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1. Introduction

One of the most important starting points for two-dimensional critical lattice

models in statistical physics is the assumption that the continuous limit is universal

and conformally invariant. It says that, in the limit when the lattice spacing �

goes to zero, macroscopic quantities of the model transform covariantly under

conformal maps of the domain (conformal invariance) and are independent of

the lattice (universality). Under the assumption of universality and conformal

invariance, physicists have successfully predicted exact values of certain critical

exponents. However, the conformal invariance and universality assumptions were

beyond the mathematical justi�cation until very recently [17, 16, 31, 26, 29, 7, 21].

In this paper, we focus on perfect matchings on planar graphs. A perfect

matching, or dimer covering of a �nite graph is a set of edges covering all the

vertices exactly once. The dimer model is the study of random dimer coverings of

a graph. The dimer model has been known to be integrable since the work [14, 27]

and hence amenable to a number of techniques, see [2, 1]. Following Kasteleyn’s

technique for dimers on planar graphs [14], and by assigning weights to edges,

one can de�ne a probability measure on random dimer coverings [15]. The height

function is a random function which assigns a unique number to each faces of the

graph for each realization of random perfect matchings. If the underlying graph is

a subgraph of the square grid Z
2, Kenyon [17, 18] proved the conformal invariance

of height distribution in the scaling limit under certain boundary conditions, given

the uniform measure of random perfect matchings. The hexagonal lattice case

were studied in [24, 20].

An isoradial graph is a planar graph in which each face is inscribable in a

circle of common radius. It was introduced by Du�n [10] in the late sixties,

in an equivalent form of rhombic lattices, and reappeared recently in the work

[28, 19, 6, 7, 3, 9, 12]. Isoradial graphs are a large class of graphs where the

complex analysis techniques have a “nice” discrete analog, and hence a natural

setting for the universality assumption, which includes, and is more general than

the class of regular graphs, see [6] for an exposition of the discrete complex

analysis technique on isoradial graphs. Ising models on isoradial graphs have been

studied extensively in [28, 3, 7], and spectacular results were proved including

conformal invariance and universality [7]. For perfect matchings on isoradial

graphs, Kenyon [19] proved an explicit form for the inverse of the weighted

adjacency matrix of bipartite isoradial graphs on the whole plane. Following that,

it is proved in [8], that the height function of perfect matchings on the whole plane

converges to a Gaussian free �eld, yet the conformal invariance and boundary

conditions were not addressed in [8] since the paper deals with graphs on the

whole plane.
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In this paper, we use isoradial graphs to approximate an arbitrary simply

connected domain in the plane bounded by a simple closed curve, and prove the

following results

Theorem 1.1. Let� be a simply connected bounded domain in the plane bounded

by a simple closed curve. Assume @� has a straight portion L0. Let Gı be an

isoradial graph embedded into the whole plane with common radius ı, and G�;ı

be the largest subgraph of Gı consisting of faces, and completely inside �. Let

G0
�;ı

be the interior dual graph of G�;ı , and assume G�;ı is the interior dual graph

of G00
�;ı

. Assume @G00
�;ı

has a straight partL0;ı approximatingL0. Let GD
�;ı

be the

superposition of G�;ı and G0
�;ı

with one boundary vertex of G�;ı , approximating

a point on L0 as ı ! 0, removed. As the mesh size ı ! 0, the distribution of

the height function for random perfect matchings on GD
�;ı

, in the scaling limit, is

conformally invariant and converges to a Gaussian free �eld.

Here the “interior dual graph” of G�;ı , is the subgraph of the in�nite dual

graph G0
ı

of Gı , such that the vertices of the “interior dual graph” are in one-to-one

correspondence with the faces of G�;ı , and each edge of the “interior dual graph”

is an edge connecting two vertices of the “interior dual graph” and is a dual edge

of an edge of G�;ı . In Figure 2.2, the graph with solid black edges is the primal

graph G�;ı , and the dual graph bounded by the blue edges is the “interior dual

graph” of G�;ı . Moreover, G�;ı is the interior dual graph of the graph bounded

by the outer red edges, with edges given by red lines or blue lines.

In particular, we do not assume the graph to be periodic, and we do not assume

the boundary to be smooth except for a straight portion. The problem solved in this

paper was also mentioned in [7], namely, whether the conformal invariance result

for domino tilings is also true for isoradial graphs. We construct a “nice” approx-

imation of discrete isoradial graphs to continuous domains, so that the boundary

conditions could be dealt with and the convergence result follows. Since the bipar-

tite isoradial graph is obtained by the superposition of an arbitrary isoradial graph

and its interior dual graph, the boundary conditions are discrete analogues of the

Dirichlet boundary conditions and the Neumann boundary conditions. We prove,

in this paper, the convergence of the inverse weighted adjacency matrix (K�1) for

both boundary conditions. The major di�erence of this paper from previous work

also lies in the fact that we are working on isoradial graphs, and the analysis on

isoradial graphs is more complicated [6]. The K�1 is closely related to the local

statistics of dimers [15], and moreover, the spin-spin correlation of the Ising model

[13, 9].



276 Z. Li

2. Background

2.1. Isoradial graphs. In this subsection we review the de�nition of the isoradial

graph as well as its basic properties. An isoradial graph is a graph which can be

embedded into the plane such that each bounded face is inscribable into a circle

of common radius. The class of isoradial graphs includes the common regular

graphs like the square grid, and hexagonal lattice, but is more general than that.

See Figure 2.1, Figure 2.2 for examples of isoradial graphs.

Figure 2.1. Isoradial regular graphs.

Figure 2.2. Isoradial graph, dual graph and rhombic lattice.
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An equivalent de�nition of the isoradial graph is the so-called rhombic tiling.

Namely, we can always construct a planar graph GR from a planar graph G, such

that each face of GR is of degree 4. The vertices of GR are either vertices of G, or

faces of G. Two vertices v1; v2 of GR are connected if and only if v1 is a vertex of

G surrounding the face v2, or vice versa. Hence to see if a graph G has an isoradial

embedding, it su�ces to see that if the constructed graph GR, in which each face

is of degree 4, can be embedded onto the plane such that all edges have the same

length, i.e., forms a rhombic lattice.

In a planar graph GR with faces of degree 4, a train track is a path of faces (each

face being adjacent along an edge to the previous face) which does not turn: on

entering a face it exits across the opposite edge. It is proved in [23] that a planar

graph GR with faces of degree 4 has a rhombic embedding if and only if no train

track path crosses itself or is periodic; two distinct train tracks cross each other at

most once.

In the above construction, each edge of G corresponds to a rhombus in GR.

A rhombus half angle �e is associated to each edge e of the isoradial graph; it is

the angle in Œ0; �
2
� formed by the edge and an edge of the corresponding rhombus

of GR, see Figure 2.2. In Figure 2.2, the black edges are edges of the primal graph,

the blue or red edges are edges of the dual graph, and dashed edges are edges of

the rhombic lattice. From the picture it is quite clear that if the primal graph is

isoradial and the circumcenter is inside each face of the primal graph, the dual

graph is also isoradial.

Each edge of G is the diagonal of a rhombus in GR; this diagonal divides

the rhombus into two triangles, or half-rhombi. Similarly each dual edge also

divides the corresponding rhombus into two half-rhombi. When considering

a �nite subgraph of the in�nite isoradial graph, e.g. the subgraph of the dual

isoradial graph bounded by the outer red edges in Figure 2.2, each interior edge

divides a rhombus in the subgraph into two half-rhombi; and each boundary edge

corresponds to a triangle, or a half-rhombus of the subgraph; because the other

half-rhombus is outside the subgraph.

2.2. Dimer model. A perfect matching, or a dimer con�guration on an isoradial

graph is a choice subset of edges such that each vertex is incident to exactly one

edge.

Let G D .V; E/ be a �nite isoradial graph which admits a perfect matching.

As discussed in Section 2.1, each edge e 2 E is the diagonal of a rhombus, with a

unique associated rhombus half-angle �e 2 .0; �
2
/. We assign to each edge e 2 E

a critical weight 2 sin �e .
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Let � be the set of all dimer con�gurations on G. The probability of a perfect

matching M 2 �, is de�ned to be

P.M/ D
Q

e2M Œ2 sin �e�

Z
: (2.1)

Here Z is normalising constant de�ned by

Z D
X

M 2�

Y

e2M

Œ2 sin �e�:

2.3. Height function. The height function is a random, real-valued function de-

�ned on faces of the isoradial graph, such that for each perfect matching con�g-

uration, the height di�erence between any two faces is uniquely determined. In

other words, each dimer con�guration on the isoradial graph gives a unique height

function on faces, up to an additive constant.

For any e 2 G, let P.e/ be the probability that the edge e is included in a dimer

con�guration. Assume w is the white endpoint of e and b is the black endpoint of

e. We de�ne a base �ow !0 on oriented edges of GD
�;ı

as follows:

!0.wb/ D P.e/;

!0.bw/ D �P.e/:

wherewbmeans that the edge is oriented from the white vertex to the black vertex,

and similarly for bw. Since G admits a dimer con�guration, the base �ow !0 has

divergence 1 (resp. �1) at each white (resp. black) vertex.

Now, let M be a random perfect matching of G. Then M de�nes a white-to-

black unit �ow !M on the edges of G. Namely, !M has value 1 (resp. �1) on each

edge occupied by a dimer, when the edge is oriented from its white (resp. black)

vertex to its black (resp. white) vertex. Other edges have �ow 0.

The height function h of a perfect matching M , is a real-valued function

de�ned on the faces of G. We de�ne h with respect to the divergence-free �ow

!M � !0 as follows. Let f0 be a �xed face. De�ne h.f0/ D 0. Let f be another

face of G, and 
f0f be a dual path (a path consisting of dual edges) connecting f0

and f . Let E
f0f
be the set of all edges of G crossed by 
f0f . Let EC


f0f
(resp.

E�

f0f

) be the set of all edges in E
f0f
such that the white (resp. black) endpoint

is on the left of the path 
f0f , when travelling along 
f0f from f0 to f . Set

h.f / D
X

wb2E
C

f0f

.!M � !0/.wb/�
X

wb2E�

f0f

.!M � !0/.wb/; (2.2)

D
X

e2E
C

f0f

.I.e/� P.e// �
X

e2E�

f0f

.I.e/� P.e//; (2.3)
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where I.e/ is the indicator of the event that e is present in the dimer con�guration.

Since !M � !0 is a divergence-free �ow, and G is a planar graph, therefore h is

well de�ned, and independent of the path connecting f0 and f .

Note that in this de�nition of height function, we always have the expectation

Eh.f / D 0, for any face f of G.

2.4. Harmonic function. The discrete Laplacian operator � on an isoradial

graph G D .V .G/; E.G//, maps a functionH de�ned on V.G/, to another function

de�ned on V.G/ as follows:

Œ�H�.v/ D
h

X

v0Wv0�v

tan �vv0

i

H.v/�
X

v0Wv0�v

Œtan �vv0H.v0/�;

where �vv0 is the rhombus half angle corresponding to the edge vv0.

We can also associate a random walk, or a Markov chain to an isoradial graph,

such that the transition probability

pv
1 .v1/ D

8

ˆ

<

ˆ

:

tan �vv1
P

v0Wv0�v tan �vv0

if v � v1;

0 otherwise;

where pv
1.v1/ is the probability that a random walk started at v visits v1 at the �rst

step.

A discrete harmonic function H on an isoradial graph G is a function de�ned

on vertices of the graph, namely, H WV.G/ ! R , satisfying

Œ�H�.v/ D 0; v 2 V.G/: (2.4)

Condition (2.4) can also be considered as a discrete analog of the mean value

property.

The mean value property (2.4) obviously implies the maximal principle for

discrete harmonic functions, i.e., if Gs is a subgraph of the isoradial graph G, and

we de�ne boundary vertices of Gs to be vertices of Gs that are incident to vertices

outside Gs, and interior vertices of Gs to be vertices in Gs that are incident only

to vertices of Gs . We use @Gs to denote the set of all boundary vertices of Gs . If

H is harmonic at any interior vertex of Gs , then the maximal or minimal value

of H can only be achieved at boundary vertices of Gs, if H is not constant on all

vertices of Gs .
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The harmonic extension also has a discrete analog. If f is a real-valued func-

tion de�ned on boundary vertices of Gs , there exists a unique discrete harmonic

functionH on V.Gs/ such that the values ofH on boundary vertices of Gs are the

same as those of f . In fact, H can be written down explicitly as

H.u/ D
X

a2@Gs

!.uI aIV.Gs// � f .a/; (2.5)

for all u 2 V.Gs/, where !.uI aIV.Gs// is the probability that a random walk

started at u �rst hit the boundary @Gs at a. !.uI �IV.Gs// is a harmonic function

in u and a probability measure on @Gs. If E � @Gs, !.uIEIV.Gs// is the exit

probability through E of the random walk started at u.

2.5. Gaussian free �eld. The 2-dimensional Gaussian free �eld (GFF), or mass-

less free �eld, is a natural 2-dimensional time analog of the Brownian motion.

Let � be a simply-connected bounded domain of the complex plane C. Let

C1
0 .�/ be the space of smooth, real-valued functions that are supported on

compact subsets of �. The GFF on �, can also be considered as a Gaussian

random vector on the in�nite-dimensional Hilbert spaceH 1
0 .�/, whereH 1

0 .�/ is

the completion of C1
0 .�/ under the L2 norm of derivatives, see [30].

Let ¹eiºi�1 be an L2-orthornormal eigenfunctions for the Laplacian � D
@2

@x2 C @2

@y2 with Dirichlet boundary conditions (i.e., ei D 0 on @�). Let �i be the

eigenvalue of ei . The GFF on �, F, is a random distribution (continuous linear

functional) on C 1 functions of �, such that, for any C 1 function �,

F.�/ D
X

i�1

˛i

.��i/
1
2

Z

�

�.x; y/ei.x; y/dxdy;

where ¹˛iºi�1 are i.i.d. Gaussian random variables with mean 0 and variance 1.

3. Convergence of discrete holomorphic observables

In this section we introduce the discrete holomorphic observable for perfect

matchings on isoradial graphs, namely, the so-called inverse weighted adjacency

matrix entries, and prove its convergence in the scaling limit under special bound-

ary conditions.

3.1. Discrete approximation. In this subsection we discuss the basic setting

and assumptions for the discrete approximation, under which the convergence of

discrete holomorphic observables will be proved.
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Let Gı be an isoradial graph on the whole plane, i.e., each face is inscribable

in a circle of radius ı. Assume all the rhombus half-angles of Gı are bounded

uniformly away from 0 and �
2

, i.e., assume there exists a constant c0 > 0, such

that for all edges e, the rhombus half angle �e 2
�

c0;
�
2

� c0

�

. Let � be a simply-

connected bounded domain of the complex plane C bounded by a simple closed

curve. Let G�;ı be an isoradial subgraph of Gı , consisting of faces, i.e., each

face of G�;ı is inscribable in a circle of radius ı. Assume G�;ı is also simply-

connected, i.e., the boundary of G�;ı , @G�;ı has only one connected component.

Let G0
�;ı

be the interior dual graph of G�;ı , and assume that G�;ı is the interior

dual graph of G00
�;ı

, as in Figure 2.2, where the primal graph G�;ı is bounded

by the outer boundary consisting of black edges, G0
�;ı

, the interior dual graph of

G�;ı , is the graph bounded by the outer boundary consisting of blue edges; and

G00
�;ı

, which has G�;ı as its interior dual graph, is the graph bounded by the outer

boundary consisting of red edges.

We make the following assumption.

Assumption 3.1. Assume as ı ! 0, G�;ı approximates� in the following sense:

G�;ı is the largest subgraph of Gı , consisting of faces and satisfying G�;ı � �.

Given G�;ı , we construct another graph GD
�;ı

as follows. First of all, let zGD
�;ı

be

a graph with a vertex for each vertex, edge and face of G�;ı , and an edge for each

half-edge of G�;ı and each half dual-edge as well. The graph zGD
�;ı

is a bipartite

planar graph, with black vertices of two types: vertices of G�;ı and faces of G�;ı .

White vertices of zGD
�;ı

corresponds to edges of G�;ı , and dual edges in G0
�;ı

.

According to the Euler’s theorem, zGD
�;ı

has one more black vertices than white

vertices. Let GD
�;ı

be obtained from zGD
�;ı

by removing a black vertex bı;0 on the

boundary. Assume there exists z0 2 @�, such that limı!0 bı;0 D z0.

We claim that the graph GD
�;ı

, as constructed above, admits a perfect matching.

To see that, we will construct a perfect matching for the graph GD
�;ı

, and the con-

struction is to use the Temperley’s bijection [32, 5, 22] between perfect matchings

and spanning trees, as discussed in the square grid case in [17].

First of all, the graph G�;ı has a spanning tree rooted at bı;0, i.e., we can give

an orientation to each edge of the spanning tree, so that each vertex, except b0;ı ,

has a unique incoming edge; and b0;ı has only outgoing edges. For each vertex

v of G�;ı except bı;0, we pair the vertex with the white vertex of GD
�;ı

, w, on the

unique incoming edge of the vertex v. In other words, we assume the edge vw of

the graph GD
�;ı

is included in a perfect matching of GD
�;ı

.



282 Z. Li

Let W1 be the set of all white vertices of GD
�;ı

, included in a perfect matching

edge with a black vertex in G�;ı , and W2 be the set of all the other white vertices

of GD
�;ı

. Note that each white vertex of GD
�;ı

is the intersection of an edge of Gı

and a dual edge G0
ı
. The dual edges passing vertices in W2 pass all the vertices of

G0
�;ı

, and contain no cycles, because the spanning tree of G�;ı is connected. In

other words, each connected component of the dual edges passing vertices in W2

is a tree, with a unique vertex in G00
�;ı

n G0
�;ı

. Let T be such a tree and v0 be the

unique vertex of T in G00
�;ı

n G0
�;ı

. Give each edge of T an orientation, so that v0

has only outgoing edges and all the other vertices of T has exactly one incoming

edge. We pair each vertex of T , except v0, with the white vertex of GD
�;ı

on the

unique incoming edge of that vertex. Then we obtain a perfect matching of GD
�;ı

.

An isoradial embedding of G�;ı gives rise to an isoradial embedding of zGD
�;ı

.

Each rhombus corresponding to an interior edge of G�;ı with half-angle � is di-

vided into four congruent rhombi in zGD
�;ı

. Each triangle (half-rhombus) corre-

sponding to a boundary edge of G�;ı is divided into two congruent triangles and

one rhombus. The two triangles are part of a rhombus with half-angle � , and the

rhombus has half-angle �
2

� � . GD
�;ı

, as a subgraph of zGD
�;ı

, inherited an isoradial

embedding of zGD
�;ı

, in which each face is inscribable in a circle of radius ı
2
.

We de�ne a symmetric matrix N@, indexed by vertices of GD
�;ı

, as follows: if v1

and v2 are not adjacent, N@.v1; v2/ D 0. If w and b are adjacent vertices, w being

white and b being black, then N@.w; b/ D N@.b; w/ is the complex number of length

�.w; b/ D 2 sin � , with direction pointing from w to b. 2 sin �’s are called the

critical edge weights for isoradial graphs, which were introduced in [19], as well

as the following gauge transformation.

Let xD be obtained from N@ by multiplying edge weights of GD
�;ı

around each

white vertex (coming from an edge of G�;ı of half-angle �) by 1

2
p

sin � cos �
, that

is xD.w; b/ D S N@.w; b/S�, where S is the diagonal matrix de�ned by S.w;w/ D
1

2
p

sin �.w/ cos �.w/
, and S.b; b/ D 1. Then an edge of GD

�;ı
coming from a “primal”

edge of G�;ı has weight
p

tan � for xD, and an edge coming from a dual edge has

weight 1p
tan �

for xD. (These edges have weight 2 sin � , 2 cos � respectively for N@.)
Let xD� denote the transpose conjugate of xD.

Lemma 3.2. Restricted to vertices of G�;ı , we have xD� xD D �n, where �n is

the Laplacian operator of G�;ı with 0 Neumann boundary conditions, and the

boundary value at the removed vertex bı;0 is 0. Restricted to faces of G�;ı , we

have xD� xD D �d , where �d is the Laplacian operator of G0
�;ı

, the interior dual

graph of G�;ı with 0 Dirichlet boundary conditions.
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Proof. Using the same computation as in [19], it is straightforward to check the

following.

(1) Let b be a black vertex of GD
�;ı

. Assume in GD
�;ı

, b has neighborsw1; : : : ; wk,

so that for 1 � j � k, the edge bwj has rhombus half-angle �j , we have

xD� xD.b; b/ D
k

X

j D1

tan �j :

(2) If b; b0 are adjacent vertices in G�;ı , so that the edge bb0 has rhombus half-

angle � in G�;ı , we have

xD� xD.b; b0/ D � tan �;

and similar computations apply for the case when b; b0 are adjacent vertices

in G0
�;ı

.

(3) If b; b0 are of distance 2 in GD
�;ı

, but correspond to a vertex and a face of

G�;ı , then

xD� xD.b; b0/ D 0:

Unlike the computations in [19], which consider the whole-plane operators

with no boundaries, we also consider boundary conditions here. Let f be a

function de�ned on the set of vertices of GD
�;ı

. First assume that b is not adjacent

to bı;0 in G�;ı . If b is an interior vertex of G�;ı , then the above computation gives

xD� xDf.b/ D
X

bk�b

tan �k.f .b/ � f .bk//:

This is the same as the e�ect of discrete Laplacian operator on the whole-plane

graph Gı . If b is a boundary vertex of G�;ı , then the above computation gives

xD� xDf.b/ D
X

bk�b

bk2G�;ı

tan �k.f .b/ � f .bk//:

This is the same as the e�ect of discrete Laplacian operator on the whole-plane

graph Gı , if we require that on all the vertices adjacent to b in Gı n G�;ı , f has

the same value as f .b/. If we consider the boundary of the domain consisting of

dual edges of the adjacent edges of b in Gı n G�;ı , i.e., @G00
�;ı

, this is the discrete

analogue of 0 normal derivative along the boundary.



284 Z. Li

Now assume b is an adjacent vertex of bı;0 in G�;ı . After imposing the

Neumann boundary conditions on vertices adjacent to b, but not in QG�;ı , we have

xD� xDf.b/ D
X

bk�b;

bk¤bı;0

tan �k.f .b/ � f .bk//C tan �0f .b/:

This is the same as the e�ect of the discrete Laplacian on the whole-plane graph

Gı , by requiring that f .bı;0/ D 0.

Now assume b0 is a vertex of G0
�;ı

, and h be a function de�ned on vertices

of G0
�;ı

. We have

xD� xDh.b0/ D
X

b0
k

�b0;

b0
k

2G0
�;ı

tan �k.h.b
0/ � h.b0

k//C
X

b0
j

�b0

b0
j

2G00
�;ı

nG0
�;ı

tan �jh.b
0/:

Similar argument shows that the e�ect of xD� xD for h on each vertex of G0
�;ı

will be the same as the discrete Laplacian of the whole plane graph G0
ı

for h at the

vertex of G0
ı
, if we require the value of h on @G00

�;ı
to be 0. �

The following lemma states the relation between the inverse matrix N@�1 with

the local statistics of the perfect matchings. It was �rst discovered for the hexag-

onal lattice in [15], then reformulated in the setting of isoradial graphs in [19].

It also appears in [11], although in a less general form.

Lemma 3.3 ([15, 19]). The dimer partition function on GD
�;ı

is equal to

q

j det N@j.
The probability of edgesw1b1; : : : ; wkbk occurring in a con�guration chosen with

respect to Boltzmann measure � is

k
Y

iD1

N@.wi ; bi / det
1�i;j �k

N@�1.wi ; bj /:

3.2. Convergence with Dirichlet boundary conditions. From Lemma 3.2, we

know that there are two types of xD�1 entries, depending on whether the black

vertex is a vertex of the primal graph or a vertex of the dual graph. In this

subsection we deal with the convergence when the black vertex is a vertex of

the dual graph. We start with a technical lemma proved in [6], which says that

uniformly bounded sequence of harmonic functions, has a uniformly convergent

subsequence on compact subsets of the domain.
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Lemma 3.4 ([6]). Let H ı WV.G�;ı/ ! R be a (real-valued) discrete harmonic

function de�ned on vertices of the isoradial graph G�;ı with ı ! 0. If ¹H ıºı are

uniformly bounded on �, i.e.,

max
u2V.G�;ı/

jH ı.u/j � M < C1;

where M is a constant independent of ı, then there exists a subsequence ık ! 0,

and two functions hW� ! R, f W� ! C, such that

H ık ! h; uniformly on compact subsets K � �;

and

H ık .uC
k
/ �H ık .u�

k
/

juC
k

� u�
k

j
! <

h

f .u/
uC

k
� u�

k

juC
k

� u�
k

j

i

;

if u˙
k

2 V.G�;ı/, u
C
k

� u�
k

and u˙
k

! u 2 K � � as k ! 1. Moreover, the limit

function h, jhj � M , is harmonic in � and f D h0
x � ih0

y D 2@h is analytic in �.

Assume v1 is a white vertex ofGD
�;ı

, consider xD�1 as a function of v2, where v2

is a black vertex ofGD
�;ı

. v1 is adjacent to four vertices: two vertices corresponding

to vertices of Gı , denoted by b1 and b2, and two vertices corresponding to faces

of Gı , denoted by b3 and b4. Let �1; �2; �3; �4 denote the unit vector pointing

from v1 to b1; b2; b3; b4, respectively. Let �v1
denote the rhombus half-angle

corresponding to the edge b1b2. Explicit computations show that

xD� xD xD�1.v2; v1/ D xD�.v2; v1/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0 if v1 and v2 are not adjacent;
p

tan �v1

�i
if v2 D bi ; i D 1; 2;

1
p

tan �v1
�i

if v2 D bi ; i D 3; 4:

Lemma 3.5. Let z1 be a point in the interior of �, and let z2 2 x�, z2 ¤ z1.

Let v1 be a white vertex of GD
�;ı

nearest to z1, which corresponds to an edge in

G�;ı with a �xed rhombus half-angle �v1
, and let v2 be a vertex of G0

�;ı
nearest to

z2. Let �3;ı be the unit vector pointing from b4 to b3 in G0
�;ı

, as discussed above.

Furthermore, assume that there exists a �xed unit vector �3, so that

lim
ı!0

�3;ı D �3:
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Then

lim
ı!0

1

ı
xD�1.v2; v1/ D 2

p

sin �v1
cos �v1

@1

@�3
g�.z1; z2/;

lim
ı!0

1

ı
N@�1

�;ı.v2; v1/ D @1

@�3
g�.z1; z2/;

where g�.z1; z2/ is the Green’s function of the region�, and the derivative is the

directional derivative along the �3 with respect to the �rst variable. Moreover,

let D be the diagonal set of x�� x�, then the convergence is uniform for .z1; z2/ in

compact subsets of � � x� n D.

Proof. Let xD0 be the corresponding matrix de�ned for the whole-plane graph GD
ı

,

obtained by the superposition of Gı and G0
ı
. Then

1

ı
xD�1

0 .v2; v1/ D 1

ı�3
p

tan �v1

ŒG0
ı.v2; b3/ �G0

ı.v2; b4/� if v2 2 V.G0
�;ı/;

whereG0
ı

is the discrete Green’s function on G0
ı
, the dual graph of Gı on the whole

plane. It is proved in [19, 4] that

G0
ı.v1; v2/ D � 1

2�
log

ˇ

ˇ

ˇ

v2 � v1

ı

ˇ

ˇ

ˇ
� 
Euler C log 2

2�
CO

� ı2

jv2 � v1j2
�

;

where 
Euler is the Euler’s constant. Then

1

ı�3
p

tan �v1

ŒG0
ı.v2; b3/ �G0

ı.v2; b4/� D
p

sin �v1
cos �v1

��3
< �3

v2 � v1

CO.ı/;

(3.1)

and the coe�cient of ı in the error term is bounded uniformly for any .v1; v2/ in

compact subsets of � � x� n D. Fix v1, and let

Hı.v2/ D 1

ı
Œ xD�1.v2; v1/ � xD�1

0 .v2; v1/�;

Evidently, Hı.v2/ is satis�es the following conditions

�Hı.v/ D 0 for all v 2 V.G0
�;ı/;

Hı.v/jv2V.@G00
�;ı

/ D �
p

sin �v1
cos �v1

��3
< �3

v � v1

CO.ı/C o.1/:
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Using the same argument as in the proof of Theorem 3.10 in [6], we can show

that as ı ! 0, the sequence ¹Hıºı converges uniformly on compact subsets of �

to a continuous (complex valued) harmonic function h.z/ on �, with boundary

value given by

h.z/jz2@� D �
p

sin �v1
cos �v1

��3
< �3

z � z1

:

Then xD�1.z1; z2/ converges to the function

h.z2/C
p

sin �v1
cos �v1

��3
< �3

z2 � z1

:

This is 2
p

sin �v1
cos �v1

times the directional derivative of the continuous Green’s

function.

The expression for N@�1
�;ı

follows from the following gauge equivalence identity

xD.v2; v1/ D
N@�;ı.v2; v1/

2
p

sin �v1
cos �v1

: �

3.3. Near the straight boundary. Assume @� has a straight portion, denoted

by L0. Assume @G00
�;ı

has a straight portion approximating L0, denoted by L0;ı .

In this subsection we explore the behaviour of xD�1 when one or both variables

are near the straight boundary L0;ı .

We can extend the isoradial graph G00
�;ı

across the �at boundary L0;ı , such

that the isoradial faces are symmetric with respect to the axis L0;ı . We can also

extend the Green’s function G0
�;ı
.v1; v2/ across L0;ı as follows. If v2 and v�

2 are

symmetric vertices with respect to L0;ı , we de�ne

G0
�;ı.v1; v

�
2 / D �G0

�;ı.v1; v2/:

Let z1 be a point in x�, and z2 2 L0 such that z2 ¤ z1. Using the extensions

above, we have a discrete harmonic function G0
�;ı
.z1; �/ in a neighborhood of

z2, and they are uniformly bounded in the neighborhood of z2 with a bound

independent of ı. By Lemma 3.4, both the harmonic function and its directional

derivatives converge uniformly in a neighborhood of z2.

3.4. Convergence with Neumann boundary conditions. In this subsection, we

deal with the entries of xD�1 where the black vertex is a vertex of the primal graph.

It has a boundary condition which is a discrete analog of the Neumann boundary

condition, given that the di�erence of observables along the normal direction of

each boundary edge is 0.
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The following lemma states the convergence of xD�1 when the black vertex is

a vertex of the primal graph.

Lemma 3.6. Let� be a simply-connected, bounded domain bounded by a simple

closed curve, andG�;ı be an isoradial graph with common radius ı, such that G�;ı

is the largest subgraph of Gı (the isoradial graph on the whole plane), consisting

of faces of Gı , lying completely inside �. Let z1 be a point in the interior of �,

and let z2 2 x� and z2 ¤ z1. Let v1 be a white vertex of GD
�;ı

and v2 be a vertex of

G�;ı . Assume as ı ! 0, .v1; v2/ approximates .z1; z2/ in the following sense

(1) there exists C > 0, independent of ı, such that jv2 � z2j < Cı, and

jv1 � z1j < Cı;

(2) as ı ! 0, the direction in G0
�;ı

corresponding to v1 are �xed to be �3.

Then �x v1, there exists a subsequence such that the real and imaginary parts of
1
ı
.N@�1

�;ı
.v1; b/ � N@�1

0 .v1; b// converge uniformly on compact subsets of � � � to

harmonic functions on b, as ı ! 0. Let F.z1; z2/ be the limit of 1
ı

N@�1
�;ı
.v1; b/,

b 2 V.G�;ı/, and let v2 be a sequence of black vertices approximating z2 which

have incident edges in G�;ı with direction equal to a �xed vector ˛, then

@2F.z1; z2/

@˛
D @1

@�3

@2

@.i˛/
Œg�.z1; z2/�;

where @2

@˛
(resp. @2

@.i˛/
) is the directional derivative of the second variable with

respect to the ˛ (resp. i˛) direction, for z1 ¤ z2, .z1; z2/ 2 � ��.

Proof. Recall that there are two types of black vertices B0 and B1, where B0

corresponds to vertices of the graph G�;ı , and B1 corresponds to vertices of the

dual graph G00
�;ı

.

Fix a white vertex v1. De�ne f 2 C
B0 , as a function on B0 vertices and

g 2 C
B1 , as a function on B1 vertices as follows

f .b/ D N@�1
�;ı.b; v1/ if b 2 B0;

g.b/ D N@�1
�;ı.b; v1/ if b 2 B1:

Let w be a vertex of GD
�;ı

. Let bx ; by be two adjacent vertices of w in B0, and

bp ; bq be two adjacent vertices of w in B1. Then

ıw.v1/ D N@�;ı
N@�1

�;ı.w; v1/ D
X

iDx;y;p;q

N@0.w; bi/N@�1
�;ı.bi ; v1/;
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where N@0 is the operator on the whole-plane bipartite isoradial graph GD
ı

, namely,

the superposition of Gı and G0
ı
. Note that if bi 2 @G00

�;ı
, then N@�1

�;ı
.bi ; v1/ D 0.

Let ˛, (resp. �˛; i˛;�i˛/ be a unit vector from w to bx (resp. by; bp; bq/, we then

have

2 sin �w˛.f .bx/ � f .by//C 2 cos �w i˛.g.bp/ � g.bq// D

8

<

:

0 if w ¤ v1;

1 if w D v1;

where �w is the rhombus half-angle corresponding to the edge bxby . Hence if

w ¤ v1, we have

f .bx/ � f .by/ D �i cos �w

sin �w

.g.bp/ � g.bq//:

Let b0;ı be the removed vertex, recall that f .b0;ı/ D 0. Let b be an arbitrary

vertex of G�;ı . We use a path, consisting of n edges of G�;ı to connect b0;ı and b,

such that nı is uniformly bounded for any ı, and there exists a �xed c0 > 0 such

that the path does not intersect the ball B.v1; c0/ for any ı. Assume the vertices

in G�;ı visited by the path are

b0.D b0;ı/; b1; b2; : : : ; bn.D b/;

in which bi and biC1 (0 � i � n � 1) are adjacent in G�;ı . Then

N@�1
�;ı.b; v1/ D f .b/ D

n
X

kD1

f .bk/ � f .bk�1/ (3.2)

D �i
n

X

iD1

cos �k

sin �k

.g.bp;k/ � g.bq;k//; (3.3)

where �k is the rhombus half-angle corresponding to the edge bkbk�1, and

bkbp;kbk�1bq;k is the rhombus (where the vertices are in counter-clockwise or-

der) corresponding to the edge bk�1bk .

Note that in a compact subset of�n¹z1º, g.b/ converges uniformly to a contin-

uous harmonic function, as is proved in Lemma 3.5. Moreover, g.b/ is uniformly

bounded on a compact subset of�n¹z1º, by Lemma 3.4, the directional di�erence

of g.b/ converges uniformly on a compact subset of�n ¹z1º to the directional de-

rivative of the corresponding continuous harmonic function. Therefore, we have

lim
ı!0

f .bx/ � f .by/

2ı2 cos �w˛
D @1

@�3

@2

@Œi˛�
Œg�.z1; z2/�:
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From (3.3), we see that 1
ı

N@�1
�;ı
.b; v1/ is uniformly bounded on a compact subset

of�n ¹z1º. By Lemma 3.4, the directional di�erence of 1
ı

N@�1.b; v1/, with respect

to b, converges uniformly on a compact subset of � n ¹z1º to the corresponding

directional derivative of the limit continuous harmonic function, then the theorem

follows. �

Similarly as in Section 3.3, the primal graph G�;ı can be extended acrossL0;ı ,

by constructing a symmetric graph with respect to the axis L0;ı . We also extend

the Green’s function G�;ı.v1; v2/ on the primal graph across the boundary by

letting G�;ı.v1; v2/ D G�;ı.v1; v
�
2 / if v2 and v�

2 are symmetric with respect to

L0;ı .

Let z1 be a point in x�, and z2 2 L0 such that z2 ¤ z1. Using the extensions

above, we have a discrete harmonic function and G�;ı.z1; �/, in a neighborhood

of z2, and they are uniformly bounded in the neighborhood of z2 with a bound

independent of ı. By Lemma 3.4, both the harmonic function and its directional

derivatives converge uniformly in a neighborhood of z2.

4. Conformal Invariance

In this section, we prove an explicit expression for the scaling limit of the discrete

holomorphic observable, by utilizing the conformal invariance of the Green’s

function.

Lemma 4.1. Let A, B be two continuous, (directional) di�erentiable, complex-

valued functions in �. Assume for any z 2 �, A.z/ is perpendicular to B.z/, and

there exists two nonparallel directions ˛1.z/, ˛2.z/, such that

@A

@˛1

ˇ

ˇ

ˇ

ˇ

z

D @B

@1

ˇ

ˇ

ˇ

ˇ

z

; (4.1)

@A

@˛2

ˇ

ˇ

ˇ

ˇ

z

D @B

@2

ˇ

ˇ

ˇ

ˇ

z

; (4.2)

where ˇ1 D i˛1, and ˇ2 D i˛2, then A C B is (complex) analytic in �. Here if

˛1 is a unit vector, A is a complex-valued function, @A

@˛1
is de�ned by

@A

@˛1

.z/ D lim
�!0

A.z C �˛1/ � A.z/

�˛1

:

Moreover, for arbitrary directions ˛; ˇ, (˛; ˇ 2 C and j˛j D jˇj D 1), satisfying

ˇ D i˛, we have

@A

@˛
D @B

@ˇ
:
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Proof. Using the chain rule to check the Cauchy–Riemann equation

<ŒA C B�x D =ŒA C B�y;

<ŒA C B�y D �=ŒA C B�x: �

Lemma 4.2. De�ne

F0;ı.w; b/ D

8

<

:

1
ı

N@�1
�;ı
.w; b/ if b 2 V.G�;ı/;

0 if b 2 V.G0
�;ı
/;

F1;ı.w; b/ D

8

<

:

0 if b 2 V.G�;ı/;

1
ı

N@�1
�;ı
.w; b/ if b 2 V.G0

�;ı
/:

Then as ı ! 0, F0;ı C F1;ı converges to a meromorphic function f .z1; z2/ in

z2. For each �xed z1, the only pole of f .z1; �/ happens at z2 D z1, with residue
1

4�
. Here z1 corresponds to white vertices, and z2 corresponds to black vertices.

Moreover, the convergence is uniform on any compact subset of � �� n D.

Proof. Let N@0 be the operator for the whole plane graph GD
ı

, de�ne

J0;ı.w; b/ D

8

<

:

1
ı

N@�1
0 .w; b/; if b 2 V.G�;ı/

0 if b 2 V.G0
�;ı
/;

J1;ı.w; b/ D

8

<

:

0 if b 2 V.G�;ı/;

1
ı

N@�1
0 .w; b/ if b 2 V.G0

�;ı
/:

As in the proof of Lemma 3.5 and Lemma 3.6, (see also [19]) explicit computations

show that

lim
ı!0

J0;ı D 1

4��1
< �1

z2 � z1

;

lim
ı!0

J1;ı D 1

4��3
< �3

z2 � z1

:

Here �1 is the unit vector pointing from a white vertex w to an incident vertex in

G�;ı , and �3 is the unit vector pointing from a white vertexw to an incident vertex

in G0
�;ı

, and �3 D i�1. Hence we have

lim
ı!0

J0;ı C J1;ı D 1

4�.z2 � z1/
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Again, according to Lemma 3.5 and Lemma 3.6, limı!0 F0;ı CF1;ı � J0;ı � J1;ı

is a complex-valued harmonic function in z2 for each �xed z1. Let b be the black

vertex in G� corresponding to z2, we can �nd two edges incident to b in G�,

which are non-parallel and have directions ˛1; ˛2, respectively, such that (4.1)

and (4.2) hold with A D limı!0 F0;ı �J0;ı , and B D limı!0 F1;ı �J1;ı , therefore

limı!0 F0;ı C F1;ı � J0;ı � J1;ı is analytic in z2, and the lemma is proved. �

Consider limı!0.F1;ı � J1;ı/. According to Lemma 3.5,

lim
ı!0

.F1;ı � J1;ı/ D @1

@�3

h

g�.z1; z2/C 1

2�
log jz1 � z2j

i

:

And according to Lemma 3.6, we have

@2 limı!0.F0;ı � J0;ı/

@2˛
D @1@2

@�3@.i˛/

h

g�.z1; z2/C 1

2�
log jz1 � z2j

i

;

where ˛ is the unit vector denoting the direction of an edge of G�;ı at z2.

By Lemma 3.5, for each �xed .z1; z2/, limı!0.F0;ı � J0;ı/ is perpendicular to

limı!0.F1;ı � J1;ı/, and since each vertex of G�;ı is incident to at least two non-

parallel edges, there exist two non-parallel directions ˛1, ˛2, such that

@2 limı!0.F0;ı � J0;ı/

@˛1

D limı!0.F1;ı � J1;ı/

@ˇ1

; (4.3)

@2 limı!0.F0;ı � J0;ı/

@˛2

D limı!0.F1;ı � J1;ı/

@ˇ2

; (4.4)

where ˇ1 D i˛1, and ˇ2 D i˛2. According to Lemma 4.1, for arbitrary directions

˛, ˇ, satisfying ˇ D i˛, we have

@2 limı!0.F0;ı � J0;ı/

@˛
D @2 limı!0.F1;ı � J1;ı/

@ˇ
: (4.5)

Recall that z0 is the limit of the removed vertices bı;0, as ı ! 0, and

limı!0 F0;ı.z0/ D 0. Hence for any smooth path connecting z0 to z2 in �, we

have

lim
ı!0

.F0;ı � J0;ı/.z1; z2/

D
Z z2

z0

@2 limı!0.F1;ı � J1;ı/

@n
.z1; �/d� C lim

ı!0
J0;ı.z1; z0/

D @1

@�3

Z z2

z0

@2

@n

h

g�.z1; �/C 1

2�
log jz1 � �j

i

d� C 1

4��1
< �1

z0 � z1

;
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where d� is the di�erential along the tangent direction of the path from z0 to z2,

and @2

@n
is the derivative with respect to the second variable along the normal

direction of the path from z0 to z2. In particular we have the following case.

Lemma 4.3. We have

lim
ı!0

F0;ı.z1; z2/ D @1

@�3

Z z2

z0

@2

@n
g�.z1; �/d�;

and the integral is along a path from z0 to z2 in a compact subset of � n ¹z1º.

Since the limit F0;ı and F1;ı also depend on the local direction of the edge

corresponding to the white vertex, from now on, we write

f �
0 .z1; z2; i�/ D lim

ı!0
F�

0;ı.z1; z2; �/ D @1

@�

Z z2

z0

@2

@n
g�.z1; �/d�;

f �
1 .z1; z2; �/ D lim

ı!0
F�

1;ı.z1; z2; �/ D @1

@�
g�.z1; z2/:

where � is the direction of the dual edge at the white vertex corresponding to z1,

and i� is the direction of the primal edge at the white vertex corresponding to z1.

Let H D ¹zW =z > 0º be the upper half plane. Let �W� ! H be the conformal

equivalence between � and H, which maps the marked point z0 of @� to 1.

According to the conformal invariance of the Green’s function, we have

g�.z1; z2/ D gH.�.z1/; �.z2// D 1

2�
log

ˇ

ˇ

ˇ

ˇ

�.z2/ � �.z1/

�.z2/ � �.z1/

ˇ

ˇ

ˇ

ˇ

:

De�ne

g�
�.z1; z2/ D 1

2�

Z z2

z0

@2

@n
log

ˇ

ˇ

ˇ

ˇ

�.�/ � �.z1/

�.�/ � �.z1/

ˇ

ˇ

ˇ

ˇ

d�;

then g�
�.z1; �/ is, locally, i times the harmonic conjugate of g�.z1; �/, with respect

to the second variable. Namely,

g�
�.z1; z2/ D i

2�
arg

�.z2/ � �.z1/

�.z2/ � �.z1/
C C:
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Note that g�
�.z1; z2/, as a function of z2, is not single-valued. In fact, g�

�.z1; �/
increases by i when winding once counterclockwise around z1. Moreover,

g�.z1; z2/C g�
�.z1; z2/ D 1

2�
log

��.z2/ � �.z1/

�.z2/ � �.z1/

�

C C;

which implies, locally, g�.z1; z2/C g�
�.z1; z2/ is (complex) analytic in z2. Simi-

larly we have

g�.z1; z2/ � g�
�.z1; z2/ D 1

2�
log

��.z2/ � �.z1/

�.z2/ � �.z1/

�

:

Explicit computations show that

f �
1 .z1; z2; �/C f �

0 .z1; z2; i�/ D @1

@�
.g�.z1; z2/C g�

�.z1; z2//

D 1

2�

� �0.z1/

�.z1/ � �.z2/
� 1

�2

�0.z1/

�.z1/ � �.z2/

�

;

and

f �
1 .z1; z2; �/ � f �

0 .z1; z2; i�/ D @1

@�
.g�.z1; z2/ � g�

�.z1; z2//

D 1

2�

� 1

�2

�0.z1/

�.z1/ � �.z2/
� �0.z1/

�.z1/ � �.z2/

�

:

Hence we have

f �
1 .z1; z2; �/ D 1

4�

h� �0.z1/

�.z1/ � �.z2/
� �0.z1/

�.z1/ � �.z2/

�

� 1

�2

� �0.z1/

�.z1/ � �.z2/
� �0.z1/

�.z1/ � �.z2/

�i

;

(4.6)

f �
0 .z1; z2; i�/ D 1

4�

h� �0.z1/

�.z1/ � �.z2/
C �0.z1/

�.z1/ � �.z2/

�

� 1

�2

� �0.z1/

�.z1/ � �.z2/
C �0.z1/

�.z1/ � �.z2/

�i

:

(4.7)

In particular, in the upper half plane H we have

f H

1 .z1; z2; �/ D 1

4�

h� 1

z1 � z2

� 1

z1 � z2

�

� 1

�2

� 1

z1 � z2

� 1

z1 � z2

�i

;

f H

0 .z1; z2; i�/ D 1

4�

h� 1

z1 � z2

C 1

z1 � z2

�

� 1

�2

� 1

z1 � z2

C 1

z1 � z2

�i

:
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5. Height function and Gaussian free �eld

In this section we study the height functions for perfect matchings on isoradial

graphs ¹GD
�;ı

ºı , and prove that the distribution of height functions converges to

GFF in the scaling limit.

Recall that the graph GD
�;ı

, constructed by the superposition of an isoradial

graph G�;ı and its interior dual graph G0
�;ı

, and then the removal of a vertex

of G�;ı on the boundary, is a bipartite, isoradial graph which admits a perfect

matching, as discussed in Section 3.1.

The probability measure for perfect matchings on the graph GD
�;ı

is de�ned

to be proportional to the product of critical edge weights, see (2.1). The height

function is de�ned as in (2.2) and (2.3).

Assume g1;ı ; : : : ; gk;ı are k distinct faces of GD
�;ı

. Recall that GD
�;ı

is obtained

by superimposing G�;ı and its interior dual graph G0
�;ı

, then removing a vertex of

G�;ı on the boundary. Also recall that G�;ı is the interior dual graph of G00
�;ı

, and

the boundary of G00
�;ı

has a straight portion L0;ı . Let f1;ı ; : : : ; fk;ı be k distinct

faces outside GD
�;ı

, but incident to the boundary of GD
�;ı

and L0;ı . Assume

lim
ı!0

gj;ı D zj ;

lim
ı!0

fj;ı D wj ; for all 1 � j � k;

where ¹zj ºk
j D1 are distinct interior points of�, and ¹wj ºk

j D1 are distinct points on

the �at boundary L0 of @�.

Let hj;ı D h.gj;ı/�h.fj;ı/ be the height di�erence between the faces gj;ı and

fj;ı . Let Nhj;ı be the mean value of hj;ı , i.e., Nhj;ı D Ehj;ı .

If we �x the height h.f1;ı/ D 0, it is not hard to see that for any given dimer

con�guration on GD
�;ı

, h.fj;ı/ is deterministic and identically 0, according to the

de�nition of height function in Section 2.3. Therefore,

hj;ı D h.gj;ı/:

For each ı su�ciently small, let 
ı
j ; .1 � j � k/ be pairwise disjoint dual

paths of GD
�;ı

, starting at fj;ı , ending on the face gj;ı and consisting of dual edges

of GD
�;ı

.
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Moreover, according to our speci�c de�nition of height function in Sec-

tion 2.3,

Nhj;ı D 0 for all 1 � j � k:

For notational simplicity, we use 
j .1 � j � k/ instead of 
ı
j . For each �xed

j.1 � j � k/, we classify all the edges of GD
�;ı

crossed by 
j into 4 di�erent

types as follows:

(1) the edge has the white vertex on the left of 
j , and the black vertex is a vertex

of G�;ı , denote the set of all such edges by Uj;1;

(2) the edge has the white vertex on the left of 
j , and the black vertex is a vertex

of G0
�;ı

, denote the set of all such edges by Uj;2;

(3) the edge has the black vertex on the left of 
j , and the black vertex is a vertex

of G�;ı , denote the set of all such edges by Uj;3;

(4) the edge has the black vertex on the left of 
j , and the black vertex is a vertex

of G0
�;ı

, denote the set of all such edges by Uj;4.

Then

Eh1;ı � � � � � hk;ı (5.1)

D
X

j1;:::;jk2¹1;2;3;4º
.�1/�.j1/C���C�.jk/

X

t1;:::;tk ;es;js;ts 2Us;js

E.I.e1;j1;t1/ � P.e1;j1;t1// � � � �
� .I.ek;jk ;tk / � P.ek;jk ;tk //;

(5.2)

where � is a function de�ned on ¹1; 2; 3; 4º, such that �.1/ D �.2/ D 0, and

�.3/ D �.4/ D 1. For each s, 1 � s � k, ts is an integer indexing the ts-th edge

crossed by 
s in the class Us;js
, counted starting from the face fj;ı . The ts-th edge

in Us;js
is denoted by es;js ;ts . The expression of Eh1;ı � � � � �hk;ı as in (5.2) follows

from applying the formula (2.3) to compute height functions and expanding the

product out.

Lemma 5.1. Let ei D .wi ; bi /, for i D 1; : : : ; n, be a set of n distinct edges in

GD
�;ı

, then

E.I.e1/ � P.e1// � � � � � .I.en/ � P.en// (5.3)

D
n

Y

iD1

N@�;ı.wi ; bi / det

0

B

@

0 N@�1
�;ı
.w1; b2/ : : : N@�1

�;ı
.w1; bn/

N@�1
�;ı
.w2; b1/ 0 : : : N@�1

�;ı
.w2; bn/

N@�1
�;ı
.wn; b1/ N@�1

�;ı
.wn; b2/ : : : 0

1

C

A
:

(5.4)

Here N@ is a special (complex) weighted adjacent matrix with respect to the isora-

dial graph GD
�;ı

, as discussed in Section 3, and N@�1 is the inverse matrix of N@.
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Proof. Apply the same technique as in Lemma 21 of [17] to the setting of isoradial

graphs. �

Recall that f0.w; b; i�/ D limı!0
1
ı

N@�1
�;ı
.w; b/, if b is a vertex of G�;ı , and

� is the direction of the dual edge of G0
�;ı

at w. Also recall that f1.w; b; �/ D
limı!0

1
ı

N@�1
�;ı
.w; b/, if b is a vertex of G0

�;ı
, and � is the direction of the dual

edge of G0
�;ı

at w. Note that the convergence is uniform on any compact subset of

� �� n D.

Plugging (5.4) to (5.2), and expanding the determinant out, we obtain an

expression of Eh1;ı � � � � � hk;ı in terms of entries of N@ and N@�1. A typical term

in this expression is

.�1/�.j1/C���C�.jk/

k
Y

iD1

N@�;ı.wi ; bi /sgn.�/N@�1
�;ı.w1; b�.1//N@�1

�;ı.w2; b�.2// � � � �
� N@�1

�;ı.wk; b�.k//:

(5.5)

Here � is a permutation of k elements with no �xed point. Let us �rst assume that

� is a k-cycle, reorder the indices so that (5.5) becomes

.�1/�.j1/C���C�.jk/

k
Y

iD1

N@�;ı.wi ; bi /sgn.�/N@�1
�;ı.w1; b2/N@�1

�;ı.w2; b3/ � � � �
� N@�1

�;ı.wk; b1/

(5.6)

D .�1/�.j1/C���C�.jk/sgn.�/ık

k
Y

iD1

N@�;ı.wi ; bi /f�.j2/.w1; b2; �
�.j2/
1 / � � � �

� f�.j3/.w2; b3; �
�.j3/
2 /

� f�.jk/.wk�1; bk; �
�.jk/

k�1
/

� f�.j1/.wk ; b1; �
�.j1/

k
/C o.1/;

(5.7)

where � is a function on ¹1; 2; 3; 4º, such that �.1/ D �.3/ D 0, and �.2/ D �.4/ D
1. �0

i is the direction of the primal edge at wi , while �1
i is the direction of the dual

edge at wi . Recall that ji (1 � i � k) is an integer indicating the type of the edge

wibi , as discussed before. In particular, ji D 1; 3, means that bi is a vertex of

G�;ı , and ji D 2; 4, means that bi is a vertex of G0
�;ı

.

Lemma 5.2 below is contained in [8], we present the proof here so that the

paper is self-contained.
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Lemma 5.2. For 1 � i � k, when traveling along 
i from fi;ı to gi;ı , let �zi be

the increment along the dual edge of wibi , where the dual edge is in 
i , and wibi

is the unique primal edge crossing the dual edge. We have

.�1/�.j1/C���C�.jk/

k
Y

iD1

N@�;ı.wi ; bi /ı
k D .�i/k�z1 � � � � ��zk

Proof. According to the local geometry of the isoradial graph, we know that �zi

has length equal to 2ı sin �i , and direction perpendicular to wibi , here �i is the

rhombus half-angle corresponding to wibi

By de�nition of the N@ operator, for 1 � i � k, N@�;ı.wi ; bi / is the complex

number of length 2 sin �i , with direction pointing from wi to bi . Also recall that

wibi is an edge of GD
�;ı

intersecting 
i . If wi is on the left of the path 
i when

travelling along 
i from fi;ı to gi;ı , then

iı N@�;ı.wi ; bi / D �zi ;

however, if wi is on the right of the path 
i oriented from fi;ı to gi;ı , then

.�i/ı N@�;ı.wi ; bi / D �zi ;

hence the lemma is proved. �

Applying Lemma 5.2 to (5.7), we obtain another expression of (5.6), namely

.5.6/ D sgn.�/

k
Y

iD1

h

�zif�.jiC1/.wi ; biC1; �
�.jiC1/

i /
i

(5.8)

Lemma 5.3. For 1 � i � k,

�zif�.jiC1/.wi ; biC1; �
�.jiC1/

i / (5.9)

D 1

4�

h� �0.wi /

�.wi / � �.biC1/
C .�1/�.jiC1/ �0.wi /

�.wi / � �.biC1/

�

�zi (5.10)

C .�1/�.ji /C1�zi

� �0.wi /

�.wi / � �.biC1/

C .�1/�.jiC1/ �0.wi /

�.wi / � �.biC1/

�i

:

(5.11)
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Proof. We plug in formulas (4.6) and (4.7) into (5.9), and note that �jiC1
D 0

(resp. �jiC1
D 1), if biC1 is a vertex of G�;ı (resp. G0

�;ı
).

Moreover, recall thatwibi is an edge of GD
�;ı

crossed by 
i . An edge�zi along


i is always perpendicular to the crossing edge wibi in GD
�;ı

. If �.ji/ D 0, bi is a

vertex of G�;ı , wibi is parallel to i�, and therefore �zi is parallels to �, hence we

have

�zi

�2
D �zi if �.ji / D 0:

Similarly, if �.ji/ D 1, bi is a vertex of G0
�;ı

,wibi is parallel to �, and therefore

�zi is parallels to i�, hence we have

�zi

.i�/2
D �zi if �.ji/ D 0:

Then the lemma follows. �

We plug in (5.9)–(5.11) to (5.8), to obtain an expression of (5.6), then plug in

the expression of (5.6) to (5.4) to obtain an expression of (5.3); then plug in the

expression of (5.3) to (5.2) to compute the height moment (5.1).

For 1 � s � k, each factor f�.jsC1/.ws; bsC1; �
�.jsC1/
s / in (5.7) is the sum of

four terms. We expand them out and express (5.7) as the sum of 4k terms.

Let S D 1; 2; : : : ; k. Each one of the 4k terms in the expansion of (5.7) gives

a division of S into 4 disjoint subsets S1; S2; S3; and S4, such that

(1) S1 [ S2 [ S3 [ S4 D S ,

(2) Si \ Sj D ;, if i; j 2 ¹1; 2; 3; 4º and i ¤ j .

Namely, if �.wi;ti / and �.bi;ti / appear in the term, then i 2 S1; if �.wi;ti / and

�.bi;ti / appear in the term, then i 2 S2; if �.wi;ti / and �.bi;ti / appear in the term,

then i 2 S3; if �.wi;ti / and �.bi;ti / appear in the term, then i 2 S4.

We claim that if in the division of S determined by a term in the expansion

of (5.7), S2 [ S3 ¤ ;, then the term, summing over t1; : : : ; tk will go to 0 as

ı ! 0. In fact, applying Lemmas 5.2 and 5.3 , a term in the expansion of (5.7)

can be written as

.�i/ksgn.�/u�;S1;S2;S3;S4
.z1;t1; : : : ; zk;tk ; Nz1;t1; : : : ; Nzk;tk /

Y

i2S1

Œ�zi;ti �
Y

i2S4

Œ��zi;ti �
Y

i2S2

Œ.�1/�.ji /�zi;ti �
Y

i2S3

Œ.�1/�.ji /C1�zi;ti �;

where zi;ti D wi;ti
Cbi;ti

2
, and u�;S1;S2;S3;S4

is a smooth function when z1; : : : ; zk

are distinct. Note also that the function u�;S1;S2;S3;S4
depends on the division
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S1; S2; S3; S4, i.e. di�erent monomials in the expansion of (5.7) give di�erent

function. It also depends on the speci�c permutation in the expansion of the

determinant in (5.4).

Here �zi;ti is the ti -th oriented dual edge connecting adjacent faces along the

path 
i , where edges along 
i are oriented in such a way that 
i is oriented from

fi;ı to gi;ı .

Lemma 5.4. We have
X

ti

.�1/�.ji /�zi;ti D O.ı/: (5.12)

Proof. Let F0.WD fi;ı/, F1,. . . , FTi
.WD gi;ı/ be all the faces along the dual path


i , then

�zi;ti D Fti � Fti �1; for 1 � ti � Ti ;

where Fti � Fti �1 is a dual edge, and it is crossed by an unique primal edge

wi;tibi;ti . On the left hand side of (5.12), the sign of �zi;ti depends on the type of

bi;ti ; namely, if bi;ti is a vertex of G�;ı (resp. G0
�;ı

), then the sign of �zi;ti in the

sum (5.12) is positive (resp. negative).

Note that each face in GD
�;ı

has 4 vertices, exactly two vertices are black, and 2

vertices are white. Moreover, in each pair of black vertices of the same face in

GD
�;ı

, exactly one black vertex is a vertex of G�;ı , and the other is a vertex of

G0
�;ı

.

Moving along dual edges of 
i , at the beginning we meet with dual edges

whose crossing primal edges share a black vertex b1 until the s1-th dual edge,

next we meet with the .s1 C 1/-th dual edge whose crossing primal edge has a

di�erent black vertex b2. In fact, b2 and b1 must share a face, and exactly one of

them is a vertex of G�;ı , and the other is a vertex of G0
�;ı

.

Then we keep moving along 
i , assume all the dual edges from the .s1 C 1/-th

dual edge to the s2th dual edge, have crossing primal edges sharing a black vertex

b2, but the .s2 C 1/-th dual edge has a crossing primal edge with a di�erent black

vertex b3. Evidently b2 and b3 share a face in GD
�;ı

, and they are black vertices of

di�erent types.

We continue this process and obtain

X

ti

.�1/�.ji /�zi;ti D
q

X

pD1

.�1/pC1ŒFsp
� Fsp�1

�

where for p D 1; : : : ; q�1, Fsp
’s are all the faces separating two dual edges along


i whose crossing primal edges have di�erent black vertices.
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For p D 1; : : : ; q, let bp be the common black vertex shared by crossing primal

edges of all the dual edges along 
i between Fsp�1
and Fsp

, we have

X

ti

.�1/�.ji /�zi;ti D
q

X

pD1

.�1/pC1Œ.Fsp
� bp/C .bp � Fsp�1

/�:

Moreover, the geometry of the isoradial graph gives us

2Fsp
D bp C bpC1; for 1 � p � q � 1:

see Figure 5.1.

Figure 5.1. Face of isoradial graph and dual path.

As a result,
X

ti

.�1/�.ji /�zi;ti D .�1/qC1.Fsq
� bq/ � .F0 � b1/ D O.ı/: �

Therefore if a term in the expansion of (5.7) has a division of S in which

S2 [ S3 ¤ ;, then the sum over t1; : : : ; tk of the term will go to zero as ı ! 0,

since it is the sum of a smooth function multiplying an oscillating term. Taking

into account the boundary behavior of N@�1
�;ı

near L0, as discussed in Section 3.3,

we have

lim
ı!0

Eh1;ı � � � � � hk;ı D
X

�1;:::;�k2¹�1;1º

� �i
4�

�k

k
Y

iD1

�i

Z

�.
1/;:::;�.
k/

detU.Œ�.z1/�
.�1/; : : : ; Œ�.zk/�

.�k//dz
.�1/
1 � � � � � dz.�k/

k
;

(5.13)

where U.x1; : : : ; xk/ is a k � k matrix de�ned by Ui;i D 0, and Ui;j D 1
xi �xj

; if

w 2 C is a complex number, we use the notation w.1/ WD w, and w.�1/ WD Nw.

Lemma 5.5 below is a classical formula to compute the Cauchy determinant.
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Lemma 5.5 ([25]). Let M D .mij / be the k � k matrix de�ned by mi i D 0, and

mij D 1
xi �xj

. When k is odd, detM D 0, and when k is even,

detM D
X 1

.x�.1/ � x�.2//2.x�.3/ � x�.4//2 � � � .x�.k�1/ � x�.k//2
;

where the sum is over all .k � 1/ŠŠ possible pairings ¹¹�.1/; �.2/º; : : : ,
¹�.k � 1/; �.k/ºº of ¹1; : : : ; kº.

Now we apply the moment formula (5.13) and compute the second moment

explicitly. We have

lim
ı!0

Eh1;ı.z1/h2;ı.z2/

D � 1

16�2

h

Z

�.
1/;�.
2/

1

.�1 � �2/2
d�1d�2 �

Z

�.
1/;�.
2/

1

.�1 � N�2/2
d�1d N�2

�
Z

�.
1/;�.
2/

1

. N�1 � �2/2
d N�1d�2 C

Z

�.
1/;�.
2/

1

. N�1 � N�2/2
d N�1d N�2

i

D � 1

8�2
log

ˇ

ˇ

ˇ

�.z2/ � �.z1/

�.z2/ � N�.z1/

ˇ

ˇ

ˇ

D � 1

4�
gH.�.z1/; �.z2//;

where gH is the Green’s function for the upper half plane H.

Assume z1; : : : ; zk are distinct points in �. Applying Lemma 5.5, we have,

when k is odd,

lim
ı!0

EŒh1;ı.z1/ � � � � � hk;ı.zk/� D 0:

When k is even,

lim
ı!0

EŒh1;ı.z1/ � � � � � hk;ı.zk/�

D
X

pairings �

�

� 1

4�

�
k
2

k
2

Y

j D1

gH.�.z�.2j �1//; �.z�.2j ///:

The next lemma gives a control on the expectation of product of height func-

tions at �nitely many interior points of the �nite domain, of which two or more

points are identical. For a similar bound for height moments of dimer con�gura-

tions on a whole-plane isoradial graph, see Lemma 20 of [8].
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Lemma 5.6. If two or more zi ’s are equal, we have

EŒh1;ı.z1/ � � � � � hk;ı.zk/� D O.Œlog ı�l/

where l is the number of coincides, i.e. k � l is the number of distinct zi ’s.

Proof. If two or more zi ’s are equal, we choose the paths 
i;ı’s, consisting of dual

edges of GD
�;ı

, so that the 
 0
i;ı
s for di�erent i’s are close to each other only at

coinciding zi ’s, but far away from each other elsewhere. Previous computations

show that

Eh1;ı � � � � � hk;ı

D
X

j1;:::;jk2¹1;2;3;4º

X

�2 OSk

X

t1;:::;tk

� �i
4�

�k

sgn.�/

k
Y

iD1

h

Error terms

C
� �0.wi;ti ;ji

/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

C .�1/�.j�.i// �0.wi;ti ;ji
/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

�

�zi;ti ;ji

C .�1/�.j�.i//C1�zi;ti ;ji

� �0.wi ; ti ; ji/

�wi ;ti ;ji
� �.b�.i/;t�.i/;j�.i/

/

C .�1/�.j�.i// �0.wi;ti ;ji
/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

�i

:

(5.14)

Here OSk is the set of all permutations with k elements with no �xed point.

We need to estimate the error terms in (5.14). When b�.i/;t�.i/;j�.i/
is a vertex

of G0
�;ı

, from the proof of Lemma 3.5, we know that

jError termsj � O
� ı2

jwi;ti ;ji
� b�.i/;t�.i/;j�.i/

j
�

C o.ı/

When b�.i/;t�.i/;j�.i/
is a vertex of G�;ı , from the proof of Lemma 3.6, we know

that

jError termsj � O
� ı

jwi;ti ;ji
� b�.i/;t�.i/;j�.i/

j
�

C o.ı/
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If l is the number of coincides of zi ’s, we have
ˇ

ˇ

ˇ

ˇ

E h1;ı � � � � � hk;ı �
X

j1;:::;jk2¹1;2;3;4º

X

�2 OSk

X

t1;:::;tk

� �i
4�

�k

sgn.�/

k
Y

iD1

h� �0.wi;ti ;ji
/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

C .�1/�.j�.i// �0.wi;ti ;ji
/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

�

�zi;ti ;ji

C .�1/�.j�.i//C1�zi;ti ;ji

� �0.wi ; ti ; ji /

�wi ;ti ;ji
� �.b�.i/;t�.i/;j�.i/

/

C .�1/�.j�.i// �0.wi;ti ;ji
/

�.wi;ti ;ji
/ � �.b�.i/;t�.i/;j�.i/

/

�i

ˇ

ˇ

ˇ

ˇ

� OŒ.log ı/l �;

then the lemma follows. �

We have the following theorem:

Theorem 5.7. The scaling limit of distribution of (unnormalized) height is con-

formally invariant and universal, and is the same as 1

2
p

�
times a Gaussian free

�eld.

Proof. It su�ces to prove that for any  2 C1
0 .�/,

X

f 2GD
�;ı

 .f /hı.f /A.f / �!
Z

�

F dxdy; (5.15)

where the convergence is in distribution, f is a face in GD
�;ı

, and F is the GFF for

the domain �, A.f / is the area of the face f . We have

E

h�

X

f12GD
�;ı

 .f1/hı.f1/A.f1/
�

� � � � �
�

X

fk2GD
�;ı

 .fk/hı.fk/A.fk/
�i

D
X

f1;:::;fk2GD
�;ı

 .f1/A.f1/ : : :  .fk/A.fk/EŒhı.f1/ � : : : hı.fk/�

�
Z

�

� � �
Z

�

EŒF.z1/ � � � � � F.zk/�

k
Y

iD1

 i .zi /dxdy CO.ı/:

That is, the moments of left side of (5.15) converges to those of right side of (5.15).
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To verify the last identity, we notice that if l is the number of coinciding z0
is,

by Lemma 5.6, the convergence always holds. Given the error term O.ı/, the

characteristic function of the left hand side of (5.15) converges to the characteristic

function of the right hand side of (5.15). Since the right hand side of (5.15) is a

Gaussian random variable, its characteristic function is always continuous at 0.

Hence the weak convergence (5.15) is true, and the theorem follows. �
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