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Abstract. We provide a concise exposition with original proofs of combinatorial formulas

for the 2D Ising model partition function, multi-point fermionic observables, spin and

energy density correlations, for general graphs and interaction constants, using the language

of Kac–Ward matrices. We also give a brief account of the relations between various

alternative formalisms which have been used in the combinatorial study of the planar Ising

model: dimers and Grassmann variables, spin and disorder operators, and, more recently,

s-holomorphic observables. In addition, we point out that these formulas can be extended

to the double-Ising model, de�ned as a pointwise product of two Ising spin con�gurations

on the same discrete domain, coupled along the boundary.
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1. Introduction

1.1. Overview. The two-dimensional Ising model – famous toy-model of mag-

netic interaction introduced by Lenz and initially studied by Ising [50] in dimen-

sion 1 – has been the subject of extensive activity following the proof of existence

of a phase transition by Peierls [87], the prediction of its critical temperature by

Kramers and Wannier [71], and the computation of its free energy by Onsager [85]

and Kaufman [64, 65]. There have been literally thousands of papers on the sub-

ject and a standard gateway to the main developments of the last century is the

classical text of McCoy and Wu [81, Chapter I]. This book focuses on one of

the mainstream approaches to the study of the Ising model: the combinatorial
method, which in contrast to the algebraic method of Onsager–Kaufman, is based

on combinatorial bijections. The founding papers of this method include a series

of works by Kac, Ward, Potts, Hurst, Green, Kasteleyn, Montroll, Fisher, and oth-

ers [58, 92, 47, 62, 83, 37]. Yet an alternative approach was proposed by Baxter

and Enting [5] based on invariance under local star-triangle transform of the un-

derlying planar graph [4]. These techniques enabled a broad understanding of the

(in�nite-volume limit of the) model, which by the 1970s was widely considered to

be a successfully closed case in the mathematical physics community.

In more recent times, a deep algebraic structure of (in�nite-volume) spin

correlations on regular 2D lattices was found, in particular due to the work

of Wu, McCoy, Tracy, and Barouch [108] on Painlevé equations, the work of

Sato, Miwa, and Jimbo [93, 56, 55] on isomonodromic deformations and �-

functions, and the related work of Perk [88] (see also [80]) and Palmer [86].

This is surveyed in [81, Chapter XVII]. In the 2000s, the model was revived yet

again by Smirnov [99, 101], when Schramm’s invention [94] of SLE curves led

to the emergence of a new �eld focusing on rigorously proving convergence of

2D lattice models to their conformally invariant continuum counterparts using

discrete complex analysis techniques. This allowed new developments concerning

the �ne understanding of the conformal invariance of the critical Ising model in

general planar domains, both from the geometric (convergence of interfaces to

SLE curves) and the analytic (con�rming Conformal Field Theory predictions for

the scaling limits of correlation functions) viewpoints; see [100, 36, 21, 46, 43, 44,

19, 18, 66, 17, 53, 54]. A number of related results can be found in [35, 6, 30, 13, 14,

45, 38, 16, 7]. In parallel, further developments were made on various algorithmic

and algebraic aspects of the model (e.g., see [78] and [70]).

This paper is about the combinatorics of the 2D nearest-neighbor Ising model

on general �nite weighted graphs and one of its main goals is to make the ba-

sic methods and formalisms used in most of the works cited above better known
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and available in a practical way to the probability and combinatorics community

which has been rather active on this topic recently [10, 11, 12, 26, 23, 72, 25, 60,

74, 75, 34, 40, 8, 9]. To that end, we focus on presenting and proving combina-

torial formulas for the partition function, multi-point fermionic observables, and

spin and energy density correlations (see Section 2 for the planar case and Sec-

tion 4 for the extension to surfaces). The preferred language we use throughout

the paper is that of Kac–Ward matrices (see Section 1.3), and although it is hard

to claim originality in view of the rich and overwhelming history and literature on

the subject, we do give simple and general proofs of many results for which we

have not been able to �nd any explicit reference. A notable example is the famous

Kac–Ward formula (1.5) for which we provide a very short proof in Section 2.

A motivation for discussing these combinatorial formulas in their full generality

is the many open directions that still remain, including the Ising model in random

media, spin glasses, the Ising model on random maps and non-integrable Ising

models. Note that some progress was made on the last topic a few years ago [39],

where the energy density �eld of the near-critical Ising model with �nite range

interactions was shown to be universal in the limit, following a rigorous applica-

tion of the renormalization group methods and taking advantage of the classical

Grassmann variables representation of the model. Another approach to reveal the

Pfa�an structure of correlation functions arising in the limit of the (critical or

near-critical) non-integrable Ising model was recently suggested in [1]. It is based

on the so-called random current representation of the model, which also has been

the subject of renewed interest in the nearest-neighbor case, see [15, 79].

Similarly to the fact that all problems on random walks (whether classical, in

random environment, on random graphs, etc.) have the same underlying structure

of discrete harmonic functions, the structure underlying the 2D nearest-neighbor

Ising model is that of s-holomorphic functions, a de�nition introduced in [21]

to encode a stronger version of discrete Cauchy-Riemann identities for some

combinatorial observables arising in the model. Similar objects (discrete fermions

satisfying some local relations aka propagation equations) go back to the founding

papers on the subject, which use several di�erent languages to describe the same

structure. Despite the fact that all these languages are essentially equivalent to

one another, we do not know of a reference providing an explicit exposition of

the links between them (of course, it should be said that such links are part of

the folklore surrounding the Ising model). In view of the recent activity in the

�eld, we believe it useful to provide such an exposition in one place (intended

in particular for combinatorialists and probabilists) and thus devote Section 3 to

proving these equivalences, in particular the one between spin-disorders [59] and

Grassmann variables [96], considered on double-covers.
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In addition, we provide an extension of these combinatorial formulas to the

double-Ising model; see Section 1.6. This model, de�ned as a pointwise product

of two Ising spin con�gurations on the same discrete domain, coupled along

the boundary, is related to the bosonization of the Ising model (e.g., see [27,

Chapter 12] or [84, Section 12.4]), a topic which has been revived and studied

from the combinatorial point of view recently [30, 12, 26]. The critical double-

Ising model was also studied in the physics literature (see in particular [48, 49, 90])

in the context of the Ashkin–Teller model, a four-state spin model of which it is a

special case. Similarly to the known relation between the scaling limit of interfaces

arising in the Ising model at criticality [17] and conformal loop ensembles [97],

Wilson [107] conjectured a relation between the interfaces arising in the double-

Ising model at criticality (considered on the hexagonal lattice) and the set of “level

lines” of the Gaussian Free Field [95, 105]. In Section 5.3 we discuss whether

the combinatorial formulas could play a role in understanding this passage to the

scaling limit as they do for the critical (single-) Ising model [17].

The paper is organized as follows. In the remainder of Section 1, we give a

detailed presentation of our main results in the case of planar graphs. In Section 2,

we prove the statements concerning the planar Ising model. In Section 3, we

present an overview of the links between various formalisms that have been used in

the study of the Ising model. In Section 4, we generalize the results and proofs of

Section 2 to the surface case. Finally, in Section 5, we prove the results concerning

the double-Ising model.

1.2. Partition function, combinatorial expansions, and embeddings. Let G

be a �nite connected graph with vertex set V.G/ and set of unoriented edges

E.G/. The Ising model on G is de�ned as follows. A spin con�guration � is

the assignment of a ˙1 spin to each vertex of the graph. For each (unoriented)

edge e D ¹u; vº 2 E.G/, let Je D Ju;v 2 R be an interaction constant and denote

by J the collection of all Je. Consider the Hamiltonian

H.�/ D �
X

¹u;vº2E.G/

Ju;v�u�v: (1.1)

For a �xed nonnegative real ˇ, called the inverse temperature, the Ising model is

the probability distribution on spin con�gurations given by

PG.�/ D PG;ˇ;¹Jeºe2E.G/
.�/ WD ŒZˇ .G; J /�

�1 � expŒ�ˇH.�/�;

where the normalizing factor

Zˇ .G; J / D
X

�2¹˙1ºV .G/

expŒ�ˇH.�/�

is called the partition function of the model.
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It is convenient to introduce two polynomials encoding the combinatorial

structure of the model. For that matter, we let x D .xe/e2E.G/ be a collection of

variables and view .G; x/ as a weighted graph. For any subset of edges E � E.G/,

we de�ne x.E/ WD
Q

e2E xe .

Let E.G/ be the set of all subgraphs with even vertex-degrees, called even
subgraphs. The high-temperature polynomial is de�ned to be

Zhigh.G; x/ WD
X

P 2E.G/

x.P /:

As �rst observed by van der Waerden [103], the fact that the products of spins is

always ˙1 and some cancellations due to parity yield

Zˇ .G; J / D
�

2jV.G/j
Y

e2E.G/

coshŒˇJe�
�

� Zhigh.G; .xe WD tanhŒˇJe�/e2E.G//: (1.2)

The low-temperature, or domain-walls, expansion is another useful polyno-

mial expansion which has a straightforward interpretation in terms of spin con-

�gurations on the dual graph to G. It requires the choice of an embedding of G

into a surface † possibly with boundary (given by a disjoint union of topological

circles); the embedding is such that each of the components of † n G is a topo-

logical disk. We let G� be the dual graph of G with respect to the surface † to

which we glue a topological disk to each boundary component: this ensures that

there is one vertex inG� per boundary component ofG, we denote the set of those

by Vout.G
�/. For any edge e 2 E.G/ we write e� for its dual edge. If the graph

is planar, we shall write uout for the unique element of Vout.G
�/ corresponding to

the unbounded face of G.

We consider an Ising model on G�. The speci�cation of boundary conditions

for this model consists in assigning a �xed value to each of the spins at vertices

from Vout.G
�/. In particular ‘C’ boundary conditions are obtained by �xing all

of these values to C1. The set of spin con�gurations on G� with ‘C’ boundary

conditions, is in bijection with the set of domain walls between clusters of C1’s

and �1’s, i.e. the set

E0.G/ WD ¹P 2 E.G/W ŒP � D 0 2 H1.†IZ2/º

of even subgraphs of G that bound a collection of faces. (Although we do not

write it explicitly in the notation, E0.G/ implicitly depends on the embedding of

G in †.) Given a spin con�guration � on G� with ‘C’ boundary conditions, we

let P.�/ 2 E0.G/ be the even subgraph representing the domain walls of � . Let

Z
C
ˇ�.G

�; J / D
X

�2¹˙1ºV .G�/W

�uDC1 for all u2Vout.G
�/

expŒ�ˇ�H�.�/�
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be the partition function of the Ising model on G� with ‘C’ boundary conditions

and the inverse temperature ˇ�, where the Hamiltonian H�.�/ on G� is de�ned

similarly to (1.1) via interaction constants Je� . By de�ning the low-temperature
polynomial to be

Zlow;†.G; x/ WD
P

P 2E0.G/ x.P /;

one readily has

Z
C
ˇ�.G

�; J / D
�

Y

e�2E.G�/

expŒˇ�Je� �
�

� Zlow;†.G; .xe WD expŒ�2ˇ�Je� �/e2E.G//:

(1.3)

For planar graphs (i.e. when † D C is the plane), we have E0.G/ D E.G/ and

simply denote

ZIsing.G; x/ WD Zlow;C.G; x/ D Zhigh.G; x/:

Note that this equality relates the partition function of an Ising model on a planar

graph G and another one on G� provided the interaction constants and inverse

temperatures satisfy, for each edge e 2 E.G/ and its dual e� 2 E.G�/, the

relation tanhŒˇJe� D expŒ�2ˇ�Je� �, which can be rewritten in a symmetric way

as

sinhŒ2ˇJe� sinhŒ2ˇ�Je� � D 1:

This is the Kramers–Wannier duality [71] and it has an extension to surface

graphs [24].

One can also consider ‘free’ boundary conditions on (some of) the bound-

ary components of † instead of ‘C’ ones. This can be obtained by setting the

corresponding interaction parameters xe D expŒ�2ˇJe� � to 1 in the right-hand

side of (1.3) and modifying the prefactor accordingly. In particular, all results we

present below for ‘C’ boundary conditions can be easily generalized to ‘free’ ones

and we shall not comment about this further in the text.

We now brie�y explain how the 2D Ising model is naturally associated to the

topological notions of double covers and spin structures, see Sections 1.5, 3.2, 3.3

and 4 for more details. Consider the Ising model on a planar graphG� and �x some

faces u1; : : : ; um of G. In order to compute spin correlations E
C
G�Œ�u1

: : : �um
�,

one may take advantage of the domain walls expansion and twist the weights xe by

changing their signs on cuts linking u1; : : : ; um and uout in such a way that all con-

�gurations are weighted by �u1
: : : �um

. This gives a polynomial ZŒu1;::;um�.G; x/

such that EC
G� Œ�u1

: : : �um
� D ZŒu1;:::;um�.G; x/=ZIsing.G; x/ and the underlying

topological structure is that of a canonical double cover of G branching over

all the faces u1; : : : ; um. For planar graphs, this leads to a representation of
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spin correlations as ratios of two Pfa�ans due to the well-known integrabil-

ity of the 2D Ising model. There is another way to treat spin correlations:

consider a punctured plane C n ¹u1; : : : ; umº and note that the probability of

�uj
being C1 for all j is simply the ratio Zlow;Cn¹u1;::;umº.G; x/ =ZIsing.G; x/.

Therefore, EC
G�Œ�u1

: : : �um
� can be written as a linear combination of such ra-

tios and, vice versa, Zlow;Cn¹u1;::;umº.G; x/ is a linear combination of 2m Pfa�-

ans corresponding to all the possible double covers of the punctured plane † D

C n ¹u1; : : : ; umº, which are classi�ed by Hom.�1.†/;Z2/ D H 1.†IZ2/. When

one works with graphs embedded in a general surface †, a similar phenome-

non comes into play: the polynomial Zlow;†.G; x/ is equal to a sum of several

Pfa�ans but one needs a clever topological tool to index them, the so-called spin
structures [82, 22], which form an a�ne space overH 1.†IZ2/; see Section 4 for

details.

Throughout the introduction, Section 2 and Section 3 we assume that the �nite

weighted graph .G; x/ is embedded in the plane, with edges given by straight line

segments. However, in Section 4, we show that most of these results (and proofs)

extend to the general case of �nite weighted graphs embedded in surfaces. The

main additional tool needed is the notion of spin structures mentioned above.

1.3. The Kac–Ward matrix and the terminal graph. Let EE.G/ be the set of

oriented edges of G. We shall denote by o.e/ 2 V.G/ the origin of e 2 EE.G/,

by t .e/ 2 V.G/ its terminal vertex, by Ne 2 EE.G/ the oriented edge with the same

support as e but the opposite orientation, and extend x to a symmetric (under

change of orientation) function on EE.G/. Given two oriented edges e; e0 such

that t .e/ D o.e0/ and e0 ¤ Ne, one can consider the oriented angle w.e; e0/ 2

.��; �/ between e and e0, see Figure 1a.

The Kac–Ward matrix associated to the weighted graph .G; x/ is the j EE.G/j�

j EE.G/j matrix

KW.G; x/ WD I � T;

where I is the identity matrix and T is de�ned by

Te;e0 D

´

exp
�

i
2

w.e; e0/
�

� .xexe0/1=2 if t .e/ D o.e0/ but e0 ¤ Ne,

0 otherwise.
(1.4)

The famous Kac–Ward formula [58] claims that

detŒKW.G; x/� D ŒZIsing.G; x/�
2; (1.5)

and it was an intricate story [98, 104, 28, 60, 42] to give a fully rigorous proof

of this identity for general planar graphs; see a recent paper [76] by Lis for a
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streamlined version of the classical approach to (1.5). This formula was general-

ized to graphs embedded in surfaces in [22]. Note that the classical Kac–Ward

matrix KW.G; x/ is neither Hermitian nor anti-symmetric but there is a simple

transformation revealing these symmetries. Indeed, denote

K D K.G; x/ WD J �KW.G; x/; where Je;e0 D ı Ne;e0 (1.6)

(this multiplication by J barely changes the determinant of KW.G; x/, which

simply gets multiplied by det J D .�1/jE.G/j). Then,

Ke;e0 D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if e0 D Ne,

� exp
�

i
2

w. Ne; e0/
�

� .xexe0/1=2 if o.e/ D o.e0/ but e0 ¤ e,

0 otherwise,

(1.7)

and it is easy to see that K D K�. Furthermore, for each oriented edge e 2 EE.G/,

let us �x a square root of the direction of the straight segment representing e on

the plane and denote by �e its complex conjugate multiplied by a �xed unimodular

factor �. The latter factor plays no role in the most part of the paper (and hence

the reader can simply think of � D 1) except Sections 3.6 and 5.3 where it is

convenient to use the value � D ei �
4 . Denote by U the diagonal matrix with

coe�cients ¹�eºe2 EE.G/
, and set

yK WD iU�KU: (1.8)

Because of the above choice of square roots, the matrix yK is not canonical,

whereas K is (given the embedded graph). It is easy to see that the matrix yK

is anti-Hermitian with real entries, and thus anti-symmetric. Moreover, it has

the same determinant as the original Kac–Ward matrix KW.G; x/. The last

simple observation is that yK can be thought of as a weighted adjacency matrix

of the terminal graphGK which was introduced by Kasteleyn [62, Section V] and

initially called the “cluster lattice”. Let us now recall the de�nition of this graph.

Given a weighted graph .G; x/, its terminal graph GK is obtained by inserting

at each vertex v of G (of degree d.v/) a clique Kd.v/, as illustrated in Figure 1b.

We shall say that an edge of GK is short if it is part of one of these complete

subgraphs, and long otherwise (i.e. if it comes from an edge of G). Given edge

weights x D .xe/e2E on G, we shall denote by xK the edge weights on GK

obtained by assigning weight 1 to all long edges and weight .xexe0/1=2 to the

short edge corresponding to the two adjacent edges e; e0 2 EE.G/. Note that the

mapping of an oriented edge of G to the origin vertex of the corresponding long

edge in GK yields a natural bijection between the sets EE.G/ and V.GK/, which
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we use to identify them. Note that the terminal graph is in general neither planar

nor bipartite.

(a) The angle w.e; e0/ for two edges e; e0

satisfying t .e/ D o.e0/.

(b) The local procedure used to construct

the terminal graph GK from G.

Figure 1

Surprisingly enough, this, almost trivial, link between the two combinatorial

techniques: expansions of the Kac–Ward determinant and the study of dimers on

the terminal graph, seems to have remained almost unknown to date. It is even

more astonishing that some version of the above reduction of KW.G; x/ to yK was

known as early as 1960 to Hurst and Green, who worked with the translationally

invariant Ising model on the square lattice and mentioned it to claim the �rst

complete derivation of the Kac–Ward formula in this particular case [47, p. 1062].

1.4. Pfa�an formulas for the partition function and combinatorial observ-

ables. Recall that yK is a real anti-symmetric matrix obtained from the Kac–Ward

matrix KW.G; x/ via (1.6) and (1.8). In particular,

detŒKW.G; x/� D det yK D .PfŒ yK �/2:

Theorem 1.1. For any planar weighted graph .G; x/, one has

ZIsing.G; x/ D ˙ PfŒ yK �;

where the sign in the right-hand side is �xed by the condition that the constant
(in x) term equals C1. As a consequence, the Kac–Ward formula (1.5) holds for
any planar graph .G; x/.

Remark 1.1. On the square lattice, this theorem provides a standard way to ex-

press the partition function of the Ising model in terms of the so-called Grassmann

variables, see further details in Section 3.2. For this particular case, its proof can

be found in many textbooks but not in connection with the Kac–Ward formula:

the matrix yK, corresponding to some particular choices of �e for oriented edges

of four di�erent types, is introduced per se, as a clever tool to count the signed
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partition function of dimers (aka perfect matchings) on the corresponding non-
planar terminal lattice. (Such a partition function can be easily seen to be equal

to ZIsing.G; x/, see Section 2.1.) To the best of our knowledge, it does not appear

in the literature in the full generality of �nite planar weighted graphs. However, its

key ingredients were known to Kasteleyn and Fisher in the 1960s though presum-

ably not in connection with the Kac–Ward matrix and the induced orientations

of GK; see [62, Section V] and [37, Section 1] and note that the descriptions of

con�gurations P 2 E.G/ via dimers on GK used in [62] and [37] di�er from one

another.

It is well known [74, 24] that the entries of the inverse Kac–Ward matrix can be

represented as the two-point combinatorial observables proposed by Smirnov [99,

100] as a convenient tool to study the scaling limit of the critical Ising model

in arbitrary planar domains. Since then, these observables are usually de�ned

in a self-contained way, but it is worth noting that their de�nition grew from

considerations made by Smirnov jointly with Kenyon [101, Remark 4] on dimer

techniques applied to the so-called Fisher graph; see more details in Section 3.

The next theorem, Theorem 1.2, extends this combinatorial interpretation to the

Pfa�an minors (that is Pfa�an of square submatrices) of the inverse matrix yK�1,

which correspond to the 2n-point observables. The latter were recently used [43,

19, 53] in the context of the critical Ising model but, to the best of our knowledge,

Theorem 1.2 does not appear in the literature in this generality (e.g., the proofs

given in [43, 19, 53] rely upon some particular feature of the model at criticality,

see also a discussion in [45, Section 4.5]). This expansion is also important to

justify the link between the two classical formalisms developed to study the 2D

Ising model: Grassmann variables and disorder insertions; see further details in

Section 3.4.

We need some notation. Let .G}; x/ be the weighted graph obtained from

.G; x/ by adding a vertex ze in the middle of each edge e ofG, and by assigning the

weight xe
1=2 to both resulting edges of G}. Given a collection E D ¹e1; : : : ; e2nº

of oriented edges of G, let C.e1; : : : ; e2n/ denote the set of subgraphs P of G}

that do not contain the edges .o.ek/; zek
/, do contain the edges .zek

; t .ek// pro-

vided Nek 62 E, and such that each vertex of G} di�erent from ze1
; : : : ; ze2n

has an

even degree in P . Note that C.;/ is nothing but the set E.G/ of even subgraphs

of G.

To each con�guration P 2 C.e1; : : : ; e2n/, we shall now assign a sign �.P / 2

¹˙1º. In order to do so, we resolve all its crossings (vertices with degree more

than 2 in P ) to obtain a decomposition P D C t 1 t � � � t n, where C is

a collection of disjoint simple loops, and 1; : : : ; n are simple paths matching
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the half-edges .ze1
; t .e1//; : : : ; .ze2n

; t .e2n//; in case there are pairs e; Ne in E, we

declare the corresponding k to be empty paths formally matching such pairs. Let

us choose arbitrary orientations of the paths k and denote by s a permutation

of ¹1; : : : ; 2nº such that each of k goes from zes.2k�1/
to zes.2k/

. Following [43],

we set

�.P / WD sign.s/ �

n
Y

kD1

�

i�es.2k�1/
N�es.2k/

exp
�

� i
2

wind.k/
��

; (1.9)

where wind.k/ denotes the total rotation angle of the velocity vector of k

when it runs from zes.2k�1/
to zes.2k/

; we formally set wind.k/ WD 0 in case

es.2k�1/ D Nes.2k/ and so k D ;.

The sign �.P / is obviously independent of the numbering of the paths k and

one can easily see that it also does not depend on their orientations. Moreover,

one can check that it is independent of the smoothing of P , i.e. the way how P

is split into C and k, see identity (2.5) in Section 2 for more comments. We are

now able to formulate the next result.

Theorem 1.2. For any planar weighted graph .G; x/ and any set of oriented
edges e1; : : : ; e2n, the following combinatorial expansion is ful�lled:

PfŒ yK�1
ej ;ek

�2n
j;kD1 D ŒZIsing.G; x/�

�1 �
X

P 2C.e1;:::;e2n/

�.P / x.P /:

Remark 1.2. The casen D 1 leads to the standard combinatorial de�nition of two-

point observables as sums over the set C.e; e0/, while for n > 1 one recovers the

combinatorial de�nition of multi-point observables as sums over C.e1; : : : ; e2n/,

cf. [43, 19, 53]. Theorem 1.2 claims that the latter are Pfa�ans of the former, see

also Section 3.6 for the discussion of the combinatorial de�nition of complex-

valued fermionic observables.

1.5. Spin and energy density correlations. We now move on to combinatorial

formulas for spin correlations. In this section we deal with the (domain walls

expansion of the) Ising model on the dual graph G� or, equivalently, with the

Ising model on faces of G with ‘C’ boundary conditions, which means that we

�x the spin of the outer face uout of G to be C1. Given faces u1; : : : ; um of G,

let us �x some collection ~ D ~Œu1;::;um� of edge-disjoint paths on G�, which

link u1; : : : ; um and, possibly, uout so that each of u1; : : : ; um 2 V.G
�/ has an

odd degree in the union of these paths. Further, let IŒu1;::;um� denote the diagonal
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matrix with entries

.IŒu1;::;um�/e;e D

´

�1 if e 2 EE.G/ intersects ~;

C1 otherwise.

We now de�ne the modi�ed Kac–Ward matrix, labeled by oriented edges ofG, to

be

KWŒu1;::;um� D KWŒu1;::;um�.G; x/ WD IŒu1;::;um� � T;

where T is given by (1.4). Similarly to (1.6), (1.8), we de�ne

KŒu1;::;um� D KŒu1;::;um�.G; x/ WD J �KWŒu1;::;um�.G; x/

and

yKŒu1;::;um� WD iU
�KŒu1;::;um�U:

Note that all these matrices depend on the choice of the collection of paths ~ D

~Œu1;::;um� linking the faces u1; : : : ; um and uout, which is implicit in the notation.

Let j~j denote the number of edges in ~. The following result is a simple conse-

quence of Theorem 1.1.

Proposition 1.3. For any planar weighted graph .G; x/ and u1; : : : ; um 2 V.G
�/,

we have

E
C
G� Œ�u1

: : : �um
� D .�1/j~j PfŒ yKŒu1;::;um� �

PfŒ yK �
D ˙

hdetKWŒu1;:::;um�

detKW

i1=2

; (1.10)

where E
C
G� denotes the expectation in the Ising model at inverse temperature ˇ

on the dual graph G� conditional on �uout D C1, and xe D expŒ�2ˇJe� � for
all e 2 E.G/.

Remark 1.3. Equation (1.10) can be rewritten as a ratio of determinants of

discrete N@-type operators; see Section 3.5 in particular Remark 3.7 and Re-

mark 3.10(i). These operators share many important properties with their contin-

uous counterparts, especially if one starts with the self-dual Ising model consid-

ered on the so-called isoradial graphs (we refer the reader interested in this subject

to [82, 67, 20] and [33]). Identities similar to (1.10) also appeared in [26, 30] in

connection with the double-Ising model and dimer techniques for it.

We now focus on the particular case when m D 2n is even and u1; : : : ; um are

given by n pairs of neighboring faces u2k�1; u2k, each pair being separated by an

edge ek 2 E.G/. Let

"ek
WD �u2k�1

�u2k
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denote the so-called energy density at the edge ek and let E D [n
kD1
¹ek; Nekº �

EE.G/ be the corresponding set of 2n oriented edges (each edge ek is taken along

with is reverse Nek). In this case, there is a natural choice of the collection of

paths ~ D ~Œu1;::;u2n� linking u1; : : : ; u2n simply given by taking all the dual

edges e�
1 ; : : : ; e

�
n . For this choice of ~, Proposition 1.3 reads

E
C
G�Œ"e1

: : : "en
� D .�1/n

PfŒ yK � 2yJE �

PfŒ yK �
; with .yJE/e;e0 D

´

i N�e�e0 if e0 D Ne;

0 otherwise.

Note that yJE is a real anti-symmetric matrix with ˙1 entries depending on the

choices of �ek
. Since yJE vanishes on EE.G/nE and�yJ2

E is the identity matrix on E,

we have

detŒ I� 2yJE
yK�1 � D detŒ I � 2yJE

yK�1 �e;e02E D detŒyJE C 2yK
�1 �e;e02E;

and hence

E
C
G� Œ"e1

: : : "en
� D ˙ PfŒyJEC2yK

�1 �e;e02E;

with the ˙ sign depending on the ordering of E D ¹e1; Ne1; : : : ; en; Nenº and the

choices of �ek
.

Remark 1.4. (i) This Pfa�an formula for multi-point energy density expectations

can be also deduced from Theorem 1.2. Indeed, if e 2 E.G/ and a spin con�gu-

ration � 2 ¹˙1ºV.G�/ is encoded by domain walls P 2 E.G/, then 1
2
."e C 1/ is

the indicator of the event e 62 P . On the other hand,

C.e1; Ne1; : : : ; en; Nen/ D ¹P 2 E.G/W e1; : : : ; en … P º;

and the sign �.P / D
Qn

kD1.i�ek
N� Nek
/ is independent of P on this set. Therefore, if

one chooses a proper ordering of the oriented edges ofG according to the choices

of �ek
, Theorem 1.2 implies

E
C
G� Œ

1
2
."e1
C 1/ : : : 1

2
."en
C 1/� D PfŒ yK�1 �e;e02E: (1.11)

In other words, edges of G carrying the values "e D C1 form a Pfa�an process

with the kernel yK�1, and the formula for E
C
G� Œ"e1

: : : "en
� given above easily

follows by multilinearity. This approach was used in [43] to prove the existence

of scaling limits for multi-point energy density correlations in general simply-

connected domains at criticality; see more comments in Section 3.6.
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(ii) In a similar manner, one can consider the facesu1; : : : ; um in formula (1.10)

as variables. If we then replace u1 by one of its neighboring faces u0
1 (or, more

generally, move each uk by several faces to some other face u0
k
) and adjust the

collection of cuts ~Œu1;::;um� accordingly, then the matrix yKŒu0
1

;:::;u0
m� is a small rank

perturbation of the matrix yKŒu1;:::;um� and hence the ratio

E
C
G� Œ�u0

1
: : : �u0

m
�

E
C
G� Œ�u1

: : : �um
�
D ˙

PfŒ yKŒu0
1

;:::;u0
m� �

PfŒ yKŒu1;:::;um� �

admits a simple expression in the entries of yK�1
Œu1;:::;um�

. In particular, this yields

a short proof of [18, Lemma 2.6] which is a starting point for the analysis of the

scaling limit of multi-point spin correlations in general simply-connected domains

at criticality. This observation can be also used for the systematic study of other

spin pattern correlations, cf. [38].

1.6. The double-Ising model. The aim of this section is to indicate that all

the combinatorial formulas discussed above admit modi�cations for the so-called

double-Ising model which is de�ned as a pointwise product of two independent

Ising models on the (faces) of the same planar weighted graph .G; x/, coupled
along the boundary in a way which we now describe. Below we assume that the

graph G contains a number of univalent (i.e. degree 1) vertices incident to the

outer face uout; note that adding/removing such vertices does not a�ect the Ising

model de�ned on faces of G, nor the value ZIsing.G; x/. We call such vertices the

boundary vertices of G and edges linking them to the bulk of G the boundary
edges of G.

Let us add auxiliary edges carrying weights 1, linking the boundary ver-

tices of G inside of uout in a cyclic order, to obtain a weighted graph . zG; x/;

see Figure 2a. The faces of zG adjacent to the boundary edges of G are called

boundary faces. The states of the associated double-Ising model (with ‘C’ bound-

ary conditions) are pairs of spin con�gurations �; � 0 on the faces of the new

graph zG such that

Q�u WD �u�
0
u D C1 for all boundary faces u.

Similarly to the domain walls representation of the single-Ising model discussed

in Section 1.2, these spin con�gurations can be encoded by pairs of domain

walls P; P 0 2 E. zG/ such that each boundary edge of G is either occupied by

both these walls, or by none. The associated partition function is given by

Zdbl-I.G; x/ D
X

P;P 02E. zG/W

.P4P 0/\E@.G/D;

x.P /x.P 0/;
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where E@.G/ � E.G/ denotes the set of (unoriented) boundary edges of G and

� stands for the symmetric di�erence. To compute this partition function, we

introduce a modi�ed Kac–Ward matrix zK, indexed by the set of oriented edges

of G in the same way as the matrix K given by (1.7), with the entries

zKe;e0 D Ke;e0 C

´

ixe if e0 D e is an inward oriented boundary edge,

0 otherwise.

Note that zK can be understood as the weighted adjacency matrix of the graph

obtained from GK by adding a loop to each vertex corresponding to an inward

oriented boundary edge; see Figure 2b. The following result is an analog of

Theorem 1.1 for the double-Ising model.

(a) A portion of the boundary of a graphG

with univalent vertices and the corre-

sponding portion of zG where the addi-

tional edges are dashed.

(b) The mapping of a univalent boundary

vertex to a self-loop attached to the termi-

nal graph.

Figure 2

Theorem 1.4. For any planar weighted graph .G; x/, one has

Zdbl-I.G; x/ D .�1/
jE.G/j det zK:

Note that, contrary to the Kac–Ward formula (1.5) and Theorem 1.1, the de-

terminant of the modi�ed matrix zK cannot be written as the square of a Pfa�an,

since the matrix iU�zKU contains non-vanishing diagonal entries and thus is not

anti-symmetric. This re�ects the fact that Zdbl-I.G; x/ is not the square of any

single-Ising model partition function since the two spin con�gurations �; � 0 are

now coupled along uout.

Similarly to Section 1.5, for a given collection of (inner) faces u1; : : : ; um,

let ~ D ~Œu1;::;um� be a collection of paths in the dual graph G� linking these

faces to each other and, possibly, to the outer face uout. Denote

zKŒu1;::;um� WD zK� JC J � IŒu1;::;um�:
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In other words, to construct zKŒu1;::;um� we replace by �1 all the entries zKe; Ne D C1

of zK that correspond to the edges e intersecting with ~Œu1;::;um�, exactly as in the

de�nition of the matrix KŒu1;::;um� in Section 1.5.

Proposition 1.5. Let u1; : : : ; um be a collection of (inner) faces of G. Then,

E
C
dbl-IŒ Q�u1

: : : Q�um
� D

det zKŒu1;::;um�

det zK
;

where E
C
dbl-I stands for the expectation in the double-Ising model with ‘C’ bound-

ary conditions.

We now brie�y discuss geometric objects arising in the double-Ising model,

the so-called XOR-Ising loops, see [107, 12]. For simplicity, let us assume that the

graph G is trivalent (except at boundary vertices, which have degree 1). Then,

given a double-Ising model con�guration Q� D �� 0, the set P. Q�/ 2 E.G/ of

edges separating the faces u with Q�u D C1 from those with Q�u D �1 is a

collection of non-intersecting loops, which can be thought about as a result of

the XOR (exclusive-or) operation applied to the two single-Ising domain walls

con�gurations P.�/ and P.� 0/.

In [107], Wilson conjectured that the scaling limits of these XOR-loops in the

critical model (considered in discrete domains drawn on the honeycomb lattice)

can be described as the union of level sets of the Gaussian Free Field with an

appropriately tuned spacing. Recently, this conjecture was strongly supported by

the results of Boutillier and de Tilière [12], who showed that, at the discrete level,

these loops have the same distribution as contour lines of a single-dimer height

function on a related bipartite graph. At the same time, the convergence result

for these height functions known to date does not allow one to derive enough

information about the behavior of their level lines, so one can wonder if some

generalization of Theorem 1.4 could help for that matter. Let us brie�y discuss

why this is not straightforward.

Remark 1.5. A natural idea, motivated by the recent works of Kenyon [68, 69]

and Dubédat [32] on the double-dimer model, would be to study a twisted partition

function of the double-Ising model in order to track the topology of the loops using

some quaternionic version of the matrix zK. Unfortunately, the combinatorial

expansions of such Q-determinants are no longer given by weighted sums over

double-Ising con�gurations and additional terms come into play, similarly to the

odd-length cycles in the double-dimer model on a non-bipartite graph, see [69,

p. 482]. Nevertheless, it seems worthwhile to understand the arising expansions
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better and in particular one can try to interpret these additional terms as encoding

some interaction between the loops.

One can also try another common strategy and focus on a single interface

(domain wall) a;b generated by the so-called Dobrushin boundary conditions.
The latter are de�ned as follows: for a given pair a; b of boundary edges, let us

condition the two spin con�gurations �; � 0 to satisfy

Q�u D �u�
0
u D

´

�1 for boundary faces u on the arc .ab/,

C1 for boundary faces u on the arc .ba/,
(1.12)

where .ab/ (resp. .ba/) denotes the part of the boundary of G from a to b when

going counterclockwise (resp. clockwise). In Section 5.2 we prove an analog of

Theorem 1.4 for these boundary conditions and discuss how one can construct

the so-called s-holomorphic martingales, which track the evolution of a;b . This

could pave a way to the understanding of a scaling limit of these interfaces,

e.g. following the strategy implemented for the critical (single-) Ising model

in [21, 17]. Nevertheless, it is also not straightforward, and we expect some

conceptual obstacles when passing to a limit in the arising discrete boundary value

problems for these s-holomorphic functions, see Section 5.3 and Remark 5.4 for

more details.
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2. The planar case

We start this section with some preliminaries, then prove Theorem 1.1, and then

show how the proof extends to give Theorem 1.2. We conclude this section with

the proof of Proposition 1.3 and a discussion of the corresponding generalization

of Theorem 1.2.
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2.1. Preliminaries. Recall that yK is nothing but the signed skew-symmetric

adjacency matrix of the weighted terminal graph .GK; xK/. Namely, for two

adjacent vertices e and e0 of GK (which are identi�ed with oriented edges of G),

we have yKe;e0 D "e;e0 � xK
e;e0 with the sign "e;e0 D ˙1 given by

"e;e0 D

´

i N�e�e0 if e and e0 are linked by a long edge of GK,

�i N�e�e0 exp
�

i
2

w. Ne; e0/
�

if e and e0 are linked by a short edge of GK.

(2.1)

Further, recall that a dimer con�guration (aka perfect matching) on a graph �

is a collection of edges of � (called dimers) such that each vertex of � is incident

to exactly one of these edges. We shall denote by D.�/ the set of dimer con�gu-

rations on �.

For D 2 D.GK/, let xK.D/ denote the product of weights of all dimers in D,

and let t.D/ denote the self-intersection number ofD, that is, the number of times

di�erent edges of D cross one another (note that this can happen only inside of

the cliques Kd.v/).

Lemma 2.1. For any planar weighted graph .G; x/, the Ising partition function
on G can be expressed as the signed dimer partition function on the terminal
graph .GK; xK/ as follows:

ZIsing.G; x/ D
X

D2D.GK/

.�1/t.D/xK.D/:

Proof. Given a dimer con�guration D 2 D.GK/, let DG denote the subgraph

of G consisting of the edges of G corresponding to the long edges of D. Note

that G nDG is an even subgraph of G; therefore, the assignment D 7! G n DG

de�nes a map �WD.GK/ ! E.G/. Note also that D 2 D.GK/ is mapped to P 2

E.G/ if and only if its short edges match the vertices of GK corresponding to

edges of P . In other words, the set ��1.P / is in bijection with
Q

v2V D.Kd.v;P //,

where d.v; P / D 2n.v; P / is the degree of v in P ; here, for any n � 1,

the symbol K2n denotes the complete graph of size 2n. This also shows the

identity xK.D/ D x.�.D// for all D 2 D.GK/. Hence, for any P 2 E.G/,

we have
X

D2��1.P /

.�1/t.D/xK.D/ D
�

Y

v2V

X

Dv2D.K2n.v;P //

.�1/t.Dv/
�

� x.P /:

Further, it is easy to see that, for any n � 1, one has
X

D2D.K2n/

.�1/t.D/ D 1:
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Indeed, let us �x two adjacent vertices of K2n and consider the involution

& WD.K2n/ ! D.K2n/ given by exchanging them. The set of �xed points Fix.&/

consists of the dimer con�gurations matching these two vertices. Since & is a

bijection and t.&.D// D t.D/C 1 for all D … Fix.&/, we have

X

D2D2n

.�1/t.D/ D
X

D2Fix.&/

.�1/t.D/ D
X

D02D2n�2

.�1/t.D
0/ D � � � D 1

by induction over n � 1. Therefore,

X

D2��1.P /

.�1/t.D/xK.D/ D x.P /

for any P 2 E.G/, and we complete the proof by the summation over all con�gu-

rations P 2 E.G/. �

In order to handle the signs "e;e0 given by (2.1), we shall also need the following

well-known fact, traditionally attributed to Whitney [106], whose easy proof we

include for completeness.

Lemma 2.2. Let C be an oriented piecewise smooth planar closed curve, and
let wind.C / denote the total rotation angle of its velocity vector. If C is in general
position, i.e. if all of its self-intersections are transverse double points, then

� exp
�

i
2

wind.C /
�

D .�1/t.C/;

where t.C / denotes the number of these self-intersections.

Proof. Consider the union C 0 of oriented simple closed curves obtained by

smoothing out all of the self-intersection points of C as follows: .

Letting wind.C 0/ be the sum of the total rotation angles of these curves and since

the total rotation angle of a simple closed curve is either 2� or �2� , we have

exp
�

i
2

wind.C /
�

D exp
�

i
2

wind.C 0/
�

D .�1/m;

where m denotes the number of components of C 0. The lemma now follows from

the fact that m has the same parity as t.C / C 1 since each of the smoothing

operations used above to construct C 0 changes the number of components in C

by ˙1. �
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2.2. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Expanding the Pfa�an of yK leads to

PfŒ yK � D
X

D2D.GK/

".D/xK.D/; (2.2)

with

".D/ D sign.�/�"�.1/�.2/ : : : "�.2N �1/�.2N /;

where N D jE.G/j and � 2 S.V .GK// is any permutation representing the

matchingD (i.e. such that given an ordering of the vertices, for all i 2 ¹1; : : : ; N º,

the dimers in D are the edges of the form ¹�.2i � 1/; �.2i/º); note that ".D/

does not depend on the choice of � provided that some numbering of the set

V.GK/ Š ¹1; : : : ; 2N º is �xed once and for all. Let D0 2 D.GK/ be the

standard reference matching consisting of long edges only. Comparing (2.2) with

Lemma 2.1, we see that the following claim directly implies Theorem 1.1. (In the

terminology of Tesler [102], this amounts to checking that the signs "e;e0 de�ne a

crossing orientation on the terminal graph GK.)

Claim A. For any D 2 D.GK/, one has ".D/ D .�1/t.D/".D0/.

Indeed, one easily deduces from Lemma 2.1 and Claim A that

ZIsing.G; x/ D
X

D2D.GK/

.�1/t.D/xK.D/

D ".D0/
X

D2D.GK/

".D/xK.D/

D ".D0/PfŒ yK �:

(2.3)

Proof of Claim A. Given two dimer con�gurations D;D0 2 D.GK/, their sym-

metric di�erence D4D0 is a union of ` � 0 vertex disjoint (on GK) cycles Cj

of even length. Moreover, due to the particular choice of D0, each Cj is com-

posed of alternating short and long edges of GK. Let us choose representa-

tives �; �0 2 S.V .GK// of D;D0 such that � ı ��1
0 is the rotation by one edge

of each of these cycles, with respect to some arbitrary but �xed orientation. Using

this particular choice of representatives, we �nd

".D/".D0/ D sign.�/ sign.�0/ �
Ỳ

j D1

!.Cj / D
Ỳ

j D1

.�!.Cj //;
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where !.Cj / denotes the product of the coe�cients exp
�

i
2

w. Ne; e0/
�

along the

short edges of Cj (the factors of i and �i from (2.1) contribute in total 1 because

of the alternation of long and short edges). Relating this product with the total

rotation angle wind.Cj / of the velocity vector of (a smoothed version of) Cj and

applying Lemma 2.2 leads to

Ỳ

j D1

.�!.Cj // D
Ỳ

j D1

�

� exp
�

i
2

wind.Cj /
��

D
Ỳ

j D1

.�1/t.Cj / D .�1/t.D/;

since all the intersections and self-intersections ofCj are produced by short edges,

which all belong toD, and each pair of di�erent cycles intersects an even number

of times. �

Proof of Theorem 1.2. Let us write E WD ¹e1; : : : ; e2nº � V.GK/ and denote

by GK
E the subgraph of the terminal graph GK obtained by removing all ver-

tices e 2 E � V.GK/, together with adjacent edges. Fix some numberings

of the sets V.GK/, V.GK
E /, and denote by �E the permutation of the ordered

set V.GK/ Š ¹1; : : : ; 2N º Š V.GK
E / t E induced by the trivial identi�cation

of V.GK/ and V.GK
E / [ E. Using the Pfa�an identity

PfŒ yK�1
e;e0 �e;e02E D .�1/

nsign.�E/ �PfŒ yKe;e0 �e;e0…E � .PfŒ yK �/�1

and (2.3), we only need to check the equality

.�1/nsign.�E/".D0/
X

P 2C.E/

�.P /x.P / D PfŒ yKe;e0 �e;e0…E;

where the sign ".D0/ of the standard reference matching on GK is given by (2.1)

and (2.2). We shall do so by generalizing the proof of Theorem 1.1 given above.

Observe that Lemma 2.1 (which deals with the case n D 0, i.e. E D ;) extends in

a straightforward way, yielding the equation

X

P 2C.E/

�.P /x.P / D
X

D2D.GK
E /

�.�E.D//.�1/
t.D/xK.D/;

where the con�guration P D �E.D/ 2 C.E/ is obtained from E.G}
E / by

removing all edges corresponding to long dimers of D as well as the half-

edges ¹.o.e/; ze/ºe2E. At the same time,

PfŒ yKe;e0 �e;e0…E D
X

D2D.GK
E /

"E.D/x
K.D/;
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where the sign "E.D/ of a dimer con�guration on GK
E is de�ned similarly to (2.1)

according to the �xed ordering of V.GK
E /. Thus we are left with the proof of the

following claim, which generalizes Claim A from the proof of Theorem 1.1.

Claim B. For any D 2 D.GK
E /, one has

"E.D/ D �.�E.D//.�1/
t.D/ � .�1/nsign.�E/".D0/:

Proof of Claim B. Given a dimer con�guration D 2 D.GK
E /, the symmetric

di�erenceD4D0 consists of a union of ` vertex disjoint cycles Cj of even length,

together with n vertex disjoint paths k of odd length matching the vertices e 2

E � V.GK/. (Note that the paths k start and end with long edges .e; Ne/ of GK,

and if both e; Ne 2 E, then one of these paths is just the single long edge .e; Ne/.)

Moreover, one can choose representatives � 2 S.V .GK
E // of D, �0 2 S.V .GK//

ofD0, and s 2 S.E/ of the corresponding matching of E such that the permutation

V.GK/
��1

0
�! V.GK/ Š ¹1; : : : ; 2N º

�E
�! ¹1; : : : ; 2N º Š V.GK

E / t E
�ts
�! V.GK/

is the rotation by one edge of each of the cycles Cj and of each of the paths k

closed up by an arti�cial link oriented from es.2k�1/ to es.2k/, thus k is always

oriented in a backward direction. Since all of these cycles are of even length, the

diagram above implies the equality

sign.�0/ sign.�E/ sign.�/ sign.s/ D .�1/`Cn:

Computing the signs "E.D/ and ".D0/ using this particular choice of representa-

tives and the fact that all the Cj and k are formed by alternating long and short

edges ofGK (this is a consequence of the particular choice of the reference match-

ing D0), we get

"E.D/".D0/ D sign.�/ sign.�0/ �
Ỳ

j D1

!.Cj / �
n

Y

kD1

.i�es.2k�1/
N�es.2k/

!. �k//;

where !.Cj / and !. �k/ denote the products of the coe�cients exp
�

i
2

w. Ne; e0/
�

along the short edges of Cj and k , respectively, with the paths k being traversed

from es.2k/ to es.2k�1/.

Let us shorten the extremities of the paths k so that they link the points ze 2

V.G}/ instead of e 2 E � V.GK/. Similarly to the proof of Theorem 1.1, we have

!.Cj / D expŒ i
2

wind.Cj /� D .�1/
t.Cj /C1;

!.
 �
k/ D expŒ i

2
wind. �k/� D expŒ� i

2
wind.k/�:
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Denote

�.k/ WD i�es.2k�1/
N�es.2k/

!. �k/: (2.4)

Combining all the computations given above, we reduce Claim B to the following

statement.

Claim C. For anyD 2 D.GK
E /, ifD4D0 consists of cycles Cj and paths k, then

sign.s/ �
n

Y

kD1

�.k/ � .�1/
t.D/�

P`
j D1 t.Cj / D �.�E.D//: (2.5)

Recall that long edges of D4D0 correspond to edges of P D �E.D/ 2 C.E/

while short edges of D4D0 de�ne a decomposition of P into cycles Cj and

paths k . In particular, if all Cj and k do not intersect or self-intersect,

then t.D/ D t.Cj / D 0 and (2.5) coincides with de�nition (1.9) of �.P /. Es-

sentially, Claim C states that the left-hand side of (2.5) does not depend on the

choice of D 2 ��1
E .P /, which also implies that the sign �.P / is well de�ned (i.e.

independent of the smoothing of P ).

Proof of Claim C. Let P 2 C.E/ and let us �x some non-intersecting smoothing

of P into cycles C 0
j and paths 0

k
and compute the sign �.P / by (1.9) using these

paths. Note that the result does not depend on their numbering and orientations.

Given D 2 ��1
E .P /, we number 0

k
and choose their orientations (from es0.2k�1/

to es0.2k/) so that

¹s0.1/; s0.3/; : : : ; s0.2n�1/º [ ¹s.1/; s.3/; : : : ; s.2n�1/º D E:

We now push each path k slightly to its right and denote the result by C
k

.

If we consider the union of all C
k

and all 0
k

and match their endpoints by 2n

counterclockwise 180ı–turns, the result is a collection� ofm � n oriented closed

curves �j . It is easy to see that

sign.s0/ sign.s/ D .�1/m;

which leads, by (1.9) and (2.4), to

�.P / � sign.s/ �
n

Y

kD1

�.k/

D .�1/m �
n

Y

kD1

�

i exp
�

� i
2

wind.0
k /

��

�
n

Y

kD1

�

i exp
�

� i
2

wind.k/
��

D .�1/m exp
�

� i
2

wind.�/
�

:
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Applying Lemma 2.2 to each�j , we are left with the proof of the following fact:

.�1/t.D/�
P`

j D1 t.Cj / D .�1/
Pm

j D1 t.�j /:

Note that this is equivalent to the equality

t.D/ � t.C / D t.�/ mod 2; (2.6)

where C D
F`

j D1 Cj , since the total number of intersections of the closed

curves Cj with each other is even due to topological reasons and the same is true

for �j .

We need some additional notation. Similarly to j , let us push each Cj slightly

to its right and denote the result by CC
j . Let

 WD
n

G

kD1

k ; C WD
n

G

kD1

C
k
; CC WD

G̀

j D1

CC
j :

It is easy to see that

.Ct CC/ � . t C/ D 0 mod 2;

where we denote by ˛ � ˇ the number of intersections of (the collections of)

curves ˛ and ˇ. Indeed, as  tC D D4D0, all these intersections come from the

intersections of short dimers in D and each pair of such dimers contributes two
intersections to .CtCC/ � . tC/. Since the collection of loops and paths  tC

can be deformed to the con�guration P D �E.D/ 2 C.G}/ and then further to its

smoothing 0t C 0, we conclude that

.Ct CC/ � .0t C 0/ D 0 mod 2:

As Ct 0 is essentially a collection of closed curves, we also have

.Ct 0/ � .CCt C 0/ D 0 mod 2:

By construction, 0 andC 0 do not intersect and the number of intersections ofCC

and C 0 is always even. Therefore, we obtain

C � CC D C � 0 mod 2:

The last two simple observations are

t.D/ � t.C / D t./C  � C and t.�/ D t.C/C C � 0;

where we used the fact that 0 is non-intersecting. Since t./ D t.C/ and  �C D

C � CC, the identity (2.6) follows, as well as Claim C and Theorem 1.2. �
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2.3. Proof of Proposition 1.3. In this section we work with the (domain walls

expansion of the) Ising model on the dual graphG� with ‘C’ boundary conditions,

which means that we set the spin of the outer face uout of G to be C1.

Recall that the matrices KWŒu1;:::;um�, KŒu1;:::;um� and yKŒu1;:::;um� are de�ned

via some (arbitrary but �xed) collection ~ D ~Œu1;::;um� of edge-disjoint paths

onG� linking u1; : : : ; um and, possibly, uout so that each of u1; : : : ; um has an odd

degree in the union of these paths. Note that if a spin con�guration � 2 ¹˙1ºV.G�/

with �uout D C1 corresponds to a domain walls con�guration P 2 E.G/, then

�u1
: : : �um

D .�1/~�P ; (2.7)

where ~ � P denotes the number of intersections of P with ~. Below we assume

that the terminal graph GK is drawn in such a way that its long edges intersect ~

if and only if the corresponding edge of G does the same, while short edges never

intersect these “cuts”. The following statement generalizes Lemma 2.1.

Lemma 2.3. For any planar graph .G; x/, and any set of edges ~ � E.G�/, one
has

X

P 2E.G/

.�1/~�Px.P / D .�1/j~j
X

D2D.GK/

.�1/t.D/.�1/~�DxK.D/;

where j~j denotes the total number of edges in the collection of (dual) paths ~ D
~Œu1;::;um�.

Proof. Following the proof of Lemma 2.1, the only additional fact to check is the

identity

.�1/~��.D/ D .�1/j~j � .�1/~�D:

By construction of the mapping �, for each e 2 E.G/ and D 2 D.GK/, we

have e 2 �.D/ if and only if the corresponding long edge of GK does not belong

to D. Therefore,

~ � �.D/C ~ �D D ~ �E.G/ D j~j;

and the claim is proved. �

We are now able to prove formula (1.10) for multi-point spin expectations.

Proof of Proposition 1.3. It follows from (2.7) and Lemma 2.3 that

E
C
G�Œ�u1

: : : �um
� D

P

P 2E.G/.�1/
~�Px.P /

P

P 2E.G/ x.P /

D .�1/j~j �

P

D2D.GK/.�1/
t.D/.�1/~�DxK.D/

P

D2D.GK/.�1/
t.D/xK.D/

:
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It was shown in the proof of Theorem 1.1 that

PfŒ yK � D ".D0/
X

D2D.GK/

.�1/t.D/xK.D/:

Repeating the same proof, we �nd

PfŒ yKŒu1;::;um� � D ".D0/
X

D2D.GK/

.�1/t.D/.�1/~�DxK.D/;

thus arriving at (1.10). �

We conclude this section with one last statement which naturally generalizes

Theorem 1.2.

Proposition 2.4. Let u1; : : : ; um be some faces of G and the matrix yKŒu1;::;um�

be de�ned using the collection ~ D ~Œu1;::;um� of edge-disjoint paths on G�

linking u1; : : : ; um and uout. For any set of 2n oriented edges E D ¹e1; ::; e2nº �

V.GK/, one has

PfŒ .yK�1
Œu1;::;um�/ej ;ek

�2m
j;kD1 D

P

P 2C.e1;:::;e2n/.�1/
~�P �.P /x.P /

E
C
G� Œ�u1

: : : �um
� � ZIsing.G; x/

:

Above, if some edge ek 2 E intersects ~ and Nek 62 E, we do count the corresponding
half-edge .zek

; t .ek// 2 P in the intersection number ~ � P .

Proof. Mimicking the proof of Lemma 2.3 for the mapping �EWD.G
K
E /! C.E/,

one gets
X

P 2C.e1;:::;e2n/

.�1/~�P �.P /x.P /

D .�1/j~j
X

D2D.GK
E /

.�1/t.D/�.�E.D//.�1/
~�DxK.D/:

On the other hand, from the proof of formula (1.10) given above we know that

E
C
G� Œ�u1

: : : �um
� � ZIsing.G; x/ D .�1/

j~j
X

D2D.GK/

.�1/t.D/.�1/~�DxK.D/

D .�1/j~j".D0/PfŒ yKŒu1;::;um� �;

which is a proper replacement for (2.3) in the twisted setup. We now simply follow

the proof of Theorem 1.2 with the weights xK.D/ replaced by .�1/~�DxK.D/. It is

worth noting that the check of signs performed in Claim B (and further Claim C)

does not depend on xK. �
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3. Various formalisms

This section is devoted to a self-contained exposition of the relations between

several classical approaches designed to study the planar Ising model: dimer

representations [62, 37], Grassmann variables [47, 96], disorder insertions [59],

as well as a more recent language of ‘combinatorial’ s-holomorphic observ-

ables [99, 100, 101]. Of course, most if not all claims below are part of the folklore

surrounding the Ising model. However, we hope that such an exposition, intended

in particular for combinatorialists and probabilists, will be useful in view of the re-

newed activity in the �eld. We also refer the reader interested in a more advanced

discussion of spin-disorder techniques to the recent papers [31, 30] by Dubédat.

3.1. Dimer representations. In Section 2, one of the main tools used was a

dimer representation of the Ising model on the non-bipartite and, in general, non-
planar terminal graph GK. In a famous variation on this construction, Fisher

introduced a planar but non-bipartite graph such that the Ising con�gurations

were in 1–to–1 correspondence with dimers. His mapping may be described,

paraphrasing his own words [37, p. 1777], as follows: one starts with the graph G

and makes all its vertices trivalent (without changing the probability measure)

and then uses the mapping of the con�gurations to dimers on the terminal graph

of this new graph, which in virtue of trivalence, is planar and the dimer measure

is unsigned. A more symmetric version of this construction was later proposed

in [11] forcing the mapping from con�gurations to dimers to be 2jV.G/j–to–1. Yet

another (slighly simpler) variation on Fisher’s idea was proposed in [30], where

long dimers are in direct correspondence with Ising con�gurations, and this is the

one we shall use here, calling the corresponding graph the Fisher graph.

In this section we brie�y discuss representations of the Ising model on G via

dimers on the two following graphs: the corner graphGC and the Fisher graphGF

discussed above, the latter being planar but also never bipartite, see Figure 3.

It is worth noting that there exist several combinatorial ways to represent a pair
of independent Ising models via single dimers on some other graph constructed

fromG, which is both planar and bipartite (see [30, 12, 26]), but we do not discuss

these constructions here.

For a while, assume that G has no vertices of degree 1 (clearly, we do not lose

generality by making this assumption, though it will be convenient to allow such

vertices later on). Let GC denote the corner graph obtained from G as follows:

each vertex v of G (of degree d.v/) is replaced by a simple cycle of length d.v/,

with each pair of cycles corresponding to neighboring vertices v; v0 2 G being

cross-linked by four edges of GC, as shown on Figure 3b. The vertices of GC are
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e

(a) A portion of a graphG around an edge e,

with decorations at corners (dashed).

cC.e/

c�.e/

c�. Ne/

cC. Ne/

(b) The corresponding portion of the corner

graph GC with the vertices c˙.e/.

e Ne

cC.e/

c�.e/

c�. Ne/

cC. Ne/

(c) The corresponding portion of the Fisher

graph GF and mapping of its vertex set

V.GF/ to V.GC/ [ V.GK/.

v1 e1 c1

(d) Special case of a univalent vertex v1 D

t .e1/ (with decoration at the corner dashed)

in G, and the corresponding corner c1

in GC.

Figure 3. The di�erent graphs and the relations between them.

called corners of G; note that jV.GC/j D jV.GK/j. With each corner c 2 V.GC/

we associate a straight segment on the plane, the so-called decoration of G at c,

oriented towards the corresponding vertex of G which we denote by v.c/. Given

an oriented edge e 2 V.GK/, we denote by c˙.e/ the two neighboring corners

of e satisfying v.c˙.e// D o.e/, see Figure 3b.

Let the square matrix B D .Bc;e/c2V.GC/; e2V.GK/ be de�ned by

Bc;e D

8

<

:

exp
�

i
2

w.c; e/
�

� x�1=2
e if c is one of the two corners c˙.e/,

0 otherwise,
(3.1)

where w.c; e/ denotes the rotation angle from the decoration of G at c to the

oriented edge e. Note that B has a block-diagonal structure with d.v/ � d.v/

blocks B.v/ corresponding to vertices v 2 G. It is easy to see that

j det Bj D
Y

v2V.G/

j det B.v/j D
Y

v2V.G/

h

2
Y

v02GWv�v0

x
�1=2
vv0

i

D 2jV.G/j
Y

e2E.G/

x�1
e :
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Let us now de�ne the matrix

C WD BKB�;

whose entries are labeled by the corners c 2 V.GC/. A straightforward computa-

tion gives

Cc;c0 D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

exp
�

i
2

w.c; Nc0/
�

� x�1
e if v.c/ D o.e/ and v.c0/ D t .e/

for some e 2 V.GK/,

� exp
�

i
2

w.c; Nc0/
�

if v.c/ D v.c0/ and c is adjacent to c0 in GC,

0 otherwise.

Above, w.c; Nc0/ denotes the rotation angle from the oriented decoration c to the

oppositely oriented decoration Nc0, measured in a natural way: along the path c ˚

e ˚ Nc0 in the �rst line, and along c ˚ Nc0 in the second.

Note that C is a weighted adjacency matrix of the graph GC which is “almost

planar”: the only pairs of intersecting edges go along edges ofG. To get a weighted

adjacency matrix of a planar graph, let us introduce a twice bigger matrix F,

whose entries are labeled by the set V.GC/ [ V.GK/, as follows:

F WD

�

I B

0 J

��

C 0

0 �J

��

I 0

B� J

�

D

�

C � BJB� �B

�B� �J

�

:

Again, a straightforward computation shows that, for c; c0 2 V.GC /,

Fc;c0 D .C � BJB�/c;c0 D

8

ˆ

ˆ

<

ˆ

ˆ

:

� exp
�

i
2

w.c; Nc0/
�

if v.c/ D v.c0/

and c is adjacent to c0 in GC,

0 otherwise.

Therefore, F is a weighted adjacency matrix of the graph GF with V.GF/ D

V.GC/ [ V.GK/, which is constructed from G as follows: for each v 2 V.G/,

the d.v/ corners c 2 V.GC/ satisfying v.c/ D v are linked cyclically around v; for

each edge ofG, the two corresponding vertices e; Ne 2 V.GK/ are linked with each

other; and, �nally, each of the vertices e 2 V.GK/ is linked with two neighboring

corners c˙.e/ 2 V.GC/, see Figure 3c.

As discussed in the introductory paragraph of this section, the planar graph

GF is not Fisher’s original graph [37, Figure 6] nor its symmetric modi�cation [11],

but we still call it the Fisher graph, following [30]. We shall denote by xF the edge

weights on GF obtained by assigning weights xe
�1=2 to short edges of GF linking

vertices e 2 V.GK/ with c˙
e 2 V.G

C/ and weight 1 to all other edges.
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It is well known that there exists a simple 2jV.G/j–to–1 correspondence

%WD.GF/ �! E.G/

between perfect matchings of GF and even subgraphs of G: given D 2 D.GF/,

take all the edges e 2 E.G/ corresponding to long dimers ¹e; Neº 2 D. It is easy to

check that, for any P 2 E.G/,

X

D2%�1.P /

xF.D/ D 2jV.G/j � .x.E.G/ n P //�1 D j det Bj � x.P /;

which leads to the equality

Zdimers.G
F; xF/ D j det Bj � ZIsing.G; x/:

Similarly to the choice of �e for e 2 V.GK/, for each c 2 V.GC/ we �x a

square root of the direction of the decoration corresponding to c 2 V.GC/ and

denote by �c its complex conjugate, multiplied by the same global unimodular

factor �. We denote by UC the diagonal matrix with entries ¹�cºc2V.GC/, by UF

the diagonal matrix with entries ¹�pºp2V.GF/, and set

yB WD U�
CB UK;

yC WD iU�
CC UC D

yB yK yB>; yF WD iU�
FF UF; (3.2)

where UK WD U, see (1.8). Note that all matrices yB, yC, and yF are real-valued.

Moreover, yC and yF are anti-symmetric since C and F are self-adjoint, similarly to

the symmetries of yK and K. The identities

det F D .�1/jE.G/j det C D j det Bj2 � .�1/jE.G/j det K

imply

jPfŒ yF �j D jPfŒ yC �j D j det Bj � jPfŒ yK �j:

Finally, it is easy to check that, for any choice of the square roots in the

de�nition of �e and �c , the signs of the matrix entries yFp;q provide a Kasteleyn

orientation [61, 63] of the planar graph GF. Therefore,

ZIsing.G; x/ D j det Bj�1 � Zdimers.G
F; xF/ D j det Bj�1jPfŒ yF �j D jPfŒ yK �j;

which gives an alternative proof of Theorem 1.1 in the planar case.

Remark 3.1. In [73, Theorem A.1], Lieb and Loss gave a new proof (which is

canonical in some sense) of Kasteleyn’s theorem for counting dimers on any planar

graph. If we rephrase their result in the special case of our planar graph GF,



Revisiting the combinatorics of the 2D Ising model 339

it is interesting to note that their Hermitian matrix T is exactly the matrix F we

introduced above, thus showing that their method is related to the symmetries

of the Kac–Ward matrix. Indeed, their main theorem is that the square root of

the modulus of the determinant of T counts dimers and that T can be gauge-

transformed (that is, conjugated by a diagonal unitary matrix) to be equal to i times

an antisymmetric matrix (which is therefore a Kasteleyn matrix and Kasteleyn’s

theorem is proved). Our identity yF D iU�
FF UF expresses the same thing (by

furthermore specifying the gauge transform) in the special case of GF.

In the same spirit, one can use the real anti-symmetric matrix yC to obtain

another proof of Theorem 1.1 based on the considerations of the signed dimer

model on the corner graph GC. Similarly to the dimer model on GK considered

in Section 2, in this case one should account the sign .�1/t.D/, where t.D/ now

denotes the number of intersections in a dimer con�guration D 2 D.GC/, so

that the combinatorial correspondence of E.G/ with D.GC/ and the expansion of

PfŒ yC � work properly. Again, this essentially amounts to checking that the signs

of matrix entries yCc;c0 provide a crossing orientation of GC in the terminology of

Tesler [102].

We conclude this section with a remark on modi�cations needed to include uni-

valent (i.e. having degree 1) vertices of G into considerations, this will be useful

to discuss boundary conditions for discrete fermionic observables in Section 3.6

below.

Remark 3.2. Let v1 2 V.G/ be a degree 1 vertex and e1 D e1.v1/ 2 EE.G/ be the

unique oriented edge of G satisfying t .e1/ D v1. In this case the corner graph GC

contains only one corner c1 D c1.v1/ 2 V.GC/ near v1, and we always draw the

corresponding decoration as pointing in the same direction as the edge Ne1, see

Figure 3d. The corresponding 1 � 1 block of the matrix B is then de�ned as

Bc1; Ne1
D expŒ i

2
w.c1; Ne1/� � x

�1=2
e1

D x�1=2
e1

;

while the mapping %WD.GF/! E.G/ is 1-to-1 near such v1, not 2-to-1: the edge e1

never participates inP 2 E.G/while the dimer ¹c1; Ne1º presents in allD 2 D.GF/.

With these modi�cations, the arguments given above remain true in presence of

degree 1 vertices.

3.2. Grassmann variables and double-covers. In this section we discuss the

well-known formalism of Grassmann variables (e.g. see [27, Chapter 2.A]), i.e.

anti-commuting variables �1; : : : ; �2N associated with a real anti-symmetric ma-

trixA D .Aj;k/
2N
j;kD1

, in the context of the planar Ising model, when the matrixA is
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equal to yK or yKŒu1;::;um�. In the latter case, we introduce a double-cover GŒu1;::;um�

of G in order to make the formal correlation functions independent of the choice

of collection of cuts ~ D ~Œu1;::;um�.

For a real anti-symmetric matrix A, let

ZA D

Z

exp
�

� 1
2
�>A�

�

d�1 : : : d�2N D PfŒ A �

denote the coe�cient of the highest monomial �2N : : : �1 in the formal Taylor

expansion of expŒ�1
2
�>A�� (note that, since �2

k
D 0, this expansion contains

only a �nite number of terms). Further, for an even subset k1; : : : ; k2n of in-

dices 1; : : : ; 2N , let

ZAŒ�k1
: : : �k2n

� D

Z

�k1
: : : �k2n

exp
�

� 1
2
�>A�

�

d�1 : : : d�2N

be the coe�cient of the highest monomial �2N : : : �1 in the formal expansion

of the expression �k1
: : : �k2n

expŒ�1
2
�>A��. Note that this coe�cient trivially

vanishes if some of these �k variables is repeated twice (or more) or if the number

of these variables is odd.

Let A D yK. Recall that, up to a global ˙1 sign, ZyK
D PfŒ yK � is equal to

the Ising model partition function ZIsing.G; x/ due to Theorem 1.1. The formal
correlation function of the Grassmann variables �e with e 2 E D ¹e1; : : : ; e2nº �

V.GK/ is de�ned as

��e1
: : : �e2n

�yK
WD

ZyK
Œ�e1

: : : �e2n
�

ZyK

:

By de�nition, this function is anti-symmetric with respect to the ordering of the

variables �ek
. In particular, ��ej

�ek
�yK D ���ek

�ej
�yK. It is an easy exercise

to check that

��e1
: : : �e2n

�yK
D ˙

PfŒ yK �e;e0 62E

PfŒ yK �

D PfŒ yK�1
ej ;ek

�2n
j;kD1

D PfŒ��ej
�ek
�yK

�2n
j;kD1;

where the sign in the middle depends on the ordering of the sets V.GK/ n E

and V.GK/.

Remark 3.3. Working with the Grassmann variables formalism, one can won-

der about the combinatorial interpretation of the arising formal correlation func-

tions ��e1
: : : �e2n

�yK. The answer to this question is the matter of Theorem 1.2.
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Now let A D yKŒu1;::;um�. Recall that, for a given collection of faces u1; : : : ,

um 2 V.G
�/ and a �xed collection of dual paths ~ D ~Œu1;::;um� linking u1; : : : ; um

and, possibly, uout on V.G�/, we have yKŒu1;::;um� D iU
�KŒu1;::;um�U, where

.KŒu1;::;um�/e;e0 D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.�1/~�e if e0 D Ne,

� exp
�

i
2

w. Ne; e0/
�

� .xexe0/1=2 if o.e/ D o.e0/ but e0 ¤ e,

0 otherwise.

Given a collection of oriented edges E D ¹e1; : : : ; e2nº � V.G
K/, we de�ne the

“twisted” correlation functions of Grassmann variables �e as

��e1
: : : �e2n

�Œu1;::;um� WD ZyK�1
Œu1;::;um�

� ZyKŒu1;::;um�
Œ�e1

: : : �e2n
�

D PfŒ yK�1
Œu1;::;um� �e;e02E

(in this case, the relevant combinatorial expansions are provided by Proposi-

tion 2.4). As usual, these formal correlations implicitly depend on the choice of

the paths ~Œu1;::;um� but there is a standard way to make the notation more invariant.

Let CŒu1;::;um� denote the canonical double-branched cover of the complex

plane C with branching points u1; : : : ; um 2 V.G
�/ � C, which is endowed with

an involution z 7! z] and with a projection onto C. Then, any graph G embed-

ded in C n ¹u1; : : : ; umº lifts to the canonical double-cover GŒu1;::;um� embedded

in CŒu1;::;um�. Now, any cut set ~Œu1;::;um� gives us a particular way to construct

this cover as two copies of the plane cut and pasted, and idem for the embedded

graphs. Equivalently, such a set of cuts gives us two sections of this cover (i.e.

the choice of one point above each of the points in the plane). Given ~Œu1;::;um�

and e 2 V.GK
Œu1;::;um�

/ lying on one of the corresponding sections, we set

�e] WD ��e: (3.3)

This allows us to speak about formal correlation functions��e1
: : : �e2n

�Œu1;::;um�

with e1; : : : ; e2n on the canonical double-cover of the terminal graph GK and it is

easy to see that these quantities are independent of the choice of ~ D ~Œu1;::;um�.

Indeed, shifting ~ across some vertex v 2 V.G/ amounts to the multiplication

by �1 of all the rows and the columns of the matrix KŒu1;::;um� that are labeled

by oriented edges e with o.e/ D v. This leads to the multiplication of all the

corresponding variables �e by �1 and agrees with (3.3).
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3.3. Disorder insertions. In this section we brie�y discuss the formalism of

disorder insertions developed in [59], see also [31]. In this approach, one easily

�nds combinatorial expansions of correlation functions similar to Theorem 1.2

and Proposition 2.4, as shown in Lemma 3.1 and Remark 3.4 below. On the

other hand, following this approach then requires additional e�orts to reveal the

underlying Pfa�an structure of correlation functions. (Note that this is exactly

opposite to the discussion of the Grassmann variables formalism given above, cf.

Remark 3.3.)

Recall that we prefer to work with the domain walls representations of the

Ising model, thus the spins � are associated with faces of G while disorders �v

will be associated to vertices of G (this is dual to the more common convention

which assigns spins to vertices of G and disorders to its faces). Given an even

number of vertices v1; : : : ; v2n 2 V.G/, let us �x a collection of edge-disjoint

paths ~ D ~Œv1;::;v2n� � E.G/ matching them so that each vertex vk has an odd

degree in ~ while all other vertices have even degrees, and let

h�v1
: : : �v2n

i WD E
C
G�

h

Y

e2~

x"e
e

i

;

where "e D ˙1 denotes the energy density (product of two nearby spins) on an

edge e. Using domain walls representations, this can be written as

h�v1
: : : �v2n

i D
Z

Œv1;::;v2n�

low .G; x/

Zlow.G; x/

with

Z
Œv1;::;v2n�
low .G; x/ WD

X

P 2C.v1;::;v2n/

x.P /;

where C.v1; : : : ; v2n/ WD ¹P WP4~
Œv1;::;v2n� 2 E.G/º is the set of subgraphsP ofG

with all vertices of G except v1; : : : ; v2n having even degrees, and all the vk odd.

(Above, we use the subscript low in order to emphasize that these subgraphs should

be thought about as domain walls aka low-temperature expansions of the Ising

model de�ned on faces of G. Note that the Kramers–Wannier duality allows one

to interpret h�v1
: : : �v2n

i as the high-temperature expansion of the corresponding

spin correlation in the dual model de�ned on vertices of G.) It is clear that the

quantity h�v1
: : : �v2n

i does not depend on the choice of ~Œv1;::;v2n�. However, the

notation should not be directly interpreted probabilistically as the expectation of

a product of random variables since the �v themselves cannot be thought of as

random variables.
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Similarly to Section 3.2, let us consider the canonical double-coverGŒv1;::;v2n�

of the graphG with the branch set v1; : : : ; v2n, endowed with the involutionu 7! u]

acting on its faces. It is easy to see that Z
Œv1;::;v2n�
low .G; x/ is the partition function

of the Ising model de�ned on faces of GŒv1;::;v2n� with the spin-�ip symmetry con-

strain �u] D ��u and a �xed spin of the outer face. From this perspective, the

choice of the collection of paths ~Œv1;::;v2n� is nothing but a choice of a section

of GŒv1;::;v2n�. Given faces u1; : : : ; um of the double-cover GŒv1;::;v2n�, we set

h�v1
: : : �v2n

�u1
: : : �um

i WD E
Œv1;::;vm�
G� Œ�u1

: : : �um
� � h�v1

: : : �v2n
i; (3.4)

where E
Œv1;::;vm�
G� stands for the expectation in the Ising model described above. By

de�nition, this quantity changes sign when one of uk is replaced by u
]

k
. Note that

we allow repeating faces uk in (3.4), in which case the corresponding spins cancel

out. By a slight abuse of the notation, one can also allow repeating disorders �vk

with the same cancellation e�ect.

Let us now consider a special situation whenm D 2n and each of the facesuk is

incident to the corresponding vertex vk. More precisely, we consider a collection

of 2n pairwise distinct corners c1; : : : ; c2n of G, put vk WD v.ck/, and denote

by uk WD u.ck/ the face of G that contains ck . Note that we do allow repetitions

of these vertices and faces. Let

C.c1; : : : ; c2n/ WD ¹Q D PQ ˚ c1 ˚ � � � ˚ c2n; PQ 2 C.v1; : : : ; v2n/º (3.5)

be the set of subgraphs from C.v1; : : : ; v2n/ with decorations c1; : : : ; c2n attached

to the vertices v1; : : : ; v2n. Similarly to the case of oriented edges, we introduce

a sign �.Q/ 2 ¹˙1º by resolving all the crossings of a con�guration Q so

that Q D C t 1 t � � � t n, where n simple paths k run from cs.2k�1/ to cs.2k/

and C is a collection of disjoint simple loops, and setting

�.Q/ WD sign.s/ �
n

Y

kD1

�

i�cs.2k�1/
N�cs.2k/

exp
�

� i
2

wind.k/
��

:

Again, it is not hard to see that �.Q/ is well de�ned (i.e. independent of the

smoothing of Q).

Lemma 3.1. Let c1; : : : ; c2n 2 V.GC/ be a collection of 2n pairwise distinct
corners of G. Denote vk WD v.ck/ and let uk D u.ck/ be the face of G that
contains ck . Then,

h�v1
: : : �v2n

�u1
: : : �u2n

i D ˙ŒZIsing.G; x/�
�1 �

X

Q2C.c1 ;:::;c2n/

�.Q/x.PQ/;

with the sign depending on the choice of representatives of the faces u1; : : : ; u2n

on GŒv1;::;v2n�.
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Proof. Using the domain walls representationPQ of the Ising model onGŒv1;::;v2n�,

it is easy to see that the lemma follows from the equality

�u1
: : : �u2n

D �0 � �.Q/ for all Q 2 C.c1; : : : ; c2n/; (3.6)

where the sign �0 2 ¹˙1º is independent ofQ. To prove this, let us �x a collection

of edge-disjoint paths ~0 D ~0
Œu1;::;u2n�

matching the faces u1; : : : ; u2n on the dual
graph G�. We attach decorations c1; : : : ; c2n to the endpoints of these paths and

denote the result by 0
1 ; : : : ; 

0
n , without loss of generality we can assume that 0

k

runs from c2k�1 to c2k . Let

�.~0/ WD
n

Y

kD1

�

� i�c2k�1
N�c2k

exp
�

� i
2

wind.0
k /

��

:

Note that, for a proper choice of representatives of u1; : : : ; u2n on the double-

cover GŒv1;:::;v2n� and any con�gurationQ 2 C.c1; : : : ; c2n/, one has

�u1
: : : �u2n

D .�1/~
0�Q;

here and below ˛ � ˇ denotes the intersection number of ˛ and ˇ. Let us consider

a smoothing Q D C t  , where C is a collection of closed curves and  a

collection of n paths k running from cs.2k�1/ to cs.2k/, which are oriented so

that the concatenation  ˚ ~0 becomes a collection � of m oriented cycles �j .

Since C and  do not intersect or self-intersect, one has

~0 �Q D ~0 � .C t / D � � .C t / D � �  D t.�/ � ~0 � ~0 mod 2;

where t.�/ is the number of self-intersections in �. On the other hand, using the

equality sign.s/ D .�1/m and Lemma 2.2, we see that

�.Q/�.~0/ D .�1/m
m

Y

j D1

exp
�

� i
2

wind.�j /
�

D .�1/
Pm

j D1 t.�j /

D .�1/t.�/;

which implies (3.6) with �0 WD .�1/~
0�~0
�.~0/. �

Remark 3.4. Lemma 3.1 can be easily generalized in the following way. In

addition to the collection of 2n corners c1; : : : ; c2n, let us consider another m

faces u0
1; : : : ; u

0
m of G and let ~ 0 be a proper collection of edge-disjoint paths
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linking u0
1; : : : ; u

0
m and, possibly, uout on G�. Note that we do not assume that

these new faces are distinct from u1; : : : ; u2n and we allow ~ 0 and ~0 D ~0
Œu1;::u2n�

to share edges of G�. Repeating the proof of Lemma 3.1, we obtain

h�v1
: : : �v2n

�u1
: : : �u2n

�u0
1
: : : �u0

m
i

D ˙ŒZIsing.G; x/�
�1 �

X

Q2C.c1;:::;c2n/

.�1/~
0�Q�.Q/x.PQ/

since �u1
: : : �u2n

�u0
1
: : : �u0

m
D .�1/~

0�Q � .�1/~
0�Q.

3.4. Equivalence of the two previous formalisms. The aim of this section is

to show that the two formalisms (Grassmann variables and disorder insertions)

discussed above are essentially equivalent. This fact is quite well known in the

folklore but we do not know of a reference explaining this correspondence in an

explicit manner, especially when working in presence of additional spin variables

in the formal correlation functions. Note that Theorem 1.2 and its generalization

provided by Proposition 2.4 are the crucial ingredients needed to justify this

equivalence.

We begin by introducing some additional notation. Let ¹�cºc2V.GC/ be an-

other 2jE.G/j Grassmann variables assigned to the corners of the graphG, which

are related to the “edge” variables �e discussed in Section 3.2 by the linear trans-

form

� D 1
2
yB>�; (3.7)

where

yB>
e;c D

8

<

:

N�c�e exp
�

i
2

w.c; e/
�

� x�1=2
e if c D c˙.e/,

0 otherwise,

see (3.1) and (3.2). Note that this change of variables is local in the following

sense: for a given vertex v 2 V.G/, the variables �e with o.e/ D v are linear

combinations of the variables �c with v.c/ D v, and vice versa. Since yB yK yB> D
yC, the quadratic forms �>.1

4
yC/� and �> yK� coincide. Therefore, one can think

about the new variables �c as being associated to the anti-symmetric matrix A D
1
4
yC in a standard way described in Section 3.2 so that

��c1
: : : �c2n

� 1
4

yC
WD PfŒ 4yC�1

cj ;ck
�2n
j;kD1:

At the same time, for any c1; : : : ; c2n, one has

��c1
: : : �c2n

� 1
4

yCD��c1
: : : �c2n

�yK;
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where the right-hand side should be understood as follows: write each of the

variables �ck
as a linear combination of the old variables �e and then compute the

arising linear combination of the terms � �e1
: : : �e2n

�yK
. This allows us to drop

the subscripts yK or 1
4
yC from the notation. The next lemma provides combinatorial

expansions of the quantities ��c1
: : : �c2n

�.

Lemma 3.2. Let c1; : : : ; c2n 2 V.G
C/ be a collection of corners of G adjacent to

pairwise distinct vertices vk D v.ck/. Then,

��c1
: : : �c2n

�D ŒZIsing.G; x/�
�1 �

X

Q2C.c1;:::;c2n/

�.Q/x.PQ/; (3.8)

where the set of con�gurations C.c1; : : : ; c2n/ is given by (3.5).

Proof. Recall that each of the variables �ck
is a linear combination of the vari-

ables �ek
with o.ek/ D v.ck/, and the inverse transform is given by (3.7). Thus,

in order to prove (3.8), it is enough to check that these equalities yield the correct

combinatorial expansions of formal correlations ��e1
: : : �e2n

�, which are given

by Theorem 1.2.

According to (3.7), we have

�e D �ex
�1=2
e � 1

2
. N�c�.e/ exp

�

i
2

w.c�.e/; e/
�

�c�.e/

C N�cC.e/ exp
�

i
2

w.cC.e/; e/
�

�cC.e//;
(3.9)

where c˙.e/ are the two decorations attached to the vertex o.e/ neighboring e.

Given a pair of con�gurations Q˙ 2 C.c˙.e1/; c2; : : : ; c2n/ which di�er by the

decorations c˙.e1/ only, it is easy to check that the quantities

N�c˙.e/ expŒ i
2

w.c˙.e/; e/��.Q˙/

coincide if e 2 PQ and are opposite to each other otherwise. In particular, the

two corresponding contributions to � �e1
: : : �e2n

� cancel out in the latter case.

Repeating the same argument for all the other edges e2; : : : ; e2n, one concludes

that (3.8) is equivalent to the following claim:

��e1
: : : �e2n

�D ŒZIsing.G; x/�
�1 �

X

Q2CC.e1;:::;e2n/

�C.Q/xC.Q/;

where the sum is taken over the set

C
C.e1; : : : ; e2n/ WD ¹Q 2 C.cC.e1/; : : : ; c

C.e2n//W e1; : : : ; e2n 2 Qº;
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the modi�ed weight of a con�guration Q is given by

xC.Q/ WD x.PQ/ �
2n
Y

kD1

x�1=2
ek

and the modi�ed sign �C.Q/ is given by

�C.Q/ WD �.Q/ �
2n
Y

kD1

�

�ek
N�cC.ek/ exp

�

i
2

w.cC.ek/; ek/
��

:

There exists a trivial bijection & WCC.e1; : : : ; e2n/ ! C.e1; : : : ; e2n/: erase

all the decorations ck and the half-edges .o.ek/; zek
/ from a given con�gura-

tion Q to get &.Q/. Clearly, one has x.&.Q// D xC.Q/ and it is easy to check

that �.&.Q// D �C.Q/ for all Q. Therefore, the collection of equalities (3.8) is

reduced to the claim of Theorem 1.2 and we are done. �

Let us now discuss modi�cations needed to include additional spin variables

in the considerations above. For a given collection of faces u0
1; : : : ; u

0
m, denote

yCŒu1;::;um� WD yB yKŒu0
1

;::;u0
m�
yB>

and, for a given collection of corners c1; : : : ; c2n 2 V.G
C/, let

��c1
: : : �c2n

�Œu0
1

;::;u0
m� WD PfŒ 4.yC�1

Œu0
1

;::;u0
m�
/cj ;ck

�2n
j;kD1:

Similarly to Section 3.2, this notation implicitly depends on the cuts ~ 0 D

~ 0
Œu0

1
;::;u0

m�
linking u0

1; : : : ; u
0
m and, possibly, uout on G�, but can be made canon-

ical by lifting to the double-cover GC
Œu0

1
;::;u0

m�
. Using Proposition 2.4 instead of

Theorem 1.2, one obtains the following combinatorial expansion which general-

izes Lemma 3.2 in the “twisted” setup:

��c1
: : : �c2n

�Œu0
1

;::;u0
m�D

P

Q2C.c1;:::;c2n/.�1/
~0�Q�.Q/x.PQ/

E
C
G� Œ�u0

1
: : : �u0

m
� � ZIsing.G; x/

; (3.10)

where c1; : : : ; c2n are thought about as lying on a section ofGC
Œu0

1
;::;u0

m�
constructed

via ~ 0.

We are now able to justify the equivalence of the two formalisms discussed

above: Grassmann variables (considered on double-covers) and disorder inser-

tions. The next result claims that the formal correlation functions introduced in

Sections 3.2 and 3.3, respectively, are essentially the same, with the correspon-

dence given by the formal rule �ck
D �vk

�uk
.
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Proposition 3.3. Let c1; : : : ; c2n 2 V.G
C/ be a collection of corners ofG adjacent

to pairwise distinct vertices vk D v.ck/ and let uk D u.ck/ be the face of G that
contains ck . Then, for an arbitrary collection of faces u0

1; : : : ; u
0
m of G, one has

h�v1
: : : �v2n

�u1
: : : �u2n

�u0
1
: : : �um0 i

D ˙ ��c1
: : : �c2n

�Œu0
1

;::;u0
m� � h�u0

1
: : : �u0

m
i;

where the sign depends on the choice of representatives of the faces u1; : : : ; u2n,
u0

1; : : : ; u
0
m on the double-cover GŒv1;::;v2n� and representatives of the corners

c1; : : : ; c2n on GŒu0
1

;:::;u0
m�. Above, we do not assume that the faces u1; : : : ; u2n,

u0
1; : : : ; u

0
m are pairwise distinct.

Proof. Let us consider the special case m D 0 �rst. In this case, the equality

h�v1
: : : �v2n

�u1
: : : �u2n

i D ˙ ��c1
: : : �c2n

�

directly follows from Lemma 3.1 and Lemma 3.2 since both sides have identical

combinatorial expansions. In the general situation, one just uses Remark 3.4 and

formula (3.10) instead of these lemmas. The claim follows since h�u0
1
: : : �u0

m
i D

E
C
G� Œ�u0

1
: : : �u0

m
�. �

Remark 3.5. (i) It is worth noting that Lemma 3.2 and Proposition 3.3 fail if one

drops the assumption that the vertices vk D v.ck/ are pairwise distinct. Indeed, if

we consider two edges e1; e2 such that cC.e1/ D c
�.e2/, then the product �e1

�e2

is not equal to the sum of four terms since �cC.e1/�c�.e2/ D 0. Instead, we have

only three terms and the combinatorial correspondence of con�gurations used in

the proof of Lemma 3.2 breaks down.

(ii) One can easily make sense of the notation � �e�c : : : �Œu1;::;um�, with

the variables labeled by oriented edges or corners of the canonical double-

cover GŒu1;::;um�. In order to de�ne these quantities, just rewrite all participat-

ing variables using one of the two sets �e or �c, and compute the arising linear

combination of the terms ��e�e0 : : :�Œu0
1

;::;u0
m� or ��c0�c : : :�Œu0

1
;::;u0

m�: the re-

sult does not depend on which set of variables was used. Following the proof of

Lemma 3.2, it is easy to obtain combinatorial expansions of such quantities in

the situation when all the corresponding vertices v.ck/ are pairwise distinct and

do not coincide with the vertices o.ej / for �ej
involved in the formal correlation

function under consideration.

3.5. Three-term relation for correlation functions. It is well known that the

formal correlation functions h�c : : : i involving any three of the four corners sur-

rounding a given edge e of G satisfy a linear relation known as the propagation
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equation for discrete spinors or the Dotsenko equation. The latter name was sug-

gested in [82] to acknowledge the paper [29] where this propagation equation

was discussed in the “combinatorial” context of the disorder insertions formal-

ism, though it is worth mentioning that similar relations appeared earlier, e.g. in

the works of Perk [88, 89]. Below we start with a short derivation given in [29]

and then discuss this equation from the (equivalent) viewpoint of the Grassmann

variables formalism.

Informally speaking, the main idea is to apply the Kramers–Wannier duality

locally on a given edge e. It is convenient to introduce the following parametriza-

tion of the edge weights:

�e WD 2 arctanxe; pe WD cos �e D
1 � x2

e

1C x2
e

; qe WD sin �e D
2xe

1C x2
e

:

By the de�nition of disorder insertions (see Section 3.3) and the equality qex
"e
e D

1�pe"e for "e D ˙1, for any combination OŒ�; �� of spins and (even number of)

disorders, we have

qe � h�o.e/�t.e/OŒ�; ��i D qe � hx
"e
e OŒ�; ��i

D hOŒ�; ��i � pe � h�u�.e/�uC.e/OŒ�; ��i;
(3.11)

where "e D �u�.e/�uC.e/ and u˙.e/ D u.c˙.e// are the two faces ofG adjacent to

the oriented edge e, with u�.e/ being to the right and uC.e/ to the left of e. Note

that the set of disorders involved in the left-hand side of this equality di�ers from

that in the right-hand side, so one should be careful with the signs of the formal

correlations even though there is a trivial correspondence between the faces of

these double-covers. Above, the faces u˙.e/ are assumed to be adjacent on the

double-cover used to de�ne the correlation hOŒ�; ��i.

Let us now replace the collection of spins and disorders OŒ�; �� by

�o.e/�uC.e/OŒ�; �� and recall that any repeating variables in these formal corre-

lations cancel out. Rewriting (3.11) (note that now OŒ�; �� must contain an odd

number of disorders), one obtains

h�o.e/�uC.e/OŒ�; ��i D pe � h�o.e/�u�.e/OŒ�; ��i C qe � h�t.e/�uC.e/OŒ�; ��i;

(3.12)

with a proper correspondence between the involved double-covers.

Remark 3.6. There exists a way to make this correspondence of double-covers

canonical. Let yGC denote the corner graph GC with all the intersecting edges

removed. Given OŒ�; ��, one considers a double-cover yGC
OŒ�;��

of yGC branch-

ing around all the vertices and the faces of G that are not involved in OŒ�; ��,
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as well as around all the edges of G. On this double-cover, the formal corre-

lations h�v.c/�u.c/OŒ�; ��i de�ned in Section 3.3 obey the sign-�ip symmetry

between the sheets and satisfy (3.12) around all the edges, see [82, pp. 209–210].

Remark 3.7. The propagation equation (3.12) can easily be derived using

Lemma 3.1 (or its generalization provided in Remark 3.4) and playing with the

natural correspondence (given by adding/removing the edge e) between the sets

of subgraphs of G involved in the relevant combinatorial expansions. This ap-

proach is conceptually equivalent to the derivation given above, but it allows one

to change the viewpoint and to use these combinatorial expansions as (slightly

mysterious) ad hoc de�nitions of the objects of interest, making use of very el-

ementary concepts only. Such a shortcut was advertised by Smirnov [99, 101]

and is very useful when working with complex-valued fermionic observables, see

Section 3.6 for details.

We now discuss how one can see the three-point relation (3.12) using the intrin-

sic structure of the Kac–Ward matrices or, more precisely, the matrices CŒu1;:::;um�.

Let us introduce a matrix Y whose entries are labeled by the corners of G as fol-

lows:

Yc;c0 WD

8

<

:

exp
�

i
2

w.c; Nc0/
�

if v.c/ D v.c0/ but c ¤ c0,

0 otherwise.

Note that the matrix Y is Hermitian and has a block-diagonal structure with blocks

corresponding to vertices of G. Further, for a given collection of cuts ~ D

~Œu1;::;um� linking the faces u1; : : : ; um and, possibly, uout on G�, let

.DŒu1;::;um�/c;c0 D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�i if c D c0,

pe � exp
�

i
2

w.c; Nc0/
�

if c D cC.e/ and c0 D c�.e/

for some e,

qe � .�1/
~�e exp

�

i
2

w.c; Nc0/
�

if c D cC.e/ and c0 D c�. Ne/

for some eI

0 otherwise,

where the rotation angle w.c; Nc0/ in the third line is measured along the path

c ˚ e ˚ Nc0.

Remark 3.8. The operator DŒu1;::;um� can be viewed as the “untwisted” operator D

acting on functions de�ned on the double-coverGC
Œu1;::;um�

and obeying a sign-�ip

symmetry between the sheets; such functions are sometimes called spinors. From
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this viewpoint, the above de�nition describes the action of DŒu1;::;u;� on a section

of GC
Œu1;::;um�

given by the cuts ~Œu1;::;um�.

Lemma 3.4. For any collection of faces u1; : : : ; um of G, the following identity
holds:

4C�1
Œu1;::;um� CYC iI D 2D�1

Œu1;::;um�: (3.13)

Remark 3.9. Before giving a proof of this identity, recall that yC D iU�
CCUC and

introduce the real-valued counterparts of the matrices Y and DŒu1;::;um� de�ned

by
yY WD iU�

CYUC and yDŒu1;::;um� WD iU
�
CDŒu1;::;um�UC:

Then we have yDŒu1;::;um� � Œ4yC
�1
Œu1;::;um�

� yY C I� D 2I. In other words, for any

oriented edge e and any corner c ¤ cC.e/, the quantities

��c0�c�Œu1;::;um� �yYc0;c C Ic0;c ; where c0 D c˙.e/ or c0 D c�. Ne/;

satisfy a three-term linear relation with coe�cients provided by the matrix
yDŒu1;::;um�, and one should replace the last term Ic0;c by�Ic0;c if c D cC.e/. The lo-

cal terms .�yY˙I/c0;c compensate the mismatch between the Grassmann variables

formalism and disorder insertions in the situation v.c0/ D v.c/, see Remark 3.5.

Modulo this local adjustment of the formal correlation functions, equation (3.13)

is equivalent to the propagation equation (3.12) for two-disorders correlations.

Its extension to 2n disorders (equivalently, 2n Grassmann variables �c) is then

provided by the Pfa�an identities and linearity.

Proof of Lemma 3.4. Equality (3.13) is equivalent to the following claim:

CŒu1;::;um� D DŒu1;::;um� �
�

2IC 1
2
.YC iI/CŒu1;::;um�

�

; (3.14)

which can be easily checked in two steps. One begins by computing the matrix

SŒu1;::;um� WD
1
2
.YC iI/CŒu1;::;um�;

whose entries are given by

.SŒu1;::;um�/c;c0 D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�1 if c D c0,

�i exp
�

i
2

w.c; Nc0/
�

if c D c�.e/ and c0 D cC.e/,

i exp
�

i
2

w.c; Nc0/
�

� .�1/~�ex�1
e if c D c�.e/ and c0 D c˙. Ne/,

0 otherwise,

(3.15)

where the rotation angles w.c; Nc0/ for c0 D c˙. Ne/ in the third line are measured

along c ˚ e ˚ Nc0. Then, another straightforward computation leads to (3.14). �
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Let the matrix WŒu1;::;um� be de�ned by

.WŒu1;::;um�/c;c0 WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

exp
�

i
2

w.c; Nc0/
�

if c D c�.e/

and c0 D cC.e/,

� exp
�

i
2

w.c; Nc0/
�

� .�1/~�ex�1
e if c D c�.e/

and c0 D cC. Ne/;

0 otherwise,

and note that WŒu1;::;um�W
�
Œu1;::;um�

is a diagonal matrix with entries 1 C x�2
e

for c D c˙.e/. A straightforward computation shows

1
2
.YC iI/CŒu1;::;um� DWŒu1;::;um�DŒu1;::;um�:

Similarly, one can easily see that

1
2
.Y � iI/CŒu1;::;um� DW�

Œu1;::;um�D
�
Œu1;::;um�;

for instance by checking the identity

iCŒu1;::;um� DWŒu1;::;um�DŒu1;::;um� �W�
Œu1;::;um�D

�
Œu1;::;um�:

Remark 3.10. (i) Since DŒu1;::;um� can be thought of as some N@-type operator

acting on the corresponding double-cover GC
Œu1;::;um�

, identities of this sort are

useful when studying the links between the Kac–Ward matrices and discrete

holomorphic functions, see [24] for the discussion of general surface graphs.

(ii) Since the matrix WW� is diagonal, the last representation of the quadratic

form �>yC� provides an appropriate starting point for the interpretation of the

(scaling limit of the) Ising model de�ned on a general planar graph G from

the “Free Fermionic Field” perspective, cf. [96, 51, 91] and [27, Section 2.1.2],

[84, Section 9.7].

3.6. Complex-valued fermionic observables and s-holomorphicity. The aim

of this section is to discuss the complex-valued versions of the formal correlation

functions (aka discrete fermionic observables) introduced in Sections 3.2–3.4.

Those can be de�ned as simple linear combinations of the real-valued ones, so one

should not expect a major di�erence between the two viewpoints. Nevertheless,

it turns out that the complex-valued observables are much better adapted to the

analysis of boundary value problems arising when studying the scaling limit of the

Ising model in general planar domains. At the same time, they can be constructed

ad hoc in a purely combinatorial way and all the needed local relations follow
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easily, cf. Remark 3.7. Such a de�nition was advertised by Smirnov in the 2000s

(see [101, Section 4] for historical remarks) and then used in a series of recent

papers of Chelkak, Duminil-Copin, Hongler, Izyurov, Kemppainen, Kytölä and

others devoted to the conformal invariance of correlation functions and interfaces

arising in the scaling limit of the critical Ising model in bounded planar domains.

For simplicity, below we mostly discuss the “untwisted” situation. As usual, to

handle the general case one should consider a relevant double-cover and work with

spinors de�ned on this cover instead of functions de�ned on V.GK/ or V.GC/,

see (3.3) and Remark 3.6. To simplify the notation, we assume that the global

unimodular factor in the de�nition of �e and �c is chosen as � D ei �
4 .

For the midpoint ze of an edge e 2 E.G/, de�ne

 .ze/ WD te � .�e�e C � Ne� Ne/; (3.16)

where the additional normalizing factor te WD .xe C x
�1
e /1=2 is added for later

convenience; note that  .ze/ does not depend on the orientation of e. This

allows us to speak about formal correlation functions of these new variables like

� .ze/�a� or � .ze/�c�. In particular, for a given oriented edge a 2 V.GK/

and ze ¤ za, Theorem 1.2 implies

Fa.ze/ WD� .ze/�a�D
.�i�a/ �

P

P 2C.a;ze/ exp
�

� i
2

wind.P /
�

tex.P /

ZIsing.G; x/
;

(3.17)

where C.a; ze/ WD C.a; e/[C.a; Ne/, the non-self-intersecting curve P is obtained

from a con�guration P 2 C.a; ze/ by an arbitrary resolution of all its crossings,

and wind.P / stands for the total rotation angle of the (velocity vector of this)

curve P when it runs from a to ze. Among other papers, this combinatorial
de�nition can be found:

� In the original work of Smirnov devoted to the understanding of the scaling

limit of interfaces (domain walls) arising in the critical Ising model on

the square lattice, with a being a boundary edge, see [101, Section 4] for

references.

� In the paper [21] devoted to the universality of these scaling limits for the

critical Ising models de�ned on arbitrary isoradial graphs; note that the

normalizing factor te introduced above matches the factor .cos 1
2
�e/

�1 D

.1 C x2
e /

1=2 used in [21, Section 2.2] since we included the half-weight of

the last edge e into x.P /.

� In the paper [46] and the PhD thesis [43] of Hongler, which is devoted to the

study of the scaling limit of the energy density �eld in the critical Ising model

in bounded planar domains (on the square lattice), with a being an internal

edge.
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� In the paper [19] and the Ph.D. thesis [52] of Izyurov, where the spinor version
of (3.17) was �rst suggested as a tool to study scaling limits of (ratios of) spin

correlations and interfaces in the critical Ising model considered in multiply-

connected domains.

� In the paper [18] devoted to the study of the scaling limit of the spin �eld in the

critical Ising model in bounded planar domains (on the square lattice), where

the branching “source-at-corner” observable� .ze/�c�Œu1;::;um� was used,

with u1 D u.c/.

Further, with a slight abuse of notation, let us denote

 .c/ WD �c�c for c 2 V.GC/

and extend de�nition (3.17) of the function Fa.�/ from the set of midedges ze of

the graph G to the set of its corners by de�ning, for c 2 V.GC/,

Fa.c/ WD� .c/�a� 2 �cR:

These quantities admit combinatorial expansions similar to (3.17), see Lemma 3.2

and Remark 3.5(ii); note that Fa.�/ depends on the choice of the square root

in the de�nition of �a, but is independent of all other choices. The following

notion �rst appeared in [100, 21] in the critical planar Ising model context and

was recently discussed in [24] for arbitrary surface graphs. Recall that we use the

parametrization xe D tan 1
2
�e of the edge weights.

De�nition 3.5. A complex-valued function F de�ned on edge midpoints ze and,

simultaneously, on corners c of a given weighted graph .G; x/ embedded in the

complex plane satis�es a generalized s-holomorphicity condition for a pair ze

and c D c˙.e/ if

F.c/ D e
i
2

.w.c;e/�.���e// � Proj Œ F.ze/ I e
˙ i

2
.���e/�e �; (3.18)

where, as usual, w.c; e/ denotes the rotation angle between the decoration c

oriented towards the vertex v.c/ D o.e/ and the oriented edge e, and

Proj Œ F I � � WD ReŒF N��� D
1

2
ŒF C �2 xF �;

and thus the choice of the sign of �e in (3.18) is irrelevant.

It is well known that the complex-valued observablesFa.�/ D� .�/�a� intro-

duced above, as well as the “source-at-corner” observablesFc.�/ D� .�/�c� and

their spinor counterparts, satisfy the generalized s-holomorphicity condition for
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all pairs .ze; c
˙.e// except near the “source” edge a or the corner c, respectively.

(Actually, if one uses direct combinatorial de�nitions, with a proper treatment

of the values Fa.za/ or Fc.c/, instead of the formal correlations of Grassmann

variables, these local relations are satis�ed even near the “source” edge a or the

corner c, cf. Remark 3.9.) A simple combinatorial proof of (3.18) in the spe-

cial situation when w.c˙.e/; e/ D ˙.� � �e/ can be found in many places (e.g.

see [101, Section 4] for the square lattice case or a non-optimal version of the same

argument [21, Section 2.2] for isoradial graphs), and these proofs can be trivially

adapted to the general situation.

Let us now sketch the proof of another well-known fact saying that the

s-holomorphicity condition is essentially equivalent to the propagation equa-

tion (3.12), see [21, Lemma 3.4], or the algebraic identity (3.13), cf. [74, Sec-

tion 2.1] and [24, Theorem 4.2]. Indeed, using (3.9) one can rewrite de�ni-

tion (3.16) in the following form, independent of the choices of �e and �c:

 .ze/ D
1

2
tex

�1=2
e �

h

X

cDc˙.e/

e� i
2

w.c;e/ .c/C
X

cDc˙. Ne/

e� i
2

w.c; Ne/ .c/
i

;

where each of the sums contains two terms. Further, each of the four vari-

ables .c/ involved into these sums produces a term� .c/�a�with a prescribed

complex phase �c. Thus one can use the identity Proj Œ ˛r I � � D 1
2
Œ1C �2 N̨2� � ˛r

for r 2 R and straightforward computations to get the following form of the right-

hand side of (3.18) for F.ze/ D� .ze/�a�:

1

2
e

i
2

w.c;e/ �
h

X

cDc˙.e/

e� i
2

w.c;e/ � .c/�a� �ix
�1
e

X

cDc˙. Ne/

e� i
2

w.c; Ne/ � .c/�a�
i

:

Therefore, the s-holomorphicity condition (3.18) for Fa.�/ D�  .�/�a � and a

corner c D c�.e/ can be equivalently rewritten as
X

c02¹c˙.e/;c˙. Ne/º

Sc;c0 � .c0/�a�D 0; (3.19)

with the coe�cients Sc;c0 given by (3.15). By de�nition, �a is a (real) linear

combination of the two corner variables �c˙.a/, so it is easy to see that

� .c0/�a�D ��C�1
c0;c�.a/ C �CC�1

c0;cC.a/
for any c0 2 V.GC/

with some (complex) coe�cients �˙. Since SC�1 D 1
2
.Y C iI/, equality (3.19)

easily follows provided v.c/ ¤ o.a/. The analog of (3.19) for c D cC.e/ can be

checked in the same way, this time with coe�cients given by the entries of the

matrix 1
2
.Y � iI/C D S� iC.
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Remark 3.11. Let us assume that v1 2 V.G/ is a degree 1 vertex and e1 2 EE.G/

is the unique oriented edge of G satisfying t .e1/ D v1, cf. Remark 3.2. Despite

the fact that adding/removing such vertices to the graphG does not a�ect the Ising

model on the dual graph G�, allowing them is sometimes useful, notably when

the outer face uout has a huge degree. In this case, it is convenient to add such a

vertex v1 to each of the vertices v 2 V.G/ incident to uout in order to speak about

boundary conditions satis�ed by complex-valued observables Fa.�/. As the only

vertex incident to Ne1 in the terminal graph GK is e1, one has

Fa.ze1
/ D� .ze1

/�a�D te � � Ne1
� �� Ne1

�a� 2 �e1
R D i�e1

R (3.20)

for all a ¤ Ne1, since � �e1
�a �D yK

�1
e1;a D 0 unless a D Ne1. Clearly, this

property holds for all versions of complex-valued fermionic observables discussed

above, including the spinor ones. Again, these boundary conditions become even

more transparent if one just starts with the combinatorial descriptions of these

observables, e.g. with formula (3.17) for Fa.ze/.

We conclude this section by a brief discussion of the general strategy used in

the papers [21, 46, 43, 19, 18] mentioned above to prove the convergence, as ı ! 0,

of various correlation functions in the critical Ising model considered on re�ning

discrete approximations �ı to a given planar domain �. As an example for this

discussion, we use the energy density expectations (1.11) treated in [46, 43]. For

these expectations, we need some simple preliminaries re�ecting their algebraic

structure. Similarly to (3.16), let us de�ne

 ?.ze/ WD te � . N�e�e C N� Ne� Ne/

and let

‰.ze; za/ WD � .ze/ .za/� D ta � .�aFa.ze/C � NaF Na.ze//;

‰?.ze; za/ WD � .ze/ 
?.za/� D ta � . N�aFa.ze/C N� NaF Na.ze//:

Note that

‰.za; ze/ D �‰.ze; za/ and ‰?.za; ze/ D �‰?.ze; za/;

and all these functions are independent of the choices of �a and �e. Moreover, it

is easy to see that

�

‰.ze; za/ ‰?.ze; za/

‰?.ze; za/ ‰.ze; za/

�

D teta �

�

�e � Ne

N�e N� Ne

��yK�1
e;a

yK�1
e; Na

yK�1
Ne;a
yK�1

Ne; Na

��

�a N�a

� Na N� Na

�

;
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where yK�1
e;a D��e�a� due to the de�nition of these formal correlation functions.

Therefore, in order to understand the scaling limit of the multi-point energy-

density expectation (1.11), it is enough to understand the scaling limit of the func-

tions ‰.ze; za/ and ‰?.ze; za/ or, equivalently, the scaling limit of the complex-

valued observables Fa.ze/ and F Na.ze/. The latter satisfy the s-holomorphicity

condition (3.18) everywhere in �ı except near the “source” edge a or Na and the

condition (3.20) at the boundary. Therefore, the question amounts to the proof

of convergence of solutions to such discrete boundary value problems as ı ! 0,

including the careful analysis of their behavior near the “source” point and, in the

more general setup, near the branching points u1; : : : ; um, cf. Remark 1.4(ii).

Remark 3.12. Let us emphasize that the combinatorial formulas discussed in this

paper provide just a starting point for the analysis of scaling limits of various

correlation functions in discrete domains �ı . The boundary value problems

for s-holomorphic functions satisfying boundary conditions (3.20) are not easy

to handle and one needs a lot of technical work in order to prove the relevant

convergence theorems for their solutions, even when considering the critical Ising

model on subgraphs of the square grid. The �rst breakthrough convergence results

of this type were obtained by Smirnov in [99, 100] and more advanced methods

were later developed in [21, 46, 19, 18, 54]. Away from criticality, a similar

analysis does not look completely out of reach and some important algebraic

tricks (notably, the de�nition of the discrete antiderivative
R

ImŒ.F.z//2dz�) are

available in a fairly general setup, see [24]. Nevertheless, even the near-critical

(aka massive) model considered in bounded domains has not been treated yet.

4. The surface case

The aim of this section is to extend the results and methods of proof of Section 2

to arbitrary �nite weighted graphs. This requires the use of a geometrical tool

known as a spin structure. Therefore, we devote a �rst subsection to reviewing

the main properties of spin structures on surfaces. We then use them to extend the

Kac–Ward formula to graphs embedded in surfaces. In a last subsection, we show

how to use this result for the computation of spin correlations in this more general

setting.

4.1. Spin structures, Kac–Ward matrices on surfaces, and quadratic forms.

Obviously, any �nite graph can be embedded in a compact orientable surface.

However, in order to de�ne the associated Kac–Ward matrix, one needs to be able
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to measure rotation angles along curves. For planar closed curves, there is one

natural way to do so: one measures the rotation angle of the velocity vector of the

curve with respect to any constant vector �eld on the plane. For curves embedded

in an arbitrary surface, there is no preferred way. However, there is a standard

geometrical tool for this, known as a spin structure. We shall not recall its formal

de�nition (see e.g. [3, p.55]), but only state without proof the properties that we

shall need.

The �rst of these properties is that any spin structure on a compact orientable

surface † can be given by a vector �eld on † with isolated zeroes of even index.

This already allows us to extend the de�nition of Kac–Ward matrices to this

setting, as follows. Given a weighted graph .G; x/ � † and a spin structure �

on†, let us endow†with a Riemannian metric and �x a vector �eldX on† with

isolated zeroes of even index in † n G representing the spin structure �. Finally,

let us mark one point inside each edge of G.

De�nition 4.1. The Kac–Ward matrix associated to the weighted graph .G; x/ em-

bedded in† and to the spin structure� is the j EE.G/j�j EE.G/jmatrixKW�.G; x/ D

I � T�, where I is the identity matrix and T� is de�ned by

.T�/e;e0 D

8

<

:

exp
�

i
2

w�.e; e
0/

�

.xexe0/1=2 if t .e/ D o.e0/ but e0 ¤ Ne,

0 otherwise,

where w�.e; e
0/ is the rotation angle of the velocity vector �eld along e followed

by e0 with respect to the vector �eld X , from the marked point in e to the marked

point in e0.

Obviously, this matrix depends on the choice of the vector �eld representing �

and of the marked points in the edges. However, its determinant will turn out only

to depend on � and on .G; x/ � †. The precise result is most conveniently stated

using the terminology of homology and quadratic forms, that we now very brie�y

recall. (We refer the interested reader to [41] for further details.)

Consider a graph G embedded in a compact connected orientable surface †

of genus g in such a way that † n G consists of a disjoint union of topo-

logical disks. Let C0 (resp. C1 and C2) denote the Z2-vector space with ba-

sis the set of vertices (resp. edges, faces) of G � †. Elements of Ck are

called k-chains. Also, let @2WC2 ! C1 and @1WC1 ! C0 denote the bound-
ary operators de�ned in the obvious way. Since @1 ı @2 vanishes, the space

of 1-cycles ker.@1/ contains the space @2.C2/ of 1-boundaries. The �rst homology
spaceH1.†IZ2/´ ker.@1/=@2.C2/ turns out not to depend on G, but only on†:
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it has dimension 2g if † is closed (i.e. compact without boundary), and dimen-

sion 2gCb�1 if† has b � 1 boundary components. Note that the intersection of

curves de�nes a symmetric bilinear form on H1.†IZ2/ which is non-degenerate

if † is closed; it will be denoted by .˛; ˇ/ 7! ˛ �ˇ as usual. Finally, recall that the

space H 1.†IZ2/ D Hom.H1.†IZ2/;Z2/ can be understood as the set of (gauge

equivalence classes of) Z2-valued �at connections; these are maps 'W EE.G/! Z2

such that '.e/ D '. Ne/ for each oriented edge e and
P

e2@f '.e/ D 0 for each facef

of G � †.

This leads us to the statement of the second property of spin structures: the

set S.†/ of spin structures on an oriented compact surface † is an a�ne space

over H 1.†IZ2/. In other words, there is an action .'; �/ 7! ' C � of H 1.†IZ2/

on S.†/ such that for any �xed �, the assignment ' 7! ' C � de�nes a bijection

from H 1.†IZ2/ onto S.†/. This action is easy to understand at the level of

vector �elds, and therefore at the level of Kac–Ward matrices: it is simply given

by .T'C�/e;e0 D .�1/'.e/.T�/e;e0 .

Example 4.1. As a �rst example, consider the case where † is an m-punctured

disk in the plane. A natural spin structure is given by any constant vector �eld,

and the corresponding Kac–Ward matrix is nothing but the classical one (see

Section 1.3). On the other hand, this surface has genus zero and mC 1 boundary

components, so it admits 2m di�erent spin structures. They can be obtained

from the �rst one as follows: draw a path (transverse to the graph) from each

of the punctures to the boundary of the disk, �x a subset of the punctures, and

set '.e/ D 1 whenever e crosses the path corresponding to one of the chosen

punctures (and set '.e/ D 0 else). There are 2m choices of subsets of the

punctures, which correspond to the 2m di�erent spin structures, and to the 2m

di�erent Kac–Ward matrices KW�.G; x/. Note that, if the punctures are located

at faces u1; : : : ; um of a planar graph G, then we have

KW�.G; x/ D IŒu1;::;um� �KWŒu1;:::;um�; (4.1)

where KWŒu1;:::;um� are the matrices that appeared in Proposition 1.3 (see Sec-

tion 1.5).

Example 4.2. Another easy example is given by the torus † D T
2. Here again,

it is possible to consider a constant vector �eld as a “reference” spin structure.

Since H1.T
2IZ2/ has dimension 2, there are 4 distinct spin structures on T

2.

They can be obtained from the �rst one as follows: draw two closed curves

(transverse to G) representing a basis of the homology, �x a subset of this basis,

and set '.e/ D 1 whenever e crosses one of the chosen curves (and set '.e/ D 0
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else). There are 4 choices of subsets of this basis, they correspond to the 4 di�erent

spin structures, and to the 4 di�erent Kac–Ward matrices.

Let us now turn to quadratic forms. Let H be a �nite-dimensional Z2-vector

space endowed with a symmetric alternating (i.e., such that ˛�˛ D 0 for all ˛ 2 H )

bilinear form .˛; ˇ/ 7! ˛ � ˇ. A quadratic form on .H; � / is a map qWH ! Z2

such that

q.˛ C ˇ/ D q.˛/C q.ˇ/C ˛ � ˇ for all ˛; ˇ 2 H:

Note that there are exactly jH j quadratic forms on .H; � /; more precisely, the set

of such forms is an a�ne space over Hom.H;Z2/. This easily implies the equality

1

jH j

X

q

.�1/q.˛/ D

´

1 if ˛ D 0,

0 otherwise,
(4.2)

where the sum is over all quadratic forms on .H; � /. Furthermore, if the alter-

nating bilinear form .˛; ˇ/ 7! ˛ � ˇ is non-degenerate, Arf showed [2] that the

corresponding quadratic forms are classi�ed by the invariant Arf.�/ 2 Z2 de�ned

by

.�1/Arf.q/ D
1

p

jH j

X

˛2H

.�1/q.˛/;

which is now called the Arf invariant (note that in this case the space H is

necessarily even-dimensional). We shall need a single property of this invariant

(see e.g. [77, Lemma 2.10] for a proof), namely that it satis�es the equality

1
p

jH j

X

q

.�1/Arf.q/Cq.˛/ D 1 (4.3)

for any ˛ 2 H , where the sum is over all quadratic forms on .H; � /.

The relationship between spin structures and quadratic forms onH1.†IZ2/ is

given by the following classical result of Johnson [57]. Consider a spin structure �

on † represented by a vector �eld X on † with zeroes of even index. Given a

piecewise smooth closed curve C in † avoiding the zeroes of X , let wind�.C / 2

2�Z denote the rotation angle of the velocity vector of C with respect toX . Then,

given a homology class ˛ 2 H1.†IZ2/ represented by a disjoint union of oriented

simple closed curves Cj , the equality .�1/q�.˛/ D
Q

j .� exp
�

i
2

wind�.Cj /
�

gives

a well-de�ned quadratic form on .H1.†IZ2/; � /, where � denotes the intersection

form. This implies in particular that, for any oriented closed curve C with t.C /

transverse self-intersection points,

� exp
�

i
2

wind�.C /
�

D .�1/q�.C/Ct.C/: (4.4)
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Indeed, this can be checked by smoothing out the intersection points of C as in

the proof of Lemma 2.2 – which is nothing but the g D 0 case of this equation.

Johnson’s theorem asserts that the mapping � 7! q� de�nes an H 1.†IZ2/-

equivariant bijection between the set S.†/ of spin structures on † and the set

of quadratic forms on .H1.†IZ2/; �/. Equation (4.2) translates into the equality

1

jS.†/j

X

�2S.†/

.�1/q�.˛/ D

´

1 if ˛ D 0,

0 otherwise.
(4.5)

Johnson’s theorem also allows us to de�ne the Arf invariant of a spin structure �

as the Arf invariant of the associated quadratic form q�. In the case of a closed

surface of genus g, equation (4.3) then implies the equality

1

2g

X

�2S.†/

.�1/Arf.�/Cq�.˛/ D 1 (4.6)

for any ˛ 2 H1.†IZ2/.

4.2. The Kac–Ward formula on surfaces. We are �nally ready to state and

prove the main result of this section. Note that the case of genus zero gives back

the Kac–Ward formula (in an extended form actually, since we now allow edges

that are not line segments).

Theorem 4.2. Let .G; x/ be a �nite weighted graph embedded in an orientable
compact surface †. For any spin structure � 2 S.†/, we have the equality

det.KW�.G; x// D
�

X

P 2E.G/

.�1/q�.ŒP �/x.P /
�2

;

where ŒP � 2 H1.†IZ2/ denotes the homology class of P .

Proof. First note that the set E.G/ endowed with the symmetric di�erence can be

identi�ed with the Z2-vector space of 1-cycles in G. Therefore, for any �xed spin

structure � on †, the associated twisted partition function can be written as

Z�.G; x/ WD
X

P 2E.G/

.�1/q�.ŒP �/x.P / D
X

˛2H1.†IZ2/

.�1/q�.˛/
X

P WŒP �D˛

x.P /;

where ŒP � 2 H1.†IZ2/ denotes the homology class of the 1-cycle P . The

(weighted) terminal graph .GK; xK/ can be de�ned exactly as in the planar case,

and the same arguments lead to the equality

Z�.G; x/ D
X

D2D.GK/

.�1/q�.ŒGnDG �/Ct.D/ xK.D/:
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As in the planar case, let us consider the Hermitian matrix K� D J �KW�.G; x/.

For each oriented edge e of G, �x a square root of the direction of the veloc-

ity vector of e at the marked point inside e, measured with respect to the vector

�eld representing the spin structure �, and denote by �e its complex conjugate

multiplied by a global unimodular factor �. This allows us to de�ne the real skew-

symmetric matrix yK� D iU�K�U, where U is the diagonal matrix with coe�-

cients ¹�eºe2V.GK/. Comparing the equation displayed above with the Pfa�an

PfŒ yK� � D
X

D2D.GK/

"�.D/x
K.D/;

we are left with the proof of the equality

"�.D/"�.D0/ D .�1/
q�.ŒGnDG �/Ct.D/

for any D 2 D.GK/, where D0 is the dimer con�guration given by the set of

long edges of the terminal graph GK. To check this fact, one can use the exact

same arguments as in the planar case replacing Lemma 2.2 with its extension,

equation (4.4). This leads to

"�.D/"�.D0/ D
Ỳ

j D1

.� exp
�

i
2

wind�.Cj /
�

D
Ỳ

j D1

.�1/q�.Cj /Ct.Cj /;

where
F`

j D1 Cj D D4D0. Since q� is a quadratic form, we get

X̀

j D1

.q�.Cj /C t.Cj // D q�.ŒD�D0�/C
X

1�j <k�`

Cj � Ck C
X̀

j D1

t.Cj /

D q�.ŒD�D0�/C t.D�D0/:

The theorem now follows from the equality ŒD�D0� D ŒG nDG � in H1.†IZ2/,

together with the fact that t.D�D0/ and t.D/ coincide. �

The Kac–Ward formula for graphs embedded in surfaces, �rst derived in [22],

is now an easy corollary.

Corollary 4.3. Let .G; x/ be a �nite weighted graph embedded in an orientable
closed surface † of genus g. Then, the partition function (1.2) of the Ising model
on G is equal to

Zhigh.G; x/ D
1

2g

X

�2S.†/

.�1/Arf.�/.detKW�.G; x//
1=2;
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where Arf.�/ 2 Z2 is the Arf invariant of the spin structure � and where
.detKW�.G; x//

1=2 denotes the square root with constant coe�cient equal toC1.

Proof. By Theorem 4.2 and the choice of the square root, we have

.detKW�.G; x//
1=2 D

X

P 2E.G/

.�1/q�.ŒP �/x.P /

D
X

˛2H1.†IZ2/

.�1/q�.˛/
X

P WŒP �D˛

x.P /:
(4.7)

The claim now follows from equation (4.6):

Zhigh.G; x/ D
X

˛2H1.†IZ2/

X

P WŒP �D˛

x.P /

D
X

˛2H1.†IZ2/

h� 1

2g

X

�2S.†/

.�1/Arf.�/Cq�.˛/
�

X

P WŒP �D˛

x.P /
i

D
1

2g

X

�2S.†/

h

.�1/Arf.�/
X

˛2H1.†IZ2/

.�1/q�.˛/
X

P WŒP �D˛

x.P /
i

D
1

2g

X

�2S.†/

.�1/Arf.�/.detKW�.G; x//
1=2: �

4.3. Spin correlations on surfaces. Similarly to Sections 1.5 and 2.3, below we

prefer to work with the Ising model de�ned on the dual graph G�. Recall that

the partition function of this model is given by (1.3), with the sum taken over the

set E0.G/ D ¹P 2 E.G/W ŒP � D 0º of possible domain walls con�gurations and

not over the whole set E.G/ as in Corollary 4.3. Also, recall that in case † has a

boundary, we impose ‘C’ boundary conditions on all of its components, and that

the ‘free’ boundary conditions on (some of) these components can be obtained

just by setting the corresponding interaction parameters xe D expŒ�2ˇJe� � to 1.

Corollary 4.4. Let G be a �nite graph embedded in an orientable compact
surface †, possibly with boundary. Then, the partition function (1.3) of the Ising
model on the dual graph G� is equal to

Zlow;†.G; x/ D
1

jS.†/j

X

�2S.†/

.detKW�.G; x//
1=2;

where det.KW�.G; x//
1=2 denotes the square root with constant coe�cient equal

to C1.
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Proof. Using equations (4.5) and (4.7), one easily gets

Zlow;†.G; x/ D
X

˛2H1.†IZ2/

h� 1

jS.†/j

X

�2S.†/

.�1/q�.˛/
�

X

P WŒP �D˛

x.P /
i

D
1

jS.†/j

X

�2S.†/

h

X

˛2H1.†IZ2/

.�1/q�.˛/
X

P WŒP �D˛

x.P /
i

D
1

jS.†/j

X

�2S.†/

.detKW�.G; x//
1=2: �

Example 4.3. Let † be an m-punctured disk in the plane with the punctures

located at faces u1; : : : ; um of a planar graph G, as in Example 4.1. Recall that

spin structures � 2 S.†/ are in natural 1–to–1 correspondence with subsets U of

the set ¹u1; : : : ; umº, and the corresponding Kac–Ward matrices KW� are related

to the matrices KWŒU� from Proposition 1.3 by (4.1). Therefore, Corollary 4.4

gives

Zlow;†.G; x/

Zlow.G; x/
D

1

jS.†/j

X

�2S.†/

.detKW�.G; x//
1=2

.detKW.G; x//1=2

D 2�m
X

U�¹u1 ;:::;umº

E
C
G�

h

Y

u2U

�u

i

D E
C
G� Œ2

�m.1C �u1
/ : : : .1C �um

/�:

Note that this is consistent with the de�nition of Zlow;†.G; x/, which is the par-

tition function of the Ising model on G� with ‘C’ boundary conditions at all the

faces u1; : : : ; um and uout.

Let us now show how Proposition 1.3 extends to the case of a �nite graphG em-

bedded in an orientable compact surface-with-boundary†. Fixm facesu1; : : : ; um

of G � † and some collection of edge-disjoint paths ~ D ~Œu1;::;um� in G� linking

these faces to the boundary of † or to each other. As in the planar case, this in-

duces a diagonal matrix IŒu1;:::;um� and, for any spin structure � 2 S.†/, a modi�ed

Kac–Ward matrix

KW�CŒu1;:::;um� D IŒu1;:::;um� � T�:

Note that KW�CŒu1;:::;um� can be interpreted as the Kac–Ward matrix associated

to a spin structure on the punctured surface † n ¹u1; : : : ; umº. However, this spin

structure is not canonically associated to � and u1; : : : ; um, as it depends on the

choice of the (homology class of the) paths ~. More precisely, a straightforward
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extension of the proof of Theorem 4.2 leads to the equality

detKW�CŒu1;:::;um� D
�

X

P 2E.G/

.�1/q�.ŒP �/.�1/~�Px.P /
�2

; (4.8)

which implies the following result.

Proposition 4.5. Let G be a �nite graph embedded in an orientable compact
surface-with-boundary †. The correlation of spins at faces u1; : : : ; um with ‘C’
boundary conditions on all the boundary components of † is given by

E
C
G� Œ�u1

: : : �um
� D

P

�2S.†/.detKW�CŒu1;:::;um�.G; x//
1=2

P

�2S.†/.detKW�.G; x//1=2
;

where xe stands for exp.�2ˇJe�/.

Proof. The bijection between spin con�gurations on G� and domain walls in G

gives

E
C
G� Œ�u1

: : : �um
� D ŒZlow;†.G; x/�

�1 �
X

P WŒP �D0

.�1/~�Px.P /:

By equation (4.5), we get

X

P WŒP �D0

.�1/~�Px.P / D
X

P 2E.G/

h� 1

jS.†/j

X

�2S.†/

.�1/q�.ŒP �/
�

.�1/~�Px.P /
i

D
1

jS.†/j

X

�2S.†/

h

X

P 2E.G/

.�1/q�.ŒP �/.�1/~�Px.P /
i

:

The result now follows from equation (4.8) and Corollary 4.4. �

Let us conclude this section by mentioning that Remark 1.4 readily extends to

the surface case, as well as Theorem 1.2. More precisely, the latter result takes the

following form: for any spin structure �, the Pfa�an of a submatrix of the corre-

sponding matrix yK�1
�

admits a combinatorial expansion similar to Theorem 1.2,

provided de�nition (1.9) of the sign �.P / of a con�guration P 2 C.e1; : : : ; e2n/

smoothed into C t  takes the additional factor .�1/q�.C/. Also, one can eas-

ily extend to the surface case the dimer techniques discussed in Section 3.1 and

the formalism of Grassmann variables discussed in Section 3.2. On the other

hand, one should be more careful when using the disorder insertions discussed

in Section 3.3 for graphs embedded in surfaces, and, especially, when matching
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the two formalisms in the style of Section 3.4. The subtle point is that the for-

mal correlation functions h�v1
: : : �v2n

�u1
: : : �um

iŒ~� now depend on the homol-

ogy class Œ~� of the paths ~ D ~Œv1;::;v2n� chosen to de�ne the set of con�gura-

tions C Œ~�.v1; : : : ; v2n/ WD ¹P WP4~ 2 E0.G/º, and one should sum over Œ~� to

recover the spin-disorder duality. Further, an appropriate analog of Lemma 3.1

for the �xed homology class Œ~� involves a summation over S.†/ similar to that

in the right-hand side of the equations of Corollary 4.4 and Proposition 4.5, and

one should keep track of additional signs (coming from the non-canonical identi-

�cations of the double-covers GŒ~�) when summing over Œ~�. These technicalities

become even more involved when dealing with general formal correlations con-

sidered in Proposition 3.3 though, in principle, all the details can be �xed.

5. The double-Ising model

In this section, we assume the weighted graph .G; x/ to be embedded in the plane

and consider the double-Ising model de�ned on the faces of the modi�ed graph zG,

see Section 1.6 for the de�nitions and notation. Recall that the partition function

of this model is given by

Zdbl-I.G; x/ D
X

P;P 02E. zG/W

.P4P 0/\E@.G/D;

x.P /x.P 0/; (5.1)

where E@.G/ � E.G/ is the set of boundary edges of G, and the modi�ed Kac–

Ward matrix zK is de�ned as

zKe;e0 D Ke;e0 C

´

ixe if e0 D e is an inward oriented boundary edge;

0 otherwise.
(5.2)

Below we describe how the combinatorial methods developed for the study of

the (single-) Ising model on faces of G may be extended and used to study the

double-Ising model. We give the proof of Theorem 1.4 and Proposition 1.5 in

Section 5.1. In Section 5.2, we prove an analog of Theorem 1.4 for Dobrushin

boundary conditions (1.12). The last Section 5.3 is devoted to a discussion of s-

holomorphic observables arising in the double-Ising model context and discrete

boundary value problems for them.
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5.1. Proofs of Theorem 1.4 and Proposition 1.5. The aim of this section is to

give a proof of Theorem 1.4 and Proposition 1.5. Let us begin by recalling that

the Kac–Ward formula (1.5) and Theorem 1.1 for the single Ising model can be

rewritten as

.ZIsing.G; x//
2 D .PfŒ yK �/2 D det yK D .�1/jE.G/j det K; (5.3)

where the Hermitian matrix K is given by (1.7). The proof of this theorem

discussed in Section 2 uses the combinatorial expansion of the Pfa�an of the anti-

symmetric matrix yK. Alternatively, one could expand the determinant of K for this

purpose. The resulting proof of Theorem 1.1 is slightly more cumbersome as we

need to compare sums over more complicated con�gurations (double-dimers on

the terminal graph, instead of single dimers). However, this approach does have

an advantage: it generalizes to a proof of Theorem 1.4. Having this goal in mind,

we start with a direct combinatorial expansion of the determinant of K.

Second proof of Theorem 1.1. Squaring the right-hand side of the identity

ZIsing.G; x/ D
X

D2D.GK/

.�1/t.D/xK.D/

provided by Lemma 2.1 leads to a sum over pairs of dimer con�gurations on the

terminal graphGK. Any such pair de�nes a union C of vertex-disjoint unoriented

loops of even length covering all the vertices of GK, some of length two, called

double-edges, and some of greater length, called cycles. We shall write �even.G
K/

for the set of such con�gurations of edges of GK. Given a con�guration C 2

�even.G
K/, let C0 be the collection of its double-edges, C1; : : : ; C` denote the

(unoriented) cycles, and let

xK.C / WD
Y

e2C0

.xK
e /

2 �
Ỳ

j D1

xK.Cj /:

For each of these ` D `.C / cycles there are two ways to split it into two sets of

dimers, and therefore

.ZIsing.G; x//
2 D

X

D;D02D.GK/

.�1/t.D/Ct.D0/xK.D/xK.D0/

D
X

CDD[D02�even.GK/

.�1/t.C/CD�D0
2`.C/xK.C /:

(5.4)

Note that we slightly abuse the notation using the intersection number D � D0

in the sum as this number depends on the particular way how C is split into D

andD0. Nevertheless, we shall see below that the parity of this intersection number

depends on C only.
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On the other hand, expanding the determinant of K leads to

det K D
X

EC2E�.GK/

�. EC/xK.C /; (5.5)

where E�.GK/ is the set of all vertex-disjoint unions EC D C0t
F`

j D1
ECj of double-

edges and oriented cycles of arbitrary length covering all the vertices of GK, the

weight xK.C / does not depend on the orientation of these cycles and

�. EC/ D .�1/jC0j �
Ỳ

j D1

�. ECj /

is some sign, that we now determine.

Claim A. Let
 �
Cj denote the cycle ECj with the orientation reversed. If the

length jCj j of this cycle is odd, then �.
 �
Cj / D ��. ECj /. If jCj j is even, then

�.
 �
Cj / D �. ECj / D .�1/

jCj j=2 .�1/t.Cj /Cv�. ECj /; (5.6)

where v�. ECj / is the number of vertices of GK visited by ECj in such a way that
both adjacent edges are short and this oriented cycle makes a clockwise turn at
this vertex.

Before giving a proof of Claim A, note that it has the following consequence:

the expansion (5.5) for the determinant of K simpli�es to a sum over elements

of �even.G
K/. After that, the only fact remaining to be proved in order to ob-

tain (5.3) is the equality of the signs in the two expansions (5.4) and (5.5), which

is done in the Claim B below.

Proof of Claim A. By de�nition of the matrix K, and expanding its determinant

as in (5.5), we have

�. ECj / D .�1/
jCj jC1 .�1/s.Cj / !. ECj /;

where s.Cj / denotes the number of short edges in Cj and !. ECj / is the product of

the coe�cients exp
�

i
2

w. Ne; e0/
�

along the oriented cycle ECj . Computing the total

rotation angle of (the velocity vector of) this cycle leads to

exp
�

i
2

wind. ECj /
�

D !. ECj / � i
vC. ECj /.�i/v�. ECj /;
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with vC. ECj / de�ned as v�. ECj / but counting counterclockwise turns instead of

clockwise ones, see Figure 4a. Therefore, Lemma 2.2 and the equality 2s.Cj / D

jCj j C v�. ECj /C vC. ECj / imply

�. ECj / D .�1/
t.Cj /CjCj jCs.Cj / � iv�. ECj /�vC. ECj /

D .�1/t.Cj /Cv�. ECj / � .�i/jCj j:

The claim follows easily since the two numbers v�. ECj / and v�.
 �
Cj / D vC. ECj /

have the opposite parity if jCj j is odd and the same parity if jCj j is even.

(a) A simple deformation of a path on the

graphGK into a path following the edges

ofG: the rotation angle gains exactly˙�

at vertices where both adjacent edges are

short.

(b) Each intersection of D with itself

(resp.D0 with itself,D withD0) induces

two (resp. zero, one) transverse intersec-

tions between .D4D0/� and D.

Figure 4. Topological arguments used in the proofs of Claim A and Claim B.

Note that we have

jC0j C
X̀

j D1

jCj j=2 D jE.G/j for any C 2 �even.G
K/.

Thus, to deduce formula (5.3) from expansions (5.4) and (5.5), it is enough to

prove the following claim.

Claim B. For any D;D0 2 D.GK/, the number D � D0 has the same parity
as v�.D4D

0/ de�ned as the sum of v�. EC/ over all components C of D4D0

oriented arbitrarily.

Proof of Claim B. Let us denote by .D4D0/� the collection of disjoint, arbitrarily

oriented, loopsD4D0 pushed slightly to their left, so that they intersect the edges

of GK transversally. Further, if D0 denotes the set of all long edges of GK, then

D4D0 is also a collection of loops, which gives

.D4D0/� � .D4D0/ D 0 mod 2:
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Now observe that the number of intersections of .D4D0/� with short edges ofD

has the same parity as D � D0, see Figure 4b. At the same time, the number of

intersections of .D4D0/� with (long) edges ofD0nD is exactly v�.D4D0/, since

such intersections happen only in vicinities of the vertices, where both adjacent

edges ofD4D0 are short and it makes a clockwise turn so that .D4D0/� is pushed

“towards” the long dimer from D0 nD. Thus the claim follows. �

We now move on to the proof of Theorem 1.4. Let EE@.G/ denote the set of

inward oriented boundary edges. Recall that we denote by .G}; x/ the weighted

graph obtained from .G; x/ by adding a vertex ze in the middle of each edge e

of G, and by assigning the weight x
1=2
e to both resulting edges of G}. For a

subset E D ¹e1; : : : ; e2nº � EE@.G/, we denote by C.E/ the set of subgraphs P

ofG} that contain the edges .zek
; t .ek//, and such that each vertex ofG} di�erent

from ze1
; : : : ; ze2n

has an even degree inP , see Section 1.4. Note thatC.E/ is empty

if jEj is odd and (5.1) can be written as

Zdbl-I.G; x/ D
X

E� EE@.G/

x.E/
h

X

P 2C.E/

x.P /
i2

(5.7)

since, by de�nition, each boundary edge e 2 E contributes only x
1=2
e to the

weight x.P /.

Proof of Theorem 1.4. For a subset of boundary edges E � EE@.G/ � EE.G/ Š

V.GK/, let KE denote the matrix K with all the rows and the columns that are

indexed by E removed. It immediately follows from de�nition (5.2) of the matrix zK

that

.�1/jE.G/j det zK D .�1/jE.G/j
X

E� EE@.G/

i jEjx.E/ det KE;

thus we need to show that this expansion coincides with (5.7). Note that the

case E D ; was already treated in the second proof of Theorem 1.1 given above,

which we now generalize.

As in the proof of Theorem 1.2, let GK
E be the graph obtained by removing

from GK all the boundary (univalent) vertices corresponding to E. A straightfor-

ward generalization of Lemma 2.1 gives

h

X

P 2C.E/

x.P /
i2

D
h

X

D2D.GK
E /

.�1/t.D/xK.D/
i2

D
X

CDD[D02�even.GK
E /

.�1/t.C/CD�D0
2`.C/xK.C /;



Revisiting the combinatorics of the 2D Ising model 371

where we use the same notation as in the second proof of Theorem 1.1. On the

other hand, similarly to (5.5) we have

det KE D
X

EC 2E�.GK
E /

�. EC/xK.C /; (5.8)

with the signs �. EC/ given by (5.6). Using this expansion and Claim A, it is easy to

see that det KE vanishes unless jEj is even: when jEj is odd, each con�gurationC 2

�.GK
E / contains an odd length cycle, whose two orientations yield a cancellation.

Theorem 1.4 now follows from the equality jV.GK
E /j D 2jE.G/j � jEj and a

proper generalization of Claim B from the second proof of Theorem 1.1, which

we formulate below for completeness.

Claim B0. For any D;D0 2 D.GK
E /, the number D � D0 has the same parity

as v�.D4D
0/ de�ned as the sum of v�.E/ over all components  of D4D0

oriented arbitrarily.

Proof of Claim B0. The proof repeats the proof of Claim B given above. The only

di�erence is that D4D0 is not a collection of closed loops anymore: if the set E

is non-empty,D4D0 also contains jEj=2 paths linking the boundary edges e 2 E.

Nevertheless, the equality

.D4D0/� � .D4D0/ D 0 mod 2

remains correct and the claim follows due to the same arguments. �

Remark 5.1. It is worth noting that one can use Theorem 1.2 in the proof given

above to handle the case jEj even. Indeed, if E is a collection of boundary edges,

then it is not hard to check that the sign �.P / de�ned by (1.9) is independent

of P 2 C.E/, so the equality

h

X

P 2C.E/

x.P /
i2

D .PfŒ yKE �/2 D det yKE D .�1/jV.GK
E /j=2 det KE

follows easily. Nevertheless, one still needs some additional arguments in the spirit

of Claim A to see that det KE vanishes if jEj is odd.

We now prove Proposition 1.5.

Proof of Proposition 1.5. It easily follows from the domain walls representa-

tion (5.1) that

E
C
dbl-IŒ Q�u1

: : : Q�um
� D

P

P;P 02E. zG/W.P4P 0/\E@.G/D; .�1/
~�Px.P / .�1/~�P 0

x.P 0/

Zdbl-I.G; x/
:
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Similarly to Proposition 1.3, repeating the proof of Theorem 1.4 with additional

signs .�1/~�P one concludes that the numerator is equal to .�1/jE.G/j det zKŒu1;::;um�.

�

5.2. Dobrushin boundary conditions. In this section, we prove a version

of Theorem 1.4 for the double-Ising model with Dobrushin boundary condi-

tions (1.12). For this purpose, let us introduce a matrix

zKŒa;b� D ŒzKŒa;b�
e;e0 �e¤a;e0¤b

(for de�niteness with signs of determinants, below we always assume that the

column of zKŒa;b� labeled by a corresponds to the row labeled by b) with the entries

zKŒa;b�
e;e0 WD Ke;e0C

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

ixe if e0 D e is an inward oriented boundary edge on .ab/,

�ixe if e0 D e is an inward oriented boundary edge on .ba/,

0 otherwise.

(5.9)

Theorem 5.1. The partition function Z
Œa;b�

dbl-I.G; x/ of the double-Ising model with
Dobrushin boundary conditions (1.12) is given by

1
2
.xaxb/

�1=2 � ZŒa;b�
dbl-I.G; x/ D wb; Na � .�1/

jE.G/j�1 det zKŒa;b�;

where the prefactor wb; Na is de�ned as follows: wb; Na WD expŒ i
2

wind.b; Na/� for any
non-self-intersecting path b; Na running from b to Na along edges ofG (note that the
total rotation angle wind.b; Na/ does not depend on the choice of this path).

Proof. The proof goes along the same lines as the proof of Theorem 1.4. Using

domain walls representations of spin con�gurations �; � 0 satisfying (1.12), one

easily obtains

1
2
.xaxb/

�1=2
Z

Œa;b�

dbl-I .G; x/

D
X

E� EE@.G/n¹a;bº

h

x.E/
X

P 2C.E/

x.P /
X

P 02C.¹a;bº[E/

x.P 0/
i

C
X

E� EE@.G/n¹a;bº

h

x.E/
X

P 2C.¹aº[E/

x.P /
X

P 02C.¹bº[E/

x.P 0/
i

;
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where even subsets E contribute only to the �rst sum while odd ones only to the

second. Passing from P; P 0 to dimer con�gurations D;D0 on the graphs GK
E ,

GK
E[¹a;bº or GK

E[¹aº, G
K
E[¹bº and considering their union exactly as in the proof of

Theorem 1.4, one gets

1
2
.xaxb/

�1=2
Z

Œa;b�

dbl-I.G; x/ D
X

E� EE@.G/n¹a;bº

X

CDD[D02�
Œa;b�
even .GK

E /

.�1/t.C/CD�D0
2`.C/xK.C /;

where �
Œa;b�
even .G

K
E / denotes the set of all covers of the graph V.GK

E / by a vertex-

disjoint union of a collection of double-edges C0, even length cycles C1; : : : ; C`

and a path  linking a and b.

At the same time, the following expansion holds:

det zKŒa;b� D
X

E� EE@.G/n¹a;bº

i jE\.ab/j.�i/jE\.ba/jx.E/ det KŒ¹aº[E;¹bº[E�;

where KŒ¹aº[E;¹bº[E� denotes the matrix K with all the rows indexed by ¹aº [ E

and the columns indexed by ¹bº[E removed. A straightforward expansion of the

determinant of this matrix similar to (5.5) and (5.8), together with Claim A from

the second proof of Theorem 1.1, leads to

det KŒ¹aº[E;¹bº[E� D
X

C2�
Œa;b�
even .GK

E /

�.C /2`.C/xK.C /; (5.10)

where

�.C / D .�1/jC0j �
Ỳ

j D1

Œ.�1/jCj j=2.�1/t.Cj /Cv�.Cj /� � �./

(recall that the parity of the number v�.Cj / does not depend on the orientation of

a cycle Cj provided it has an even length) and �./ is the additional contribution

of the path  , which we now determine. Similarly to the proof of Claim A, we

have

�./ D .�1/j jC1.�1/s./!./;

where j j denotes the number of edges in the path  and !./ is the product

of the coe�cients exp
�

i
2

w. Ne; e0/
�

along this path, when explored from b to a.

Comparing !./ with the total rotation angle of  leads to

expŒ i
2

wind./� D !./ivC./.�i/v�./:
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Using Lemma 2.2, it is easy to conclude that expŒ i
2

wind./� D wb; Na.�1/
t./.

Putting these two equalities together, we arrive at

�./ D wb; Na � .�1/
t./Cj jC1Cs./ � iv�./�vC./

D wb; Na � .�1/
t./Cv�./ � .�i/j j�1;

where we also used the equality 2s./ D j j � 1C v�./C vC./ to pass to the

second line. Noting that

2jC0j C
P`

j D1 jCj j C j j � 1 D jV.G
K
E[¹a;bº/j D 2jE.G/j � jEj � 2;

one can rewrite expansion (5.10) as

wb; Na � .�1/
jE.G/j�1 det zKŒE[¹aº;E[¹bº� D i jEj

X

C2�
Œa;b�
even .GK

E
/

.�1/t.C/Cv�.C/2`.C/xK.C /;

and Theorem 5.1 is now reduced to the following analog of ClaimB and Claim B0.

Claim B00. For any D 2 D.GK
E / and D0 2 D.GK

E[¹a;bº/ or D 2 D.GK
E[¹aº/

and D0 2 D.GK
E[¹bº/, depending on the parity of jEj, one has

D �D0 D v�.D4D
0/C jE \ .ab/j mod 2;

provided the path  linking a and b in D4D0 is oriented from b to a.

Proof of Claim B00. Similarly to the proofs of Claim B and Claim B0, the result

follows from the equality

.D4D0/� � .D4D0/ D jE \ .ab/j mod 2;

where .D4D0/� is a collection of loops and a path � running from b to a

pushed slightly closer to the arc .ab/, while .D4D0/ is a collection of loops

and paths linking the boundary edges E, possibly together with a. The number of

intersections of � with the latter paths has the same parity as jE \ .ab/j due to

topological reasons. �

5.3. S-holomorphic functions in the double-Ising model. The aim of this sec-

tion is to discuss s-holomorphic functions appearing in the double-Ising model

context, see Section 3.6 for the terminology. These functions have some poten-

tial for the study of the (critical) double-Ising model in bounded planar domains

though one needs to develop new tools in order to handle the arising boundary

conditions and at the moment it is not clear if one can obtain meaningful conver-

gence results using this approach, see Remark 5.3 and Remark 5.4 below.
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Recall that, given a “source” edge a 2 EE.G/, the basic s-holomorphic observ-

able in the single-Ising model can be de�ned as

Fa.ze/ D te � .�e
yK�1

e;a C � Ne
yK�1

Ne;a/ D te � .�i�a/.K
�1
e;a CK�1

Ne;a/;

where iU�KU is a real (anti-symmetric) matrix, �e, � Ne, and �a denote complex

conjugates of the square roots of the directions of the corresponding oriented edges

multiplied by � D ei �
4 for the notational convenience, te D .xeCx

�1
e /1=2, and ze is

the midpoint of an edge e. In the double-Ising model context, one can use the same

de�nition with the Kac–Ward matrix K replaced by its appropriate modi�cation zK:

zFa.ze/ WD te � .�i�a/.zK
�1
e;a C

zK�1
Ne;a/:

It is easy to check that the matrix iU�zKU is real-valued and hence zK�1
e;e0 2

i�e N�e0R, similarly to the entries of the matrix K�1. Further, it is not hard to argue

that the functions zFa.�/ introduced above satisfy the (generalized) s-holomorphic-

ity condition given by De�nition 3.5, for properly de�ned values zFa.c/ at cor-

ners c 2 V.GC/. Such values can be constructed, for instance, using the same

linear combinations

zFa.c/ WD .�2i�a/
X

eW o.e/Dv.c/

Œ.B�/�1
c;e � teK�1

e;a�

as in the single-Ising model context (where this linear relation is nothing but

the expression (3.7) of the “corner” variable �c in terms of the nearby “edge”

variables �e). The reason why Fa.�/ satis�es the s-holomorphicity condition

away from the “source” edge a is as follows: the collection of equalities for all

pairs .e; c/ around a �xed vertex v D o.e/ D v.c/ 2 V.G/ is equivalent to the

collection of equalities

K�1
Ne;a D �

X

e0W o.e0/Dv

Ke;e0K
�1
e;a for all e with o.e/ D v;

provided K�1
e;a 2 i�e N�aR, e.g. see [74, Section 2.1]. Since zKe;e0 D Ke;e0 unless e D

e0 2 EE@.G/, the latter local relations hold true with the entries K�1
e;a replaced

by zK�1
e;a whose complex phases coincide with those of K�1

e;a.

Remark 5.2. Of course, expanding the corresponding minors of zK, it is also

possible to give a purely combinatorial de�nition of all the values zFa.�/ in the

style of de�nition (3.17) but with a more involved set of “double-Ising domain

walls” con�gurations to sum over, and to check the s-holomorphicity relations

directly in the style of [101, Section 4] or [21, Section 2.2].



376 D. Chelkak, D. Cimasoni, and A. Kassel

Let us now brie�y discuss the boundary conditions for s-holomorphic func-

tions which naturally replace (3.20) in the double-Ising model context. If e ¤ Na

is an outward oriented boundary edge of G, then

zK Ne; Ne �
zK�1

Ne;a C
zK Ne;e �

zK�1
e;a D 0;

which leads to

zFa.ze/ D te � .�i�a/.zK
�1
Ne;a C

zK�1
e;a/ D te.1� ixe/ � .�i�a/zK

�1
Ne;a:

As .1 � ixe/ D .1 C x2
e /e

� i
2

�e and �a
zK�1

Ne;a 2 i� NeR D �eR, we arrive at the

following claim:

zFa.ze/ 2 ie
� i

2
�e�eR for all outward oriented boundary edges e ¤ Na: (5.11)

(Note that the factor e� i
2 �e appeared as a result of adjusting the entry zK Ne; Ne and

would disappear, leading back to (3.20), if one works with the original matrix K

instead of zK.)

Remark 5.3. The s-holomorphic functions zFa.�/ discussed above (or their spinor

analogs constructed via the matrices zK�1
Œu1;::;um�

instead of zK�1, see Proposition 1.5)

can be used to study (the scaling limits of) correlation functions in the critical

double-Ising model, cf. Remark 1.4 and Remark 3.12. Nevertheless, let us empha-

size that the additional factor e� i
2

�e in (5.11) is lattice dependent on the one hand,

and the s-holomorphicity condition is not complex-linear on the other (thus, even

when working on regular lattices with constant weights xe D xcrit, one cannot just

multiply the function zFa.�/ by e
i
2

�e to pass from (5.11) to (3.20)). Interestingly

enough, boundary conditions (5.11) admit a lattice independent reformulation in

terms of the discrete primitive
R

ImŒ. zFa.z//
2dz� but it is still not clear how to

pass to the limit of such s-holomorphic functions even in general smooth planar

domains, cf. Remark 3.12.

We conclude this section with a brief informal discussion of s-holomorphic

functions that appear when considering the double-Ising model with Dobrushin

boundary conditions (1.12) instead of ‘C’ ones. For a �xed pair of inward

oriented boundary edges a and b, let us slightly modify de�nition (5.9) and

introduce a matrix zK˙
e;e0 , whose entries are still given by (5.9) but the row a

and the column b are not removed this time (also, note that we do not adjust the

values Ka;a D Kb;b D 0 when de�ning zK˙). Further, let

zF˙
a .ze/ WD te � .�i�a/..zK

˙/�1
e;a C .

zK˙/�1
Ne;a/

and

MG;a;b.ze/ WD zF
˙
a .ze/

ı

zF˙
a .zb/:
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Similarly to [21, Section 2.2], one can work out combinatorial expansions

of F˙
a .ze/ and show that the quantities MG;a;b.ze/ are discrete martingales in

the double-Ising model with respect to the interface a;b (domain wall separating

double-Ising spins Q�u D ˙1) generated by Dobrushin boundary conditions (1.12).

Note that the key observation leading to this martingale property is given by The-

orem 5.1, which relates the denominator of MG;a;b.�/ with the partition function

of the double-Ising model with Dobrushin boundary conditions. Having such a

collection of discrete martingales, one could try to implement the same strategy as

in [21, 17] for the critical double-Ising model, �rst proving the convergence of these

s-holomorphic observables to some scaling limits and then analyzing the putative

limit of the interfaces a;b using the limits of discrete martingales MG;a;b.�/.

Remark 5.4. Though the above strategy of studying the single interface a;b gen-

erated by Dobrushin boundary conditions (1.12) in the critical double-Ising model

looks rather promising at �rst sight, we expect conceptual obstacles along the way.

The reason is that the critical double-Ising model with Dobrushin boundary condi-

tions is (rather surprisingly) conjectured to lose the domain Markov property when

passing from discrete to continuum, see [107, p. 3]. At the level of convergence of

solutions to the relevant discrete boundary value problems, this should mean that

the boundary conditions (5.11) have di�erent limits on the smooth boundary and

on the fractal one, generated by the (�rst part of the) interface a;b itself. In fact, it

is even not easy to guess what the latter limit should be, not speaking about prov-

ing the relevant convergence theorem for discrete martingalesMG;a;b.�/ discussed

above.
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