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Terminal chords in connected chord diagrams
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Abstract. Rooted connected chord diagrams form a nice class of combinatorial objects.

Recently they were shown to index solutions to certain Dyson–Schwinger equations in

quantum �eld theory. Key to this indexing role are certain special chords which are

called terminal chords. Terminal chords provide a number of combinatorially interesting

parameters on rooted connected chord diagrams which have not been studied previously.

Understanding these parameters better has implications for quantum �eld theory.

Speci�cally, we show that the distributions of the number of terminal chords and the

number of adjacent terminal chords are asymptotically Gaussian with logarithmic means,

and we prove that the average index of the �rst terminal chord is 2n=3. Furthermore, we

obtain a method to determine any next-toi leading log expansion of the solution to these

Dyson–Schwinger equations, and have asymptotic information about the coe�cients of the

log expansions.
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1. Introduction

In this paper we are interested in looking at the asymptotic behaviour of some rich

and interesting, but somewhat unusual parameters on the combinatorial class of

rooted connected chord diagrams. Speci�cally, we are interested in certain chords

known as terminal chords which form the base case for a recursive decomposition

of rooted connected chord diagrams and the indices of the terminal chords in a

recursive ordering of the chords. The reason for investigating these parameters is

that they arose in [12] in series solutions to certain Dyson–Schwinger equations

in quantum �eld theory. In order to derive meaningful physics from these series

solutions we need to better understand the asymptotics of these parameters. The

present paper is a �rst step towards this understanding. Furthermore the combina-

torics of these objects is interesting in its own right and these particular parameters

are largely uninvestigated so far.

1.1. Combinatorial setting. Before explaining the physics context, let us set up

what we need for chord diagrams.

De�nition 1. A perfect matching of a �nite set S is a set of pairs of S such that

every element of S is in exactly one pair. A chord diagram with n chords is a

perfect matching of ¹1; 2; : : : ; 2nº. The root chord of a chord diagram is the pair

including 1.

As implied by the name, it is convenient to represent chord diagrams with dots

and chords. Two conventions coexist in the literature: the circular one and the

linear one. They respectively consist in drawing points 1; 2; : : : ; 2n on a circle in

counterclockwise order, or on a line from left to right, and joining by a chord every

two elements belonging to the same pair. The matching ¹¹1; 4º; ¹2; 6º; ¹3; 5ºº has

been drawn in these two ways in Figure 1. The circular convention has been used in

the previous papers, like [12], but we are going to adopt here the linear convention

for the rest of the document.

De�nition 2. The oriented intersection graph of a chord diagram C is the digraph

with a vertex for each chord of C and an oriented edge from chord ¹a; bº to chord

¹c; dº whenever a < c < b < d . A chord diagram is connected if its oriented

intersection graph is (weakly) connected. A chord is terminal if its vertex in the

oriented intersection graph has no outgoing edges.

For instance, the oriented intersection graph of the chord diagram of Figure 1

is the tree where ¹1; 4º is the root vertex, and ¹2; 6º ; ¹3; 5º its two children. This

chord diagram is connected, and the terminal chords are ¹2; 6º and ¹3; 5º.
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Figure 1. Left: circular convention. Right: linear convention.

The chords inherit an order by the smaller of their endpoints. This is not the

order that we want to be working with.

De�nition 3. The intersection order of the chords of a rooted connected chord

diagram C is de�ned as follows.

� The root chord of C is the �rst chord in the intersection order.

� Remove the root chord of C and let C1; C2; : : : ; Cn be the connected compo-

nents of the result ordered by their �rst vertex.

� For the intersection order of C , after the root chord come all the chords of

C1 ordered inductively in the intersection order, then all the chords of C2

ordered by intersection order, and so on.

The chord diagram of Figure 2 is an example of a chord diagram where the

intersection order is di�erent from the order by the smaller of their endpoints.

1 3

6
2 45

Figure 2. Example of a connected chord diagram and its intersection order.

Our primary interest is in the terminal chords and their indices in intersection

order. We are interested in questions such as

� How many terminal chords does a chord diagram have?

� What is the index of the �rst terminal chord?

� How many pairs of terminal chords are adjacent in the intersection order?

� What can we say about the gaps between indices of successive terminal

chords in intersection order?

Now we are going to explain why these questions are relevant from a physical

point of view.



420 J. Courtiel and K. Yeats

1.2. Physical background. Dyson–Schwinger equations are an important class

of equations in quantum �eld theory. They are the quantum analogues of the

classical equations of motion. They are usually written as integral equations

and their recursive structure mirrors the decomposition of Feynman graphs into

subgraphs.

Because of this recursive structure there is another, more combinatorial way

to think about them. Namely, they are functional equations for a sort of weighted

generating function. More speci�cally, the Green functions of a quantum �eld

theory can be thought of as the sum over all Feynman graphs of the theory sat-

isfying certain properties (for example graphs which are 1-particle irreducible –

that is 2-edge-connected – and have a �xed set of external edges) and weighted by

their Feynman integrals. Thus the Green functions are weighted generating func-

tions of Feynman graphs with highly nontrivial weights. The Green functions are

solutions to the Dyson–Schwinger equations, or, viewed the other way around, the

Dyson–Schwinger equations are certain functional equations for these weighted

generating functions.

In [12] one of the authors along with Nicolas Marie looked at one particular

family of Dyson–Schwinger equations given below in (1). This family of Dyson–

Schwinger equations corresponds to the physical situation where we consider all

graphs made by inserting a �xed one loop propagator graph into itself in one

insertion place. Combinatorially this means that the graphs we are interested in

are in bijection with plane rooted trees. For instance, inserting the graph

into itself in all possible ways gives a class of graphs which �ts into this situation.

One example from this class is

which corresponds to the rooted tree

:

The Dyson–Schwinger equations considered in [12] are those which can be

written in the following form

G.x; L/ D 1 � x G
�

x;
@

@.��/

��1

.e�L� � 1/F.�/j�D0 (1)
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where F.�/ is the Laurent expansion of a regularized Feynman integral for

the one loop graph which generated the graph class in question. Note that

G.x; @=@.��//�1 is acting as a di�erential operator on .e�L� � 1/F.�/. Analyti-

cally there are subtleties since such an operator is only a pseudo-di�erential oper-

ator. However, we are concerned here solely with series and so interpreting (1) as

an equation in formal series everything is well-de�ned.

For the speci�c example graphs given above, viewed in Yukawa theory, the

equation was solved by Broadhurst and Kreimer in [5]. In this case, we have

F.�/ D 1=.�.1 � �//. They did not write the Dyson–Schwinger equation in the

form of (1) but rather in a more usual physical form as an integral equation (see

Examples 3.5 and 3.7 of [18] for how to convert to the form above). However, for

the present purposes, we can simply take (1) as the starting point.

The main result of [12] is a series solution to (1) indexed by rooted connected

chord diagrams.

Theorem 4 (Theorem 4.13 of [12]). Suppose F.�/ D
P

i�0 fi�
i�1. Given a rooted

connected chord diagram C let the indices of its terminal chords in intersection

order be b.C / D t1 < t2 < � � � < tk. Then

G.x; L/ D 1 �
X

i�1

.�L/i

i Š

X

C

b.C/�i

xjC jfb.C/�i f
jC j�k

0

k
Y

jD2

ftj�tj �1
(2)

solves (1), where the sum is over rooted connected chord diagrams with the

indicated restriction.

Note that k and the tj depend on C in (2), but this has been left implicit to keep

the notation from getting too heavy. More general Dyson–Schwinger equations

have similar chord diagram expansions (see [9]).

To better understand G.x; L/ we see from (2) that the keys are to understand the

number of terminal chords, the index of the �rst terminal chord, and the di�erences

between indices of successive terminal chords.

1.3. Structure of the document. In Section 2, we set up the enumerative back-

ground of the present article. We introduce what is known on exact and asymptotic

enumeration of connected chord diagrams. We also give some results which we

use in this article: �rst we cite two theorems from the theory of analytic combina-

torics; then we establish an asymptotic expansion of the ratio cn=cn�1, where cn

is the number of connected chord diagrams.
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In Section 3, we study the leading-log expansion and next-toi -leading log

expansions of the solution of (1). These are a way of organizing the double

expansion of G.x; L/ and are relevant in quantum �eld theory. To do so, we are led

to enumerate the connected chord diagrams C such that the �rst terminal chord is

close to the last chord. We give recurrences that characterize these numbers and

their exponential generating functions. We then establish asymptotic estimates on

them. There will be implications on the physical level: we show that the dominant

terms in all the log expansions only involve f0 and f1, respectively the residue

and the constant term of F.�/.

In Section 4, we study parameters on uniform large connected chord diagrams.

We state a generic theorem that shows that numerous laws on connected chord

diagrams obey to a Gaussian law, with a mean of the form �n C � ln n and a

logarithmic variance. In particular, we prove that the average number of terminal

chords is ln n. Finally, we see that the average index of the �rst terminal chord,

a parameter which does not satisfy the above-mentioned theorem, is 2n=3. The

methods used are new and interesting as combinatorics.

2. Enumerative background

2.1. A brief historical background on connected chord diagrams. Chord

diagrams and their enumeration are not only relevant in quantum �eld theory;

they also appear in various other areas of mathematics: knot theory [16, 3, 19]

(in particular the Vassiliev invariants), graph sampling [1], analysis of computer

structures [6], and even bioinformatics [10, 2].

Concerning more particularly the connected chord diagrams, Touchard seems

to be the �rst person in 1952 to be interested in their enumeration [17]. More

precisely, he characterized the number of connected diagrams with n chords and

m crossings as a solution of a system of equations. Subsequently, Stein provided

an explicit recurrence relation for the number of connected chord diagrams (but

without considering this time the number of crossings) [14], as stated in the

following proposition.

Proposition 5 (Stein [14]). Let cn be the number of connected diagrams with n

chords. These numbers satisfy the relations c1 D 1 and for n � 2,

cn D .n � 1/

n�1
X

kD1

ck cn�k : (3)
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This formula has also been shown by Nijenhuis and Wilf, but this time thanks to

a constructive combinatorial proof [13]. Let us also mention than (3) is equivalent

to

cn D
n�1
X

kD1

.2 k � 1/ ck cn�k : (4)

As for the asymptotic behaviour of the number cn of connected diagrams with

n chords, Stein and Everett gave the estimate

cn � 1

e
.2 n � 1/ŠŠ

in [15]. In particular, since the number of (non necessarily connected) diagrams

with n chords is .2n � 1/ŠŠ, this implies that a large random chord diagram is

connected with a probability e�1.

Some decades later, Flajolet and Noy re�ned this result. Indeed, they proved

in [7] that the number of connected components in a large random chord diagram

(minus 1) follows a Poisson law of parameter 1. Moreover, they showed that if

Ln denotes the size of the largest component in a random diagram with n chords,

then n � Ln is also distributed like a Poisson law of parameter 1.

Recently, Michael Borinsky computed in [4] an asymptotic expansion of the

number of connected diagrams cn, along with cardinals of similar objects.

2.2. Preliminaries on analytic combinatorics. The majority of our proofs are

based on the reference book by Flajolet and Sedgewick [8]. We present here the

two main analytic combinatorics theorems of this paper.

First of all, let us mention that we use in this document two di�erent notions of

generating function. Given a sequence an, the ordinary generating function of the

numbers an is de�ned as
P

n�0 anzn, while the exponential generating function

is de�ned as
P

n�0 anzn=nŠ. Both notions have their advantages and drawbacks,

especially when we try to enumerate chord diagrams. That is why we will juggle

the two notions.

The �rst theorem, maybe the most representative of the theory, is called the

transfer theorem. It relates the singular expansion of the series and the asymptotic

behaviour of its coe�cients.

Theorem 6 (transfer theorem). Consider � a complex domain of the form

¹zW jzj < � C "º \ ¹zW jArg.z � �/j > ˛º;

with " > 0 and ˛ 2 .0; �=2/.
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Let f .z/ D
P

n�0 fnzn be an analytic function on �. If the singular behaviour

of f in the vicinity of � is

f .z/ �
z!�

c .1 � z=�/�˛ ln.1 � z=�/ˇ ;

where ˛ is a complex number which does not belong to Z<0, ˇ any integer and c

a non zero constant, then

fn � c

�.˛/
��nn˛�1.ln n/ˇ :

In this article, the analyticity of our functions on a domain with the same shape

as � is generally obvious (mainly because we have explicit expressions). The

justi�cation of analyticity will be then omitted, except if there is a subtlety to

stress.

Example of use of transfer theorem. Consider the exponential generating

function of .2n � 3/ŠŠ. We will prove that it is equal to 1 �
p

1 � z. By the

transfer theorem, the numbers .2n�3/ŠŠ=nŠ are equivalent to �n�3=2=�.�1=2/ D
n�3=2=.2

p
�/. This can be checked by Stirling’s formula.

The next theorem deals with the quasi-powers theorem, stated under a form

which will be useful for us.

Theorem 7 (Theorem IX.11 of [8], quasi-powers theorem). Let

F.z; u/ D
X

n�n0

k�0

fn;kznuk

be a bivariate function with non-negative coe�cients such that
P

k�0 fn;k D 1 for

n � n0.

(i) Analytic representation. The function F.z; u/ admits the representation

F.z; u/ D A.z; u/ C B.z; u/.1 � z/�˛.u/

where A.z; u/ and B.z; u/ are analytic on a domain of the form

¹.z; u/W jzj � r; ju � 1j < "º;

with r > 1 and " > 0. Assume also that ˛.u/ is analytic at 1 such that ˛.1/

is not a non-positive integer and B.1; 1/ ¤ 0.

(ii) Variability condition. One has ˛0.1/ C ˛00.1/ ¤ 0.

Then the random variable Xn such that P.Xn D k/ D fn;k converges in dis-

tribution to a Gaussian variable. The corresponding mean is ˛0.1/ ln n and the

variance is .˛0.1/ C ˛00.1// ln n.
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2.3. A re�ned asymptotic result. We will need a precise asymptotic expansion

of cn�1=cn. The dominant term has already been given by Stein and Everett: they

showed that cn�1=cn � 1=2n. This expansion can also be deduced from the

article of Michael Borinsky [4].

Proposition 8. The ratio between the numbers of connected chord diagrams with

n � 1 arcs and n arcs is asymptotically equivalent to

cn�1

cn

D 1

2 n
C 1

4 n2
� 1

2 n3
� 29

8 n4
C O

� 1

n5

�

:

The proof simply relies on what is often called bootstrapping. We need �rst to

establish a lemma which bounds the contribution of the central terms in the sum

.n � 1/
Pn�1

kD1
ck cn�k

cn
.

Lemma 9. If cn denotes the number of connected diagrams with n chords, we

have for �xed j � 2 the estimate

.n � 1/

n�j
X

kDj

ck cn�k

cn

D O
� 1

nj�1

�

:

Proof. The core of the proof lies in the inequality

.2 n � 1/ cn�1 < cn < 2 n cn�1; (5)

holding for all n � 5. This has been stated by Stein and Everett in [15, Lemmas

3.1 and 3.4] and was proved by a (technical) induction. Notice that this inequality

justi�es the previous estimate cn�1=cn � 1=2n. For n � 8 and k 2
®

5; : : : ; bn
2
c
¯

,

we then have

ck cn�k � 2 k

2 n � 2 k C 1
ck�1 cn�kC1 � ck�1 cn�kC1:

The inequality ck cn�k � ck�1 cn�kC1 is also true for k 2 ¹2; 3; 4º since ck=ck�1 �
c4=c3 < 7 and thanks to (5), we have cn�kC1=cn�k � .2n � 2k C 1/ � 9 for every

n � 8 and k 2 ¹2; 3; 4º (Inequality (5) applies because n � k C 1 � 5). Therefore,

we show by a basic induction that for every n � 8 and for 2 � k � j � bn
2
c;

ck cn�k � ck�1 cn�kC1 � � � � � cj�1 cn�jC1 � cj cn�j : (6)

Taking in particular the inequality ck cn�k � cj�1 cn�jC1 and summing over k in

¹j C 1; n � j C 1º, we obtain

n�j�1
X

kDjC1

ck cn�k � n cjC1 cn�j�1:
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Consequently,

.n � 1/

n�j
X

kDj

ck cn�k

cn

D O
�

n
cn�j

cn

C n2 cn�j�1

cn

�

:

But cn�j =cn can be written as
Qj

iD1 cn�i =cn�iC1, so is equivalent to 1=.2n/j (we

have used the estimate cn�1=cn � 1=2n). Plugging this in the previous equality

directly gives the lemma. �

Now let us describe how to �nd an expansion of cn�1=cn.

Proof of Proposition 8. By combining the previous lemma and (3), we deduce

that

1 D 2.n � 1/

j
X

kD1

ck cn�k

cn

C O
� 1

nj

�

holds for j � 1. For j D 1, we recover cn�1=cn � 1=2n. For j D 2, we have

1 D 2.n � 1/
cn�1

cn

C 2.n � 1/
cn�2

cn�1

cn�1

cn

C O
� 1

n2

�

:

Setting cn�1=cn D 1=2n C dn leads to

0 D � 1

n
C 2 .n � 1/ dn C 2 .n � 1/

� 1

2.n � 1/
C o

� 1

n

��� 1

2 n
C o

�1

n

��

C o
�1

n

�

(we have used the fact that dn D o.1=n/), and so dn � 1=4n2.

This process can be repeated for j D 3; 4; : : : to �nd the predicted expansion

of cn�1=cn. �

3. Log expansions of the solution of the Dyson–Schwinger equation

3.1. Context. In this section, we show how we can deduce from Theorem 4

asymptotic properties on the log expansions in quantum �eld theory. Let us

explain �rst what is a log expansion.

Suppose we have an expansion with the following form

G.x; L/ D 1 C
X

i�1

X

j�i

ai;j Li xj :

The particular Dyson–Schwinger equations we are interested in have their solution

in this form as do a broad class of perturbative expansions in quantum �eld theory.
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Then, rather than thinking of the sum �rst as an expansion in one of the variables

with coe�cients which are series in the other variables, we can take an expansion

which takes variables together.

Speci�cally, we can write the expansion as

G.x; L/ D
X

k�0

X

i�0

ai;iCk .Lx/i xk :

The k D 0 part of this sum, namely the terms of G.x; L/ where the powers of

L and x are the same, is known as the leading log expansion, the k D 1 part of

this sum, namely the terms of G.x; L/ where the power of x is one more than the

power of L is known as the next-to-leading log expansion. The k D 2 is known

as the next-to-next-to-leading log expansion and so on.

This leading log language comes from the fact that L is the logarithm of some

appropriate energy scale, while x is the coupling constant which is treated as a

small parameter. So the leading log expansion captures the maximal powers of

x relative to the powers of the energy scale, and so is in an important sense the

leading term. The next-to-leading log expansion is the next part; it is suppressed

by one power of x, and so on.

Furthermore the full log expansion is algebraically and analytically meaningful

in the sense that the contributions of larger primitive graphs and new (presumably)

transcendental numbers appear further out in the next-to-next-to. . . hierarchy. We

see this manifested in our results, but it is a much more general physical fact

(compare [11]).

In view of (2), the leading log expansion for the Dyson–Schwinger equations is

�
X

C

b.C/DjC j

.�Lx/jC j

jC jŠ f
jC j

0

while the next-to-leading log expansion is

�
X

C

b.C/DjC j�1

.�Lx/jC j�1x

.jC j � 1/Š
f0f

jC j�2
0 f1 �

X

C

b.C/DjC j

.�Lx/jC j�1x

.jC j � 1/Š
f1f

jC j�1
0

D �
X

C

b.C/�jC j�1

.�Lx/jC j�1x

.jC j � 1/Š
f
jC j�1

0 f1:

(7)
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In general the next-toi -leading log expansion is

�
X

C

b.C/�jC j�i

.�Lx/jC j�ixi

.jC j � i/Š
fb.C/�jC jCif

jC j�k
0

k
Y

jD2

ftj�tj �1

where b.C / D t1 < t2 < � � � < tk are the terminal chords of C . We switch

the signs from now on, both overall and of L, because they are the result of the

conventions of [18] and perhaps not actually a good choice.

All this suggests that it is worthwhile to study connected diagrams C such that

b.C / � jC j � i , where i is �xed. The present section continues by establishing

numerous enumerative and asymptotic results concerning these diagrams.

3.2. Recurrence equations. We begin by an induction that characterizes the

number of connected diagrams C of size n such that every terminal chord has

index between n � k and n.

Proposition 10. Fix k � 0. For n > 0, let bn;k be the number of connected

diagrams C with n chords such that b.C / � n � k, and cn D bn;n�1 the number

of connected diagrams with n chords. For every k � 0, we have b1;k D 1 and for

n � 2

bn;k D .2 n � 3/ bn�1;k C
min.k;n�2/

X

iD1

.2 i � 1/ ci bn�i;k�i : (8)

This recurrence relation enables to compute the �rst values of bn;k:

b1;0 D 1; b2;0 D 1; b3;0 D 3; b4;0 D 15; b5;0 D 105; b6;0 D 945; : : :

b1;1 D 1; b2;1 D 1; b3;1 D 4; b4;1 D 23; b5;1 D 176; b6;1 D 1689; : : :

b2;1 D 1; b2;2 D 1; b3;2 D 4; b4;2 D 27; b5;2 D 221; b6;2 D 2210; : : : :

Proof. Equation (8) is derived from a speci�c decomposition of the connected

chord diagrams, which we are going to describe, and which is illustrated by

Figure 3. This recursion has a good transcription in terms of exponential gen-

erating functions (see Proposition 1).

Let C be a connected chord diagram of size n such that b.C / � n � k. If we

remove the root chord of C , two exclusive possibilities can occur.
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or

+

Figure 3. Illustration of the decomposition from the proof of Proposition 10.

� The obtained diagram C 0 is still connected. In this case, C 0 has n�1 chords

and we have b.C 0/ D b.C / � 1, and so b.C 0/ � n � 1 � k. Moreover, to

recover the diagram C , we need (and it is su�cient) to remember the position

of the right endpoint of the root chord of C . Since C 0 has n � 1 chords, there

are 2.n�1/�1 possible positions. That is why the number of such diagrams

C is given by .2 n � 3/ bn�1;k .

� We obtain several connected components C1; : : : ; Cs. We denote by i

the number of chords in Cs , and by C 0 the (connected) diagram obtained by

removing Cs from C . Diagram C 0 has n�i chords, and the position of the �rst

terminal chord has remained unchanged, hence b.C 0/ � .n � i/ � .k � i/.

Observe then that it is possible to recover C from C 0 and Cs provided the

position of the root chord through Cs (there are .2i � 1/ such possible

positions). The number of such diagrams C is thus .2 i � 1/ ci bn�i;k�i .

The conjunction of these two cases infers equation (8). �

Remark that for k D 0, Recurrence (8) is simply bn;0 D .2 n � 3/ bn�1;0. This

provides a nice formula (and a combinatorial proof!) for the numbers bn;0, which

correspond to the numbers of connected chord diagrams with exactly one terminal

chord (the last chord of a diagram is necessarily terminal).

Corollary 11. The number of connected diagrams with n chords and only one

terminal chord is .2 n � 3/ŠŠ.

The recurrence relation of Proposition 10 can be transformed in an e�ective

way to compute the exponential generating functions of the numbers bn;k .
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Proposition 12. Let Bk.z/ be the exponential generating function of the connected

chord diagrams C such that b.C / � n � k. For every pair of integers i; k, we

consider an i th antiderivative1 B
Œi�

k
for Bk, that is, a function B

Œi�

k
such that its

i th derivative is equal to Bk. There exists a constant ˇk and a polynomial Pk of

degree k such that

Bk.z/ D
p

1 � 2 z

�

ˇk C
k

X

iD1

.2 i � 1/ ci

Z z

0

.1 � 2x/�3=2B
Œi�1�

k�i
.x/ dx

�

C Pk.z/

(9)

where ci is the number of connected diagrams with i chords.

Proof. This proof can be divided into two steps. First, we translate (8) in terms

of the functions Bk�i with i 2 ¹0; : : : ; kº, which gives a �rst order di�erential

equation in Bk. Then, we simply solve this di�erential equation.

Let n > k C 1. Dividing (8) by .n � 1/Š and writing 2n � 3 as 2.n � 1/ � 1

induces that

bn;k

.n � 1/Š
� 2

bn�1;k

.n � 2/Š
C bn�1;k

.n � 1/Š
D

k
X

iD1

.2 i � 1/ ci

bn�i;k�i

.n � 1/Š
: (10)

Observe in all generality that the series of general term an�i�1 zn�1=.n � 1/Š is

the .�i/th derivative of the exponential generating function of the sequence an if

i is non-positive, and an .i �1/th antiderivative if i is positive. We then recognize

in (10) the coe�cients of zn�1 in @Bk

@z
; z

@Bk

@z
; Bk; B

Œi�1�

k�i
, respectively. Thus (10)

can be translated by

.1 � 2 z/
@Bk

@z
C Bk D

k
X

iD1

.2 i � 1/ ci B
Œi�1�

k�i
C Qk.z/;

where Qk.z/ is a polynomial of degree k whose presence is due to the fact that the

�rst coe�cients of B
Œi�1�

k�i
can vary, but also because (10) holds only for n > k C1.

We can solve this di�erential equation quite straightforwardly: we divide

by .1 � 2z/3=2 both sides and recognize from the left side the derivative of

.1 � 2z/�1=2Bk. Integrating this equation then leads to (9). (We have set Pk.z/ Dp
1 � 2 z

R z

0
.1 � 2x/�3=2Qk.x/dx. Some easy calculus shows that Pk is also a

polynomial of degree k.) �

1 It is possible to de�ne uniquely this antiderivative by setting for example
@j B

Œi�

k

@zj .0/D 0 for

j 2 ¹0; : : : ; i � 1º, but in practice, it is more convenient to take any antiderivative we �nd.
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Remark 1. It is simple to compute the series Bk.z/ by recursion thanks to

Formula (9). The method is the following: for each i , we begin by compute

the antiderivatives B
Œi�1�

k�i
, then plug them into (9), evaluate the formula and then

eliminate ˇk and Pk.z/ thanks to the �rst values of Bk.z/ given by Proposition 10.

We thus obtain:

B0.z/ D 1 �
p

1 � 2 z;

B1.z/ D 1 C z C 1

2

p
1 � 2 z ln.1 � 2z/ �

p
1 � 2 z;

B2.z/ D
� ln.1 � 2z/

2
� ln.1 � 2 z/2

8
C z � 3

�p
1 � 2 z C 3 � 2 z C z2

2
:

It is important to notice that the method is automatic. In this regard, a maple �le

is available along with the arXiv version of this paper.

Remark 2. The foregoing gives information about the generating function of

connected diagrams C such that b.C / � n�k but nothing about the distribution of

fb.C/�i f
jC j�k

0

Qk
jD2 ftj�tj �1

in the leading-log coe�cients. However it is easy

to adapt the same approach to enumerate diagrams to speci�c cases where the

tj � tj�1 are �xed.

Example. Let us consider A.z/ the exponential generating function of con-

nected diagrams such that the only terminal chords are the third to last and last

ones (i.e. connected diagrams C such that b.C / D t1 D jC j � 2 and t2 D jC j/),
and let us use the same decomposition as in the proof of Proposition 10. Removing

the root chord in such diagrams leads to two possibilities.

� The resulting diagram has only one component; starting from the end, the

positions of the terminal chords do not change.

� It has several components. Since each component necessarily has at least one

terminal chord, the number of components is exactly two: the top component

has only one terminal chord, and the bottom component is the only connected

diagram with 2 chords (with 3 possibilities of insertion for the root chord).

This consideration leads to the recurrence

an D an�1 C 3 .2 n � 7/ŠŠ;

where an is the number of connected diagrams with n chords such that the only

terminal chords are the third to last and last ones. By the same process than
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previously, we can then prove that

A.z/ D .z � 1/
p

1 � 2 z C z2

2
� 2 z C 1:

In all generality, similar recursions exist for diagrams where the gaps between

the terminal chords t2 � t1; : : : ; tk � tk�1 are given, but equations are more tedious

to state (although the method will fundamentally remain the same). If the reader

would like to compute such generating functions, a procedure is written in the

aforementioned maple �le.

3.3. Asymptotic behaviour. Now that we have stated how to compute the num-

bers bn;k , we are interested by their asymptotic behaviour. The following theorem

gives the asymptotic estimate.

Theorem 13. The number of connected diagrams C with n chords such that

b.C / � n � k is asymptotically equivalent to

1p
� 2kC1 kŠ

ln.n/k 2n nŠ

n3=2
:

Proof. We just apply the transfer theorem (Theorem 6) to the exponential gen-

erating function Bk characterized by the following lemma. Indeed this lemma

shows that Bk.z/ � Bk.1=2/ is equivalent to .�1/kC1

2k kŠ

p
1 � 2 z ln.1 � 2z/k when

z ! 1=2. �

Lemma 14. The exponential generating function Bk from Proposition 1 is a

polynomial in terms of
p

1 � 2z and ln.1 � 2z/:

Bk.z/ D Bk

�1

2

�

C
p

1 � 2 z Qk.
p

1 � 2 z; ln.1 � 2z//; (11)

where Qk.x; y/ is a polynomial of degree k in y such that the coe�cient of yk is

Œyk � Qk.x; y/ D .�1/kC1

2k kŠ

(there is no term in xi , with i � 1).

Proof. This lemma can be shown by induction on k.

For k D 0, we have seen that B0.z/ D 1 �
p

1 � 2 z.

For k � 1, we have to check that the statement of the lemma is compatible

with (9). First, using the induction hypothesis, we verify that any .i � 1/th
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antiderivative B
Œi�1�

k�i
of Bi for i 2 ¹1; : : : ; kº is a polynomial in

p
1 � 2z and

ln.1�2z/ such that the degree in ln.1�2z/ does not exceed k � i . (To compute an

antiderivative of .1 � 2 z/i=2 ln.1 � 2 z/j , we repeatedly integrate by parts using

the equality

.i C 2/

Z z

0

.1 � 2 x/i=2 ln.1 � 2 x/j dx

D �.1 � 2 z/i=2C1 ln.1 � 2 z/j � 2 j

Z z

0

.1 � 2 x/i=2 ln.1 � 2 x/j�1dx

until the degree in ln.1 � 2 x/ in the integrand reaches 0.) Using (9), it is then

not hard to check that Bk.z/ can be put into the form (11). If we search in (9)

for what could contribute to the term in yk in Qk.x; y/, we realize that the only

possibility comes from the monomial
p

1 � 2z ln.1 � 2z/k�1 in Bk�1.z/. Indeed,

we can observe that

p
1 � 2z

Z z

0

.1 � 2x/�3=2 �
p

1 � 2x ln.1 � 2 x/k�1 dx

D �1

2k

p
1 � 2z ln.1 � 2z/k :

By recurrence, we know that the coe�cient of
p

1 � 2z ln.1 � 2z/k�1 in

Bk�1.z/ is .�1/k

2k�1 .k�1/Š
, so the coe�cient of

p
1 � 2z ln.1 � 2z/k in Bk�1.z/ must

be �1
2k

� .�1/k

2k�1 .k�1/Š
D .�1/kC1

2k kŠ
. �

Once again, the foregoing does not give any information about the asymptotic

distribution on the terminals chords. However we can recover it by repeating the

same reasoning for the number of connected diagrams such that only the last k

chords for the intersection order are terminal, and observe that the asymptotic

behaviour is identical.

Theorem 15. The number on;k of connected diagrams C with n chords such that

the only terminal chords are the last k chords is asymptotically equivalent to

1p
� 2kC1 kŠ

ln.n/k 2n nŠ

n3=2
:

Proof (sketch). Using the decomposition of the proof of Proposition 10, we �nd

that the numbers on;k satisfy

on;k D .2 n � 3/ on�1;k C on�1;k�1:
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This recurrence relation can be then translated into the di�erential equation

.1 � 2 z/
@Ok

@z
C Ok D Ok�1 C zQk.z/;

where Ok.z/ D
P

n�0 on;k zn=nŠ and zQk a polynomial of degree k. Its solutions

can be put into the form

Ok.z/ D
p

1 � 2 z

�

Q̌
k C

Z z

0

.1 � 2x/�3=2Ok�1.x/ dx

�

C zPk.z/;

where Q̌
k is a constant and zPk.z/ a polynomial. By recurrence, we can then prove

that Ok is a polynomial in
p

1 � 2z and ln.1 � 2z/ such that the contributing term

for the singularity analysis is .�1/kC1

2k kŠ

p
1 � 2z ln.1�2z/k. We recover the expected

asymptotic regime by the transfer theorem. �

The consequence of the similarity between Theorem 13 and Theorem 15 will

be described in the next subsection.

3.4. Application to the log expansions. The leading log expansion is particu-

larly simple because it only counts chord diagrams where only the last chord is

terminal. By Corollary 11, these are easy to count, and the monomial in the fi is

simply a power of f0. Therefore it su�ces to understand B0.z/. Speci�cally, the

leading log expansion is

B0.Lxf0/ D 1 �
p

1 � 2Lxf0: (12)

The next-to-leading log expansion is not too di�cult either. By (3.1) it su�ces

to understand B1.z/. Note, however, that the power of Lxf0 is jC j � 1, and we are

dividing by .jC j � 1/Š, so the next-to-leading log expansion is actually given in

terms of the derivative of B1.z/. Speci�cally, the next-to-leading log expansion is

d

dz
B1.z/jzDLxf0

xf1 D xf1

�

1 C 1
p

1 � 2Lxf0

ln
� 1

p

1 � 2Lxf0

��

: (13)

The next-to-next-to-leading log expansion is a bit more complicated. Here

we are considering any chord diagram with b.C / � jC j � 2. Now there are

di�erent possible monomials. If all of the last three chords are terminal then

we get f0f
jC j�3

0 f 2
1 while if only the last and the third last are terminal we get

f0f
jC j�2

0 f2. If only the last two chords are terminal we get f1f
jC j�2

0 f1 and if only

the last chord is terminal we get f2f
jC j�1

0 . All together two di�erent monomials

appear, f2f
jC j�1

0 in the case that either the last and third last or just the last are



Terminal chords in connected chord diagrams 435

terminal, and f 2
1 f
jC j�2

0 in the case that either the last two or the last three are

all terminal. In all cases we will need to take two derivatives since the powers

and factorials are in terms of jC j � 2 for the next-to-next-to leading log expansion

rather than in terms of jC j for the exponential generating functions Bk .

Using the A.z/ from the example in Subsection 3.2 we can calculate the next-

to-next-to-leading log expansion explicitly:

x2f2f0

� d 2

dx2
.A.z/ C B0.z//

�ˇ

ˇ

ˇ

zDLxf0

C x2f 2
1

� d 2

dx2
.B2.z/ � A.z/ � B0.z//

�ˇ

ˇ

ˇ

zDLxf0

D x2f0f2

�

1 C 3Lxf0

.1 � 2Lxf0/3=2

�

C x2f 2
1 .ln.1 � 2Lxf0/ � 4/ ln.1 � 2Lxf0/

8.1 � 2Lxf0/3=2
:

Latter log expansions work similarly.

Let us compare these results to the results of Krüger and Kreimer in [11].

Their methods are also combinatorial but are quite di�erent. They are based on

words on the alphabet of primitive graphs operated on by shu�e and Lie bracket.

Despite these di�erences we are both modelling the same underlying physics, so

our answers should agree on the common domain of applicability.

Our results correspond to their Yukawa case with only one primitive. In fact

we deal with any Dyson–Schwinger equation with this shape. They could also do

so, but chose to only make the Yukawa and QED examples explicit. On the other

hand their work is more general in that they deal with any number of primitives in

the Yukawa and QED example. In view of [9] our results should also generalize to

any number of primitives and to Dyson–Schwinger equations of QED shape and

other shapes (corresponding to di�erent s parameters in the setup of [18]). This

will be worked out in the future.

Our leading log calculations are, as they should be, identical (compare (12)

to equation 221 of [11]). The next-to-leading log (compare (13) and equation 227

of [11]) are very similar. First in our case we are not considering a new primitive

graph at 2 loops, which in the language of Krüger and Kreimer would say that

ˆR.�2/ D 0. The second thing to notice is a spurious 1 in the derivative of B1.z/.

Its presence is due to di�erent boundary conditions. They explicitly set their

generating function to have no constant term (see the line after equation 146) while

our boundary conditions are determined by the chord diagrams: this particular

1 corresponds to the connected chord diagram with two chords. Finally, note
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that they have a more complicated expression in place of our f1. In both cases

this number is the new period. Krüger and Kreimer call it ‚.a1; a1/; they note

that it cannot be canonically identi�ed with a single Feynman graph. From our

perspective we see it naturally as the next term in the expansion for the original

primitive.

Turning to the next-to-next-to-leading log expansion, we again see that our so-

lution is built on of the same kinds of pieces as theirs. Their greater generality

shows up more strongly here as our solution is strictly simpler. We also see more

clearly at this level how our di�erent perspectives result in di�erent characteriza-

tions of the new primitives.

What are the bene�ts and disadvantages of our techniques compared to the

techniques of Krüger and Kreimer? Both methods have a combinatorially derived

master equation that determines everything. For us this would be the recursive

decomposition of the previous sections – we did not write it out as an integral

or di�erential equation in general (only in the important special case of Proposi-

tion 12), but the example in Subsection 3.2 illustrates how it works in general. For

both groups the master equation is not fully explicit. In Krüger and Kreimer’s set

up this manifests itself in the dependence on matrix bracket coe�cients for which

it is unclear how automatically or rapidly they can be computed. The lack of ex-

plicitness however has a di�erent �avour in each case coming from the di�erent

combinatorial objects.

Our technique also di�ers in how it indexes the periods which contribute to the

expansions. Krüger and Kreimer tie them to individual graphs where possible and

treat the others, coming from their ‚-expressions on the same level. We do not

give these periods individual meanings but see them as coming from later terms

in the expansion our one primitive; this makes our periods less combinatorial, but

they are organized into tidy monomials so one can better see the di�erent pieces

that build them. Here both techniques have advantages and one would hope to play

them o� each other to get an even better understanding. The same can be said about

the di�erent underlying combinatorial frameworks – the physics is described both

by our chord diagrams and by their words and it is not obvious, but is potentially

useful, that both these objects describe the same underlying structures.

Finally, we can consider the signi�cance of the asymptotic results of Subsec-

tion 3.3 to the log expansions. Here something very interesting happens. The

chord diagrams where the only terminal chords are the last k chords dominate

completely in the sense that as n ! 1 almost all chord diagrams with n chords

and b.C / � n � k have the last k chords terminal. What this means is that pro-

vided F.�/ is not outrageous (eg the fi are bounded) we should expect the chord
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diagrams with the last k chords terminal to completely determine the asymptotic

behaviour of the next-tok-leading log expansion. That is, the next-tok-leading

log expansion should behave as if all chord diagrams contribute the monomial

f
jC j�kC1

0 f k�1
1 , so the asymptotic behaviour of the next-tok-leading log expan-

sion is given by

d k

dzk
Bk.z/

ˇ

ˇ

ˇ

zDLxf0

f k�1
1 (14)

This is nice for two reasons. First it says that the other fi are not playing a

signi�cant role asymptotically – this means only two numbers, f0 and f1, are

controlling their asymptotic behaviours. Second the master equation to generate

the Bk.z/ is fairly simple and can be computed fully automatically. This is much

simpler than the situation for chord diagrams with speci�c gap patterns as we

calculated for the next-to-next-to-leading log expansion and contains no mysteries

which require human intervention to compute.

4. Statistics on terminal chords

4.1. Statement of the meta-theorem and examples. In this section, we study

several statistics concerning terminal chords in connected diagrams, such like its

numbers, the number of terminal chords that are consecutive for the intersection

order, etc. We establish a meta-theorem that shows that a lot of random variables

on connected chord diagrams have a Gaussian limit law with logarithmic variance.

Before stating this theorem, we need to de�ne three subsets of connected

chords diagrams based on the shape of the diagram obtained by removing the

root chord:

C1 D¹C W Removing the root chord from C leads to a unique component C1º;

C2 D¹C W Removing the root chord leads to a chord then a component C2:º;

C3 D¹C W Removing the root chord leads to a component C3 then a chordº:

These three subsets are illustrated by Figure 4.

C1 C2

C3

Figure 4. From left to right, a schematic representation of an element of C1, C2, C3.
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Theorem 16. Let �1, �2, �3 be three integers (not all equal). Consider a function

f on connected chord diagrams such that for every C 2 Ci with i D 1; 2; 3,

f .C / D f .Ci / C �i (see above for the de�nition of C1;C2;C3). If Xn denotes

a random chord diagram of size n under the uniform distribution, then f .Xn/

is a random variable such that f .Xn/��1n�� ln.n/

�
p

ln.n/
converges in distribution to a

standard Gaussian law, where

� D �2

2
C �3

2
� �1; �2 D .�2 � �1/2

2
C .�3 � �1/2

2
:

Among other things, this theorem implies that the relevant diagrams under the

uniform distribution are those whose recursive decomposition only uses diagrams

from C1;C2 and C3. The other diagrams are asymptotically negligible (the proof

of this theorem just uses this fact).

Let us illustrate Theorem 16 with some examples. If we denote by Tn the

random variable on connected diagrams with n chords that counts the terminal

chords, we can see that Tn D f .Xn/ where f and Xn are described in the

statement of the theorem with �1 D 0 and �2 D �3 D 1. (Only diagrams from

C2 and C3 have a decomposition which induces terminal chords – the terminal

chords correspond to the dark-grey ones in Figure 4.) Consequently, we have the

following corollary.

Corollary 17. The random variable Tn for the number of terminal chords asymp-

totically has a Gaussian limit law with a mean and a variance equivalent to ln.n/.

Now let us consider G1;n, the random variable on connected diagrams with n

chords that counts the pairs of terminal chords that are adjacent in the intersection

order. Equivalently, G1;n counts the number of terminal chords c such that the

chord that precedes c in the intersection order is also terminal. We can then notice

that decompositions of diagrams from C1 and C2 do not induce such terminal

chords (for the former, the only apparent chord is not terminal; for the latter; the

chord that precedes the terminal chord is the root chord, which is not terminal),

while decompositions for C3 do (the chord that precedes the terminal chord is

the last chord of C3 which is terminal – the last chord of a connected diagram

is always terminal). Therefore, we have G1;n D f .Xn/ with �1 D �2 D 0 and

�3 D 1, which gives the following result.

Corollary 18. The random variable G1;n for the pairs of terminal chords that are

adjacent for the intersection order has a Gaussian limit law with a mean and a

variance asymptotically equivalent to ln.n/
2

.
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Remark 3. It is worth noting that the standard theory cannot be used directly.

Indeed, the main obstacle is the non-analyticity of the ordinary generating func-

tions, which a priori prevents any use of complex analysis. For instance, if we

consider C.z; u/ the generating function of connected diagrams, where z refers to

the number of chords and u to the number of terminal chords, this series satis�es

the di�erential equation (which can be established by a straightforward combina-

torial speci�cation – see [8])

C.z; u/ D z u C z
2z @C

@z
.z; u/ � C.z; u/

1 � 2z @C
@z

.z; u/ C C.z; u/
:

We can solve this non-linear di�erential equation (to some extent – the solution

can be implicitly de�ned in terms of the Whittaker functions) but it seems to be

impossible to deduce anything from there.

4.2. Proof of Theorem 16. First of all, remark that we can assume that �1 D 0

without any lost of generality. Indeed, we can study Qf .Xn/ WD f .Xn/ � �1 n

instead of f .Xn/. The new function Qf satis�es the conditions of Theorem 16

where the new set of parameters Q�1; Q�2; Q�3 is equal to 0, �2 � �1, �3 � �1. From

the rest of this subsection, we suppose �1 D 0.

Before presenting the idea of the proof of Theorem 16, let us state an asymptotic

equation governing the probabilities P.f .Xn/ D k/, that we denote shorthand

pn;k .

Lemma 19. Let f and Xn as stated by Theorem 16 with �1 D 0, and let pn;k

denote P.f .Xn/ D k/. Then, when n goes to in�nity,

pn;k D .1 � n�1/pn�1;k C n�1

2
.pn�2;k��2

C pn�2;k��3
/ C O.n�2/: (15)

Proof. Under the condition Xn 2 C1, the probability that f .Xn/ equals k is

pn�1;k . Indeed, removing the root chord from Xn gives a uniform connected

diagram C1 with n�1 chords such that f .Xn/ D f .C1/ (since �1 D 0). Similarly,

the probability that f .Xn/ equals k under the condition Xn 2 Ci , with i D 2 or 3,

is pn�2;k��i
. This shows that

pn;k D P.Xn 2 C1/pn�1;k C P.Xn 2 C2/pn�2;k��2

C P.Xn 2 C3/pn�2;k��3
C P

�

Xn …
[

iD1;2;3

Ci and f .Xn/ D k
�
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We can then see that P.Xn 2 C1/ D .2n � 3/ cn�1

cn
since the number of diagrams

of size n in C1 is equal to the number of size of connected diagram of size n � 1

(namely cn�1) times the number of ways of inserting the root chord in this diagram

(2n � 3 ways to do it). By Proposition 8, we deduce that P.Xn 2 C1/ D
1 � n�1 C O.n�2/. Similarly, P.Xn 2 C2/ D P.Xn 2 C3/ D .2 n � 5/ cn�2

cn
D

n�1=2 C O.n�2/: Finally, we deduce

P

�

Xn …
[

iD1;2;3

Ci and f .Xn/ D k
�

� 1 �
X

iD1;2;3

P.Xn 2 Ci / D O.n�2/;

which proves the lemma. �

Lemma 19 suggests that the recursive equation relating the numbers pn;k is

easy to study (mainly because it almost involves polynomial coe�cients), but the

presence of the error term O.n�2/ makes the analysis tricky. The idea then consists

in forgetting this term and studying the sequences .qn;k/ de�ned by

qn;k D .1 � n�1/qn�1;k C n�1

2
.qn�2;k��2

C qn�2;k��3
/: (16)

After that, we �nd a relation between the sequences .qn;k/ and the original se-

quence .pn;k/, which terminates the proof.

Remark that if .qn0;k/k and .qn0C1;k/k de�ne two probability distributions (i.e.
P

k qn0;k D
P

k qn0C1;k D 1, and qn0;k and qn0C1;k are non-negative for every

k), then by a simple induction, .qn;k/k also de�nes a probability distribution for

all integers n � n0. In this case, we can de�ne for every n � n0 a random variable

Yn such that P.Yn D k/ D qn;k. The following lemma states that Yn tends to a

Gaussian law.

Lemma 20. Set n0 � 0. Let us consider .qn;k/n�n0;k�0 a sequence of numbers

that:

� de�nes a probability distribution,

� satis�es (16) after n � n0 C 2,

� has a �nite support when n D n0 and n D n0 C 1 (that is, the number of k

such that qn;k ¤ 0 is �nite).

If Yn denotes the random variable de�ned as P.Yn D k/ D qn;k, then Yn�� ln.n/

�
p

ln.n/

converges in distribution to a standard Gaussian law, where � D �2=2 C �3=2

and �2 D �2
2=2 C �2

3=2.
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The subtlety of this lemma lies in the fact that we consider sequences .qn;k/

that are only de�ned after some �xed number n0, without any initial condition.

This �exibility on n0 will be crucial for the �nal proof.

Proof. We show here that the generating function of the numbers qn;k satis�es

the hypotheses of the Quasi-Powers theorem (Theorem 7).

Step 1 : completing the sequence. We �rst complete the sequence .qn;k/

so that it satis�es (16) for every n � 0. To do so, we de�ne qn;k for n 2
¹0; : : : ; n0 � 1º by considering (16) as a backward recurrence:

qn�2;k��3
D 2n qn;k C 2.1 � n/qn�1;k � qn�2;k��2

;

with initial condition qn;0 D 0 for every n 2 ¹0; : : : ; n0 � 1º. (We have assumed

that �3 is smaller than �2. If it is not the case, we can still swap the roles of �2 and

�3.) Some subtleties appear here. First, the sequence .qn;k/n�0 thus completed

can now take negative values. This will force us to go back to the non-completed

probability sequence .qn;k/n�n0
to use the Quasi-Powers theorem. Secondly, if

�2 ¤ �3, the support is not necessarily �nite any more. It will add some di�culty

to prove the analyticity in u required by the Quasi-Powers theorem, which justi�es

the next item.

Step 2: proving the analyticity of the coefficients. We show

here that qn.u/, de�ned as
P

k�0 qn;kuk , is analytic at u D 1 for every n �
n0 C 1. It holds for n D n0 and n D n0 C 1 because by assumption, qn.u/

is a polynomial (the support of .qn;k/k is �nite). For the numbers smaller than

n0, we show by induction on ` 2 ¹0; : : : ; n0º that the quantity r`.u/, de�ned as

.u�2 Cu�3/`qn0�`.u/, is a polynomial. Indeed, we observe that (16) can be written

as

.u�2 C u�3/qn�2.u/ D 2n qn.u/ C 2 .1 � n/ qn�1.u/;

which implies for every ` � 0 by multiplying both sides by .u�2 C u�3/`�1:

r`.u/ D 2.n0 � ` C 2/.u�2 C u�3/r`�2.u/ � 2 .n0 � ` C 1/r`�1.u/:

The last equality shows that the induction hypothesis is preserved, so by induction

(the base case ` D 0 and ` D 1 are obvious), the series r`.u/ is polynomial for

every ` 2 ¹0; : : : ; n0º. In particular, it means that qn.u/ is analytic at 1 for every

0 � n � n0.
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Step 3: solving the differential equation. Let us consider

Q.z; u/ WD
X

n;k�0

qn;kzn uk

the completed generating function of the numbers qn;k. In the same spirit as the

proof of Proposition 1, equation (16) can be translated in terms of a di�erential

equation on Q.z; u/:

.1 � z/
@Q

@z
.z; u/ � z

2
.u�2 C u�3/Q.z; u/ D q1.u/;

where q1.u/ is the coe�cient of z1 in Q.z; u/. This equation has for solution

Q.z; u/ D q0.u/e�˛.u/z.1 � z/�˛.u/

C q1.u/e�˛.u/z .1 � z/�˛.u/

Z z

0

e˛.u/x .1 � x/˛.u/�1dx;
(17)

where ˛.u/ WD .u�2 Cu�3/=2 and q0.u/ is the constant coe�cient in z of Q.z; u/.

Step 4: finding a representation of Q.z; u/ . Let us prove that Q.z; u/

has a representation of the form

Q.z; u/ D A.z; u/ C B.z; u/ .1 � z/�˛.u/:

We observe by a simple calculation that an antiderivative for e˛.u/z .1 � z/˛.u/�1

is given by

�e˛.u/
X

k�0

.1 � z/˛.u/Ck

.˛.u/ C k/kŠ
.�˛.u//k:

Thus, if H.z; u/ denotes the series
P

k�0 zk=..u C k/kŠ/ (which is analytic for

every z and for u D 1), then (17) can be put into the form

Q.z; u/ D �q1.u/ e˛.u/.1�z/ H.˛.u/z � ˛.u/; ˛.u//

C .q0.u/ C q1.u/e˛.u/H.�˛.u/; ˛.u///e�˛.u/z.1 � z/˛.u/;

which is exactly the wanted representation.

Step 5: application of the quasi-powers theorem. As announced

in Step 1, we use the quasi-powers theorem (Theorem 7) not on Q.z; u/ (since it

could have negative coe�cients), but on the non-completed probability generating

function
P

n�n0
qn;kznuk . The latter function has a representation of the form

A.z; u/ C B.z; u/ .1 � z/�˛.u/ since it di�ers from Q.z; u/ by an analytic function

which is here
Pn0�1

nD0 qn.u/zn. Moreover, it is analytic at .0; 0/ and it has non-

negative coe�cients. The variability condition is also satis�ed since ˛0.1/ C
˛00.1/ D �2

2=2 C �2
3=2. The Quasi-Power Theorem thus proves that Yn converges

to a Gaussian limit law with the announced properties. �
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The next lemma, which is quite technical, shows how the error in O.n�2/

from (15) is propagated over the di�erences pn;k � qn;k, when n goes to C1.

Lemma 21. There exists a family of constants Mn;k;` with n0 C 2 � ` � n and a

constant M such that

� for every n � ` � n0 C 2,

X

k�0

Mn;k;` � M I

� for every n � n0 and k positive,

jpn;k � qn;kj � max
k�0

jpn0;k � qn0;k j C max
k�0

jpn0C1;k � qn0C1;k j C
n

X

`Dn0C2

Mn;k;`

`2
I

where pn;k is de�ned by Lemma 19 and qn;k can be any sequence de�ned by

Lemma 20. (In other words, M and the constants Mn;k;` do not depend on the

sequence qn;k.)

Proof. The lemma is proved by an induction on n. The statement is obvious for

n D n0 and n D n0 C 1.

For n > n0 C 1, the combination of (15) and (16) leads to the inequality

jpn;k � qn;kj � .1 � n�1/jpn�1;k � qn�1;kj

C n�1

2
jpn�2;k��2

� qn�2;k��2
j

C n�1

2
jpn�2;k��3

� qn�2;k��3
j C O.n�2/:

Referring to the proof of Lemma 19, we see that the error O.n�2/ in (15) corre-

sponds to the probability P.Xn …
S

iD1;2;3 Ci and f .Xn/ D k/. This number is

also �n;k � P.Xn …
S

iD1;2;3 Ci /, where �n;k is the conditional probability

�n;k WD P

�

f .Xn/ D kW Xn …
[

iD1;2;3

Ci

�

:

(We have
P

k�0 �n;k D 1.) We have already stated that P.Xn …
S

iD1;2;3 Ci / D
O.n�2/, so there exists a constant M such that P.Xn …

S

iD1;2;3 Ci / is smaller

than M n�2 for every n � 0. Using that fact and the induction hypothesis, the
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previous inequality becomes

jpn;k � qn;kj � .1 � n�1/
�

x C
n�1
X

`Dn0C2

Mn�1;k;`

`2

�

C n�1

2

�

x C
n�2
X

`Dn0C2

Mn�2;k��2 ;`

`2

�

C n�1

2

�

x C
n�2
X

`Dn0C2

Mn�2;k��3;`

`2

�

C M �n;k n�2;

where x WD maxk�0 jpn0;k � qn0;kj C maxk�0 jpn0C1;k � qn0C1;kj. Reorganising

the terms, we �nd that

jpn;k � qn;kj � x C
n

X

`Dn0C2

Mn;k;`

`2
;

where we have set

Mn;k;n D M�n;k ; Mn;k;n�1 D .1 � n�1/Mn�1;k;n�1;

and for n0 C 2 � ` � n � 2,

Mn;k;` D .1 � n�1/Mn�1;k;` C n�1

2
Mn�2;k��2 ;` C n�1

2
Mn�2;k��3;`:

We have
P

k�0 Mn;k;n D M since
P

k�0 �n;k D 1. As for n0 C 2 � ` � n � 1,

the induction hypothesis shows that2

X

k�0

Mn;k;` � .1 � n�1/M C n�1

2
M C n�1

2
M D M:

The induction is thus proved. �

We now have all the tools we need to show Theorem 16.

Proof of Theorem 16. We want to prove that f .Xn/�� ln.n/

�
p

ln.n/
converges in distribu-

tion to a standard Gaussian law, that is, for every " > 0 and every real number t ,

there exists n1 � 0 such that for every n � n1;

ˇ

ˇ

ˇP

�f .Xn/ � � ln.n/

�
p

ln.n/
� t

�

� FN.t /
ˇ

ˇ

ˇ � ";

where FN.t / denotes the cumulative distribution function of the standard Gaussian

law.

2 The change of variable k k � �i implies
X

k�0

Mn�2;k��i ;` D
X

k�0

Mn�2;k;` �M:



Terminal chords in connected chord diagrams 445

1. Definition of n0 . The series
P

`�1 `�2 is convergent, hence its remainder

tends to 0. So there exists a number n0 such that for every n � n0 C 2,

n
X

`Dn0C2

M

`2
�
C1
X

`Dn0C2

M

`2
� "

2
; (18)

where M is the constant de�ned by Lemma 21.

2. Definition of an adapted sequence .qn;k/ . Let us de�ne a sequence

.qn;k/ satisfying (16) with initial conditions qn0;k WD pn0;k and qn0C1;k WD
pn0C1;k for every k � 0. (The sequence .qn;k/ satis�es Lemma 20. The �niteness

of the support comes from the fact there cannot be more integers k such that

pn;k ¤ 0 than the number of connected diagrams of size n.)

3. Definition of n1 and first piece of the inequality. We know

by Lemma 20 that the variable Yn�� ln.n/

�
p

ln.n/
converges in distribution to the standard

Gaussian law. So there exists n1 � n0 C 2 such that for every n � n1,
ˇ

ˇ

ˇ
P

�Yn � � ln.n/

�
p

ln.n/
� t

�

� FN.t /
ˇ

ˇ

ˇ
� "

2
: (19)

4. Second piece of the inequality. By de�nition, we have for every

n � n1,
ˇ

ˇ

ˇ
P

�f .Xn/ � � ln.n/

�
p

ln.n/
� t

�

� P

�Yn � � ln.n/

�
p

ln.n/
� t

�ˇ

ˇ

ˇ
D

ˇ

ˇ

ˇ

X

0�k�� ln.n/Ct�
p

ln.n/

.pn;k � qn;k/
ˇ

ˇ

ˇ

�
X

k�0

jpn;k � qn;kj:

Lemma 21 yields an upper bound for the di�erence pn;k � qn;k, so the previous

number is bounded by

X

k�0

�

max
k�0

jpn0;k � qn0;k j C max
k�0

jpn0C1;k � qn0C1;kj C
n

X

`Dn0C2

Mn;k;`

`2

�

:

However, by de�nition of .qn;k/,

max
k�0

jpn0;k � qn0;kj D max
k�0

jpn0C1;k � qn0C1;k j D 0:

We can then swap the sum over k and the sum over `, and use the condition
P

k�0 Mn;k;` � M from Lemma (21) to obtain

ˇ

ˇ

ˇP

�f .Xn/ � � ln.n/

�
p

ln.n/
� t

�

� P

�Yn � � ln.n/

�
p

ln.n/
� t

�ˇ

ˇ

ˇ �
n

X

`Dn0C2

M

`2
� "

2
; (20)

where the last inequality comes from (18).
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5. Conclusion. The conjunction of (19) and (20) shows via a triangle inequality

that
ˇ

ˇ

ˇP

�f .Xn/ � � ln.n/

�
p

ln.n/
� t

�

� FN.t /
ˇ

ˇ

ˇ � "

2
C "

2
D "

for every n � n1, as we had to prove. �

4.3. Position of the �rst terminal chord. In this subsection, we are interested

by the average position of the �rst terminal chord for the intersection order. This

parameter is relevant since it appears in the sum (2) characterizing the Green

function solution of (1).

As an introductory remark, note that the �rst terminal chord is always the chord

with the rightmost endpoint, as stated by the following proposition.

Proposition 22. For every connected diagram, the �rst terminal chord is the chord

that contains the last point of the diagram.

Proof. We proceed by induction on the number of chords. The property obviously

holds when there is only one chord. Assuming now that there are several chords

in the diagram, we remove the root chord from the diagram, which creates one or

several connected components. By de�nition of the intersection order, the chords

in the topmost component, which we denote C1, are smaller than the other ones.

But because it is the topmost component, C1 must also contain the chord with

the rightmost endpoint. Therefore, by using the induction hypothesis, the latter

chord is the �rst terminal chord of C1, hence the �rst terminal chord of the whole

original diagram. �

Now let us turn on fn, the random variable that returns the position of the �rst

terminal chord, under the uniform distribution on connected chord diagrams of

size n.

Note that fn does not satisfy the hypotheses of Theorem 16. Indeed, we can

observe that the position of the �rst terminal chord for every diagram in C2 is 2,

regardless of the position of the �rst terminal chord of C2.

This remark can be checked experimentally; the observed limit law is not

Gaussian. In fact, it seems that fn=n converges to a law with a density, as shown

by Figure 5. We think that this density is .1 � s/�1=2=2, with s 2 Œ0; 1/. To our

knowledge, such a limit law has never been observed on a class of combinatorial

objects. This should be the subject of future work.

We calculate here the expected value of this limit law.
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Figure 5. Graph of n � P.fn=n D k/ in terms of k, for n D 200. If fn have a

local limit law as we expect (cf [8, p. 695] for a de�nition of local limit law), then

n � P.x � fn=n � x C dx/ should converge to the density of the limit law of fn=n

at the point x.

Theorem 23. Let fn be the position of the �rst terminal chord of a uniformly

distributed random connected chord diagram of size n. The expected value of fn

is asymptotically equivalent to 2n
3

.

Once again, the proof is based on the approximation of fn by another law which

is easier to study. If we denote by b.C / the position of the �rst terminal chord of

a connected diagram C , and by C1, C2, C3 the three sets of connected diagrams

de�ned in the beginning of this section, we can see that

� b.C / D b.C1/ C 1 for C 2 C1;

� b.C / D 2 for C 2 C2;

� b.C / D b.C3/ C 1 for C 2 C3.

A direct adaptation of the proof of Lemma 19 shows then for n � 2, and k 2
¹3; : : : ; nº

P.fn D k/ D
�

1 � 1

n

�

P.fn�1 D k � 1/ C 1

2n
P.fn�2 D k � 1/ C O.n�2/; (21)

and

P.fn D 2/ D 1

2n
C O.n�2/:
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We then de�ne the numbers gn;k thanks to the recurrence

gn;k WD
�

1 � 1

n

�

gn�1;k�1 C 1

2n
gn�2;k�1; gn;2 WD 1

2n
(22)

for n � 4, and with initial conditions gn;k WD P.fn D k/ for n 2 ¹1; 2; 3º. Remark

by a straightforward induction that
P

k�0 gn;k D 1 for every integer n.

We start by proving that the expected values of fn and gn;k coincide asymp-

totically.

Lemma 24. We have

E .fn/ �
X

k�0

k gn;k D o.n/:

Proof. Set "n WD E .fn/ �
P

k�0 k gn;k . For n � 2, the law fn and the numbers

gn;k have ¹2; : : : ; nº as a support, hence "n D
Pn

kD2 k .P.fn D k/ � gn;k/.

Using equations (21) and (22), we can then deduce that "n D e1 C e2 C e3 for

n � 4, where

e1 WD
�

1 � 1

n

�

n
X

kD3

k.P.fn�1 D k � 1/ � gn�1;k�1/;

e2 WD 1

2n

n
X

kD3

k.P.fn�2 D k � 1/ � gn�2;k�1/;

e3 WD 2.P.fn D 2/ � gn;2/ C
n

X

kD2

O.n�2/ D O.n�1/;

but we can note that

e1

�

1 � 1

n

��1

D
n

X

kD3

.k � 1/.P.fn�1 D k � 1/ � gn�1;k�1/

C
n

X

kD3

P.fn�1 D k � 1/ �
n

X

kD3

gn�1;k�1

D "n�1 C 1 � 1

D "n�1:

Similarly, e2 D 1

2n
"n�2 so that

"n D
�

1 � 1

n

�

"n�1 C 1

2n
"n�2 C O.n�1/:
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The sequence "n=n is bounded (because �n � fn � gn � n), so has a limit

point, let us say, `. We have then

` D .n � 1/2

n2
` C n � 2

2n2
` C O.n�2/:

The right-side member is asymptotically equivalent to ` � 3`=.2n/. We must then

have ` D 0 so that this asymptotic estimate coincides with `. Consequently, the

sequence "n=n is bounded and have only one limit point, which is 0. Thus "n=n

tends to 0, which means that E .fn/ �
P

k�0 k gn;k D o.n/. �

The next step is the explicit calculation of the generating function of the

numbers gn;k .

Lemma 25. The ordinary generating function G.z; u/ of the numbers gn;k ,

namely
P

n;k�0 gn;kznuk ; is equal to

G.z; u/ D e�
z
2 .1 � uz/�

1
2u

Z z

0

P.x; u/
e

x
2

1 � x
.1 � ux/

1
2u
�1dx; (23)

where P.x; u/ D .1 � x/.u C xu2 C x2u2=4 C x2u3=4/ C x3u2=2.

Proof. Using (22), we can check that G.z; u/ satis�es the linear di�erential equa-

tion

uzG.z; u/ C 2.1 � uz/
@G

@z
.z; u/ D u2z2

1 � z
C 2u C 2u2z C 1

2
u2z2 � 1

2
z2u3:

We then verify that this di�erential equation is solved by (23). �

Proof of Theorem 23. The sum
P

k�0 kgn;k is the nth coe�cient of the series
@G
@u

.z; 1/, where G is the generating function de�ned in Lemma 25. We are going

to use the transfer theorem on @G
@u

.z; 1/. This series does not have a non-integral

expression, but it is still possible to compute its singular expansion.

Write G.z; u/ D h1.z; u/
R z

0
h2.x; u/dx; where

h1.z; u/ D e�
z
2 .1 � uz/�

1
2u ; h2.x; u/ D P.x; u/

e
x
2

1 � x
.1 � ux/

1
2u
�1:

We have

@G

@u
.z; 1/ D @h1

@u
.z; 1/

Z z

0

h2.x; 1/dx C h1.z; 1/

Z z

0

@h2

@u
.x; 1/dx:
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(Since we only have analytic functions, integration and di�erentiation with respect

to u are swappable.) One can explicitly compute the �rst part:

@h1

@u
.z; 1/

Z z

0

h2.x; 1/dx D z2

2
.1 � z/�2 C z

2
ln.1 � z/.1 � z/�1;

which is asymptotically equivalent to .1�z/�2=2 when z approaches 1. Concern-

ing the second part, we calculate @h2

@u
.x; 1/ and observe that

@h2

@u
.x; 1/ � e

1
2

4
.1 � x/�5=2:

We then use Theorem VI.9 from [8, p. 420] to integrate this expansion:

Z z

0

@h2

@u
.x; 1/dx � e

1
2

6
.1 � z/�3=2;

and hence

h1.z; 1/

Z z

0

@h2

@u
.x; 1/dx � 1

6
.1 � z/�2:

Finally we have @G
@u

.z; 1/ � 2
3
.1 � z/�2, so by the transfer theorem, we have

X

k�0

kgn;k � 2

3
n:

We conclude thanks to Lemma 24. �

5. Conclusion

In summary, this document establishes numerous exact and asymptotic results

on connected chord diagrams. It shows how to compute the next-to i -leading

log expansions, along with their asymptotic regimes. It also shows the Gaussian

behaviour of many variables, like the number of terminal chords, and yields their

means.

From a combinatorial point of view, this entire study is interesting on its own. It

develops news methods to analyse parameters in a context which is not favourable

to analytic combinatorics (a priori). Moreover, it displays a non-Gaussian limit

law, which seems to be new, and maybe deserves a deeper study.

Looking at this from a physical perspective, we observe the dominance of f0

and f1, which respectively denote the residue and the constant term of the Laurent

expansion of the regularized Feynman integral of the one loop graph. This is
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particularly striking for the next-to i -leading log expansions, whose asymptotic

behaviour is governed by f0 and f1 (cf (14)). But this dominance can also noted

to a lesser extent to an unrestricted uniform distribution. In fact, by Corolla-

ries 17 and 18, the numbers f0 and f1 are on average exponentiated n � ln n

and ln n=2 times in the monomial f
jC j�k

0

Qk
jD2 ftj�tj �1

, which leaves only ln n=2

extra factors for the other fi (always on average).

To have more information on these extra factors, it would be interesting to study

the distribution of the gaps tj � tj�1 other than 1. Conjecturally the number of j

such that tj � tj�1 D `, where ` is �xed, asymptotically behaves like a Gaussian

law with a mean and variance proportional to ln n=n`�1. It should display a double

regime: one is discrete – a gap is equal to 1 with a probability 1=2; the other is

continuous – a gap conditioned to be di�erent from 1 should obey to a continuous

limit law with mean 2 n= ln n. The nature of the variance would be also interesting

to know.

As for the next steps, the authors intend to generalize their results in the light

of [9]. Speci�cally, the generalization should concern any number of primitives

and Dyson–Schwinger equations of various shapes (including the QED shape).
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