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Basic properties of the in�nite critical-FK random map

Linxiao Chen

Abstract. In this paper we investigate the critical Fortuin–Kasteleyn (cFK) random map

model. For each q 2 Œ0; 1� and integer n � 1, this model chooses a planar map of n

edges with a probability proportional to the partition function of critical q-Potts model on

that map. She�eld introduced the hamburger–cheeseburger bijection which maps the cFK

random maps to a family of random words, and remarked that one can construct in�nite

cFK random maps using this bijection. We make this idea precise by a detailed proof of

the local convergence. When q D 1, this provides an alternative construction of the UIPQ.

In addition, we show that the limit is almost surely one-ended and recurrent for the simple

random walk for any q, and mutually singular in distribution for di�erent values of q.
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1. Introduction

Planar maps. Random planar maps has been the focus of intensive research

in recent years. We refer to [1] for the physics background and motivations, and

to [30] for a survey of recent results in the �eld.

A �nite planar map is a proper embedding of a �nite connected graph into the

two-dimensional sphere, viewed up to orientation-preserving homeomorphisms.

Self-loops and multiple edges are allowed in the graph. In this paper we will not

deal with non-planar maps, and thus we drop the adjective “planar” sometimes.

The faces of a map are the connected components of the complement of the

embedding in the sphere and the degree of a face is the number of edges incident

to it. A map is a triangulation (resp. a quadrangulation) if all of its faces are of

degree three (resp. four). The dual map M� of a planar map M has one vertex

associated to each face of M and there is an edge between two vertices if and only

if their corresponding faces in M are adjacent.
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A corner in a planar map is the angular section delimited by two consecutive

half-edges around a vertex. It can be identi�ed with an oriented edge using the

orientation of the sphere. A rooted map is a map with a distinguished oriented

edge or, equivalently, a corner. We call root edge the distinguished oriented edge,

and root vertex (resp. root face) the vertex (resp. face) incident to the distinguished

corner. Rooting a map on a corner (instead of the more traditional choice of rooting

on an oriented edge) allows a canonical choice of the root for the dual map: the

dual root is obtained by exchanging the root face and the root vertex. A subgraph

G of a planar map M is a graph consisting of a subset of the edges of M and of

all its vertices. Given a subgraph G of a map M, the dual subgraph of G, denoted

by G�, is the subgraph of M� consisting of all the edges that do not intersect G.

Following the terminology in [6], we call subgraph-rooted map a rooted planar

map with a distinguished subgraph. Figure 1(a) gives an example of a subgraph-

rooted map with its dual map.

Local limit. For subgraph-rooted maps, the local distance is de�ned by

dloc..M; G/; .M0; G0// D inf
®

2�R
ˇ

ˇ R 2 N; BR.M; G/ D BR.M0; G0/
¯

; (1)

where BR.M; G/, the ball of radius R in .M; G/, is the subgraph-rooted map

consisting of all vertices of M at graph distance at most R from the root vertex

and the edges between them. An edge of BR.M; G/ belongs to the distinguished

subgraph of BR.M; G/ if and only if it is in G. The space of all �nite subgraph-

rooted maps is not complete with respect to dloc and we denote by M its Cauchy

completion. We call in�nite subgraph-rooted map the elements of M which are

not �nite subgraph-rooted map. Note that with this de�nition all in�nite maps are

locally �nite, that is, every vertex is of �nite degree.

The study of in�nite random maps goes back to the works of Angel, Benjamini

and Schramm on the Uniform In�nite Planar Triangulation (UIPT) [4, 2] obtained

as the local limit of uniform triangulations of size tending to in�nity. Since

then variants of this theorem have been proved for di�erent classes of maps

[13, 28, 29, 15, 8]. A common point of the these in�nite random lattices is that

they are constructed from the uniform distribution on some �nite sets of planar

maps. In this work, we consider a di�erent type of distribution.

cFK random map. For n � 1 we write Mn for the set of all subgraph-rooted

maps with n edges. Recall that in a dual subgraph-rooted maps, the distinguished

subgraph G and its dual subgraph G� do not intersect. Therefore we can draw a

set of loops tracing the boundary between them, as in Figure 1(b). Let `.M; G/
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Figure 1. (a) A subgraph-rooted map and its dual. Edges of the distinguished subgraph are

drawn in solid line, and the other edges in dashed line. The root corner is indicated by an

arrow. (b) Loops separating the distinguished subgraph and its dual subgraph.

be the number of loops separating G and G�. For each q > 0, let Q
.q/
n be the

probability distribution on Mn de�ned by

Q.q/
n .M; G/ / q

1
2

`.M;G/ (2)

By taking appropriate limits, we can de�ne Q
.q/
n for q 2 ¹0; 1º. A critical

Fortuin–Kasteleyn (cFK) random map of size n and of parameter q is a random

variable of law Q
.q/
n (see Equation (5) below for the connection with the Fortuin–

Kasteleyn random cluster model). From the de�nition of the loop number `, it is

easily seen that the law Q
.q/
n is self-dual (which is why we call it critical):

Q.q/
n .M; G/ D Q.q/

n .M�; G�/ (3)

Our main result is the following.
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Theorem 1. For each q 2 Œ0; 1�, we have Q
.q/
n ����!

n!1
Q

.q/
1 in distribution with

respect to the metric dloc. Moreover, if .M; G/ has law Q
.q/
1 , then

� .M; G/ D .M�; G�/ in distribution,

� the map M is almost surely one-ended and recurrent for the simple random

walk,

� the laws of M for di�erent values of q are mutually singular.

Background The FK percolation was �rst proposed under the name random

cluster model in the pioneering work of Fortuin and Kasteleyn [19] as a uni�ed

reformulation of the percolation, the Ising/Potts model and the uniform spanning

tree. The FK percolation on deterministic lattices exhibits rich critical behaviors,

namely they are believed (and now partially proved) to give rise to a continuum

of universality classes depending on the value of q, see e.g. [34, 20]. The fa-

mous KPZ formula [26, 17] provides an equation relating critical exponents of a

statistical physics model on random lattices, and their regular-lattice counterpart.

This provides one motivation to study FK percolation on random maps. Another

motivation comes from the theory of Liouville quantum gravity, see [31, 1].

So far two classes of methods have been developed to prove local convergence

of �nite random maps. The �rst one, initially used in [2] is based on precise

asymptotic enumeration formulas for certain classes of maps. Although enumer-

ation results about (a generalization of) cFK decorated maps have been obtained

using combinatorial techniques [27, 18, 7, 21, 11, 10, 9], we are not going to follow

this approach here. Instead, we will �rst transform our �nite map model through a

bijection into simpler objects. The archetype of such bijection is the famous Cori–

Vauquelin–Schae�er bijection and its generalizations [32, 12]. Then we take local

limits of these simpler objects and construct the limit of the maps directly from the

latter. This technique has been used e.g. in [13, 15, 8]. In this work the role of the

Schae�er bijection will be played by She�eld’s hamburger–cheeseburer bijection

[33] which maps a cFK random map to a random word in a measure-preserving

way. We will then construct the local limit of cFK random maps by showing that

the random word converges locally to a limit, and that the hamburger–cheeseburer

bijection has an almost surely continuous extension for that limit.

The cFK random maps have also been the subject of the recent works [5] and

[23, 24, 25]. These works focused on �ner properties of the in�nite cFK random

map such as exact scaling exponents or scaling limit of the model. In particular,

the scaling exponents associated with the length and the enclosed area of a loop

in the in�nite cFK random map were derived independently. The main purpose
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of the present paper is to prove the local convergence of �nite cFK maps to the

in�nite cFK map. We o�er a detailed proof and construct explicitly the in�nite-

volume version of the hamburger–cheeseburer bijection. The one-endedness and

recurrence of the in�nite cFK random map are obtained as a by-product of this

bijection. The fact that the joint law of .M; G/ is mutually singular for di�erent q

follows from the various scaling exponents computed in [5] and [23]. By replacing

the law of .M; G/ by its marginal in M, we improve slightly the result. Our proof

is based on an ergodicity result of the cFK random maps, which is of independent

interest (See Appendix A).

The rest of this paper is organized as follows. In Section 2 we discuss the law of

the cFK random map in more details and examine three interesting special cases.

In Section 3 we �rst de�ne the random word model underlying the hamburger–

cheeseburer bijection. Then we show that the model has an explicit local limit, and

we prove some properties of the limit. In Section 4 we construct the hamburger–

cheeseburer bijection and prove Theorem 1 by translating the properties of the

in�nite random word in terms of the maps.
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2. More on cFK random map

Let .M; G/ be a subgraph-rooted map and denote by c.G/ the number of con-

nected components in G. Recalling the de�nition of `.M; G/ given in the intro-

duction, it is not di�cult to see that `.M; G/ D c.G/Cc.G�/�1. However c.G�/

is nothing but the number of faces of G, therefore by Euler’s relation we have

`.M; G/ D e.G/ C 2c.G/ � v.M/; (4)

where e.G/ is the number of edges G, and v.M/ is the number of vertices in M.
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This gives the following expression of the �rst marginal of Q
.q/
n : for rooted map

M with n edges, we have

Q.q/
n .M/ / q� 1

2 v.M/
X

G�M

p
q

e.G/
qc.G/: (5)

The sum on the right-hand side over all the subgraphs of M is precisely the

partition function of the Fortuin–Kasteleyn random cluster model or, equivalenty,

of the Potts model on the map M (The two partition functions are equal. See

e.g. [20, Section 1.4]. See also [9, Section 2.1] for a review of their connection

with loop models on planar lattices). For this reason, the cFK random map is used

as a model of quantum gravity theory in which the geometry of the space interacts

with the matter (spins in the Potts model). Note that the “temperature” in the Potts

model and the prefactor q� 1
2

v.M/ in (5) are tuned to ensure self-duality, which is

crucial for our result to hold.

Three values of the parameter q deserve special attention, since the cFK

random map has nice combinatorial interpretations in these cases.

q D 0. Q
.0/
n is the uniform measure on the elements of Mn which minimize the

number of loops `. The minimum is `min D 1 and it is achieved if and only if the

subgraph G is a spanning tree of M. Therefore under Q
.0/
n , the map M is chosen

with probability proportional to the number of its spanning trees, and conditionally

on M, G is a uniform spanning tree of M.

At the limit, the marginal law of G underQ
.0/
1 will be that of a critical geometric

Galton-Walton tree conditioned to survive. This will be clear once we de�ned

the hamburger–cheeseburer bijection. In fact when q D 0, the hamburger–

cheeseburer bijection is reduced to a bijection between tree-rooted maps and

excursions of simple random walk on Z2 introduced earlier by Bernardi [6].

q D 1. Q
.1/
n is the uniform measure on Mn. Since each planar map with n edges

has 2n subgraphs, M is a uniform planar map chosen among the maps with n

edges. Thus in the case q D 1, Theorem 1 can be seen as a construction of the

Uniform In�nite Planar Map or of the Uniform In�nite Planar Quadrangulation

via Tutte’s bijection. It is a curious fact that with this approach, one has to �rst

decorate a uniform planar map with a random subgraph in order to show the local

convergence of the map. As we will see later, the couple .M; G/ is encoded by

the hamburger–cheeseburer bijection in an entangled way.

q D 1. Similarly to the case q D 0, the probabilityQ
.1/
n is the uniform measure

on the elements of Mn which maximize `. To see what are these elements, remark
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that each connected component of G contains at least one vertex, therefore

c.G/ � v.M/ (6)

And, at least one edge must be removed from M to create a new connected

component, so

c.G/ � c.M/ C e.M/ � e.G/ D n C 1 � e.G/ (7)

Summing the two relations, we see that the maximal number of loops is `max D
n C 1 and it is achieved if and only if each connected component of G contains

exactly one vertex (i.e. all edges of G are self-loops) and that the complementary

subgraph MnG is a tree. Figure 2(a) gives an example of such couple .M; G/.

(a) (b)

Figure 2. (a) A subgraph-rooted map which maximizes the number of loops `. Colors

are used only to illutrate the bijection. (b) The percolation con�guration on a rooted tree

associated to this map by the bijection. The divided vertices, as well as the replaced edges,

are drawn in the same color before and after the bijection.

This model of loop-decorated tree is in bijection with bond percolation of

parameter 1=2 on a uniform random plane tree with n edges, as we now explain.

For a couple .M; G/ satisfying the above conditions, consider a self-loop e in

G. This self-loop separates the rest of the map M into two parts which share

only the vertex of e. We divide this vertex in two, and replace the self-loop e

by an edge joining the two child vertices. The new edge is always considered

part of G. By repeating this operation for all self-loops in the subgraph G in an

arbitrary order, we transform the map M into a rooted plane tree, see Figure 2.

This gives a bijection from the support of Q
.1/
n to the set of rooted plane tree
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of n edges with a distinguished subgraph. The latter object converges locally

to a critical geometric Galton-Watson tree conditioned to survive, in which each

edge belongs to the distinguished subgraph with probability 1=2 independently

from other edges. Using the inverse of the bijection above (which is almost surely

continuous at the limit), we can explicit the law Q
.1/
1 . In particular, it is easily

seen that M is almost surely a one-ended tree plus �nitely many self-loops at each

vertex. Therefore it is one-ended and recurrent.

3. Local limit of random words

In this section we de�ne the random word model underlying the hamburger–

cheeseburer bijection, and establish its local limit.

We consider words on the alphabet ‚ D ¹a; b; A; B; Fº. Formally, a word w is

a mapping from an interval I of integers to ‚. We write w 2 ‚I and we call I

the domain of w. Let W be the space of all words, that is,

W D
[

I

‚I (8)

where I runs over all subintervals of Z. Note that a word can be �nite, semi-

in�nite or bi-in�nite. We denote by ; the empty word. Given a word w of domain

I and k 2 I , we denote by wk the letter of index k in w. More generally, if J is an

(integer or real) interval, we denote by wJ the restriction of the word w to I \ J .

For example, if w D bAbaFABa 2 ‚¹0;:::;7º, then wŒ2;6/ D baFA 2 ‚¹2;3;4;5º. We

endow W with the local distance

Dloc.w; w0/ D inf¹2�R j R 2 N; wŒ�R;R/ D w0
Œ�R;R/º (9)

Note that the equality wŒ�R;R/ D w0
Œ�R;R/

implies that I \Œ�R; R/ D I 0\Œ�R; R/,

where I (resp. I 0) is the domain of the word w (resp. w0). It is easily seen that

.W; Dloc/ is a compact metric space.

3.1. Reduction of words. Now we de�ne the reduction operation on the words.

For each word w, this operation speci�es a pairing between letters in the word

called matching, and returns two shorter words Nw� and Nwƒ.

We follow the exposition given in [33]. The letters a; b; A; B; F are interpreted

as, respectively, a hamburger, a cheeseburger, a hamburger order, a cheeseburger

order and a �exible order. They obey the following order ful�llment relation: a

hamburger order A can only be ful�lled by a hamburger a, a cheeseburger order B

by a cheeseburger b, while a �exible order F can be ful�lled either by a hamburger
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a or by a cheeseburger b. We write � D ¹a; bº and ƒ D ¹A; B; Fº for the set of

lowercase letters (burgers) and uppercase letters (orders).

Finite case. A �nite word w 2 ‚I can be seen from left to right as a sequence

of events that happen in a restaurant with time indexed by I . Namely, at each time

k 2 I , either a burger is produced, or an order is placed. The restaurant puts all

its burgers on a stack S , and takes note of unful�lled orders in a list L. Both S

and L start as the empty string. When a burger is produced, it is appended at the

end of the stack. When an order arrives, we check if it can be ful�lled by one of

the burgers in the stack. If so, we take the last such burger in the stack and ful�lls

the order. (That is, the stack is last-in-�rst-out.) Otherwise, the order goes to the

end of the list L. Figure 3 illustrates this dynamics with an example.

wk a a B b A F B F a

S ; a aa aa aab ab a a ; a

L ; ; ; B B B B BB BB BB

aa a b AB B FF

Figure 3. The reduction procedure of a word and the associated arch diagram.

We encode the matching of w by a function �w W I ! I [ ¹�1; 1º. If the

burger produced at time j is consumed by an order placed at time k, then the

letters wj and wk are said to be matched, and we set �w.j / D k and �w.k/ D j .

On the other hand, if a letter wk corresponds to a unful�lled order or a leftover

burger, then it is unmatched, and we set �w.k/ D 1 if it is a burger (wk 2 �) and

�w.k/ D �1 if it is an order (wk 2 ƒ).

Moreover, let us denote by Nwƒ (resp. Nw�) the state of the list L (resp. the

stack S ) at the end of the above order-ful�llment algorithm. Together they give

the reduced form of the word w.
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De�nition 2 (reduced word). The reduced word associated to a �nite word w is

the concatenation Nw D Nwƒ Nw�. That is, it is the list of unmatched uppercase letters

in w, followed by the list of unmatched lowercase letters in w.

The matching and the reduced word can be represented as an arch diagram as

follows. For each letter wj in the word w, draw a vertex in the complex plane at

position j . For each pair of matched letters wj and wk, draw a semi-circular arch

that links the corresponding pair of vertices. This arch is drawn in the upper half

plane if it is incident to an a-vertex, and in the lower half plane if it is incident to

a b-vertex. For an unmatched letter wj , we draw an open arch from j tending to

the left if �w.j / D �1, or to the right if �w.j / D 1. See Figure 3.

It should be clear from the de�nition of matching operation that the arches in

this diagram do not intersect each other. We shall come back to this diagram in

Section 4 to construct the hamburger–cheeseburer bijection.

In�nite case. Remark that a hamburger produced at time j is consumed by a

hamburger order at time k > j if and only if 1) all the hamburgers produced

during the interval Œj C 1; k � 1� are consumed strictly before time k, and 2) all

the hamburger or �exible orders placed during Œj C 1; k � 1� are ful�lled by a

burger produced strictly after time j . In terms of the reduced word, this means

that two letters wj D a and wk D A are matched if and only if w.j;k/ does not

contain any a, A or F. This can be generalized to any pair of burger/order.

Proposition 3 ([33]). For j < k, assume that wj 2 � and wk 2 ƒ can be matched.

Then they are matched in w if and only if w.j;k/ does not contain any letter that

can be matched to either wj or wk.

This shows that the matching rule is entirely determined by the reduction operator.

More importantly, we see that the matching rule is local, that is, whether �w.j / D
k or not only depends on wŒj;k�. From this we deduce that the reduction operator

is compatible with string concatenation, that is, uv D u Nv D Nuv for any pair of

�nite words u, v.

This locality property allows us to de�ne �w for in�nite words w. Then, we can

also read Nw� (resp. Nwƒ) from �w as the (possibly in�nite) sequence of unmatched

lowercase (resp. uppercase) letters. However Nw is not de�ned in general, since the

concatenation Nwƒ Nw� does not always make sense.
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Random word model and local limit. For each p 2 Œ0; 1�, let � .p/ be the

probability measure on ‚ such that

� .p/.a/ D � .p/.b/ D 1

4
; � .p/.A/ D � .p/.B/ D 1 � p

4
; � .p/.F/ D p

2
:

Here p should be interpreted as the proportion of �exible orders among all the

orders. Remark that, regardless of the value of p, the distribution is symmetric

when exchanging a with b and A with B. As we will see in Section 4, this

corresponds to the self-duality of cFK random maps.

For n � 1, let Ik D ¹�k; : : : ; 2n � 1 � kº, and set

Wn D
[

0�k<2n

¹w 2 ‚Ik j Nw D ;º (10)

For p 2 Œ0; 1�, let P
.p/
n be the probability measure on Wn proportional to the direct

product of � .p/, that is, for all w 2 Wn,

P.p/
n .w/ /

Y

j

� .p/.wj / (11)

where the product is taken over the domain of w. In addition, let P
.p/
1 D � .p/ ˝Z

be the product measure on bi-in�nite words. Our proof of Theorem 1 relies mainly

on the following proposition, stated by She�eld in an informal way in [33].

Proposition 4. For all p 2 Œ0; 1�, we haveP
.p/
n ! P

.p/
1 in law for Dloc as n ! 1.

3.2. Proof of Proposition 4. We follow the approach proposed by She�eld in

[33, Section 4.2]. Let W .p/ be a random word of law P
.p/
1 , so that W

.p/

Œ0;n/
is a word

of length n with i.i.d. letters. By compactness of .W; Dloc/, it su�ces to show

that for any ball Bloc in this space, we have P
.p/
n .Bloc/�!P

.p/
1 .Bloc/. Note that

Dloc is an ultrametric and the ball Bloc.w; 2�R/ of radius 2�R around w is the set

of words which are identical to w when restricted to Œ�R; R/. In the rest of the

proof, we �x an integer R � 1 and a word w 2 ‚Œ�R;R/\Z. Recall that W .p/ has

law P
.p/
1 . In the following we omit the parameter p from the superscripts to keep

simple notations.

Recall that the spaceWn is made up of 2n copies of the set
®

w 2 ‚2n
ˇ

ˇ Nw D ;
¯

di�ering from each other by translation of the indices. Therefore Pn can be seen

as the conditional law of WŒ�K;2n�K/ on the event ¹WŒ�K;2n�K/ D ;º, where K



256 L. Chen

is a uniform random variable on ¹0; : : : ; 2n � 1º independent from W . Moreover,

for the word WŒ�K;2n�K/ to have w as its restriction to Œ�R; R/, one must have

R � K � 2n � R. Hence,

Pn.Bloc.w; 2�R// D P.R � K � 2n � R and WŒ�R;R/ D w j WŒ�K;2n�K/ D ;/

D 1

2n

2n�R
X

kDR

P.WŒ�R;R/ D w j WŒ�k;2n�k/ D ;/

D 1

2n

2n�2R
X

kD0

P.WŒk;kC2R/ ' w j WŒ0;2n/ D ;/

D E
h 1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº
ˇ

ˇ

ˇ
WŒ0;2n/ D ;

i

;

where in the last two steps, we denote by u ' v the fact that two words are equal

up to an overall translation of indices. On the other hand, set

�w D P.Bloc.w; 2�R// D
R�1
Y

kD�R

�.wk/ (12)

By translation invariance of W we have

E
h 1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº
i

D 2n � 2R C 1

2n
�w (13)

In fact, up to boundary terms of the order O.R=n/, the quantity inside the ex-

pectation is the empirical measure of the Markov chain .WŒk;kC2R//k�0 taken at

the state w. This is an irreducible Markov chain on the �nite state space ‚2R.

Sanov’s theorem (see e.g. [16, Theorem 3.1.2]) gives the following large deviation

estimate. For any � > 0, there are constants A�; C� > 0 depending only on � and

on the transition matrix of .WŒk;kC2R//k�0, such that

P
�ˇ

ˇ

ˇ

1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº � �w

ˇ

ˇ

ˇ > �
�

� A�e�C�n (14)

for all n � 1. Since

ˇ

ˇ

ˇ

1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº � �w

ˇ

ˇ

ˇ
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is bounded by 1, we have

jPn.Bloc.w; 2�R// � �w j

� E
h 1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº � �w

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ WŒ0;2n/ D ;
i

� � C P
hˇ

ˇ

ˇ

1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº � �w

ˇ

ˇ

ˇ > �
ˇ

ˇ

ˇ WŒ0;2n/ D ;
i

� � C 1

P
�

WŒ0;2n/ D ;
� � P

�ˇ

ˇ

ˇ

1

2n

2n�2R
X

kD0

1¹WŒk;kC2R/'wº � �w

ˇ

ˇ

ˇ > �
�

� � C A�e�C�n

P
�

WŒ0;2n/ D ;
�

According to [33, eq. (28)],1

lim
n!1

1

n
logP

�

WŒ0;2n/ D ;
�

D 0

Therefore the second term converges to zero as n ! 1. Since � can be taken

arbitrarily close to zero, this shows that Pn.Bloc.w; 2�R// ! �w as n ! 1.

3.3. Some properties of the limiting random word. In this section we show

two properties of the in�nite random word W .p/ which will be the word-counter-

part of Theorem 1. Both properties are true for general p 2 Œ0; 1�. However we

will only write proofs for p < 1, since the case p D 1 corresponds to cFK random

maps with parameter q D 1, for which the local limit is explicit. (The proofs for

p D 1 are actually easier, but they require di�erent arguments.)

Proposition 5 (She�eld [33]). For all p 2 Œ0; 1�, almost surely,

(1) W .p/ D ;, that is, every letter in W .p/ is matched and

(2) for all k 2 Z, W
.p/

.�1;k/

�

contains in�nitely many a and in�nitely many b.

Proof. The �rst assertion is proved as Proposition 2.2 in [33]. For the second

assertion, recall that W
.p/

.�1;k/

�

represents a left-in�nite stack of burgers. Now

assume for some k 2 Z, it contains only N letters a with positive probability.

1 It has been shown in [23] that P
�

WŒ0;2n/ D ;�

decays as a power of n, with the exact

exponent as a function of p. But we do not need this fact here.
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Then, with probability
�

1�p
4

�N C1
and independently of W

.p/

.�1;k/
, all the N C 1

letters in W
.p/

Œk;kCN �
are A. This will leave the A at position k C N unmatched in W ,

which happens with zero probability according to the �rst assertion. This gives a

contradiction when p < 1. �

For each random word W .p/, consider a random walk Z on Z2 starting from

the origin: Z0 D .0; 0/, and for all k 2 Z,

ZkC1 � Zk D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1; 0/ if W
.p/

k
D a;

.�1; 0/ if W
.p/

k
is matched to an a;

.0; 1/ if W
.p/

k
D b;

.0; �1/ if W
.p/

k
is matched to a b;

(15)

By Proposition 5, Zk is almost surely well-de�ned for all k 2 Z. A lot of

information about the random word W can be read from Z. The main result of

[33] shows that under di�usive rescaling, Z converges to a Brownian motion in

R2 with a di�usivity matrix that depends on p, demonstrating a phase transition

at p D 1=2.

Let .X; Y / D Z. Then X represents the net hamburger count and Y the net

cheeseburger count. Set

i0 D sup ¹i < 0 j Xi D �1º and j0 D inf
®

j > 0
ˇ

ˇ Xj D �1
¯

:

Let N0 be the number of times that X visits the state 0 between time i0 and j0.

We shall see in Section 4.2 that N0 is exactly the degree of root vertex in the in�nite

cFK-random map. Below we prove that the distribution of N0 has an exponential

tail, that is, there exists constants A and c > 0 such that P.N0 � x/ � Ae�cx for

all x � 0.

Proposition 6. N0 has an exponential tail distribution for all p 2 Œ0; 1�.

Proof. First let us consider N C
0 , the number of times that X visits the state 0

between time 0 and j0. Remark that at positive time, the process X is adapted

to the natural �ltration .Fk/k�0, where Fk is the �-algebra generated by WŒ0;k/.

De�ne two sequences of F-stopping times .Sm/m�0 and .Tm/m�0 by S0 D 0, and

that for all m � 0,

Tm D inf¹k > Sm j Xk ¤ 0º;
Œ1mm�SmC1 D inf¹k > Tm j Xk D 0º:



Basic properties of the in�nite critical-FK random map 259

The sequence S (resp. T ) marks the times that X arrives at (resp. departs from)

the state 0. Therefore the total number of visits of the state 0 between time 0 and

Tm is
Pm

iD0.Ti � Si/, see Figure 4.

Figure 4. The decomposition of N C
0

into intervals ŒSk ; Tk�.

By construction, j0 is the smallest Tm such that XTm
D �1. On the other hand,

we have XTm
2 ¹�1; C1º for all m and

XTm
D C1 () WTm

D a;
XTm

D �1 () WTm
D A or WTm

is an F matched to an a:

Consider the stopping time

M D inf ¹m � 0 j WTm
D Aº : (16)

Then we have j0 � TM , and therefore

N C
0 �

M
X

mD0

.Tm � Sm/: (17)

On the other hand, M is the smallest m such that, starting from time Sm, an A

comes before an a. Therefore M is a geometric random variable of mean 1�p
p

.

Assume p < 1 so that M is almost surely �nite. Fix an integer m � 0.

By the strong Markov property, conditionally to ¹M D mº, the sequence .Ti � Si ,

i D 0 : : : m � 1/ is i.i.d., and each term in the sequence has the same law as

the �rst arrival time of a in the sequence .Wk/k�0 conditioned not to contain A.

In other words, conditionally to ¹M D mº, .Ti � Si ; i D 0 : : : m � 1/ is an i.i.d.

sequence of geometric random variables of mean 1
2Cp

. Similarly, conditionally

to ¹M D mº, Tm � Sm is a geometric random variable of mean 1�p
2Cp

independent

from the sequence .Ti � Si ; i D 0 : : : m � 1/. Then, a direct computation shows

that the exponential moment EŒe�N
C
0 � is �nite for some  > 0. And by Markov’s

inequality, the distribution of N C
0 has an exponential tail when p < 1.
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Now we claim that conditionally to the value of N0, the variable N C
0 is uniform

on ¹1; : : : ; N0º which implies that N0 also has an exponential tail distribution.

To see why the conditional law is uniform, consider N0 and N C
0 for �nite words

de�ned in the same way as for the in�nite word W
.p/

1 . Note that for a �nite word

w the process X does not necessarily hit �1 at negative (resp. positive) times.

In this case we just replace i0 (resp. j0) by the in�mum (resp. supremum) of the

domain of w. Then, w 7! .N0; N C
0 / is a Dloc-continuous function de�ned on the

union of [n�0Wn and the support of W
.p/

1 . Therefore for any integers k � m,

P.p/
n .N0 D m; N C

0 D k/ ����!
n!1

P.p/
1 .N0 D m; N C

0 D k/: (18)

But, given the sequence of letters in a word, the lawP
.p/
n chooses the letter of index

0 uniformly at random among all the letters. A simple counting shows that for all

1 � k; k0 � m, we have P
.p/
n .N0 D m; N C

0 D k/ D P
.p/
n .N0 D m; N C

0 D k0/.
Letting n ! 1 shows that the conditional law of N C

0 given N0 is uniform

under P
.p/
1 . �

4. The hamburger–cheeseburer bijection

4.1. Construction. In this section we present (a slight variant of) the hamburger–

cheeseburer bijection of She�eld. We refer to [33] for the proof of bijectivity and

for historical notes.

We de�ne the hamburger–cheeseburer bijection z‰ on a subset of the space

W, and it takes values in the space zM of doubly-rooted planar maps with a

distinguished subgraph, that is, planar maps with two distinguished corners and

one distinguished subgraph. We can write this space as

zM D ¹.M; G; s/ j .M; G/ 2 M and s is a corner of Mº: (19)

Note that the second root s may be equal to or di�erent from the root of M.

We de�ne in the same way zMn, the doubly-rooted version of the space Mn. Its

cardinal is 2n times that of Mn.

We start by constructing z‰WWn ! zMn in three steps. The �rst step transforms

a word in Wn into a decorated planar map called arch graph. The second and the

third step apply graph duality and local transformations to the arch graph to get a

tree-rooted map, and then a subgraph-rooted map in zMn.

Step 1: from words to arch graphs. Fix a word w 2 Wn. Recall from Section 3

the construction of the non-crossing arch diagram associated to w. In particular
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since Nw D ;, there is no half-arch. We link neighboring vertices by unit segments

Œj �1; j � and link the �rst vertex to the last vertex by an edge that wires around the

whole picture on either side of the real axis, without intersecting any other edges.

This de�nes a planar map A of 2n vertices and 2n edges. In A we distinguish

edges coming from arches and the other edges. The latter forms a simple loop

passing through all the vertices.

We further decorate A with additional pieces of information. Recall that the

word w is indexed by an interval of the form Ik D ¹�k; : : : ; 2n � 1 � kº where

0 � k < 2n. We will mark the oriented edge r from the vertex 0 to the vertex �1,

and the oriented edge s from the �rst vertex (�k) to the last vertex (2n � 1 � k).

If k D 0, then r and s coincide. Furthermore, we mark each arch incident to an

F-vertex by a star �. (See Figure 5) We call the decorated planar map A the arch

graph of w. One can check that it completely determines the underlying word w.

Step 2: from arch graphs to tree-rooted maps. We now consider the dual map

� of the arch graph A. Let Q be the subgraph of � consisting of edges whose

dual edge is on the loop in A. We denote by �nQ the set of remaining edges of

� (that is, the edges intersecting one of the arches).

Proposition 7. The map � is a triangulation, the map Q is a quadrangulation

with n faces and �nQ consists of two trees. �

We denote by T and T � the two trees in �nQ, with T corresponding to faces

of the arch graph in the upper half plane. Then Q, T , and T � form a partition of

edges in the triangulation �. Note that T and T � give the (unique) bipartition of

vertices of Q. Let M be the planar map associated to Q by Tutte’s bijection, such

that M has the same vertex set as T . (The latter prescription allows us to bypass

the root, and de�ne Tutte’s bijection from unrooted quadrangulations to unrooted

maps.) We thus obtain a couple .M; T / in which M is a map with n edges and

T a spanning tree of M. Remark that T � is the dual spanning tree of T in the

dual map M�. This relates the duality of maps with the duality on words which

consists of exchanging a with b and A with B.

Figure 5(a) summarizes the mapping from words to tree-rooted maps (Step 1

and 2) with an example. Note that we have omitted the two roots and the stars

on the arch graph in the above discussion. But since graph duality and Tutte’s

bijection provide canonical bijections between edges, the roots and stars can be

simply transferred from the arches in A to the edges in M. With the roots and

stars taken into account, it is clear that w 7! .M; T / is a bijection from Wn onto

its image.
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Figure 5. Construction of the hamburger–cheeseburer bijection. (a) From word to tree-

rooted map. (b) From tree-rooted map to subgraph-rooted map.
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Step 3: from tree-rooted maps to subgraph-rooted maps. Now we “switch

the status” of every starred edge in M relative to the spanning tree T . That is,

if a starred edge is not in T , we add it to T ; if it is already in T , we remove it

from T . Let G be the resulting subgraph. See Figure 5(b) for an example.

Recall that there are two marked corners r and s in the map M. By an abuse

of notation, from now on we denote by M the rooted map with root corner r .

Then, the hamburger–cheeseburer bijection is de�ned by z‰.w/ D .M; G; s/. Let

‰.w/ D .M; G/ be its projection obtained by forgetting the second root corner.

We denote by .#F/w the number of letters F in w, and by ` the number of loops

associated to the corresponding subgraph-rooted map .M; G/.

Theorem 8 (She�eld [33]). The mapping z‰WWn ! zMn is a bijection such that

` D 1 C .#F/w for all w 2 Wn. And Q
.q/
n is the image measure of P

.p/
n by ‰

whenever

p D
p

q

2 C p
q

:

Proof. The proof of this can be found in [33]. However we include a proof of the

second fact to enlighten the relation p D
p

p

2Cp
q
. For w 2 Wn, since Nw D ;, we

have .#a/wC.#b/w D .#A/wC.#B/wC.#F/w D n. Therefore, when p D
p

q

2Cp
q
,

P.p/
n .w/ /

�1

4

�.#a/wC.#b/w�1 � p

4

�.#A/wC.#B/w�p

2

�.#F/w

D
�1

4

�n�1 � p

4

�n�.#F/w�p

2

�.#F/w

/
� 2p

1 � p

�.#F/w

D p
q

`�1
:

After normalization, this shows that Q
.q/
n is the image measure of P

.p/
n by ‰. �

Proposition 9. We can extend the mapping ‰ to W ! M so that it is P
.p/
1 -almost

surely continuous with respect to Dloc and dloc, for all p 2 Œ0; 1�.

Proof. Observe that if we do not care about the location of the second root s, then

the word w used in the construction of ‰ does not have to be �nite. Set

W1 D
´

w 2 ‚Z

ˇ

ˇ

ˇ

ˇ

ˇ

Nw D ; and for all k 2 Z; w.�1;k/
� contains

in�nitely many a and in�nitely many b

µ

: (20)
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We claim that indeed, for each w 2 W1, Step 1, 2 and 3 of the construction de�ne

a (locally �nite) in�nite subgraph-rooted map: as in the case of �nite words, the

condition Nw D ; ensures that the arch graph A of w is a well-de�ned in�nite

planar map (that is, all the arches are closed). To see that its dual map � is a

locally �nite, in�nite triangulation, we only need to check that each face of A has

�nite degree. Observe that a letter a in w appears in w.�1;k/
� if and only if it is on

the left of wk , and that its partner is on the right of wk. This corresponds to an arch

passing above the vertex k. Therefore, the remaining condition in the de�nition

of W1 says that there are in�nitely many arches which pass above and below

each vertex of A. This guarantees that A has no unbounded face. The rest of the

construction consists of local operations only. So the resulting subgraph-rooted

map .M; G/ D ‰.w/ is a locally �nite subgraph-rooted map.

Also, by Proposition 5, we have P
.p/
1 .W1/ D 1. It remains to see that (the

extension) of ‰ is continuous on W
0 D S

n Wn [ W1. Let w.n/; w 2 W
0 so

that w.n/ ! w for Dloc. If w is �nite, there is nothing to prove. Otherwise, let

.M; G/ D ‰.w/ and consider a ball B of �nite radius r around the root in the

map M. By locality of the mapping � Ý M, the ball B can be determined by a

ball B 0 of �nite radius r 0 (which may depend on M) in �. But each triangle in �

corresponds to a letter in the word, so there exists r 00 (which may depend on M)

such that if w
.n/

Œ�r 00;r 00�
D wŒ�r 00;r 00� then the balls of radius r 0 in � coincide. This

proves that ‰ is continuous on W1. �

4.2. Proof of Theorem 1. Combining Proposition 4, Theorem 8 and Proposi-

tion 9 yields the convergence statement of the theorem. The self-duality of the

in�nite cFK random map follows from the �nite self-duality. It remains to show

that the in�nite cFK random maps are almost surely one-ended and recurrent for

all q, and that their laws are mutually singular for di�erent values of q.

One-endedness. Recall that a graph G D .V ; E/ is said to be one-ended

if for any �nite subset of vertices U , VnU has exactly one in�nite connected

component. We will prove that for a word w 2 W1, ‰.w/ is one-ended.

Let A (resp. �) be the arch graph (resp. triangulation) associated to w, and let

.M; G/ D ‰.w/. By the second condition in the de�nition of W1 (see (20)),

there exist arches that connect vertices on the left of w�R to vertices on the right

of wR for any �nite number R. Therefore the arch graph A is one-ended. It is then

an easy exercise to deduce from this that the triangulation � and then the map M

are also one-ended.
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Recurrence. To prove the recurrence of M we use the general criterion estab-

lished by Gurel-Gurevich and Nachmias [22]. Notice �rst that under Q
.q/
n , the

random maps are uniformly rooted, that is, conditionally on the map, the root ver-

tex � is chosen with probability proportional to its degree. By [22] it thus su�ces

to check that the distribution of deg.�/ has an exponential tail. For this we claim

that the variable N0 studied in Lemma 6 exactly corresponds to the degree of the

root in an in�nite cFK random map. From the construction of the hamburger–

cheeseburer bijection, we see that the vertices of the map M corresponds to the

faces of the arch graph in the upper half plane. In particular, the root vertex � cor-

responds to the face above the interval Œ�1; 0�, and deg.�/ is the number of unit

intervals on the real axis which are also on the boundary of this face. On the other

hand, Xk is the net number of arches that one enters to get from the face above

Œ�1; 0� to the face above Œk � 1; k�, see Figure 6. So N0 exactly counts the above

number of intervals.

Figure 6. An example of an in�nite arch graph, and the associated process .Xk/k2Z. We

shifted the arch graph horizontally by 1=2 relative to the graph of X , since the time k for

the process X naturally corresponds to the interval Œk � 1; k� in the arch graph.
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Mutual singularity. The basic idea is to construct a measurable function f on

in�nite rooted planar maps such that f .M/ is almost surely constant for each

q 2 Œ0; 1�, and that f .M/ D f .q/ is an injective function of q. One such function

can be de�ned as follows. Consider the simple random walk on the map M. We

regard it as a sequence of oriented edges . EEk ; k � 0/ such that EE0 is the the root

edge (i.e. the edge on the left of the root corner), and such that EEkC1 starts at the

vertex where EEk ends. An oriented edge Ee is pending if the starting point of Ee has

degree 1. Let

f .M/ D lim
n!1

1

n

n�1
X

kD0

1¹ EEk is pendingº:

From the ergodicity result in the appendix and Birkho�’s ergodic theorem,

it follows that f .M/ D Q. EE0 is pending/ almost surely. Recall that EE0 is the

root edge of M. A moment of look at Figure 5 shows that EE0 is a pending edge in

.M; G/ D ˆ.w/ if and only if w�1 D a and w0 2 ¹A; Fº. Therefore,

Q. EE0 is pending/ D P.w�1 D a and w0 2 ¹A; Fº/
D �.a/

�

�.A/ C �.F/
�

D 1 C p

16

D 1

16

�

1 C
p

q

2 C p
q

�

:

We see that f .q/ D f .M/ is injective in q.

A. Ergodicity of cFK random maps

Here we use the framework set up by Benjamini and Curien in [3] and we follow

the exposition in [14, Section 3.1]. Consider the space
�!
M of all locally �nite rooted

maps endowed with a path Ee D .Een/n�0 starting from the root edge. Let Edloc be

the natural local distance on
�!
M

Edloc..M; Ee/; .M0; Ee 0//

D inf¹2�R j BR.M/ D BR.M0/ and Eek D Ee 0
k for 0 � k � Rº

and consider the associated Borel �-algebra. If M is a rooted map, let QM be the

law of the simple random walk starting from the root edge of M. We denote by

Q ˝ Q the probability measure

Q ˝ Q.A/ D
Z

QM.AM/Q.d M/

on
�!
M, where AM D

®

.Een/n�0

ˇ

ˇ .M; .Een/n�0/ 2 A
¯

. To simplify notation, we will

write QM.A/ instead of QM.AM/ in the sequel.
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If Ee is an oriented edge of M, we write MjEe for the map obtained by re-rooting

M at Ee. Observe that if .M; . EEn/n�0/ is a random variable of law Q ˝ Q, then

M D Mj EE1

in distribution. (Remark that the left-hand-side is the same as Mj EE0
.) This is a

consequence of the fact that M is the local limit of a sequence of uniformly rooted

�nite maps. It follows that the shift operator

� W .M; .Een/n�0/ 7! .MjEe1
; .EenC1/n�0/

preserves the measure Q ˝ Q.

Proposition 10. The shift operator � is ergodic for Q ˝ Q.

Proof. Let A be a �-invariant event for Q ˝ Q, that is, Q ˝ Q.A���1.A// D 0,

where � denotes the symmetric di�erence: A�B D .AnB/ [ .BnA/. We do the

proof in three steps:

(a) Q-almost surely, QM.A/ 2 ¹0; 1º.
Recall that the simple random walk on M is Q-almost surely recurrent. Therefore,

it can be decomposed into an i.i.d. sequence of excursions from the root edge. An

event invariant by � is also invariant by the shift operator associated to this i.i.d.

sequence. Thus (a) follows from Kolmogorov’s zero-one law.

(b) Q-almost surely, the value of QM.A/ is invariant under any re-rooting of the

map M.

First let us �x a rooted map M. Let x be the vertex to which the root edge points.

Denote by d the degree of x, and E�1; : : : ; E�d the d oriented edges that point away

from x. We deduce from the Markov property of the simple random walk that

QM.��1A/ D QM¹.Een/n�0 j .MjEe1
; .EenC1/n�0/ 2 Aº

D
d

X

kD1

QM¹.Een/n�0 j .MjEe1
; .EenC1/n�0/ 2 A and Ee1 D E�kº

D
d

X

kD1

1

d
QMjE�k

¹.Een/n�0 j .MjE�k
; .Een/n�0/ 2 Aº

D 1

d

d
X

kD1

QMjE�k
.A/:
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From
Z

ˇ

ˇQM.A/ � QM.��1A/
ˇ

ˇ Q.d M/ � Q ˝ Q.A���1A/ D 0

we deduce that Q-almost surely,

QM.A/ D 1

d

d
X

kD1

QMjE�k
.A/:

But according to (a), QM.A/ and QMjE�k
.A/ (k D 1; : : : ; d ) are either 0 or 1. Thus

Q-almost surely, QM.A/ D 1 if and only if for all k D 1; : : : ; d , QMjE�k
.A/ D 1.

In other words, the value of QM.A/ is unchanged when re-rooting at a neighbor

of the root edge. But since the maps are connected, we obtain (b) by iterating the

above argument.

(c) If an event yA on the space of (locally �nite) rooted maps is Q-almost surely

invariant under re-rooting, then Q. yA/ 2 ¹0; 1º.
Consider the measure-preserving mapping ŷ W w 7! M, where .M; G/ D ˆ.w/

for some subgraph G. Via this mapping, a translation of indices in a word w give

rise to a re-rooting of the corresponding map M. Therefore if an event yA is Q-

almost surely invariant under re-rooting, then ŷ �1 yA is P-almost surely invariant

under translation of the indices. But, under P the letters of w are i.i.d. random

variables, so we have Q. yA/ D P. ŷ �1 yA/ 2 ¹0; 1º.
Finally, considering yA D ¹MW QM.A/ D 1º shows that Q ˝ Q.A/ 2 ¹0; 1º, as

desired. �

Remark. Only the step (c) of the proof uses speci�c features of the cFK random

maps, namely, their representation by an i.i.d. sequence of letters. For any in�nite

random map whose law is stationary under � , the proof of (a) and (b) goes through

provided that the random map is almost surely recurrent. (Note that the proof of

(b) depends on (a).) The case of almost surely transient random maps was treated

in [14, Proposition 10]. There, (a) was proved under the following reversibility

condition: if Ee is the root edge of M, oriented in the opposite direction, then

M D Mj Ee

in distribution. And (b) was replaced by the following variant, which follows

directly from the transience of the map.

(b0) Almost surely, QM.A/ is unchanged by any �nite modi�cation of the map M.
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