion (6).

5. Using Tutte’s solution

5.1. Tutte’s generating function .x; y/. We shall now rely on Tutte’s solution
of the equation (13) to solve our new recursion relation. In order to directly use
Tutte’s expressions in [10], we need a slight (and harmless) reformulation of the
generating function ẑ .T /. First, as noted in [10] for triangulations enumerated by
Qhi , the numbers E, V , F and L D i of, respectively, inner edges, vertices, inner
faces and boundary-edges (satisfying (7)) may be written as

E D 3nCm; V D nCmC 3; F D 2nCmC 1; L D i D mC 3;

for some m; n � 0 (since i � 3 and V � i). Using the variables m and n (instead
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of F and i), Tutte introduces (instead of ẑ .t / D ẑ .t; G/) the generating function

 .x; y/ �
X

m;n�0

 m;n x
n ym;  m;n � ŒG2nCmC1� QhmC3:

We immediately read the correspondence

 .x; y/ D
X

m�0

ym
X

n�0

xnŒG2nCmC1� QhmC3

D
X

m�0

ym
QhmC3.G/

GmC1
for x D G2

D 1

G

X

m�0

tm QhmC3.G/ for y D G t

D
ẑ .t /
G

or, in short

 .x; y/ D
ẑ .t /
G

; x D G2 ; y D G t:

Note in particular that, setting t D 0, we have

g3.x/ �  .x; 0/ D
Qh3

G
:

Setting the correspondence

y D G t; x D G2; g3 D Qh3=G;  D ẑ=G
„ ƒ‚ …

()

‚ …„ ƒ

t D y=
p
x; G D

p
x; Qh3 D g3

p
x; ẑ D  

p
x

(14)

equation (13) is equivalent to

y2  2.x; y/C .xCx y g3.x/�y�y2/ .x; y/Cy�x g3.x/; g3.x/ D  .x; 0/

(15)

which is precisely the form given by Tutte in [10].
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As explained in [10], the solution of this equation is best expressed upon
parametrizing x and y as

8

<

:

x D � .1 � �/3;

y D .1� �/3 �:

With this parametrization, we have [10]

x g3.x/ D � .1� 2�/

while  .x; y/ is �xed by

 .x; y/ D 1

.1� �/3 �

� � �

Y.�; �/.1C Y.�; �//2
C 1

�

(16)

where Y.�; �/ is the solution of the quadratic equation

Y 2.�; �/C .1� � C � �/ Y.�; �/C � � D 0 (17)

such that Y.�; �/ � �� � for small � or small � .

5.2. Writing the recursion in terms of Tutte’s variable. Using the correspon-
dence (14), � and � are to be considered as parametrizations of G and t via

8

<

:

G2 D � .1� �/3;

G t D .1� �/3 �:

In particular, eqs. (16) and (17) translate into

8

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
ˆ̂
:

ẑ .t / D C 3

Y.t/.1C Y.t//2
C 1

t
;

Y.t/ D 1

2
.C t � 1C

p

.C t � 1/2 � 4C 3 t /;

C D
r

�

1� � D
X

n�0

2

3nC 2

�
4nC 1

n

�

G2nC1;

from which (together with the relationG D g R
3=2
1 ) we may obtain, as announced,

an explicit expression of ˆ.T / D R
�3=2
1

ẑ .R�1=2
1 T / as a function of g and R1

only.
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We give here the explicit expression of ẑ .t / only for completeness. To solve
our recursion, it is indeed much simpler to directly work with Tutte’s variables. In
order to write the relations (11), we must specialize t to the values tk (and tk�1)
hence we de�ne

8

ˆ
<̂

ˆ
:̂

�k � G tk

.1� �/3 D
s

�

.1� �/3
tk;

Yk � Y.�; �k/;

for k � 0. Note that, by inverting the relation (17) de�ning Y.�; �/, we may write
�k in terms of Yk as

�k D Yk .1C Yk/

.1 � �/ Yk � �
: (18)

Let us now show that our recursion relation translates into a particularly simple

recursion relation for Yk. Writing the second line of eq. (11) in terms of �k , we
get immediately

�k D �  k�1

1 � �k�1 .1� �/3  k�1

;  k�1 �  .� .1� �/3; .1� �/3 �k�1/: (19)

Using the relation (18) and the expression (16), we have the expressions

8

ˆ
ˆ̂
<

ˆ̂

:̂

�k�1 D Yk�1 .1C Yk�1/

.1� �/ Yk�1 � � ;

 k�1 D 1

.1� �/3 �k�1

� � �k�1

Yk�1.1C Yk�1/2
C 1

�

D .1 � 2�/C .1 � �/ Yk�1

.1 � �/3.1C Yk�1/2
;

which, incorporated in (19) lead to the expression of �k in terms of Yk�1

�k D .� � .1� �/ Yk�1/..1� 2�/C .1� �/ Yk�1/

.1 � �/3 .1C Yk�1/
:

Comparing with (18), this yields the relation

Yk .1C Yk/

.1� �/ Yk � � D .� � .1 � �/ Yk�1/..1� 2�/C .1� �/ Yk�1/

.1 � �/3 .1C Yk�1/

which we may equivalently write as

�

Yk C Yk�1 C 1� 2�

1� �

��

Yk C �

.1 � �/2
� � .1� �/ Yk�1

1C Yk�1

�

D 0:
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In order to choose which of the two factors we should cancel, we recall that both
Yk and Yk�1 should vanish for � ! 0, in which case only the second factor above
vanishes. We are thus led to cancel the second factor in the above product, hence
we eventually end up with the desired recursion relation for Yk:

Yk D � �

.1 � �/2
� � .1� �/ Yk�1

1C Yk�1

: (20)

This relation is equivalent to our initial recursion (3) for Tk. It �xes Yk for all
k � 0 from the initial condition Y0 D 0 (since t0 D 0, hence �0 D 0) and the
knowledge of Yk allows us to obtain �k, tk and eventually Tk.

5.3. Solving the recursion relation. Getting the solution of the recursion rela-
tion (20) is a standard exercise and goes as follows: consider more generally the
equation

Yk D f .Yk�1/; f .Y / � a Y C b

c Y C d
:

Introducing the two �xed points ˛ and ˇ of the function f (i.e. the two solutions
of f .Y / D Y ), then the quantity

Wk D Yk � ˛
Yk � ˇ

is easily seen to satisfy Wk D �Wk�1, hence

Wk D �k W0; � � c ˇ C d

c ˛ C d
:

This immediately yields Yk via Yk D .˛ � ˇWk/=.1�Wk/ (strictly speaking, we
must have ˛ ¤ ˇ, which can be veri�ed a posteriori in our case).

To solve eq. (20), we may take

a D �

1 � � ; b D � �2

.1� �/2
; c D 1; d D 1;

and thus

f .Y / � Y / Y 2 C 1 � 2�
1 � � Y C �2

.1� �/2 D .Y � ˛/.Y � ˇ/

so that

˛ C ˇ D �1� 2�
1� � ; ˛ ˇ D �2

.1� �/2 :
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We deduce

�

.1C �/2
D

ˇ C 1

˛ C 1
�

1C ˇ C 1

˛ C 1

�2
D 1C ˛ C ˇ C ˛ ˇ

.2C ˛ C ˇ/2
D
1 � 1� 2�

1� �
C �2

.1 � �/2
�

2 � 1 � 2�
1 � �

�2
D �:

In other word, we have the correspondence between � and �

� D �

.1C �/2
D 1

� 1p
�

C
p
�

�2

(note that since � D .ˇ C 1/=.˛ C 1/, the condition ˛ ¤ ˇ is equivalent to the
condition � ¤ 1). In terms of �, we have

˛ C ˇ D � 1C �2

1C �C �2
; ˛ ˇ D �2

.1C �C �2/2
;

so that we may take

˛ D � �2

1C �C �2
; ˇ D � 1

1C �C �2
:

Since Y0 D 0, we haveW0 D ˛=ˇ D �2, so that

Wk D �kC2; Yk D ˛ � ˇWk

1 �Wk

D � �2

1C �C �2
� 1 � �k

1 � �kC2
:

This solves our recursion relation (11). Returning to the slice generating
functions, we indeed have

tk D
r

.1� �/3
�

�k

D
r

.1� �/3
�

Yk .1C Yk/

.1� �/ Yk � �

D

s

�

1C �C �2
� .1 � �k/.1 � �kC3/

.1 � �kC1/.1 � �kC2/

and from (12)

rk D 1C tk�1 tk D .1C �/2

1C �C �2
� .1� �k/.1� �kC2/

.1� �kC1/2
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where � may be viewed as parametrizing G via

G D
p

� .1 � �/3 D
p

� .1C �C �2/3

.1C �/4
: (21)

The condition � ¤ 1 limits the range of G between 0 and 3
p
3=16, in agreement

with the fact that the number of simple triangulations with n faces (and a boundary
of �nite length) has a large n exponential growth of the form .16=.3

p
3//n [10].

With their explicit values, we may easily verify the relation

tk D G rk rkC1 (22)

which, for k � 1, can be explained combinatorially as follows: take a map
enumerated by tk , with left-boundary length ` (1 � ` � k) and consider the
triangle immediately on the left of the �rst edge of the right boundary linking the
endpoint v of the root-edge to a vertex v0 at distance ` � 1 from the apex (see
�gure 14).

Figure 14. A schematic explanation of the relation tk D G rk rkC1.
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The third vertex v00 incident to this triangle is distinct from the other two (as
there are no loops) and is at distance ` from the apex. More generally, all neighbors
of v but v0 must be at distance at least ` from the apex as otherwise, we would have
a shortest path from v to the apex di�erent from the right-boundary. Removing
the edge from v to v0 (and the incident triangle), the distance from the vertex v to
the apex therefore becomes ` C 1. Cutting the resulting map along the leftmost
shortest path from v00 to the apex creates two slices, one enumerated by rk and the
other by rkC1 (see �gure 14) hence the relation (22).

6. Final expressions

Let us now return to our original problem and obtain expressions for Rk, Sk and
eventually for the two-point function Gk . From the relations

rk D Rk

R1

; tk D Sk � S0

R
1=2
1

; G D g R
3=2
1 ; (23)

we can get Rk and Sk as functions of �, R1 and S0. Introducing

R1 � lim
k!1

Rk; S1 � lim
k!1

Sk;

and similarly r1 and t1, we can write instead Rk and Sk as functions of �, R1

and S1 via the correspondence

8

ˆ
ˆ̂
ˆ
<̂

ˆ̂
ˆ
ˆ̂
:

r1 D .1C �/2

1C �C �2
D R1

R1

;

t1 D

s

�

1C �C �2
D S1 � S0

R
1=2
1

:

(24)

Eq. (23) reads indeed

8

ˆ̂
ˆ̂
ˆ̂
ˆ
<̂

ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
:

Rk D R1

rk

r1
;

Sk D S1 �

s

R1

r1
t1

�

1 � tk

t1

�

;

g D G
� r1

R1

�3=2

;
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with, as a consequence of (22), t1 D G r2
1, hence

p

R1=r1 t1 D g R2
1.

We end up with the explicit relations

8

ˆ̂

<̂

ˆ̂
ˆ
:

Rk D R1

.1 � �k/.1 � �kC2/

.1� �kC1/2
;

Sk D S1 � g R2
1 �k .1 � �/.1� �2/

.1� �kC1/.1� �kC2/
;

which reproduce the formulas found in [6, 4]. To end our calculation, we still have
to express �, R1 and S1 in terms of the weight g only. The quantities R1 and
S1 are simply obtained as the solutions of the system obtained by letting k ! 1
in eq. (2), namely

8

<

:

R1 D 1C 2g R1 S1;

S1 D g .S2
1 C 2R1/:

(25)

The desired solution is entirely determined by the condition R1 D 1 C O.g2/

and S1 D 2gCO.g3/. As for �, we note that, from the expression (21) of G and
that, (24), of r1, we can immediately write that

G2 r3
1 D �

.1C �/2
D 1

�C 1
�

C 2

while, from eqs. (23) and (24), G2 r3
1 D g2 R3

1. To summarize, � is connected
to g via

�C 1

�
C 2 D 1

g2 R3
1

(26)

which is precisely the relation found in [4]. To be as explicit as in the case of
simple triangulations, let us conclude this section by expressingR1, S1 and g in
terms of the parameter �. Introducting the intermediate variable s � S1=

p
R1,

we may write (25) as

8

<

:

R1 D 1C 2
p

g2R3
1 s;

R1 s D
p

g2 R3
1.s

2 C 2/;

which, after eliminating s from the system, implies

R2
1 D 1C 8 .g2R3

1/:
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From (26), this leads to

R1 D
�

1C 8

�C 1
�

C 2

�1=2

D
p
1C 10�C �2

1C �

with � parametrizing g via

g D 1

R
3=2
1

�

�C 1
�

C 2
�1=2

D
p

� .1C �/

.1C 10�C �2/3=4
:

Note that, since � ¤ 1, g ranges from 0 to 1=.2 � 33=4/. in agreement with the
fact that the number of triangulations with n faces growths like .2 � 33=4/n (see for
instance [7] for explicit formulas). Finally we have

S1 D R1 � 1

2gR1

D .1C 10�C �2/1=4

p
1C 10�C �2 � .1C �/

2
p

� .1C �/
:

Plugging the above formulas for Rk and Sk in eq. (1) and the expressions for
g, R1, and S1, we arrive at the remarkably simple expression of the distance-
dependent two-point function Gk for k � 1:

Gk D .1 � �/3.1C 10 �C �2/

1C �

�k�1.1C �kC1/

.1� �k/.1� �kC1/.1� �kC2/
� ık;1:

7. Conclusion

In this paper, we presented a new technique to compute the distance-dependent
two-point function of planar triangulations by �rst deriving and then solving a
new recursion for the intimately related slice generating functions. Although our
method makes a crucial use of properties which are speci�c to triangulations, it
is likely that it could be generalized to other families of maps. In particular, the
case of planar quadrangulations seems promising for a similar treatment.

Our approach is based on the existence, in slices of left-boundary length `, of a
dividing line connecting the right and left boundaries of the slice via `�1 ! `�1
edges. Upon gluing, say the two boundaries of an R-slice with ` D k, we produce
via the equivalence displayed in �gure 4 a pointed rooted triangulation whose
root-edge is “of type” k ! k � 1 with respect to the marked vertex. After
gluing, the dividing line creates a simple closed path made of edges connecting
vertices at distance k�1 from the marked vertex, and which separates the marked
vertex from the root-vertex. By construction, all the vertices strictly outside the
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domain containing the marked vertex are at distance at least k from this vertex.
We may thus interpret the dividing line as the boundary of the hull of radius k� 1
centered at the marked vertex which, so to say, is formed of the ball of radius
k � 1 together with all the complementary connected domains (thus containing
vertices at distance at least k from the marked vertex) except that containing the

root-vertex. In other words, we may decide to use the dividing line as a way to
precisely de�ne what we shall call the hull of radius k � 1 centered at the marked
vertex, namely the domain delimited by this line and containing the marked vertex.
Note that this de�nition is not equivalent to that given in [8] where the hull of
radius k � 1 is constructed explicitly from the ball of radius k � 1, itself de�ned
at the set of all triangles incident to at least one vertex at distance � k � 2 from
the marked vertex (see [8]).

Finally, our recursive construction allows us to de�ne dividing lines within
each of the slices (enumerated by Tk�1) which appear in the slice decomposition
of the hull (see �gure 4). After gluing, the concatenation of these dividing lines
creates a simple closed path made of edges connecting vertices at distance k � 2

from the marked vertex, and which separates the marked edge from root-vertex.
This line may be viewed as the boundary of the hull of radius k�2 centered at the
marked vertex. We may in this way de�ne hulls of all radii between 1 and k � 1

and our recursion relations should in principle allow us to describe the statistics
of the lengths of these hull boundaries, an analysis yet to be done.
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