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Abstract. The speed of growth for a particular stochastic growth model introduced by

Borodin and Ferrari in [5], which belongs to the KPZ anisotropic universality class, was

computed using multi-time correlations. The model was recently generalized by Toninelli

in [38] and for this generalization the stationary measure is known but the time correlations

are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression

of the speed of growth from the prescribed dynamics.
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1. Introduction

This note considers a stochastic growth model in the KPZ anisotropic class in

2 C 1 dimensions. This model was introduced in [5] and studied in depth for

a speci�c initial condition, the case considered here. This model describes the

evolution of particles subject to an interlacing property. The model can also be

thought of as a two-dimensional stochastically growing interface, or as a random
lozenge tiling model. Another tiling model which shares similar features of the

dynamical perspective is domino tilings of the Aztec diamond using the shu�ing
algorithm; see [28, 6]. For the model considered in this paper, the evolution of

the interface, under hydrodynamic scaling, grows deterministically according to

a PDE. At the microscopic level in the bulk, the speci�ed boundary conditions of

the system are forgotten: in the bulk of the system one sees an invariant measure

which depends only on the normal direction of the macroscopic surface [5]. From

the lozenge tiling perspective, these limiting measures are determinantal and they

are parameterized by the relative proportions of lozenges. These measures match
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up with the dimer model on the in�nite honeycomb graph which are the unique

translation invariant stationary measures for any given normal direction [25, 35].

Stochastic growth models have been studied in many di�erent guises. Many

of these studies have focussed around the 1 C 1 KPZ universality class; see for

example [16, 33, 32, 18, 34] for surveys. The d D 2 anisotropic case has not been

as extensively studied [39, 31, 5, 26] but there are, however, numerous results in

connection with random tiling models [6, 28, 7, 17, 29, 30, 22]. One feature of

these models which is of particular interest for this note is the limit shape [15,

24]. This is the average pro�le which the stochastic interface �uctuates around.

In particular, we focus on giving an elementary approach to computing the speed
of growth, which is the growth rate of the stochastic growing interface under the

prescribed dynamics. This is an important quantity since it determines the limit

shape of the system.

In the work by Borodin and Ferrari [5], the speed of growth was obtained by

computing the in�nitesimal current and then taking the bulk scaling limit. The

computation was relatively straightforward, but requires the knowledge of the

correlations of particles or lozenges at two di�erent times. Recently Toninelli

in [38], considered the same model and a generalized version of the dynamics

for the in�nite honeycomb graph using a bead perspective; beads and the bead
model were introduced in [10]. He shows that the model is well-de�ned for

the stationary measure. This requires some e�ort since the dynamics allow,

a priori, in�nitely long-range interactions, but under the stationary measure these

interaction probabilities decay exponentially with the distance. The speed of

growth was not determined in [38].

By appealing to the underlying combinatorics of the model and the Kasteleyn

approach for dimer models (e.g. see [23]), we are able to determine the speed of

growth in the in�nite honeycomb case, thus establishing the conjecture in [38,

eq. (3.6)]1; see Theorem 2.7. From [5], the speed of growth v is given by a

speci�c (unsigned) o�-diagonal entry of the inverse of the Kasteleyn matrix,

where the Kasteleyn matrix is a type of (possibly signed) adjacency matrix [20].

The approach used is to �rst �nd a recursive formula for this particular entry for

the honeycomb graph embedded on a torus which leads to a series, and then take

the toroidal exhaustion limit. The resulting limiting series matches with the speed

of growth de�ned through the dynamics under the stationary measure. To prove

Theorem 2.7, we found a relation for the speci�c o�-diagonal entry of the inverse

of the Kasteleyn matrix for any tileable �nite honeycomb graph with arbitrary

edge weights in terms of single times. As a consequence, we use this relation

1 ArXiv version 1.
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to motivate an algebraic proof that the expression for the speed of growth of the

model in [5] and the speed of growth computed from the prescribed dynamics

are the same (the latter is a series with entries given by determinants of increasing

size). In principle it seems to be feasible to obtain Theorem 2.7 from Theorem 2.4

by a precise asymptotic analysis and a careful manipulation of sums, but we did

not pursue this since we are primarily interested in understanding combinatorial

structures behind the identity.

Acknowledgments. The authors are grateful for discussions with F. Toninelli

about his work and to both ICERM and the Galileo Galileo Institute which pro-

vided the platform to make such discussions possible. The work is supported by

the German Research Foundation via the SFB 1060–B04 project.

2. Model and results

2.1. The �nite particle model. We �rst describe the interacting particle system

model introduced in [5]. It is a model in the 2 C 1-dimensional KPZ anisotropic

class. It is a continuous time Markov chain on the state space of interlacing

variables

GTN D ¹¹xm
k ºkD1;:::;m

mD1;:::;N

� Z
N.NC1/

2 j xm
k�1 < xm�1

k�1 � xm
k º:

xm
k

is interpreted as the position of the particle with label .k; m/, but we will also

refer to a given particle as xm
k

. We consider fully-packed initial conditions, namely

at time moment t D 0 we have xm
k

.0/ D k � m � 1 for all k; m; see Figure 1.

The particles evolve according to the following dynamics. Each particle xm
k

has an independent exponential clock of rate one, and when the xm
k

-clock rings

the particle attempts to jump to the right by one. If at that moment xm
k

D xm�1
k

� 1

then the jump is blocked. Otherwise, we �nd the largest c � 1 such that

xm
k

D xmC1
kC1

D � � � D xmCc�1
kCc�1

, and all c particles in this string jump to the right

by one.

We illustrate the dynamics using Figure 2, which shows a possible con�gura-

tion of particles obtained from the fully-packed initial condition. In this state of

the system, if the x3
1-clock rings, then the particle x3

1 does not move, because it

is blocked by particle x2
1 . If the x2

2-clock rings, then the particle x2
2 moves to the

right by one unit, but to respect the interlacing property, the particles x3
3 and x4

4

also move by one unit to the right at the same time. This aspect of the dynamics

is called pushing.
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Figure 1. Illustration of the initial conditions for the particles system and the correspond-

ing lozenge tilings. In the height function picture, the white circle has coordinates

.x; n; h/ D .�1=2; �1=2; 0/.

Remark 2.1. The positions of the particles uniquely determine a lozenge tiling in
the region bordered by the thick line in Figure 2.
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Figure 2. From particle con�gurations (left) to 3d visualization via lozenge tilings (right).

Remark 2.2. As shown in [5], the measure at time t generated by the dynamics
starting from the fully-packed initial condition has the property that, conditioned
on the measure of the particles at level N , the other particles are uniformly
distributed on GTN with �xed level N con�guration.

Further, it is proved in Theorem 1.1 of [5] that the correlation function of the

particles are determinantal on a subset of space-time [4] (see [27, 2, 36, 19, 37,

3, 9] for information on determinantal point processes). Denote by �.x; n; t / the

random variable that is equal to 1 if there is a particle at .x; n/ at time t and 0

otherwise.
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Theorem 2.3 (Theorem 1.1 of [5]). For any given m 2 N, consider the m-tuples
t1 � t2 � � � � � tm, and n1 � n2 � � � � � nm. Then

P

h

m
\

iD1

¹�.xi ; ni ; ti/ D 1º
i

D det ŒK.xi ; ni ; ti I xj ; nj ; tj /�mi;j D1;

where

K.x1; n1; t1I x2; n2; t2/

D �
1

2�i

I

�0

dw

wx2�x1C1

e.t1�t2/=w

.1 � w/n2�n1
1Œ.n1;t1/�.n2;t2/�

C
1

.2�i/2

I

�0

dw

I

�1

dz
et1=w

et2=z

.1 � w/n1

.1 � z/n2

wx1

zx2C1

1

w � z
;

(1)

the contours �0, �1 are simple positively oriented closed paths that include the
poles 0 and 1, respectively, and no other poles (hence, they are disjoint). Here we
used the notation

.n1; t1/ � .n2; t2/ () n1 � n2; t1 � t2; and .n1; t1/ ¤ .n2; t2/: (2)

Given a con�guration of particles, we de�ne the height h.x; n; t / as

h.x; n; t / D #¹k 2 ¹1; : : : ; nº j xn
k .t / > xº: (3)

In particular, the growth rate of the height at a position .x; n/ is given by the

(in�nitesimal) particle current at .x; n/, denoted by j.x; n; t / with

j.x; n; t / D lim
�!0

��1
E Œ�.x; n; t /.1 � �.x; n; t C �/� : (4)

This quantity was computed in the proof of Lemma 5.3 of [5] with the result

j.x; n; t / D Kt .x; nI x C 1; n/;

where here we use the notation Kt .x; nI y; m/ WD K.x; n; t I y; m; t/.

On the other hand, at any time t , the height function h at .x; n/ increases by

one whenever there is a particle at position .x; n/ which jumps to .x C 1; n/. By

de�nition of the dynamics, at rate 1 a particle at .x; n/ could jump to the right

provided that there is no particle at .x C 1; n � 1/. However, a particle at .x; n/

can also be pushed if there is a column of particles directly below .x; n/. More

explicitly, for ` > 0 a particle at .x; n/ is pushed to the right by the move of a

particle at .x; n � ` C 1/. This happens at rate 1 provided that .x C 1; n � `/ is

empty and .x; n � k/ for k D 0; : : : ; ` � 1 are occupied. In the case ` D n, the
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constraint that .x C1; 0/ is empty does not exist as there are no particles at level 0.

Therefore the growth rate obtained from the dynamics, denoted by v.x; n; t /, is

given by

v.x; n; t / WD

n�1
X

`D1

E

h

.1 � �.x C 1; n � `; t //

`�1
Y

kD0

�.x; n � k; t/
i

C E

h

n�1
Y

kD0

�.x; n � k; t/
i

:

(5)

Using Theorem 2.3 and the complementation principle for determinantal point

processes (see Appendix of [8]), the expected value in the right side of (5) is given

by

det

�

ŒKt .x; n � i I x; n � j /�`�1
i;j D0 Œ�Kt .x; n � i I x C 1; n � `/�`�1

iD0

ŒKt .x C 1; n � `I x; n � j /�`�1
j D0 1 � Kt .x C 1; n � `I x C 1; n � `/

�

:

In this paper we show directly that indeed v and j are the same.

Theorem 2.4. It holds
j.x; n; t / D v.x; n; t /:

Remark 2.5. This �nite-time result can be easily generalized to the case of
level-dependent jump rates. This system is still determinantal when starting with
fully-packed initial conditions, with correlation kernel obtained in Proposition 3.1

of [4]; see Corollary 2.26 of [5] too.

2.2. Particle, lozenge and dimer representations. The height function, de-

�ned in (3), gives a three dimensional surface with Cartesian coordinate axis.

In a projection in the .1; 1; 1/-direction, each unit square of the surface becomes a

lozenge, while in the projection of Figure 2 there are three types of parallelograms,

still referred to as lozenges; see Figure 3.

Another representation useful for the proofs of the theorems in this paper, is

through perfect matchings or dimers via the dual graph associated to the under-

lying graph of the lozenge tilings. For a lozenge tiling on a �nite graph, the dual

graph is a subgraph of the honeycomb (or hexagonal) graph, with each lozenge

representing an edge, called a dimer, on this dual graph; see Figure 3. Each lozenge

tiling represents a dimer covering of the dual graph; see Figure 5 for an example.

For the purpose of this paper, we denote H to be the in�nite (bipartite) honey-

comb graph; see the left side of Figure 4 for a �nite snapshot. We set HL D H=L,

that is, the restriction of length-size L of H with periodic boundary conditions.
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We use the standard terminology for the dimer model; see for example Section 1

in [23] for details.

Facets

Lozenges

Dimers

Type – Weight I – b II – a III – c

Figure 3. Figure 2 facets’ types and their associated lozenges and angles. The gray circle

is at position .x; n/. For dimers, their coordinate is given by the black site. More precisely,

in this case we say that dimer of type I is at .x; n/, of type II is at .x C 1; n � 1/, while of

type III at .x; n � 1/.

.x; n/

.x; n/ .x C 1; n/

.x C 1; n/

.x C 1; n � 1/

.x; n C 1/

Figure 4. Bipartite honeycomb graph for the dimer model and coordinate system of black

and white vertices.
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Figure 5. From a dimer (thick lines) on the bipartite honeycomb graph to a lozenge

con�guration.

2.3. The model on Z
2. Now we consider the case where the state space are

particles on Z
2 satisfying interlacing between levels n and n C 1, for any n 2 Z,

i.e.,

G D ¹xn
k 2 Z; k; n 2 Z j xnC1

k
< xn

k � xnC1
kC1

; k; n 2 Zº:

Formally one would like to consider the dynamics on G as described for the model

in Section 2.1. However, the dynamics are not well-de�ned for all elements in G

due to the possibility of pushing from an in�nitely long stack of particles. It is

shown in [38], that the dynamics are almost surely well-de�ned starting from the

stationary measure because under this measure, the probability of having a stack

of particles of length ` decays exponentially in `.

The translation invariant stationary measures form a two-parameter family,

uniquely determined by the “two-dimensional slope” of the height function. In

terms of dimers, we give to each type of dimer a weight, say a; b; c as indicated

in Figure 3. The probability of a dimer con�guration is then proportional to the

product of the weights of each dimer con�guration, thus we e�ectively have only

two free parameters.

One nice property of stationary measures on Z
2 is that their correlation func-

tions are determinantal with a correlation kernel given only in terms of the slope

(which is determined by a; b; c). Correlations functions, at di�erent times for

the model on Z
2 with stationary initial conditions, are not explicitly known (and

for the asymmetric version studied by Toninelli [38] they are unlikely to be de-

terminantal) and therefore one cannot use (4) to determine the speed of growth.

However, the speed of growth is de�ned by the dynamics via (5) with n replaced

by 1.
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She�eld showed that indeed the translation invariant measures are uniquely

determined by the slope of the height function.

Theorem 2.6 (She�eld [35]). For each � D .pa; pb; pc/ with pa; pb; pc � 0 with
pa C pb C pc D 1 there is a unique translation-invariant ergodic Gibbs measure
M� on the set of dimer coverings of H, for which the height function has average
normal �. This measure can be obtained as the limit as L ! 1 of the uniform
measure on the set of those dimer coverings of HL, whose proportion of dimers
in the three orientations is .pa W pb W pc/, up to errors tending to zero as L ! 1.
Moreover every ergodic Gibbs measure on H is of the above type for some �.

The correlation functions of the stationary measure M� are determinantal and

they are given in terms of the so-called inverse Kasteleyn matrix, denoted by K
�1
�

(see more details in Section 3.2 and the lecture notes [23] for a complete treatment

of the subject). It is given as follows (it is obtained from Eq. (4) in [22] with

appropriate change of coordinates):

K
�1
� .x; nI x0; n0/ D b

�a

c

�x�x0�b

c

�n�n0

K
�1
abc.x; nI x0; n0/ (6)

with

K
�1
abc.x; nI x0; n0/ D

1

.2�i/2

I

jzjD1

dz

I

jwjD1

dw
zn�n0

wn0�nCx0�x�1

a C bz C cw
: (7)

As shown by Kenyon, Okounkov and She�eld in [25], the latter is the limiting

inverse Kasteleyn matrix obtained in the toroidal exhaustion limit where the edge

weights a; b and c are depicted in Figure 3.

Kenyon introduced a very useful mapping from .pa; pb; pc/ to the upper-half

complex plane H illustrated in Figure 6.

b=ac=a
�a

�b �c

�abc

0 1

Figure 6. Point �abc 2 H associated with .pa; pb; pc/ is given by constructing the triangle

with basis 01 and angles �k D �pk, k 2 ¹a; b; cº as indicated. The length of the segment

0�abc is c=a and the length of the segment of 1�abc is b=a.
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By change of variables z ! za=b and w ! wa=c in Eq. (7) one obtains

K
�1
� .x; nI x0; n0/ D

1

.2�i/2

I

jzjDb=a

dz

I

jwjDc=a

dw
zn�n0

wn0�nCx0�x�1

1 C z C w
: (8)

A simple computation (see Appendix) leads to the following representation of the

kernel

K
�1
� .x; nI x0; n0/ D

.�1/n�n0Cx�x0

2�i

Z �abc

x�abc

dw
.w � 1/n�n0

wn�n0Cx�x0C1
; (9)

where for n � n0 the integration contour crosses RC, while for n < n0 the

contour crossesR�. This is consistent with Theorem 5.1 and Proposition 3.2 of [5],

where the correlation kernel was obtained by taking the �nite system considered

in Theorem 2.4 and followed by taking the large time/space limit in such a way

that the local normal direction of the surface is given by2 .pa; pb; pc/.

Theorem 2.7. Consider the particle model on Z
2 distributed according to M� ,

that is, with determinantal correlation functions given by the correlation ker-
nel (25). Then the speed of growth is given by

v D �K
�1
� .x; nI x C 1; n/ D

Im.�abc/

�
D

1

�

sin.�b/ sin.�c/

sin.�a/
: (10)

Remark 2.8. The speed of growth of the model de�ned in [38] is then given by
.p � q/v, where p; q are the two parameters in the model of [38]. The totally
asymmetric dynamics is the one given by p D 1 and q D 0.

3. Proof of theorems

3.1. Algebraic proof of Theorem 2.4. The algebraic proof presented here is

strongly inspired by the combinatorial proof for �nite graphs obtained beforehand

that will be used to prove Theorem 2.7. In this proof we will suppress all the t

indices and have reasonably sized matrices, we use the notation

Kx;nIx0;n0 WD K.x; nI x0; n0/:

2 To see the exactness of the connection from the kernel in Proposition 3.2 of [5], one needs

to keep in mind this kernel is the limit of the one in Corollary 4.1 of [5] instead of the originalKt :

this introduced a conjugation factor and a shift in the x by n. Finally, the point in the complex

plane � in [5] equals 1 � x�abc here.
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We use the coordinate system illustrated in Figure 4. We derive a series

expansion of K.x; nI x C 1; n/ by expanding it step-by-step. The idea behind the

expansion is that K.x; nI x C 1; n/ is (intuitively) suggestive of an “edge” between

�.x; m/ and ı.x C 1; m/. If this “edge” is covered by a dimer, then either there is

a dimer covering .�.x C 1; m � 1/; ı.x; m// or not. In the latter case, then there

are dimers covering .�.x; m � 1/; ı.x; m// and .�.x C 1; m � 1/; ı.x C 1; m � 1//.

This can be repeated for m D n; n � 1; : : : ; 1 and for m D 1. The latter case will

not occur and therefore the series naturally ends. This idea is exploited in depth

for the �nite graph lozenge tiling; see Proposition 3.5.

We start with two algebraic identities satis�ed by the kernel (1).

Lemma 3.1. It holds

Kx;nIx0C1;n0�1 D Kx;nIx0C1;n0 � Kx;nIx0;n0 C ın;n0�1ıx0C1;x:

Proof. It is quite trivial. One uses linearity of the integrals. �

Lemma 3.2. It holds

Kx;n�1Ix0 ;n0 � KxC1;n�1Ix0;n0 D Kx;nIx0;n0 C ın0;n.ıx0;xC1 � ıx0;x/:

Proof. It is quite trivial. One uses linearity of the integrals. �

We start with a proposition that will be used recursively.

Proposition 3.3. Consider any set of M ¹.�.xi ; mi /; ı.x0
i ; m0

i /; 1 � i � M º

black=white couples of (disjoint) vertices that do not include black vertices at
.x; m/; .x C 1; m � 1/; .x; m � 1/ and white at .x C 1; m/; .x; m/; .x C 1; m � 1/.
Then

det

�

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi IxC1;m

Kx;mIx0
j

;m0
j

Kx;mIxC1;m

�

D detM1 C detM2; (11)

where

M1 D

2

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi Ix;m Kxi ;mi IxC1;m

Kx;mIx0
j

;m0
j

Kx;mIx;m Kx;mIxC1;m

Kx;m�1Ix0
j

;m0
j

Kx;m�1Ix;m Kx;m�1IxC1;m

3

7

5

and
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M2 D

2

6

6

6

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi Ix;m Kxi ;mi IxC1;m�1 Kxi ;mi IxC1;m

Kx;mIx0
j

;m0
j

Kx;mIx;m Kx;mIxC1;m�1 Kx;mIxC1;m

Kx;m�1Ix0
j

;m0
j

Kx;m�1Ix;m Kx;m�1IxC1;m�1 Kx;m�1IxC1;m

KxC1;m�1Ix0
j

;m0
j
KxC1;m�1Ix;m KxC1;m�1IxC1;m�1 KxC1;m�1IxC1;m

3

7

7

7

7

5

where, whenever there is a i or j index, this means a block-matrix with i and/or
j from 1 to M . Schematically this is represented in Figure 7, where (11) equals
(a)=(c1)+(c2).

D D CC�

(a) (b1) (b2) (c1) (c2)

Figure 7. Graphical representation of the proof of Proposition 3.3. The link in (a) is between

.�.x; m/; ı.x C 1; m//.

Proof. The left side of (11) is represented in Figure 7(a). The scheme of Fig-

ure 7(b1) is given by

� det

2

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi IxC1;m Kxi ;mi Ix;m

Kx;mIx0
j

;m0
j

Kx;mIxC1;m Kx;mIx;m

KxC1;m�1Ix0
j

;m0
j

KxC1;m�1IxC1;m KxC1;m�1Ix;m

3

7

5
: (12)

The scheme of Figure 7(b2) is given by

det

2

6

6

6

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi IxC1;m Kxi ;mi Ix;m Kxi ;mi IxC1;m�1

Kx;mIx0
j

;m0
j

Kx;mIxC1;m Kx;mIx;m Kx;mIxC1;m�1

Kx;m�1Ix0
j

;m0
j

Kx;m�1IxC1;m Kx;m�1Ix;m Kx;m�1IxC1;m�1

KxC1;m�1Ix0
j

;m0
j

KxC1;m�1IxC1;m KxC1;m�1Ix;m KxC1;m�1IxC1;m�1

3

7

7

7

7

5

;

we subtract from the last column the previous two. Using the identity in Lemma 3.1

we then obtain
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det

2

6

6

6

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi IxC1;m Kxi ;mi Ix;m 0

Kx;mIx0
j

;m0
j

Kx;mIxC1;m Kx;mIx;m 0

Kx;m�1Ix0
j

;m0
j

Kx;m�1IxC1;m Kx;m�1Ix;m 0

KxC1;m�1Ix0
j

;m0
j

KxC1;m�1IxC1;m KxC1;m�1Ix;m 1

3

7

7

7

7

5

D det

2

6

4

Kxi ;mi Ix0
j

;m0
j

Kxi ;mi IxC1;m Kxi ;mi Ix;m

Kx;mIx0
j

;m0
j

Kx;mIxC1;m Kx;mIx;m

Kx;m�1Ix0
j

;m0
j

Kx;m�1IxC1;m Kx;m�1Ix;m

3

7

5
:

(13)

The determinants in (12) and (13) di�ers only by the last row. Thus summing them

up and using the identity in Lemma 3.2 one immediately sees that the last row

and the second-last row are identical except for an extra C1 term in the last matrix

entry. Therefore we have recovered left side of (11). Finally one has to verify the

equality between the schemes of Figure 7(b1)/(b2) and Figure 7(c1)/(c2). This is

trivial since it corresponds to permuting the position of one column and take care

of the signature of the permutation. �

Now we are ready to �nish the proof of Theorem 2.4. The schematic represen-

tation of the proof is in Figure 8.

D CCC CD � � � D

Figure 8. Illustration of the recursive proof of Theorem 2.4.

Recall that �.x; n/ is the random variable of a particle located at .x; n/. Sim-

ilarly, denote by �.x; n/ the random variable of having a white lozenge (type III

in Figure 3) at .x; n/, where the position is given by the one of the black triangle.

Using Proposition 3.3 repeatedly by starting with the case m D n and M D 0 and

recalling the correspondence between dimers and lozenges (see Figure 3) we get

K.x; nI x C 1; n/ D

n
X

`D1

E

h

`�1
Y

kD0

�.x; n � k/�.x C 1; n � k � 1/
i

: (14)



466 S. Chhita and P. L. Ferrari

The conditions of Theorem 2.4 stipulate that the system is bounded from below

by level 1 and this is the reason why the above series is �nite. Finally we have to see

that (14) and (5) match. First consider ` D 1; : : : ; n � 1. As illustrated in Figure 9,

by observing that there are particles at .x; n/; : : : ; .x; n�`C 1/, it implies that the

square lozenges at .x C 1; n � 1/; : : : ; .x C 1; n � ` C 1/ occur with probability

one and thus we remove them from the right side of (14). Further, if we have a

particle at .x; n�`C 1/, then either there is a particle at .x C 1; n�`/ or there is a

white lozenge at .x C1; n�`/ since the other type of lozenge do not �t. Therefore

we can replace in (14) �.x C 1; n � `/ with 1 � �.x C 1; n � `/. Finally, for ` D n,

.x C 1; 0/ is forced to be white and therefore we can remove it from the product

too. This �nishes the proof of Theorem 2.4.

Forced

Forced

Only two choices

Figure 9. Illustration of the connection between (14) and (5).

3.2. Proof of Theorem 2.7. The strategy is �rst to obtain a recursion relation

analogue of Proposition 3.3 for a �nite honeycomb graph with generic weights,

then use this result to extend the recursion relation to HL with a; b; c weights.

Using Theorem 2.6 we take the toroidal exhaustion limit and have the same

recursion relation for the in�nite honeycomb graph H. The proof of Theorem 2.7

ends applying recursively the recursion relation.

Recursion relation for a �nite graph. Let G D .V; E/ be a �nite subgraph of

the honeycomb graph which is tileable by dimers. G is bipartite and has the same

number of white and black vertices. The geometry of the honeycomb graph is as

illustrated in Figure 4 so that the black vertices are in (a subset of)Z2 and the white

vertices are in (a subset of) .Z C 1=2/2. To avoid using half-integer coordinates,

we adopt a notation so that the white vertices are also on Z
2, more precisely, let

e1 D .1=2; �1=2/, e2 D .1=2; 1=2/, and e3 D .�1=2; 1=2/, then

ı.x; n/ D �.x; n/ C e1;

ı.x; n C 1/ D �.x; n/ C e2;

ı.x � 1; n C 1/ D �.x; n/ C e3:
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Edges of the graphs are of the form �.x; n/ to ı.x; n/, ı.x; nC1/, and ı.x�1; nC1/.

We denote by BG and WG the set of the black and white vertices respectively with

the above coordinates. Assign ! W E ! R
�
C to be the edge weights and denote

the Kasteleyn matrix, the matrix whose rows are indexed by all the white vertices

and whose columns are indexed by black vertices, by

KG.w; b/ D

8

<

:

!.e/ if e D .w; b/ 2 E;

0 otherwise;

for all w 2 WG and b 2 BG . The above formulation de�nes a valid Kasteleyn

orientation of the graph, that is, the number of counterclockwise edges in any

face is odd; see Figure 10. The Kasteleyn matrix was originally introduced by

(a) (b)

Figure 10. Kasteleyn orientation of the basic honeycomb face (a) and for the face with the

auxiliary edge (b).

Kasteleyn [20] to count the number of dimer covers of a graph as the latter is

given by j det.KG/j, but its use goes beyond the uniform weight case.

The probability P on dimer con�gurations is de�ned as follows. For a given

dimer con�guration, we associate a weight to be the product of all the weights

of the dimers present in that con�guration. The partition function ZG is then the

sum of all weighted dimer con�gurations of G. Then, the probability of a dimer

con�guration is given by its weight divided by ZG . In particular, given any disjoint

set of edges e1; : : : ; em, the probability of seeing dimers on the edges e1; : : : ; em

is given by

P.e1; : : : ; em/ D
ZGn¹e1;:::;emº

ZG

m
Y

iD1

!.ei /: (15)

Kenyon in [21] showed the following.
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Theorem 3.4 (Kenyon [21]). Consider a set of m disjoints edges of G, ei D

.wi ; bi / 2 E, i D 1; : : : ; m. Then,

PŒe1; : : : ; em� D detŒK�1
G .bi ; wj /�mi;j D1

m
Y

iD1

KG.wi ; bi /;

where K
�1
G represents the inverse of KG .

In other words, the dimers form a determinantal point process with correlation

kernel L D L.ei ; ej / given by L.ei ; ej / D KG.wi ; bi/K
�1
G .bi ; wj / for ei D

.wi ; bi / and ej D .wj ; bj /. The Kasteleyn matrix approach has been used with

some success for computing combinatorial and asymptotics of random tiling

models; see [1, 13, 12, 11] for domino tiling models and [29] for the honeycomb

case.

The �rst result is the one that inspired Proposition 3.3. To state it, we introduce

some notations. For m � 1 set

c1.m/ D

m�1
Y

iD0

KG.ı.x; n � i/; �.x; n � 1 � i//

� KG.ı.x C 1; n � 1 � i/; �.x C 1; n � 1 � i//;

c2.m/ D

m�1
Y

iD0

KG.ı.x; n � i/; �.x; n � i//

� KG.ı.x C 1; n � i/; �.x C 1; n � 1 � i//;

c3.m/ D
c1.m/

c2.m C 1/
KG.ı.x; n � m/; �.x C 1; n � m � 1//;

and c1.0/ D c2.0/ D 1.

Proposition 3.5. Assume that the set of vertices

†m D ¹�.x; n � i/; ı.x C 1; n � i/; 0 � i � mº

[ ¹�.x C 1; n � i � 1/; ı.x; n � i/; 0 � i � m � 1º

belong to the graph G for 0 � m � N and let the edges

e0
i D .�.x; n � i/; ı.x; n � i//;

e1
i D .�.x C 1; n � i � 1/; ı.x C 1; n � i//;
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for 0 � i � N . Then

� K
�1
G .�.x; n/; ı.x C 1; n//

D

N
X

mD0

c3.m/PŒe0
0 ; e1

0; : : : ; e0
m; e1

m� C RG.N /;
(16)

with

RG.N / D c1.N C 1/
ZGn†NC1

ZG

:

Here ZG denotes the partition function of G and ZGn†NC1
denotes the partition

function of the graph obtained from removing †N C1 from G.

Proof. We add an auxiliary edge .�.x; n/; ı.x C 1; n//, which is an edge not

present in the graph but helpful for computations; a similar idea to that used in [14].

We assign a weight 1 to the auxiliary edge .�.x; n/; ı.x C 1; n//. To preserve

the Kasteleyn orientation of the new graph, this edge is directed from �.x; n/ to

ı.x C 1; n/. Since �.x; n/ and ı.x C 1; n/ are on the same face, removing them

from the graph preserves the Kasteleyn orientation (see Figure 10). Therefore,

each matching of G n †0 has the same sign. Cramer’s rule gives

� K
�1
G .�.x; n/; ı.x C 1; n// D �

detŒKGn†0
�

detŒKG �
D

ZGn†0

ZG

: (17)

For G n†0, ı.x; n/ is either matched to �.x; n�1/ or �.x C1; n�1/. If ı.x; n/

is matched to �.x; n � 1/, then the edge .�.x C 1; n � 1/; ı.x C 1; n � 1// is forced

to be matched too. Notice that

†0 [ ¹ı.x; n/; �.x; n � 1/; �.x C 1; n � 1/; ı.x C 1; n � 1/º D †1:

The edge weight of .ı.x; n/; �.x C 1; n � 1// is equal to KG.ı.x; n/, �.x C 1,

n � 1// and the edge weights of .ı.x; n/; �.x; n � 1// and .�.x C 1; n � 1/; ı.x C 1,

n�1// are equal to KG.ı.x; n/; �.x; n�1// andKG.ı.xC1; n�1/; �.xC1; n�1//

respectively. Notice that the product of the latter two matrix entries is exactly

c1.1/. Therefore,

ZGn†0
D KG.ı.x; n/; �.x C 1; n � 1//ZGn.†0[¹ı.x;n/;�.xC1;n�1/º/ C c1.1/ZGn†1

Now we proceed by induction. Consider the graph G n †m, which can be thought

as the graph where the vertices in †m are matched as in Figure 11(a).
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.x; n/

.x; n � m/

.a/ .b/ .c/ .d /

Figure 11. The di�erent graphs appearing in the proof of Proposition 3.5. (a) for †m, (b)

for †m [ ¹�.x C 1; n � m � 1/; ı.x; n � m/º, (c) for †mC1, and (d) for z†m.

The vertex ı.x; n � m/ is either matched to �.x C 1; n � m � 1/ or to

�.x; n � m � 1/. For the former, then the vertex �.x C 1; n � m � 1/ is incident to

only one vertex, which means that also .�.x C 1; n � m � 1/; ı.x C 1; n � m � 1//

is matched. Since

†mC1 D †m[¹ı.x; n�m/; �.x; n�m�1/; �.xC1; n�m�1/; ı.xC1; n�m�1/º;

then we have

ZGn†m

D KG.ı.x; n � m/; �.x C 1; n � m � 1//ZGn.†m[¹ı.x;n�m/;�.xC1;n�m�1/º/

C
c1.m C 1/

c1.m/
ZGn†mC1

:

(18)

De�ne

z†m D

m
[

iD0

¹�.x; n � i/; ı.x; n � i/; �.x C 1; n � i � 1/; ı.x C 1; n � i/º:

The vertex set z†m is equal to †m[¹�.xC1; n�m�1/; ı.x; n�m/º. Therefore (18)

reads

ZGn†m
D KG.ı.x; n � m/; �.x C 1; n � m � 1//ZGnz†m

C
c1.m C 1/

c1.m/
ZGn†mC1

:

(19)

We iterate (19) and �nd that

ZGn†0
D

N
X

mD0

c1.m/KG.ı.x; n � m/; �.x C 1; n � m � 1//ZGnz†m

C c1.N C 1/ZGn†NC1
:

(20)
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Now, from (15), we have

ZGnz†m

ZG

D
PŒe0

0 ; e1
0; : : : ; e0

m; e1
m�

c2.m C 1/
;

because c2.mC1/ is the product of the edge weights of the edges e0
0; e1

0; : : : ; e0
m; e1

m.

Therefore, dividing (20) by ZG , we �nd the right side of (16), while the left side

follows from (17). �

In order to prove Theorem 2.7 we start by considering a �nite honeycomb

graphs with .a; b; c/ weights (see Figure 3). As above, de�ne �.x; n/ 2 ¹0; 1º to

be the random variable of having a lozenge of type I at .x; n/. That is

�.x; n/ D 1 () there exists a dimer at .ı.x; n/; �.x; n//:

Then Proposition 3.5 gives the following.

Corollary 3.6. For any .a; b; c/-weighted honeycomb graph G (satisfying the
assumptions of Proposition 3.5),

�
bc

a
K

�1
G .�.x; n/; ı.x C 1; n//

D

N
X

mD0

E

h

.1 � �.x C 1; n � m//

m
Y

iD0

�.x; n � i/
i

C zRG.N /

with zRG.N / D a�1.bc/N C2ZGn†NC1
=ZG .

Proof. The .a; b; c/-weighting means that

KG.ı.x; n/; �.x C 1; n � 1// D a;

KG.ı.x; n/; �.x; n// D b;

KG.ı.x; n/; �.x; n � 1// D c;

see Figure 3. Then c1.m/ D .bc/m as well as c2.m/ D .bc/m so that Proposi-

tion 3.5 gives immediately

�K
�1
G .�.x; n/; ı.x C 1; n// D

N
X

mD0

a

bc
PŒe0

0; e1
0; : : : ; e0

m; e1
m� C RG.N /

with RG.N / D .bc/N C1ZGn†NC1
=ZG .
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Next notice that having a chain of particles ¹�.x; n� i/ºm
iD0 which corresponds

to the edges e0
0; : : : ; e0

m and no particle at .x C 1; n � m/ corresponding to the

edge .�.x C 1; n � m � 1/; ı.x C 1; n � m//, then the dimer con�gurations

incident to the edge �.x C 1; n � m C i/ for i D 0; : : : ; m � 1 are forced since

each vertex becomes incident to one edge by increasing i . Hence the dimers

.�.x C 1; n � i � 1/; ı.x C 1; n � i// for i D 0; : : : ; m are forced. This implies

PŒe0
0; e1

0; : : : ; e0
m; e1

m�

D PŒe0
0; : : : ; e0

m; e1
m� D E

h

.1 � �.x C 1; n � m//

m
Y

iD0

�.x; n � i/
i

:
(21)

This ends the proof of the corollary. �

Recursion relation on the in�nite honeycomb graph H. We focus on the

.a; b; c/-weighting of the honeycomb graph. Recall that H denotes the in�nite

honeycomb graph and HL denotes the honeycomb graph embedded on a torus

of size L. The �rst result is the extension of the recursion relation to the in�nite

honeycomb graph.

Proposition 3.7. On the in�nite honeycomb graph with .a; b; c/-weights it holds

�
bc

a
K

�1
abc.�.x; n/; ı.x C 1; n//

D

N
X

mD0

E

h

.1 � �.x C 1; n � m//

m
Y

kD0

�.x; n � k/
i

C RN ;

(22)

with

0 � RN � CE

h

.1 � �.x C 1; n � N //

N
Y

kD0

�.x; n � k/
i

(23)

for some �nite constant C .

Proof. On HL there are four parity classes corresponding to vertical / horizontal

height changes when crossing the torus (see [20, 21, 25]):

ZHL
D

1

2
.�Z00

HL
C Z01

HL
C Z10

HL
C Z11

HL
/;

where Z00
HL

is obtained from the Kasteleyn matrix which has even horizontal and

vertical height change and so on.
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We apply Corollary 3.6 to each parity class: let KL;ij be the Kasteleyn matrix

associated with these four parity classes, i.e., detŒKLIij � D Z
ij
HL

. Then, we have

�
bc

a
K

�1
LIij .�.x; n/; ı.x C 1; n//

D zRL;ij .N / C

N
X

mD0

Pij

h

m
\

kD0

¹�.x; n � k/ D 1º \ ¹�.x C 1; n � m/ D 0º
i

;

(24)

where zRL;ij .N / D a�1.bc/N C2Z
ij

HLn†NC1
=Z

ij
HL

and Pij represents the particle

probability measure for the parity class ij .

We sum (24) over the parity classes with the correct sign. After taking the

thermodynamic limit L ! 1 (which does exist because in [25] is was shown that

it converges to the in�nite Gibbs measure characterized by the inverse Kasteleyn

matrix K
�1
abc

) we obtain (22).

To prove (23), notice that by the extra restrictions imposed on the number of

dimer covers by reducing the number of vertices to be covered and by comparing

allowed dimer con�gurations on the graphsHL n †N C1, HL n z†N and HL n †N ,

we have

c1.N C 1/Z
ij

HLn†NC1
� zC c1.N C 1/Z

ij

HLnz†N

� zC.bc/.bc/N Z
ij

HLn†N

for some constant zC > 0. We divide the above equation by Z
ij
HL

which gives

c1.N C 1/Z
ij

HLn†NC1

Z
ij
HL

� zC
c1.N C 1/Z

ij

HLnz†N

Z
ij
HL

� zC.bc/
.bc/N Z

ij

HLn†N

Z
ij
HL

:

This means that by using (15) we have

c1.N C 1/Z
ij

HLn†NC1

Z
ij
HL

� zCbc Pij Œe0
0; e1

0; : : : ; e0
N ; e1

N �

� zCbc
.bc/N Z

ij

HLn†N

Z
ij
HL

:

Using (21), setting C D zC.bc/2=.2a/ and summing over the parity classes

gives the desired bound. �
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End of the proof of Theorem 2.7. With the result of Proposition 3.7 we can now

easily end the proof of Theorem 2.7.

Notice that the left side of (22) does not depend on N and is �nite, while the

right side of (22) is a sum of positive numbers. Therefore the last terms in the sum

with m D N goes to zero faster than 1=N , which in turns implies that RN ! 0

as N ! 1 (in reality, the decay is exponential as shown in [38]). Therefore, by

taking N ! 1 in (22) we obtain

�
bc

a
K

�1
abc.�.x; n/; ı.x C 1; n// D

1
X

mD0

E

h

.1 � �.x C 1; n � m//

m
Y

kD0

�.x; n � k/
i

:

Finally notice that the prefactor in (6) for x0 D x C 1 and n0 D n is exactly bc=a,

i.e.,
bc

a
K

�1
abc.�.x; n/; ı.x C 1; n// D K

�1
� .x; nI x C 1; n/:

The other equalities are easy to compute and were already obtained in [5].

Remark 3.8. It seems plausible that Theorem 2.7 could also be veri�ed using
Proposition 3.3 recursively for the kernel K�1

� .x; nI x0; n0/ giving an algebraic
proof. However, a bound for the remainder, analogous to (23), would still be
required. This bound seems mysterious from the algebraic expression and even
the positivity of the remainder is not obvious from the determinant expression.

A. Equivalence of kernels

Here we derive a single integral representation for the inverse Kasteleyn matrix

K
�1
� .x; nI x0; n0/ given in (8). Let us do the change of variables w ! �w so that

K
�1
� .x; nI x0; n0/ D

.�1/n�n0Cx�x0

.2�i/2

I

jzjDb=a

dz

I

jwjDc=a

dw
zn�n0

wn0�nCx0�x�1

1 C z � w
:

Case n � n0. In this case when w is not in the arc of the circle of radius c=a

(anticlockwise oriented) from x�abc to �abc , then no poles of z lies inside its

integration contour and the contribution is 0. If w is in the arc of circle from x�abc

to �abc , then there is a simple pole at z D w � 1, which leads to

K
�1
� .x; nI x0; n0/ D

.�1/n�n0Cx�x0

2�i

Z �abc

x�abc

dw
.w � 1/n�n0

wn�n0Cx�x0C1
: (25)

Here the integration path can be any path crossing the real axis on RC.



A combinatorial identity for the speed of growth in an anisotropic KPZ model 475

Case n < n0. In this case when w is in the arc of the circle of radius c=a

(anticlockwise oriented) from x�abc to �abc , then outside the integration contour

of z there are no poles and the integral over z gives 0. If w is in the arc of circle

from �abc to x�abc , then there is a simple pole at z D w � 1, which leads to

K
�1
� .x; nI x0; n0/ D �

.�1/n�n0Cx�x0

2�i

Z x�abc

�abc

dw
.w � 1/n�n0

wn�n0Cx�x0C1
:

This is equal to the expression (25) if the paths are chosen to cross real axis on R�.
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