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Abstract. We introduce a general model of dimer coverings of certain plane bipartite
graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the
partition function are shown to be isomorphic to certain operators arising in the so-called
boson–fermion correspondence. This allows to reformulate the RYG dimer model as a
Schur process, i.e. as a random sequence of integer partitions subject to some interlacing
conditions.

Beyond the computation of the partition function, we provide an explicit expression
for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG
dimer model. This expression, which is amenable to asymptotic analysis, follows from an
exact combinatorial description of the operators localizing dimers in the transfer-matrix
formalism, and then a suitable application of Wick’s theorem.

Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep
tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide
new derivations of the edge-probability generating function, of the biased creation rate, of
the inverse Kasteleyn matrix and of the arctic circle theorem.
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1. Introduction

The two-dimensional dimer model is arguably the most studied exactly solvable
model in statistical mechanics (note that it encompasses, in a sense, the equally
well-known two-dimensional Ising model), see for instance [33, Chapter 5] for a
review of the seminal works of Kasteleyn, Temperley and Fisher, and the intro-
duction of [1] for a nice survey of the more recent literature. Dimer con�gura-
tions are also known as perfect matchings in combinatorics and theoretical com-
puter science. Actually, perhaps the oldest exact solution of a 2D dimer model
is MacMahon’s enumeration of plane partitions [37], as these were later identi-
�ed with lozenge tilings, or alternatively dimer con�gurations on the hexagonal
lattice.

Kasteleyn’s method allows to reduce the problem of computing the partition
function (and the correlation functions) of the dimer model on any �nite weighted
planar graph (assuming that the dimers interact only through their hard-core
repulsion) to the evaluation of a determinant (or Pfa�an) whose size is linear
in the number of vertices of the graph. Under the usual assumption that the graph
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is periodic in two directions, one can then evaluate this determinant and take
the thermodynamic limit to obtain the free energy, study phase transitions, etc.
In this paper, we consider a dimer model on a new family of graphs, called rail
yard graphs, which are periodic in one direction but not in the other.

One of our motivations is that the rail yard graph dimer model encompasses
both the plane partitions mentioned above and another celebrated model, namely
domino tilings of the Aztec diamond [22, 23] (corresponding to, roughly speaking,
dimer con�gurations on the portion of the square lattice �tting into a large square
tilted by 45ı). What relates these two models is that they can be seen as Schur pro-
cesses [42], that is to say random sequences of integer partitions whose transition
probabilities are given by Schur functions. If the relation between plane partitions
and Schur processes was explicited by Okounkov and Reshetikhin, the case of the
Aztec diamond appears implicitly in [28] and has, to the best of our knowledge,
remained in such implicit form until [5], of which this paper is a continuation
(see below). The interest of making the connection between dimer models and
Schur processes explicit is that it allows to use an operator formalism coming from
the boson–fermion correspondence (see the references given at the beginning of
Section 3) which is both powerful and intuitive, as the operators are nothing but
transfer matrices or observables satisfying some particularly simple commutation
relations. Furthermore it allows us to say that the RYG dimer model forms an-
other situation, besides the 2D Ising model [21], where “bosonization” works at
an exact discrete level. The rail yard graph dimer model corresponds essentially
to the most general Schur process with nonnegative transition probabilities.

Before describing our work in more detail, let us further discuss some his-
tory and background behind it. Bender and Knuth [8] made the link between
plane partitions and the Robinson–Schensted–Knuth correspondence, see also
[50, Chapter 7]. Okounkov [40, 41] used the boson–fermion correspondence to
de�ne the so-called Schur measure over integer partitions, and study its correla-
tion functions. The Schur process [42, 43] is a time-dependent version of this
measure, that can also be viewed as a system of particles with certain dynamics.
It contains as a special case a generalization of plane partitions, namely plane
partitions with an evolving “back wall.” Numerous papers followed on this sub-
ject [10, 6, 11, 9, 3, 7] and on its extension to the Hall–Littlewood and Macdonald
cases [52, 24, 53, 39, 16, 4].

In [5], three authors of the present paper introduced a general class of domino
tilings called steep tilings, encompassing both tilings of the Aztec diamond and
the so-called pyramid partitions [35, 56]. It was shown in [5] that steep tilings
also correspond to Schur processes and, using the vertex operator formalism, their
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partition functions (of the “hook formula” type) were computed for a variety of
boundary conditions. Since both (generalized) plane partitions and steep tilings
are special instances of the Schur process, it is then natural to ask if there is a
more general model of tilings or dimer coverings that would reformulate the Schur
process in full generality, at least when the number of underlying parameters is
�nite. Such a model was sketched in [5, Section 7], that can be viewed as a
preliminary attempt at what we reach in the present paper.

The rail yard graphs (RYG) that we introduce here are in�nite bipartite plane
graphs, obtained by the “concatenation” of column-shaped elementary graphs,
and come with a family of admissible dimer coverings. The RYG dimer model
is then a probability measure over such coverings. The elementary graphs can be
of four types that correspond to the four possible types of “atomic” transitions in
the Schur process. For the special families of RYG that correspond to the special
families of Schur processes considered in [42, 5], we recover generalized plane
partitions and steep tilings, respectively. As we hope will be apparent in this
paper, RYG provide a nice and natural formulation of the Schur process in terms
of dimers, in a well-adapted system of coordinates, much simpler than the one
from [5, Section 7]. Having shown the correspondence between rail yard graphs
and Schur process, we can then apply the same classical tools as in [42] to get
explicitly the partition functions in a nice (hook-type) product form. Even more,
we can interpret these partition functions in terms of a combinatorial parameter
related to the �ip operation on coverings.

Beyond the partition function, we compute all the dimer correlation functions,
which requires the introduction of suitably de�ned observables (or constrained
transfer matrices) that enable us to localize, in the algebraic setting, a given set
of dimers. To prevent any confusion, let us note that the particle correlations
computed in [42] for the Schur process, when translated in terms of RYG, give
only a special case of this result. Indeed, as we will see, there are three kinds
of dimers in a RYG, and particles correspond to one of the three kinds (so in
our setting the correlations results of [42] only describe correlations between
dimers of the �rst kind). Once the observables are constructed, we use classical
fermionic tools such as Wick’s formula to evaluate the correlation functions in
an explicit determinantal form. We also make the connection with the general
Kasteleyn theory: it is a general fact that correlations between dimers on plane
bipartite graphs have a determinantal form, underlaid by an inverse of the so-called
Kasteleyn matrix of the model. For RYG, we show that the determinantal form we
obtain by our approach indeed gives an inverse Kasteleyn matrix, as was remarked
in [43] for the case of skew plane partitions, see also [6, Section 5]. Our approach
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generalizes both this case and that of the Aztec diamond (for the so-called qvol

weighting), treated previously in [17] by a very tricky and somehow mysterious
calculation. As further applications concerning the Aztec diamond, we rederive
the so-called edge-probability generating function and biased creation rate, and
the arctic circle theorem using the general saddle-point techniques of [42].

We now present the structure of the paper. Section 2 is devoted to the basic
de�nitions (rail yard graphs in Subsection 2.1, their dimer coverings in Subsec-
tion 2.2, �ips in Subsection 2.3) and to the statement of our main results, namely
the expression for the partition function (Subsection 2.4) and for the dimer cor-
relation functions (Subsection 2.5). Section 3 introduces bosonic operators (Sub-
section 3.1) that act as transfer matrices in the RYG dimer model (Subsection 3.2),
allowing to compute e�ciently the partition function (Subsection 3.3). Section 4
considers fermionic operators (Subsection 4.1) that play the role of observables
in the RYG dimer model (Subsection 4.2). Rewriting the correlation functions in
the “Heisenberg picture” (Subsection 4.3), we derive their expression in the form
of a determinant (Subsection 4.4), before making the connection with Kasteleyn’s
theory (Subsection 4.5). Section 5 discusses the previously known cases: plane
partitions and lozenge tilings (Subsection 5.1) and steep domino tilings (Subsec-
tion 5.2). In Section 6 we address the speci�c case of the Aztec diamond, for which
we provide new derivations of the edge-probability generating function and biased
creation rate (Subsection 6.1), of the inverse Kasteleyn matrix (Subsection 6.2) and
of the arctic circle theorem (Subsection 6.3). Concluding remarks are gathered in
Section 7. Some auxiliary material is given in the appendix: a combinatorial proof
of the bosonic-fermionic commutation relations (Appendix A) and a rederivation
of Wick’s formula (Appendix B).

After the completion of this work, Alexei Borodin and Senya Shlosman in-
formed us (by private communication) that graphs similar to those described in
Section 2.1 were suggested to them by Richard Kenyon, providing a dimer inter-
pretation of the ˛ˇ-paths considered in [14].

2. Basic de�nitions and main results

2.1. Rail yard graphs. We start by de�ning the underlying graph of our dimer
model. We �x two integers `; r such that ` � r , and denote by Œ`; : : : ; r � the set of
integers between ` and r . We then consider two binary sequences indexed by the
elements of Œ`; : : : ; r �:

� the LR sequence
N
a D .a`; a`C1; : : : ; ar/ 2 ¹L;RºŒ`;:::;r�,

� the sign sequence
N
b D .b`; b`C1; : : : ; br / 2 ¹C;�ºŒ`;:::;r�.
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The rail yard graph associated with the integers ` and r , the LR sequence
N
a and

the sign sequence
N
b, and denoted by RYG.`; r;

N
a;

N
b/, is the bipartite plane graph

de�ned as follows. Its vertex set is Œ2` � 1; : : : ; 2r C 1� � .Z C 1=2/, and we
say that a vertex is even (resp. odd) if its abscissa is an even (resp. odd) integer.
Each even vertex .2m; y/, m 2 Œ`; : : : ; r �, is then incident to three edges: two
horizontal edges connecting it to the odd vertices .2m � 1; y/ and .2m C 1; y/,
and one diagonal edge connecting it to

� the odd vertex .2m� 1; y C 1/ if am D L and bm D C,

� the odd vertex .2m� 1; y � 1/ if am D L and bm D �,

� the odd vertex .2mC 1; y C 1/ if am D R and bm D C,

� the odd vertex .2mC 1; y � 1/ if am D R and bm D �.

Hopefully, this explains our motivations for using the symbols L;R and C;�.
Drawing the edges straight, the graph is indeed bipartite and plane by construction.
For e an edge, we write e D .˛; ˇ/ to mean that ˛ is the even endpoint of e, and
ˇ its odd endpoint. For v a vertex, we will denote by vx 2 Z its abscissa, and by
vy 2 Z C 1=2 its ordinate.

Figure 1 displays the rail yard graph associated with the LR sequenceRLRRLL
and the sign sequence C C � C �� (with ` D 1, r D 6). Observe that a rail yard
graph is in�nite and 1-periodic in the vertical direction. When ` D r , the LR
and sign sequences both consist of a single element, and the corresponding rail
yard graph, which is said elementary, is of one of four possible types, see Fig-
ure 2. Given two rail yard graphs RYG.`; r;

N
a;

N
b/ and RYG.`0; r 0;

N
a0;

N
b0/ such that

`0 D r C 1, we de�ne their concatenation by taking the union of their vertex and
edge sets. It is nothing but the rail yard graph RYG.`; r 0;

N
a

N
a0;

N
b

N
b0/ where

N
a

N
a0 and

N
b

N
b0 denote the concatenations of the LR and sign sequences. Clearly, a general

rail yard graph is obtained by concatenating elementary ones.

The left boundary (resp. right boundary) of a rail yard graph consists of all
odd vertices with abscissa 2`� 1 (resp. 2r C 1). Vertices which do not belong to
the boundaries are said inner. When drawn in the plane, the graph delimits some
faces, and the bounded ones are called inner faces. Note that inner faces may
be incident to 4, 6 or 8 edges. Finally, observe that our de�nition works equally
well if we take ` D �1 and/or r D C1, thus considering in�nite LR and sign
sequences. In that case, the rail yard graph “�lls” either the whole plane or a
half-plane, boundaries being sent to in�nity.
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Figure 1. The rail yard graph associated with the LR sequence RLRRLR and the sign
sequence C C � C �� (with ` D 1, r D 6). It is in�nite and periodic in the vertical
direction, but �nite in the horizontal direction.

2.2. Admissible and pure dimer coverings. We now turn to the character-
ization of the con�gurations of our dimer model. Given a rail yard graph
RYG.`; r;

N
a;

N
b/with `; r �nite, an admissible dimer covering is a partial matching

of this graph such that

� each inner vertex is covered (i.e. matched),

� there exists an integer N � 0 such that: any left boundary vertex .2`� 1; y/

is covered for y > N and uncovered for y < �N , any right boundary vertex
.2r C 1; y/ is covered for y < �N and uncovered for y > N ,

� only a �nite number of diagonal edges are covered.
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Figure 2. The four elementary rail yard graphs LC, L�, RC, and R� (up to horizontal
translation).

A pure dimer covering is an admissible dimer covering for which the second
property above holds for N D 0: in other words the uncovered vertices are
precisely the left boundary vertices with negative ordinate and the right boundary
vertices with positive ordinate (see Figure 4). The fundamental dimer covering is
the pure dimer covering where no diagonal edge is covered (it is not di�cult to
check its existence and uniqueness e.g. by induction on r � `). Observe that any
admissible dimer covering coincides with the fundamental dimer covering outside
a �nite region. An elementary dimer covering is an admissible dimer covering of
an elementary rail yard graph (see Figure 3).

Similarly to rail yard graphs, admissible dimer coverings behave nicely with
respect to concatenation. More precisely, consider two rail yard graphs G D
RYG.`; r;

N
a;

N
b/ and G0 D RYG.`0; r 0;

N
a0;

N
b0/ which are concatenable (i.e. `0 D

r C 1) and let GG0 be their concatenation. Let C and C 0 be admissible dimer
coverings of respectively G and G0: we say that C and C 0 are compatible if, for
each y 2 ZC1=2, the vertex .2rC1; y/ D .2`0 �1; y/ is covered in C if and only
if it is not covered in C 0. In that case, by taking the union of C and C 0, we obtain
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Figure 3. Some elementary dimer coverings. The underlying elementary rail yard graph
has type RC in the �rst two cases, and R�, LC, and L�, in the three others, from left to
right. Outside of the displayed region, the con�guration is identical towards the top (resp.
bottom) on each horizontal level to what it is on the topmost (resp. bottommost) displayed
level.

an admissible dimer covering of GG0, which we denote by CC 0. Conversely, any
admissible dimer covering can be decomposed as the concatenation of elementary
dimer coverings which are sequentially compatible.

It is also interesting to consider the limiting cases ` D �1 and/or r D C1,
which requires a slight adaptation of our de�nitions. An admissible (resp. a pure,
resp. the fundamental) dimer covering is then a matching such that each inner
vertex is covered, and such that there exists �nite integers `0; r 0 such that

� inside the strip Œ2`0 �1; 2r 0 C1��R, we see an admissible (resp. a pure, resp.
the fundamental) dimer covering in the previous sense,

� outside this strip, all covered edges are horizontal.

(Note that this de�nition works in all situations: it coincides with the previous one
when `; r are both �nite.)
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Figure 4. A pure dimer covering of the rail yard graph of Figure 1.

Our motivation for considering pure dimer coverings of rail yard graphs is that
we recover several well-known dimer models as specializations. For instance,
taking r � ` D 2n, a LR sequence of the form LRLRLR � � � and a sign sequence
of the form C � C � C � � � � , the corresponding pure dimer con�gurations are
in bijection with domino tilings of the Aztec diamond of size n. We also recover
plane partitions and so-called pyramid partitions, which requires taking ` D �1
and r D C1: plane partitions are obtained by taking a constant LR sequence and
a sign sequence of the form � � �C C C C � � � � � � � , while pyramid partitions are
obtained by taking an alternating LR sequence (� � �LRLRLRLR � � � ) and the same
sign sequence. We will discuss these specializations in greater detail in Section 5.

2.3. Flips. We now de�ne a local transformation on admissible coverings called
the �ip. Let G be a rail yard graph, C be an admissible covering of G, and let f
be an inner face of G. If exactly half of the edges bordering f belong to C , then
removing these edges from C and replacing them by the other edges bordering f
gives another admissible covering C 0 of G. The operation that replaces C by C 0

is called the �ip of the face f , see Figure 5.
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Figure 5. Examples of �ips. All these �ips are positive when the transformation is made
from left to right.

We say that the �ip of an inner face f is positive if after performing the �ip,
the edges of f that belong to the covering are oriented from odd to even vertices in
counterclockwise direction around f . The �ip is negative otherwise. For example,
each �ip displayed on Figure 5 is positive when performed from left to right.
It follows from [48, Theorem 2] that the positive �ip relation endows the set of
all pure coverings of a given rail yard graph with a distributive lattice structure.
In particular, each rail yard graph has a unique minimal pure covering from which
all other ones can be reached using positive �ips only. The minimal covering is the
only pure covering on which no negative �ip is possible. Using this criterion one
easily checks that the minimal covering coincides with the fundamental covering
de�ned above. The �ip distance between two coverings is the minimal number of
�ips needed to go from one to the other. When one of the two coverings is the
fundamental one, the �ip distance is realized by a sequence that uses positive �ips
only.

2.4. Enumeration. Our main enumerative result is an expression for the par-
tition function of the RYG dimer model, which we now de�ne. Consider a
rail yard graph G D RYG.`; r;

N
a;

N
b/, and a sequence of formal variables

N
x D

.x`; x`C1; : : : ; xr/, where possibly ` D �1 or r D C1. The weight of an admis-
sible dimer covering C of G is then de�ned as

w.C/ D
r

Y

iD`

x
di .C/
i (1)

where di .C / is the number of diagonal dimers in column i (i.e. the number of
covered diagonal edges incident to an even vertex with abscissa 2i). This weight
is well-de�ned since

P

di .C / is �nite by the de�nition of an admissible dimer
covering. The partition function of the multivariate RYG dimer model, denoted
Z.GI

N
x/, is then the sum of the weights of all pure dimer coverings of G.
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Theorem 1. The partition function of the multivariate RYG dimer model reads

Z.GI
N
x/ D

Y

`�i<j �r

bi DC; bj D�

zij (2)

where

zij D

8

<

:

1C xixj if ai ¤ aj ,

.1� xixj /
�1 if ai D aj .

(3)

Remark 2. The partition function is always a well-de�ned power series in the
xi ’s: indeed, all but �nitely many factors contribute a factor 1 to the coe�cient of
a given monomial in (2).

An interesting specialization is the q-RYG dimer model: given a formal vari-
able q, we attach to each con�guration a weight qd with d its �ip distance to the
fundamental one. As explained in Section 3.3 below, this can be achieved by tak-
ing, for all i 2 Œ`; : : : ; r �, xi D qi if bi D �, and xi D 1=qi if bi D C, with
q an indeterminate. A caveat is that, when ` or r is in�nite, this specialization
may be ill-de�ned since an in�nite number of monomials in the xi ’s might spe-
cialize to the same monomial qd . A su�cient condition for the specialization to
be well-de�ned is the following �niteness condition on the sign sequence:

� if ` D �1, then there exists `0 �nite such that bi D C for all i < `0,

� if r D C1, then there exists r 0 �nite such that bi D � for all i > r 0.

(This condition is essentially necessary, because any initial run of � or �nal run
of C in the sign sequence does not contribute to the partition function, and can be
removed without loss of generality: any pure dimer covering coincides with the
fundamental dimer covering in the corresponding regions.)

Theorem 3. Assuming that the �niteness condition holds, the partition function

of the q-RYG dimer model is

Z.GI q/ D
Y

`�i<j �r

bi DC; bj D�

zij (4)

zij D

8

<

:

1C qj �i if ai ¤ aj ,

.1� qj �i /�1 if ai D aj .
(5)

The proofs of Theorems 1 and 3 are given in Section 3.3.
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Remark 4. The product form (4) is strongly reminiscent of a hook-length formula,
upon interpreting the sign sequence as describing the shape of a (possibly in�nite)
Young diagram, see Figure 6. The �niteness condition ensures that there are
�nitely many “hooks” of a given length, and hence that (4) is a well-de�ned formal
power series in q.

Figure 6. The interpretation of Theorem 3 as a hook-length formula. Displaying the sign
sequence

N
b as a lattice path whose horizontal (resp. vertical) steps correspond to C (resp. to

�), one obtains a Young diagram whose boxes are indexed by pairs .i; j / such that i < j ,
bi D C, bj D �. The quantity h D j � i is the “hook-length” of the box. In (4), each box
gives rise to a multiplicative factor zi;j whose value 1C qh or .1 � qh/�1 is determined
by comparing the two terms ai and aj of the LR sequence

N
a.

2.5. Correlations. So far we have introduced the partition function of the RYG
dimer model, which depends on a sequence of formal variables

N
x in general and on

a single variable q in the �ip specialization. For a probabilistic or statistical physics
interpretation, one shall rather consider the xi ’s or q as nonnegative real numbers
such that the sum Z.GI

N
x/ of the weights w.C/ over all pure dimer coverings C

is convergent. As apparent from Theorem 1, this is the case if and only if

xixj < 1 for all i < j such that ai D aj , bi D C and bj D � (6)

and, when ` or r is in�nite,
X

`�i<j �r

bi DC; bj D�

xixj < 1: (7)

In the q-RYG dimer model, (6) is satis�ed whenever q < 1, and (7) amounts to
the �niteness condition de�ned before.
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Assuming that the RYG dimer model is well de�ned, that is to say (6) and (7)

are satis�ed, we may interpret w.C/=Z.GI
N
x/ as the probability of the pure dimer

covering C . For a �nite set E of edges, we denote by PGI
N
x.E/ the probability

that all the edges of E are covered by a dimer. Our main probabilistic result is an
explicit determinantal expression for PGI

N
x.E/, which requires to introduce some

notations. For k; k0 two integers, we set

Fk.z/ D

Y

i W.ai ;bi /D.R;C/

2i<k

.1C xiz/
Y

j W.aj ;bj /D.L;�/

2j >k

�

1 � xj

z

�

Y

i W.ai ;bi /D.L;C/

2i�k

.1� xiz/
Y

j W.aj ;bj /D.R;�/

2j �k

�

1C xj

z

� : (8)

and

Gk;k0.z; w/ D Fk.z/

Fk0.w/

p
zw

z � w
: (9)

Note that all the products in (8) are convergent by (7), hence Fk.z/ is a meromor-
phic function on the whole complex plane, whose all zeros and poles are on the
real axis.

For ˛; ˇ two vertices of G such that ˛x is even and ˇx is odd, we set

C˛;ˇ D 1

.2i�/2

I

Cz

I

Cw

G˛x;ˇx.z; w/
wˇy

z˛y

dz

z

dw

w
(10)

where the contours must satisfy the following conditions: (i) Cz should encircle
0 and all the negative poles of F˛x.z/, but not the positive ones; (ii) Cw should
encircle 0 and all the positive zeros of Fˇx.w/, but not the negative ones; (iii) Cz

and Cw should not intersect, and Cz should surround Cw if and only if ˛x < ˇx.
We shall check in Section 4.4 that the assumptions (6) and (7) imply that such
contours always exist but, at this stage, let us mention their intuitive interpretation:
C˛;ˇ is obtained by extracting the coe�cient of z˛y

w�ˇy
inG˛x;ˇx.z; w/, when we

treat each factor .1� xiz/
�1 as a power series in z, each factor .1C xj =z/

�1 as a
power series in z�1, each factor .1 C xiw/

�1 as a power series in w, each factor
.1 � xj =w/

�1 as a power series in w�1, and �nally we expand
p
zw=.z � w/ D

P

k2NC1=2.w=z/
k if ˛x < ˇx, or

p
zw=.z�w/ D

P

k2NC1=2.w=z/
�k if ˛x > ˇx.

We are now ready to state our theorem. Recall that, for an edge e D .˛; ˇ/,
˛ and ˇ are assumed to be respectively the even and the odd endpoint of e.
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Theorem 5 (dimer correlations). Let E D ¹e1; : : : ; esº be a �nite set of edges of

RYG.`; r;
N
a;

N
b/, with ei D .˛i ; ˇi/. Then, we have

PGI
N
x.E/ D .�1/H.E/

N
x N

n det
1�i;j �s

.C˛i ;ˇj
/; (11)

with H.E/ the number of horizontal edges in E whose right endpoint is at an

even abscissa,
N
x N

n D x
n`

`
� � �xnr

r with nk the number of diagonal edges in E in

column k, and C de�ned as in (10).

The proof of Theorem 5 is given in Section 4, where we also prove that the
in�nite matrix C, with rows indexed by even vertices ˛ and columns by odd
vertices ˇ, is an inverse of the Kasteleyn matrix of the rail yard graph for a
suitable Kasteleyn orientation (see Theorem 17). Applications will be discussed
in Section 5.

3. Bosonic operators

The purpose of this section is to establish Theorems 1 and 3. This is done
naturally by the transfer-matrix method, which here consists in decomposing
the pure dimer coverings we want to enumerate into a sequence of compatible
elementary dimer coverings. It turns out that the transfer matrices are isomorphic
to certain operators arising in the so-called boson–fermion correspondence. For
more details on this latter subject, we refer the reader to one of the many references
available in the mathematical physics literature, for instance [31, Chapter 14], [38],
[40, Appendix A], [43], [51], and [2].

We start by giving the necessary reminders in Section 3.1, then make the
connection with rail yard graphs in Section 3.2, and �nally complete the proofs of
Theorems 1 and 3 in Section 3.3.

3.1. Reminders. An integer partition, or partition for short, is a nonincreasing
sequence� D .�i /i�1 of integers which vanishes eventually. The size of a partition
� is j�j D

P

i�1 �i . We say that two partitions � and� are interlaced, and we write
� � � or � � �, if we have

�1 � �1 � �2 � �2 � �3 � � � � : (12)

In the well-known pictorial representation in terms of Young diagrams, this means
that the skew shape �=� is a horizontal strip, see e.g. [50, Chapter 7] for more
precise de�nitions. To a partition � we may associate its conjugate �0, whose
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Young diagram is the image of that of � by a re�ection along the main diagonal.
In more explicit terms, we have �0

i D #¹j � 0; �j � iº. Note that the relation
� � � amounts to

�0
i � �0

i 2 ¹0; 1º for all i � 1. (13)

The bosonic Fock space, denoted B, is the in�nite dimensional Hilbert space
spanned by orthonormal basis vectors j�i where � runs over the set of integer
partitions. Here we will use the bra-ket notation so that h�j denotes the dual
basis vector. For x a formal or complex variable, we introduce the operators
�LC.x/; �L�.x/; �RC.x/; �R�.x/ whose action on basis vectors reads

�LC.x/j�i D
X

�W���

xj�j�j�jj�i; �RC.x/j�i D
X

�W�0��0

xj�j�j�jj�i;

�L�.x/j�i D
X

�W���

xj�j�j�jj�i; �R�.x/j�i D
X

�W�0��0

xj�j�j�jj�i:
(14)

These operators are sometimes called (half-)vertex operators. Let us mention that,
in the literature, �L˙.x/ is often denoted �˙.x/, see e.g. [40], while �R˙.x/ is
sometimes denoted � 0

˙.x/ [57, 5]. Observe that we have

�LC.x/j;i D �RC.x/j;i D j;i; h;j�L�.x/ D h;j�R�.x/ D h;j (15)

where ; denotes the empty partition. Note also that �L� (resp. �R�) is the dual
of �LC (resp. �RC), and that �RC (resp. �R�) is conjugated to �LC (resp. �L�)
via the involution ! of B sending j�i to j�0i.

Remark 6. For a1; a2 2 ¹L;Rº, the product �a1�.x1/�a2C.x2/ is clearly well-
de�ned, because its coe�cient between two states h�j and j�i involves only a
�nite sum. The same is true for �a1C.x1/�a2�.x2/ when a1 ¤ a2 (observe
that the “intermediate” partitions cannot get too large). In�nite sums arise when
considering �a1C.x1/�a2�.x2/ with a1 D a2, but its coe�cients are power series
in x1 and x2, which are convergent for jx1x2j < 1 as apparent from the following
proposition.

Proposition 7 (commutation relations). For a1; a2 2 ¹L;Rº, we have

�a1C.x1/�a2�.x2/ D

8

<

:

.1� x1x2/
�1 �a2�.x2/�a1C.x1/ if a1 D a2,

.1C x1x2/ �a2�.x2/�a1C.x1/ if a1 ¤ a2,
(16)

while �a1C.x1/ commutes with �a2C.x2/, and �a1�.x1/ commutes with �a2�.x2/.



Dimers on rail yard graphs 495

Proof. See for instance [57, Lemma 3.3] for an algebraic proof, and [3, Sec-
tion 3] for a bijective proof of (16). The celebrated Bender-Knuth involution [8,
pp. 46–47] implies that �a˙.x1/ commutes with �a˙.x2/ for a D L or R. That
�L˙.x1/ commutes with �R˙.x2/ is also well-known, but for completeness let
us here sketch a short proof: for two partitions �; �, one sees easily that the two
sets ¹�W� � �; �0 � �0º and ¹�W�0 � �0; � � �º are nonempty if and only if
�=� is a skew shape containing no 2 � 2 square. In that case, both sets have the
same cardinality 2C , whereC is the number of connected components of�=�, and
one easily constructs a bijection between them proving the wanted commutation
relation. Another byproduct of this bijection is that

�L˙.x/�R˙.�x/ D �R˙.�x/�L˙.x/ D 1: (17)

�

Given two symbols � and ı (called respectively black and white marbles), a
Maya diagram [38] is an element m of ¹�; ıºZC1=2 such that mk is eventually
equal to � for k ! �1 and to ı for k ! C1. It then not di�cult to check that
the quantity

c D #¹k > 0;mk D �º � #¹k < 0;mk D ıº (18)

is a �nite integer, and we call it the charge of m. Let k1 > k2 > � � � be the
positions of � in m enumerated in decreasing order, and let �i D ki � cC i � 1=2:
it is easily seen that � is a partition and that the correspondence m 7! .�; c/

is one-to-one, the pair .�; c/ being called a charged partition. Observe that we
may extend the involution ! to charged partitions by setting !.�; c/ D .�0;�c/,
and this corresponds on Maya diagrams to performing a re�ection across 0 and
exchanging � and ı: in other words, m is sent to m0 such that ¹mk ;m

0
�k

º D ¹�; ıº
for all k 2 Z C 1=2. By a slight abuse, we still denote by ; the Maya diagram of
charge 0 corresponding to the empty partition.

The fermionic Fock space, denoted F, is the in�nite dimensional Hilbert space
spanned by orthonormal basis vectors jmi where m runs over the set of all Maya
diagrams. For c 2 Z, let Fc � F denote the subspace spanned by Maya diagrams
of charge c, so that F D ˚c2ZFc . By the bijection between Maya diagrams and
charged partitions, each Fc may be canonically identi�ed with B. This de�nes
the action of the bosonic operators �L˙ and �R˙ on F, leaving each subspace Fc

invariant (by a slight abuse we keep the same notations for the operators acting on
this larger space, and note that the commutations relations of Proposition 7 remain
valid). We now end this section devoted to reminders, leaving the discussion of
fermionic operators to Section 4.1.
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3.2. Interpretation as transfer matrices for RYGs. The purpose of this section
is to explain how the operators �L˙=�R˙ may be identi�ed with dimer transfer
matrices. The key observation is that Maya diagrams describe the boundary states

in our model. More precisely, let us consider an admissible dimer covering C of
G D RYG.`; r;

N
a;

N
b/. When ` and r are �nite, we de�ne the left boundary state

l.C / of C by setting, for all k 2 Z C 1=2,

l.C /k D

8

<

:

ı if .2` � 1; k/ is covered by a dimer,

� otherwise.
(19)

It is a Maya diagram by the de�nition of an admissible dimer covering. Similarly,
the right boundary state r.C / of C is the Maya diagram de�ned by

r.C /k D

8

<

:

� if .2r C 1; k/ is covered by a dimer,

ı otherwise
(20)

for all k 2 Z C 1=2. See Figure 7(a). A pure dimer covering has both boundary
states equal to ;. Note that, if G0 is a rail yard graph which is concatenable after
G, and if C 0 is an admissible dimer covering of G0, then C and C 0 are compatible
if and only if r.C / D l.C 0/. When ` D �1 (resp. r D C1), we adapt the
de�nition (19) (resp. (20)) by replacing ` by an `0 small enough (resp. r by an r 0

large enough). We may now state the main result of this section.

Proposition 8 (transfer matrix decomposition). Given a rail yard graph G D
RYG.`; r;

N
a;

N
b/ and two Maya diagrams l and r, the sum of the weights (1) of all

admissible dimer coverings of G with left boundary state l and right boundary

state r is given by

Z.G; l; rI
N
x/ D hlj�a`b`

.x`/�a`C1b`C1
.x`C1/ � � ��ar br

.xr/jri: (21)

In particular, the partition function reads

Z.GI
N
x/ D h;j�a`b`

.x`/�a`C1b`C1
.x`C1/ � � ��ar br

.xr/j;i: (22)
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Proof. Note that (22) follows from (21) by taking l D r D ;, which amounts to
considering pure dimer coverings.

We �rst verify (21) for ` D r , i.e. when G is an elementary rail yard graph.
Let us here treat the case a` D L, b` D C (displayed third on Figure 2(c)) and
leave the other cases to the reader. Let s1 < s2 < � � � (resp. t1 < t2 < � � � ) be the
positions of ı in l (resp. r) enumerated in increasing order. Then, we claim that
both sides of (21) are equal to x

P

.si �ti /

`
if the two conditions

si � ti 2 ¹0; 1º for all i � 1 (23)

and
X

i�1

.si � ti / < 1 (24)

hold, and that both sides vanish otherwise. Indeed, on the one hand, it is not
di�cult to check (see Figure 7) that there is at most one elementary dimer con�g-
uration with prescribed boundary states l and r, and that there is exactly one such
con�guration (containing

P

.si � ti/ diagonal dimers) if and only if (23) and (24)

hold. On the other hand, let � and � be the integer partitions associated with the
Maya diagrams l and r: the quantity hlj�LC.x`/jri is equal to xj�j�j�j

`
if the two

conditions

� � � (25)

and

l and r have the same charge c (26)

hold, and it vanishes otherwise. But we have �0
i D c C i � 1=2 � si and �0

i D
cC i�1=2� ti for all i � 1 hence, in view of (13), we �nd that the conditions (23)

and (24) amount to (25) and (26), and then that j�j � j�j D
P

.si � ti / as wanted.
We then verify (21) for ` < r both �nite, which may be easily done by

induction: it su�ces to observe that, if G0 is the rail yard graph obtained by
removing the last “strip” of G, then any admissible dimer covering C of G with
boundary states l; r is uniquely decomposed into a pair formed by an admissible
dimer covering C 0 of G0 with boundary states l;m, for some Maya diagram
m, and an elementary dimer covering E with boundary states m; r, such that
w.C/ D w.C 0/w.E/.

Finally, we observe that the limits ` ! �1 and r ! C1 are well-de�ned,
upon viewing Z.G; l; rI

N
x/ as a formal power series in the xi ’s (note that �a˙.0/ is

the identity operator so that, in the topology of multivariate formal power series,
the right-hand side of (21) converges as ` ! �1 and r ! C1). �
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Figure 7. (a) The rules (19) and (20) that de�ne the two Maya diagrams l.C / and r.C /.
(b) An admissible dimer covering of the elementary rail yard graph LC. White marbles
are numbered as in the proof of Proposition 8. (c) If the left boundary vertex at ordinate
si is covered by a horizontal (resp. diagonal) dimer, then the right boundary vertex at
ordinate si (resp. si � 1) is necessarily uncovered. Therefore there is a white marble at this
ordinate on the right boundary, and induction implies that it is the i-th white marble on
the right boundary. This proves that si � ti 2 ¹0; 1º and that

P

i .si � ti / is equal to the
number of diagonal dimers. Moreover, since dimers incident to the left boundary can be
recovered from the knowledge of the sequences .si / and .ti /, it is clear that there is at most
one dimer con�guration with given boundary states l and r, and that there is one if and only
if (23) and (24) hold. (d) Condition (23) can be interpreted by saying that white marbles
are “jumping downwards” by 0 or 1. The cases of the elementary graphs L�, RC, and
R� have similar interpretation, respectively with white marbles jumping upwards, black
marbles jumping upwards, and black marbles jumping downwards, in all cases by 0 or 1.

3.3. Proof of enumeration results and computation of the partition function.

We are now ready to prove Theorems 1 and 3. The �rst one is a direct consequence
of the formalism developed above, whereas the second deserves an inspection of
the di�erent types of �ips in rail yard graphs.
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Proof of Theorem 1. We simply have to evaluate the right-hand side of (22), which
can be done as in in [43, Section 4.1], [57, Section 4] or [5, Section 5.1]: �rst
observe that, by (15), for any k;m, any .c1; c2; : : : ; ckCm/ 2 ¹L;RºkCm, one has

D

;
ˇ

ˇ

ˇ

k
Y

iD1

�ci �.zi /

kCm
Y

iDkC1

�ci C.zi /
ˇ

ˇ

ˇ;
E

D 1; (27)

the zi being formal variables.
Now, by applying successively the commutation relations of Proposition 7,

one can transform (22) into a scalar product of this form, up to a multiplicative
prefactor, by moving to the left all the operators �aj bj

.xj / such that bj D �.
In order to do that, we have, for each ` � i < j � r such that bi D C and
bj D �, to transform the product of operators �ai C.xi /�bj �.xj / into the prod-
uct �bj �.xj /�ai C.xi /. For each such transformation, we obtain a multiplicative
contribution given by (16), and the result follows. �

Proof of Theorem 3. As explained before the statement of Theorem 3, we have to
prove that, specializing for i 2 Œl; : : : ; r � the weights (1) to xi D qi if bi D �
and xi D 1=qi if bi D C amounts to attaching to each con�guration a weight qd ,
where d is the �ip distance to the fundamental con�guration.

First, this is true for the fundamental con�guration that receives a weight 1 in
both cases. Second, since by Propp’s theory (recalled in Section 2.3) each shortest
path from the fundamental state to any con�guration is realized using positive �ips
only, it is enough to check that, in this specialization, each positive �ip increases
the weight of a con�guration by a factor of q.

Consider an inner face f in a rail yard graph. Then f is made by the union of
two half-faces as shown on Figure 8(a). Each of these two half-faces is incident
to a diagonal edge, one in column i , and one in column i C 1, in the sense of
Section 2.4, for some i 2 Œl; : : : ; r � 1�. Then, a case inspection (see Figure 8(b–
c)) shows that the following is true: when performing a positive �ip on f , the
number of diagonal dimers on column i increases (resp. decreases) by 1 if bi D C
(resp. bi D �), and the number of diagonal dimers on column i C 1 decreases
(resp. increases) by 1 if biC1 D C (resp. biC1 D �).

Therefore this �ip multiplies the weight (1) of the con�guration by a factor of

x
bi

i =x
biC1

iC1 ; (28)

where we identi�ed C;� with C1;�1 respectively. But, in the specialization we

are considering, we have x
bj

j D q�j for all j 2 Œl; : : : ; r �, so (28) is equal to q and
the proof is complete. �
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Figure 8. (a) The 16 possible face types of rail yard graphs are obtained by matching one of
the half-face types on the left with one on the right. (b–c) The dimer con�guration around
half-faces before (b) and after (c) a positive �ip.

4. Fermionic operators

The purpose of this section is to establish Theorem 5. We start in Section 4.1
by recalling the de�nitions and basic properties of fermionic operators. In Sec-
tion 4.2, we show that these operators can be used to construct constrained transfer

matrices, that is transfer matrices enumerating dimer con�gurations containing a
given subset of edges. We rewrite the product of constrained transfer matrices
in another convenient form in Section 4.3, and complete the proof of Theorem 5
in Section 4.4. Finally, we elucidate the connection with Kasteleyn’s theory in
Section 4.5.

4.1. Reminders. Recall that the fermionic Fock spaceF, introduced at the end of
Section 3.1, is the in�nite dimensional Hilbert space spanned by orthonormal basis
vectors jmi where m runs over the set of all Maya diagrams. For k 2 Z C 1=2,
we de�ne the fermionic operators  k and  �

k
(also called creation/annihilation

operators) through their action on a basis vector jmi by

 k jmi D

8

<

:

.�1/#¹j >k;mj D�ºjm.k/i if mk D ı,

0 otherwise;

 �
k jmi D

8

<

:

.�1/#¹j >k;mj D�ºjm.k/i if mk D �,

0 otherwise;

(29)
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where m.k/ is the Maya diagram obtained from m by inverting the color of the
marble on site k. Observe that the operators  k and �

k
are adjoint to one another.

In particular,  k 
�
k

(resp. �
k
 k) is the orthogonal projector on the space spanned

by Maya diagrams m with mk D � (resp. mk D ı). Fermionic operators obey the
following well-known canonical anticommutation relations.

Proposition 9. For any k and k0 in Z C 1=2, we have

¹ k;  k0º D 0; ¹ �
k ;  

�
k0º D 0; ¹ k ;  

�
k0º D ık;k0 : (30)

Here ¹a; bº denotes the anticommutator of a and b: ¹a; bº D ab C ba.

Proof. Easy. �

De�ne the fermionic generating functions

 .z/ D
X

k2ZC 1
2

zk k ;  �.z/ D
X

k2ZC 1
2

z�k �
k : (31)

Proposition 9 translates into

¹ .z/;  .w/º D 0; ¹ �.z/;  �.w/º D 0; ¹ .z/;  �.w/º D ı.z; w/ (32)

where ı.z; w/ D
P

k2ZC 1
2
.z=w/k is the formal Dirac delta function. It is straight-

forward to check that

h;j .z/ �.w/j;i D
X

k2ZC1=2

k<0

� z

w

�k

D
p
zw

z �w for jzj > jwj,

h;j �.w/ .z/j;i D
X

k2ZC1=2

k>0

� z

w

�k

D �
p
zw

z � w
for jwj > jzj.

(33)

Here the leftmost equal signs correspond to formal identities, but the rightmost
equal signs require to treat z and w as complex variables. Let us also mention a
lesser-known fact about the action of the involution ! on the fermionic operators
(recall that ! is the involution that maps a charged partition .�; c/ to .�0;�c/,
hence can be seen as acting on F).

Proposition 10. For k 2 Z C 1=2, we have

! �
k! D .�1/CCkC1=2 �k ; i.e. ! �.z/! D .�1/CC1=2 .�z/ (34)

where C is the charge operator (acting on Fc as the multiplication by c).
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Proof. Follows from the fact that, for any integer k0 and any Maya diagram m of
charge c, we have

#¹j > k0;mj D �º � #¹j < k0;mj D ıº D c � k0: (35)

�

Last but not least, we have the following commutation relations between
bosonic and fermionic operators.

Proposition 11. Given two formal variables x; z we have

�LC.x/ .z/ D 1

1� xz .z/�LC.x/; (36)

�RC.x/ .z/ D .1C xz/ .z/�RC.x/; (37)

�LC.x/ 
�.z/ D .1� xz/ �.z/�LC.x/; (38)

�RC.x/ 
�.z/ D 1

1C xz
 �.z/�RC.x/; (39)

 .z/�L�.x/ D .1� x=z/�L�.x/ .z/; (40)

 .z/�R�.x/ D 1

1C x=z
�R�.x/ .z/; (41)

 �.z/�L�.x/ D 1

1� x=z �L�.x/ 
�.z/; (42)

 �.z/�R�.x/ D .1C x=z/�R�.x/ 
�.z/: (43)

The �rst four (resp. last four) formal identities correspond to actual converging

series when jzj < x�1 (resp. jzj > x).

We give in Appendix A a combinatorial proof of these identities (note that it is
su�cient to establish only one of them, the others follow by taking duals, inverses
and conjugates by !). For algebraic derivations, see for instance the references
given at the beginning of Section 3.

4.2. Constrained transfer matrices. The fermionic operators can be used to
enumerate constrained dimer con�gurations. A �rst natural idea, already used
in [42], consists in inserting some orthogonal projectors  k 

�
k

or  �
k
 k (with

various k’s) within the product of bosonic operators (22) forming the partition
function, which has the e�ect of forcing black or white marbles to be present at
given positions. However, this does not fully determine the positions of the dimers
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(there are ambiguities for the columns containing both horizontal and diagonal
edges). Remarkably, for an arbitrary rail yard graph and an arbitrary �nite set E
of edges, there is a suitable way of inserting fermionic operators which precisely
forces each edge of E to be covered by a dimer.

We �rst introduce convenient notations. Recall that writing .˛; ˇ/ for an edge
implies that its endpoints ˛ and ˇ are such that ˛x is even and ˇx is odd. Any
�nite setE of edges of a rail yard graph can be decomposed “column by column”,
hence written in the form

E D
[

i2Z
¹.˛i;1; ˇi;1/; : : : ; .˛i;mi

; ˇi;mi
/; .i;1; ıi;1/; : : : ; .i;m0

i
; ıi;m0

i
/º (44)

where ˛x
i;j D x

i;j D 2i , ˇx
i;j D 2i � 1 and ıx

i;j D 2i C 1. Here mi (resp. m0
i ) is

the number of edges of E connecting vertices with abscissas 2i � 1 and 2i (resp.
2i and 2i C 1), and is zero except for �nitely many i .

Theorem 12 (constrained transfer matrix decomposition). Let E be an arbitrary

�nite subset of edges of the graph G D RYG.`; r;
N
a;

N
b/, which we decompose

as in (44), and let ni (i D `; : : : ; r) be the number of diagonal edges of E

with an endpoint of abscissa 2i . The sum of the weights (1) of all pure dimer

con�gurations containing E reads

W.GI
N
x; E/ D h;jT`T`C1 � � �Tr j;i (45)

where, for all i 2 Œ`; : : : ; r �, the constrained transfer matrix Ti is given by

Ti D .�1/kix
ni

i

�

mi
Y

j D1

 �
ˇ

y
i;j

��

mi
Y

j D1

 ˛
y
i;j

��

m0
i

Y

j D1

 
y
i;j

�

�R;bi
.xi /

�

m0
i

Y

j D1

 �
ı

y
i;j

�

(46)

with ki D mi .mi � 1/=2Cm0
i .m

0
i � 1/=2 if ai D R, and

Ti D .�1/kix
ni

i

�

mi
Y

j D1

 �
ˇ

y
i;j

�

�L;bi
.xi /

�

mi
Y

j D1

 ˛
y
i;j

��

m0
i

Y

j D1

 
y
i;j

��

m0
i

Y

j D1

 �
ı

y
i;j

�

(47)

with ki D mi .mi �1/=2Cm0
i .m

0
i �1/=2Cni if ai D L. More generally, the sum of

the weights of all admissible dimer coverings with left boundary state l and right

boundary state r containing E reads

W.G; l; rI
N
x; E/ D hljT`T`C1 � � �Tr jri: (48)

Observe that we recover (22) and (21) when E is empty. The order in which
we take the products of fermionic operators in (46) and (47) is irrelevant, as long
as we take the same order for both products from 1 to mi , and for both products
from 1 to m0

i (otherwise, we might get a wrong sign).
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Proof of Theorem 12. It is su�cient to prove (48) in the case of an elementary
RYG, i.e. to prove that Ti is indeed the wanted constrained transfer matrix. The
general case immediately follows by concatenation (i.e. by the transfer matrix
method), as done in the proof of Proposition 8.

LetG D RYG.i; i; ai ; bi / be an elementary RYG, l; r two boundary states, and
E a �nite subset of edges ofG. The general decomposition (44) reads here simply

E D ¹.˛1; ˇ1/; : : : ; .˛m; ˇm/; .1; ı1/; : : : ; .m0 ; ım0/º: (49)

Figure 9. Localization of dimers in the case of the elementary graph or type R� (the case
of RC is similar). Marbles (resp. edges) whose status is not �xed by the discussion are
represented with question marks (resp. dotted lines). (A) There is a horizontal dimer in the
left column if and only if the left odd vertex is occupied by a white marble. This marble
is localized by applying the operator  �

k
 k . (B) Con�gurations with a horizontal dimer in

the right column are such that both marbles on this level are black (although this condition
is not su�cient). They are in bijection with con�gurations with a dimer in the left column
such that both marbles on this level are white. The operator  �

k
(resp.  k) inserted on the

right (resp. left) has the double e�ect of switching the color of marbles on the k-th level
and of forcing the colors of these marbles. (C) The case of a diagonal dimer.
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Let us �rst assume that ai D R, we then need to check that

W.G; l; rI xi ; E/ D hljTi jri: (50)

with Ti given by (46). This is immediate in the case m0 D 0: indeed the presence
of a dimer on the edge . j̨ ; ǰ / (which is necessarily horizontal) is tantamount to
having a white marble ı at position ˛y

j D ˇ
y
j in l, see Figure 9(A). This can be

achieved at the level of transfer matrices by multiplying the unconstrained transfer
matrix �ai ;bi

.xi / on the left by the projectors  �
k
 k with k D ˇ

y
j , j D 1; : : : ; m,

and we get (46) upon anticommuting all  �’s to the left.
The case m0 ¤ 0 is slightly more involved and requires the introduction of

suitable “particle hopping” operators. Recall that the notation m.k/ denotes the
Maya diagram obtained from m by inverting the color of the marble on site k. Let
us consider an edge ej D .j ; ıj /: having this edge covered by a dimer implies
that ly

j
D rı

y
j

D �, but the converse is not true. However there is a bijection

between, on the one hand, admissible dimer con�gurations with boundary states
l; r containing ej and, on the other hand, admissible dimer con�gurations with

boundary states l.
y
j

/
; r.ı

y
j

/, that necessarily contain the edge e0
j on the left of j ,

see Figure 9(B-C). We deduce that, at the transfer matrix level, we can force the
presence of ej by multiplying the unconstrained transfer matrix �ai ;bi

.xi / by  


y
j

on the left and by  �
ı

y
j

on the right (if l or r do not have black marbles at the

required positions then hlj or jri will be killed by this  or  �, as it should be).
More generally, the product hlj 

y
1

� � � 
y
m0
�ai ;bi

.xi / 
�
ı

y
m0

� � � �
ı

y
1

jri is nonzero if

and only if there is a dimer con�guration with boundary states l; r containing all
the ej , j D 1; : : : ; m0. In that case this con�guration is unique and the product is
equal to xn

i , with n the number of dimers on diagonal edges other than the ej (it
is easily seen that the signs induced by the  = � all cancel out). Upon reordering
the  �’s in reverse order, multiplying by xni

i (to account for the weight of the
dimers on diagonal edges in ej , j D 1; : : : ; m0) and multiplying by projectors on
the left, we conclude that (50) is true with Ti given by (46).

The case ai D L can be deduced from the discussion of the case ai D R, by
performing a central symmetry and exchanging the colors of the marbles. In other
words, we simply need to take the dual of (46) (vertical symmetry) and conjugate
with the involution ! acting on charged partitions/Maya diagrams (horizontal and
color symmetry). There is a slight subtlety regarding the sign though, which can
be treated using Proposition 10. When taking the dual of (46), the order of the
operators is reversed, �R;˙.xi / is changed into �R;�.xi / and each  is changed
into a  � (and vice versa). When conjugating by !, �R;�.xi / is changed into
�L;�.xi / and each  � is changed back into a  (and vice versa), up to a sign.
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By (34), the signs cancel out for horizontal edges in E, but combine into a sign
�1 for each diagonal edge in E, which explains why the sign .�1/ki is di�erent
in (47). �

Remark 13. Similar bijective arguments are used in Appendix A to prove the
commutation relations between bosonic and fermionic operators stated in Propo-
sition 11.

4.3. From the Schrödinger to the Heisenberg picture. Theorem 12 expresses
W.GI

N
x; E/ as a product of bosonic and fermionic operators taken between two

vacuum states, which we may rewrite using a strategy coming from [42], similar
to that used in Section 3.3 for the proof of Theorem 1: move all �C’s to the right,
and all��’s to the left, so that they are absorbed by the vacuum states at the end. In
this process, we �rst pick multiplicative factors due to the commutations between
�C’s and ��’s: those are precisely the same as for the partition function Z.GI

N
x/.

Second, the fermionic operators get “conjugated” by the �’s crossing them. All
this allows to rewrite

W.GI
N
x; E/ D Z.GI

N
x/h;j zT`

zT`C1 � � � zTr j;i (51)

where, for all i 2 Œ`; : : : ; r �, we set

zTi D .�1/kix
ni

i

�

mi
Y

j D1

‰�.ˇi;j /
��

mi
Y

j D1

‰.˛i;j /
��

m0
i

Y

j D1

‰.i;j /
��

m0
i

Y

j D1

‰�.ıi;j /
�

(52)

with, for ˇ; ˛ respectively odd and even vertices of G,

‰�.ˇ/ D Ad
�

Y

i�bˇx=2c
bi DC

�ai ;C.xi /
Y

i�dˇx=2e
bi D�

��1
ai ;�.xi /

�

 �
ˇy ;

‰.˛/ D Ad
�

Y

i�˛x=2 if ai DL

i<˛x=2 if ai DR

bi DC

�ai ;C.xi /
Y

i�˛x=2 if ai DR

i>˛x=2 if ai DL

bi D�

��1
ai ;�.xi /

�

 ˛y :
(53)

Here Ad denotes the adjoint action:

Ad.A/B D ABA�1 (54)

with A;B operators acting on F, with A invertible (recall that, by (17), this is the
case for the �’s). Two remarks are in order. First, we may put the �C’s and the



Dimers on rail yard graphs 507

��’s in any order we want in (53), as this does not change their adjoint action.
Second, by Proposition 11, ‰�.ˇ/ and ‰.˛/ are (formal) linear combinations of
 �’s and  ’s, respectively.

Remark 14. In physical terms, passing from the  �/ ’s to the‰�/‰’s can indeed
be interpreted as going from the Schrödinger to the Heisenberg picture of quantum
mechanics (the abscissa playing the role of time). It appears from (53) that creation
and annihilation operators are naturally attached to respectively even and odd
sites. An analogous situation appears in the path integral formalism: if K denotes
the Kasteleyn matrix of a �nite planar bipartite graph, then the determinant of
K, yielding the dimer partition function, can be written as a Grassmann-Berezin
integral [27]

detK D
Z

e
P

i;j �i Ki;j ��
j

Y

i

d�i
Y

j

d��
j (55)

where the �i ’s and ��
j are Grassmann variables attached to the even and odd ver-

tices of the graph, respectively. Furthermore, the contribution of dimer con�gu-
rations containing a given collection of edges .i1; j1/; : : : ; .is; js/ is proportional
to

Z

�i1�
�
j1

� � � �is��
js
e

P

i;j �i Ki;j ��
j

Y

i

d�i
Y

j

d��
j : (56)

In other words, dimer correlations are given by the expectation value of a product
of fermionic operators, whose form is reminiscent of (52). Note however that the
approach followed in this paper is more akin to canonical quantization.

4.4. Proof of Theorem 5. By (51) and (52), the ratio

PGI
N
x.E/ D W.GI

N
x; E/

Z.GI
N
x/

(57)

is given by a product of fermionic operators taken between two vacuum states.
This can be rewritten as a determinant using Wick’s formula, as follows.

For an even vertex ˛ and an odd vertex ˇ, de�ne the naturally ordered product

(or “time-ordered product”) of ‰.˛/ and ‰�.ˇ/ by

T
�

‰.˛/; ‰�.ˇ/
�

D

8

<

:

‰.˛/‰�.ˇ/ if ˛x < ˇx;

�‰�.ˇ/‰.˛/ if ˛x > ˇx:
(58)

We may more generally consider the naturally ordered product of more than
two ‰ or ‰�, by ordering them according to the abscissa of their argument and
multiplying by the sign of the corresponding permutation (note that operators with
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the same abscissa anticommute, hence their order is irrelevant). Observe that
zT`

zT`C1 � � � zTr is, up to a factor, the naturally ordered product of the ‰ and ‰�

associated with the endpoints of the edges ofE. Denoting now by ¹e1; : : : ; esº the
edges of E, with ei D .˛i ; ˇi/, and byH.E/ the number of horizontal edges in E
whose right endpoint is at an even abscissa, we have

PGI
N
x.E/ D .�1/H.E/

�

r
Y

iD`

x
ni

i

�

h;jT.‰.˛1/; ‰
�.ˇ1/; : : : ; ‰.˛s/; ‰

�.ˇs//j;i

D .�1/H.E/
�

r
Y

iD`

x
ni

i

�

det
1�i;j �s

h;jT.‰.˛i /; ‰
�. ǰ //j;i

(59)

where we apply Wick’s formula to pass from the �rst to the second line, and
where the sign .�1/H.E/ arises from the reordering of the fermionic operators
(in particular, dimers having their right endpoint at an even abscissa appear in the
“wrong order” in the naturally ordered product, but the resulting sign is cancelled
in the case of diagonal dimers by that present in Theorem 12). For completeness,
we provide a detailed derivation of Wick’s formula in Appendix B. To complete
the proof of Theorem 5, it remains to check that

C˛;ˇ D h;jT.‰.˛/; ‰�.ˇ//j;i (60)

has the announced expression (10). At this stage we need to discuss a bit analytic-
ity conditions (so far all our computations were done by treating the weights xi ’s
as formal variables). Recall that we aim at proving Theorem 5 under the mere
assumption that the partition function Z.GI

N
x/ is a convergent sum, which boils

down to the conditions (6) and (7) (see again Remark 6).
Let us temporarily strengthen (6) into the condition

xixj < 1 for all i < j such that bi D C and bj D � (61)

(that is, we also impose xixj < 1 when ai ¤ aj ). We introduce the quantities

�C.k/ D inf
i Wbi DC
2i�k

� 1

xi

�

; ��.k/ D sup
j Wbj D�

2j �k

xj ; (62)

which are nonnegative nonincreasing functions of k, such that ��.k/ < �C.k/
by (61) and (7). Recalling the de�nition (31) of the fermionic generating functions
 .z/ and �.z/, the de�nition (53) of‰.˛/ and‰�.ˇ/, and the bosonic–fermionic
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commutation relations of Proposition 11, we may write

‰.˛/ D 1

2i�

I

Cz

F˛x.z/ .z/

z˛y

dz

z
; ‰�.ˇ/ D 1

2i�

I

Cw

 �.w/wˇy

Fˇx.w/

dw

w
(63)

with Cz (resp. Cw) a circle centered at 0 with radius comprised between ��.˛x/

and �C.˛x/ (resp. between ��.ˇx/ and �C.ˇx/). We deduce that

h;jT.‰.˛/; ‰�.ˇ//j;i

is equal to the wanted expression (10) provided that

h;jT
�

 .z/;  �.w/
�

j;i D
p
zw

z �w : (64)

But this readily follows from the de�nition (58) of the naturally ordered product
and from the relations (33), provided that we take the radius of Cz to be strictly
larger than that of Cw if ˛x < ˇx, and vice versa otherwise. We may now freely
deform the contours Cz and Cw , as long as we hit no pole of the integrand: this
establishes (10) under the conditions (i)-(iii) for the contours, hence Theorem 5
under the assumption (61).

We now explain how to relax this assumption into (6). We proceed by multi-
plying each xi by a factor t 2 Œ0; 1�, and noting that the assumption (61) hence the
identity (11) are satis�ed for t small enough. We will show that both sides of (11)

have an analytic continuation in t to a domain containing the closed unit disk.
As apparent from Theorem 1, this is the case for the partition function Z.GI t

N
x/

(provided that (6) is satis�ed, of course). The quantity W.GI t
N
x; E/, being a sum

over a restricted subset of con�gurations, is analytic too, hence so does PGIt
N
x.E/

which is the left-hand side of (11). As for the right-hand side, let us show that we
may �nd two contours Cz and Cw such that C.t/

˛;ˇ
, as de�ned by (10) with the xi ’s

multiplied by t , is manifestly analytic as t varies over the unit disk. For t D 1, let
us introduce the quantities

�RC.k/ D inf
i W.ai ;bi /D.R;C/

2i<k

� 1

xi

�

; �L�.k/ D sup
j W.aj ;bj /D.L;�/

2j >k

xj ;

�LC.k/ D inf
i W.ai ;bi /D.L;C/

2i�k

� 1

xi

�

; �R�.k/ D sup
j W.aj ;bj /D.R;�/

2j �k

xj ;

(65)

which are re�nements of �C.k/ and ��.k/. We take Cz to be a circle centered
on the real axis, surrounding the real interval Œ��R�.˛x/; 0� but not intersecting
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Œ�LC.˛x/;C1Œ. Similarly, we take Cw to be a circle centered on the real axis,
surrounding the real interval Œ0; �L�.ˇx/� but not intersecting � � 1;��RC.ˇx/�.
We furthermore want Cz and Cw not to intersect, with Cz surrounding Cw i�
˛x < ˇx : this is possible because the functions �L˙ are decreasing with k and
such that �L�.k/ < �LC.k/ for all k hence, for ˛x < ˇx, we have �L�.ˇx/ �
�L�.˛x/ < �LC.˛x/ so that the “window” ��L�.ˇx/; �LC.˛x/Œ in which both Cz

and Cw must pass is nonempty, see Figure 10 (and the case ˛x > ˇx is treated
by a similar reasoning on �R˙). Observe that these contours satisfy precisely the
conditions (i)–(iii) stated below equation (10). Keeping these contours �xed, we
let t vary in the interval Œ0; 1�: no pole of G.t/

˛x;ˇx.z; w/ ever hits the contours, the
conditions (i)–(iii) remain satis�ed, and we conclude that (10) de�nes the wanted
analytic continuation of C.t/

˛;ˇ
. �

Figure 10. The contours Cz and Cw in the case ˇx > ˛x. The upper (resp. lower) dashed
regions are the intervals that the contour Cz (resp. Cw) must avoid. On this �gure it is
assumed that �R�.˛

x/ > �RC.ˇ
x/ but the converse can also hold.

4.5. Inverse Kasteleyn matrix. Let us now connect Theorem 5 to the general
Kasteleyn theory for the dimer model on planar bipartite graphs. We mention that
a similar connection was already observed in [43] for the case of lozenge tilings
corresponding to skew plane partitions, see also [6, Section 5].

De�nition 15. LetG D .V; E/ be a planar bipartite graph with no multiple edges.
Consider a collection of weights on the edges !WE ! RC.

A Kasteleyn orientation of G is a map �WE ! ¹�1; 1º such that for any face
F the product over the edges surrounding F gives

Y

e2F

�.e/ D

8

<

:

1 if F is of degree 2 .mod 4/;

�1 if F is of degree 0 .mod 4/:
(66)
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The Kasteleyn matrix of G associated to � is the matrix K whose rows (resp.
columns) are indexed by white (resp. black) vertices ofG, such that for any couple
.w; b/ of a white vertex and a black vertex,

K.w; b/ D

8

<

:

0 if w not adjacent to b;

�.w; b/!.w; b/ if there is an edge .w; b/:
(67)

Local statistics for dimers are known to be given by determinants of submatri-
ces of the Kasteleyn matrix [32, 45, 34].

Theorem 16. Let .G; !/ be a �nite weighted planar bipartite graph. The prob-

ability that the dimers e1 D .w1; b1/; : : : ; es D .ws; bs/ are present in a random

dimer con�guration sampled with a probability proportional to its weight is

P.e1; : : : ; es/ D
�

s
Y

iD1

K.wi ; bi /
�

det.K�1.bi ; wj //1�i;j �s: (68)

Let us go back to the rail yard graphs. In this case, the black (resp. white)
vertices are the even (resp. odd) vertices. Recall that in pure dimer coverings of
a rail yard graph G , all the odd vertices with negative (resp. positive) ordinate
on the left (resp. right) boundary are unmatched. These pure dimer coverings on
G correspond to classical dimer coverings with �nitely many diagonal edges on
the graph zG, where those unmatched vertices and the edges attached to them are
removed. Compare Figure 11 and Figure 4.

Let us denote by M the set of matched odd vertices of G. De�ne �WE !
¹�1; 1º by

�.e/ D

8

<

:

�1 if e is a horizontal edge whose right end is an even vertex,

1 otherwise.
(69)

It is easy to check that � is a Kasteleyn orientation on zG (here the faces have degree
4, 6, or 8). Construct the in�nite Kasteleyn matrix K on that graph as in (67). The
restriction zK of K to rows indexed by M is a Kasteleyn matrix for zG. We now
relate our correlation kernel C to the in�nite Kasteleyn matrix K:
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Theorem 17. LetG D RYG.`; r;
N
a;

N
b/ be a rail yard graph and K be its Kasteleyn

matrix for the previously de�ned orientation. Then if C is the matrix de�ned in

Theorem 5, we have

(1) for any ˛; ˛0 even vertices, .CK/˛;˛0 D ı˛;˛0 ;

(2) for any ˇ; ˇ0 odd vertices in M, .KC/ˇ;ˇ 0 D ıˇ;ˇ 0 .

We state a lemma that will be useful to prove the theorem. Recall that we have
a bosonic operator �R˙.xm/ (resp. �L˙.xm/) at position .2m C 1=2; 0/ (resp.
.2m� 1=2; 0/) when am D R (resp. am D L). To simplify notations, we will also
place a bosonic operator Id at every position .2m� 1=2; 0/ (resp. .2mC 1=2; 0/)
when am D R (resp. am D L). This does not change the naturally ordered product
of operators, and now we have one bosonic operator at each half-integer abscissa
in Œ2`�1; : : : ; 2rC1�. LetB� (resp. BC) be the bosonic operator at abscissa i� 1

2

(resp. iC 1
2
). Denote by x � y the fact that two vertices x and y are adjacent inG.

Figure 11. The perfect matching of the modi�ed rail graph corresponding to the pure dimer
covering of Figure 4.
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Lemma 18. We have the following properties.

(1) Let ˛ be an even vertex at position .i; k/. Then

X

ˇ�˛

ˇx<i

K.ˇ; ˛/ �
ˇyB

� D �B� �
k I (70)

X

ˇ�˛

ˇx>i

K.ˇ; ˛/BC �
ˇy D  �

kB
C: (71)

(2) Let ˇ be an odd vertex at position .i; k/. Then

X

˛�ˇ

˛x<i

K.ˇ; ˛/ ˛yB� D B� kI (72)

X

˛�ˇ

˛x>i

K.ˇ; ˛/BC ˛y D � kB
C: (73)

Proof. We will prove only identity (70). The other identities can be proved in a
similar way. We distinguish three cases.

Case 1: B�
D Id. To its left, ˛ has only one neighbour ˇ, which is at height k.

We conclude from the fact that K.ˇ; ˛/ D �1.

Case 2: B�
D �L�.x/. To its left, ˛ has one neighbour ˇ1 at height k and one

neighbour ˇ2 at height k � 1. We compute
X

ˇ�˛

ˇx<i

K.ˇ; ˛/ �
ˇy�L�.x/ D K.ˇ1; ˛/ 

�
k�L�.x/C K.ˇ2; ˛/ 

�
k�1�L�.x/

D � �
k�L�.x/C x �

k�1�L�.x/

D �Œz�k� �.z/�L�.x/C Œz�kC1�x �.z/�L�.x/

D �Œz�k� �.z/�L�.x/C Œz�k �
x

z
 �.z/�L�.x/

D �Œz�k�
�

1� x

z

�

 �.z/�L�.x/

D �Œz�k��L�.x/ 
�.z/

D ��L�.x/ 
�
k ;

where we used Proposition 11 to switch  �.z/ and �L�.x/.
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Case 3: B�
D �LC.x/. In the proof of Case 2, replace �L�.x/ by �LC.x/,

k � 1 by k C 1 and x
z

by xz. �

We can now prove Theorem 17.

Proof of Theorem 17. In this proof, to make notations lighter, Z.GI
N
x/ will be

abbreviated as Z. Let us prove the �rst part of the theorem. Fix two even vertices
˛ at position .i; k/ and ˛0 at position .i 0; k0/. Then,

.CK/.˛0; ˛/ D
X

ˇ�˛

C.˛0; ˇ/K.ˇ; ˛/: (74)

This sum has at most three nonzero terms, corresponding to the three odd
neighbours of ˛, at the abscissas i � 1 and i C 1. We now distinguish according
to the position of i 0 relatively to i .

Case 1: i 0 < i . If ˇ � ˛ is at abscissa i � 1, C.˛0; ˇ/ can be written in the form

C.˛0; ˇ/ D 1

Z
h;j�.1/ k0�.2/ �

ˇyB
�BC�.3/j;i; (75)

where �.1/; �.2/ and �.3/ are the products of the bosonic operators located re-
spectively before the abscissa i 0, between the abscissas i 0 and i � 1 and after the
abscissa i C 1.

Similarly, if ˇ � ˛ is at abscissa i C 1, C.˛0; ˇ/ can be written in the form

C.˛0; ˇ/ D 1

Z
h;j�.1/ k0�.2/B�BC �

ˇy�
.3/j;i: (76)

For each ˇ � ˛ appearing in the sum of equation (74), we are going to move
the  �

ˇy between B� and BC. We separate the cases ˇx < i and ˇx > i to apply
part 1 of the lemma:

.CK/.˛0; ˛/ D
X

ˇ�˛

K.ˇ; ˛/C.˛0; ˇ/

D
X

ˇ�˛

ˇx<i

K.ˇ; ˛/C.˛0; ˇ/C
X

ˇ�˛

ˇx>i

K.ˇ; ˛/C.˛0; ˇ/

D � 1

Z
h;j�.1/ k0�.2/B� �

kB
C�.3/j;i

C 1

Z
h;j�.1/ k0�.2/B� �

kB
C�.3/j;i

D 0:
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Case 2: i 0 > i . Here  k0 is to the left of any  �
ˇy , so each C.˛0; ˇ/ comes with

a minus sign. Using here again part 1 of the lemma to move  �
ˇy between B� and

BC for all three terms, we get similarly that .CK/.˛0; ˛/ D 0 in this case.

Case 3: i 0
D i . If ˇ is at abscissa i � 1, then C.˛0; ˇ/ can be written in the form

C.˛0; ˇ/ D � 1

Z
h;j�.1/ �

ˇyB
� k0BC�.2/j;i; (77)

where the minus sign comes from the fact that  �
ˇy appears before  k0 .

If ˇ � ˛ is at abscissa i C 1, we have

C.˛0; ˇ/ D 1

Z
h;j�.1/B� k0BC �

ˇy�
.2/j;i: (78)

Applying again part 1 of the lemma, we get

.CK/.˛0; ˛/ D
X

ˇ�˛

K.ˇ; ˛/C.˛0; ˇ/

D
X

ˇ�˛

ˇx<i

K.ˇ; ˛/C.˛0; ˇ/C
X

ˇ�˛

ˇx>i

K.ˇ; ˛/C.˛0; ˇ/

D 1

Z
h;j�.1/�.2/B� �

k k0BC�.3/j;i

C 1

Z
h;j�.1/�.2/B� k0 �

kB
C�.3/j;i:

Using that  �
k
 k0 C  k0 �

k
D ık;k0 (Proposition 9) and that

Z D h;j�.1/�.2/B�BC�.3/j;i; (79)

we conclude that, in this third case, .CK/.˛0; ˛/ D ık;k0 . This concludes the
proof of part 1 of the theorem: we have shown that for any even vertices ˛ and
˛0, .CK/.˛0; ˛/ D ı˛0;˛ .

To prove part 2 of the theorem, note that if ˇ and ˇ0 are two odd vertices in M,
then

.KC/.ˇ; ˇ0/ D
X

˛�ˇ

K.ˇ; ˛/C.˛; ˇ0/: (80)

We will only treat the case when ˇ is on the left boundary. The case when ˇ
is on the right boundary is similar to this one. The case when ˇ is in the bulk is
similar to the proof of part 1 of the theorem, by making use this time of part 2 of
the lemma. Let .2` � 1; k/ be the coordinates of ˇ and .i 0; k0/ be the coordinates
of ˇ0. Since ˇ 2 M, we have k > 0. Note that ˇ has neighbours only to its right.
Again we distinguish according to the position of ˇ0.
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Case 1: i 0 > 2` � 1. If ˛ � ˇ, C.˛; ˇ0/ can be written in the form

C.˛; ˇ0/ D 1

Z
h;jBC ˛y�.1/ �

k0�
.2/j;i: (81)

Using the second equation of part 2 of the lemma, we obtain

.KC/.ˇ; ˇ0/ D
X

˛�ˇ

K.ˇ; ˛/C.˛; ˇ0/

D
X

˛�ˇ

˛x>2`�1

K.ˇ; ˛/C.˛; ˇ0/

D � 1

Z
h;j kB

C�.1/ �
k0�

.2/j;i:

Since k > 0, we have h;j k D 0. So in this case, .KC/.ˇ; ˇ0/ D 0.

Case 2: i 0
D 2` � 1. If ˛ � ˇ, C.˛; ˇ0/ can be written in the form

C.˛; ˇ0/ D � 1

Z
h;j �

k0B
C ˛y�.1/j;i: (82)

Using the second equation of part 2 of the lemma, we obtain

.KC/.ˇ; ˇ0/ D C 1

Z
h;j �

k0 kB
C�.1/j;i: (83)

Using Proposition 9, we get

.KC/.ˇ; ˇ0/ D � 1

Z
h;j k 

�
k0B

C�.1/j;i C ık;k0

1

Z
h;jBC�.1/j;i

D 0C ık;k0

1

Z
Z

D ık;k0 :

To sum up, if ˇ is an odd vertex in M on the left boundary and ˇ0 is any other
odd vertex in M, .KC/.ˇ;ˇ 0/ D ıˇ;ˇ 0 . �

Remark 19. If zC (resp. zK) is the restriction of C (resp. K) to columns (resp. rows)
indexed by the set M of matched odd vertices, then zC is a left and right inverse of
zK. Indeed, the extra terms coming from vertices not in M vanish when evaluated
against left and right vacuums.
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5. Lozenge and domino tilings

In this section we discuss how the RYG dimer model gives rise, upon taking
a constant or an alternating LR-sequence and performing a simple change of
coordinates, to a class of lozenge or domino tilings of the plane, respectively.
The class of lozenge tilings, discussed in Section 5.1, contains in particular plane
partitions and was already studied in [42, 43]. The class of domino tilings,
discussed in Section 5.2, is that of steep tilings [5], and contains tilings of the
Aztec diamond and pyramid partitions as special cases.

5.1. Lozenge tilings. In this section we consider the case where theLR-sequence

N
a is constant. We assume that

N
a D Lr�`C1 (it is easy to check that taking

N
a D Rr�`C1 gives rise to the same model up to a vertical re�ection and an in-
version of the sign sequence). In this case the only two elementary RYG involved
are of type LC and L�. According to the discussion of Section 3, the transfer
matrix operators corresponding to these two graphs can be interpreted as the oper-
ators �LC and �L�, whose action on the Bosonic Fock space interlaces a partition
“upwards” or “downwards” respectively, see (14). It follows that, for each sign
sequence

N
b 2 ¹C;�ºr�`C1, admissible dimer coverings of RYG.`; r;

N
a;

N
b/ are in

bijection with sequences .�.i//`�i�rC1 of integer partitions such that �.i/�
��

.iC1/

where the interlacing relation is � or � if bi D C or bi D �, respectively. The
correspondence goes via Maya diagrams and is the one described in Section 3.
It is well known that such sequences are in bijection with certain lozenge tilings
of the plane, see e.g. [42], so the reader may be in familiar ground. In the rest of
Section 5.1, we will just sketch how to recover those lozenge tilings from the rail
yard graphs.

We �rst apply the following coordinate transformation to each vertex of the
rail yard graph RYG.`; r;

N
a;

N
b/:

.2`� 1C x; y/ 7�!
�

2`� 1C 1

2
dx=2e C

p
5

4
bx=2c; y � 1

2

dx=2e
X

iD1

.�1/bi

�

: (84)

Figure 13 displays the e�ect of this transformation on the elementary graphs of
type LC and L�. The transformation is designed in such a way that after the
transformation all angles between incident edges are equal to 2�

3
, and that all

edges have equal length (equal to
p

5
4

). Therefore the concatenation of these graphs
generate a portion of the regular hexagonal lattice, see Figure 14–Left. Since the
planar dual of the hexagonal lattice is a triangular lattice, any dimer covering of
the hexagonal lattice induces a covering of this triangular lattice by lozenges (each
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dimer connects two vertices in the primal, that correspond to two triangles in the
dual, and the union of these two triangles forms a lozenge). See Figure 14–Right.
We thus recover the promised class of lozenge tilings of the plane.

Note that the fundamental covering of RYG.`; r;
N
a;

N
b/ projects (via the coor-

dinate transformation (84) and the dualization to lozenges) to a lozenge tiling in
which all lozenges under a certain separating path are of “horizontal” type, while
all lozenges above this path are of one of the two “vertical” types, see Figure 15.
This separating path is the image under the transformation (84) of the horizontal
axis in the original embedding of RYG.`; r;

N
a;

N
b/. Equivalently, this path is a lat-

tice path taking up (+) or down (-) steps, encoded by the sequence
N
b. This path

and its image are represented by red dotted paths on the �gures of this section.

Finally, note that Figure 15 can naturally be seen as a 3-dimensional picture,
namely as a portion of the boundary of the region .R2

C n �/ � RC, where �
is the shape of an integer partition. Here the contour of the shape � coincides
with the separating path just mentioned, i.e. the partition � is encoded in Russian
notation by the sequence

N
b, see Figure 15 again. Note also that all the lozenge

tilings corresponding to pure dimer coverings of RYG.`; r;
N
a;

N
b/ are obtained by

“adding cubes” to this 3-dimensional diagram in such a way that the heights of
cubes stay nonincreasing on horizontal coordinates, going away from the axes.
In particular the case

N
b D Cn�n corresponds to plane partitions of half-width at

most n. This 3-dimensional interpretation is well known and is the one already
considered in [42].

5.2. Domino tilings. We now consider the case where the sequence
N
a has even

length and is an alternation of L and R. Up to an elementary symmetry we can
assume that

N
a D .LR/k, where r � ` C 1 D 2k, and we �x an arbitrary sign

sequence
N
b 2 ¹C;�º2k. It follows from a simple inspection of the face types

of elementary rail yard graphs (Figure 8(a)) that all the inner faces of the graph
RYG.`; r;

N
a;

N
b/ have degree 4 or 8. Moreover, for 0 � i < k, odd vertices located

at the abscissa x D �2` � 1 C 4i C 2 all have degree 2 (since they lie at the
interface between an L-type and R-type elementary graphs, from left to right).
These degree 2 vertices are bounded by faces of degree 8 on their two sides. See
Figure 16 for an example.

We now let zR.`; r;
N
a;

N
b/ be the graph obtained by contracting all the edges

incident to these inner vertices of degree 2: in this graph all inner vertices of degree
2 have disappeared, and all the non-boundary faces have degree 4, see Figure 17–
Left for an example. Moreover, it is easy to see that each dimer covering of
RYG.`; r;

N
a;

N
b/ induces a dimer covering of zR.`; r;

N
a;

N
b/, with the same boundary
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conditions (just forget dimers on contracted edges and leave the other dimers as
they were). The coordinate transformation on non deleted vertices that goes from
RYG.`; r;

N
a;

N
b/ to zR.`; r;

N
a;

N
b/ is given by

.�2`� 1C x; y/ 7�!
�

� 2`� 1C x � 2
jx C 2

4

k

; y
�

: (85)

Since all the inner vertices and faces in this new graph have degree 4, this new
graph is isomorphic to a portion of the square lattice. We let the reader check that
this isomorphism can be made explicit by composing (85) with the transformation

.�2`� 1C x; y/ 7�! .�2`� 1C x C y �Kx; y �Kx/; (86)

where Kx D
Px

iD1.�1/iCbi . See Figure 17 for an explicit example. The image of
zR.`; r;

N
a;

N
b/ via these transformations is a portion of the square lattice lying in the

oblique strip ¹.X; Y /W jY �X C 2`C 1j � 2kº, see again Figure 17.

Figure 12. A rail yard graph with a constant LR sequence
N
a D L6 and sign sequence

N
b D C C � C ��, equipped with a pure covering.
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Figure 13. Deformations of the elementary RYG of type LC and L� that generate a
“honeycomb” lattice by concatenation.

Figure 14. Left: The dimer covering of Figure 12 as a covering of the honeycomb lattice, via
the transformations of Figure 13. Right: The same objects displayed as a “lozenge tiling”
of the plane.
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Figure 15. The fundamental lozenge tiling corresponding to the case
N
a D L6 and

N
b D

C C � C ��.

Figure 16. A rail yard graph with LR sequence
N
a D .LR/n and sign sequence

N
b D .C�/n

for n D 4, equipped with its fundamental dimer covering.
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Figure 17. Left: The graph obtained by contracting all the vertices of degree 2 in the RYG
of Figure 16, that is, all the vertices of abscissa congruent to 2 mod 4. Right: the image of
the graph on the left by the linear transformation

�

x

y

�

7!
�

xCy

y

�

. The graph is a portion of
a square lattice of mesh 1. On both sides, the region of the graph where a covering may
di�er from the fundamental one is represented in red. One recognizes the shape of the
Aztec diamond of size n D 4. Note that the coordinate transformation on uncontracted
vertices to go directly from the graph of Figure 16 to the graph on the right is given by
�

x

y

�

7!
�

�.x/Cy

y

�

where �.x/ D x � 2b xC2
4

c if x � 0 and �.�x/ D ��.x/.

Similarly as in Section 5.1, we can dualize this picture to switch between a
description in terms of dimers to one in terms of tilings. The dual of the square
lattice is again the square lattice, and any dimer in the primal induces a domino

(the union of two adjacent squares) in the dual. We thus recover a model of tilings
of the oblique strip by dominos, which are exactly the steep tilings introduced
in [5]. We invite the reader to consult this reference for a thorough discussion on
steep tilings, their link with height functions, their encoding in terms of partitions,
etc. Here we just mention again that, not only do we recover here the enumerative
results already proved in [5], but we obtain the inverse Kasteleyn matrix and dimer
correlations for these models, up to the changes of coordinates described above.

Two particular subclasses of steep tilings had been considered previously. The
�rst one is the class of domino tilings of the Aztec diamond, which corresponds to
the case where the sequence

N
b is also alternating. As far as we know, this is the only

case for which the inverse Kasteleyn matrix has been computed before [26, 17].
The other one is given by pyramid partitions [56], that correspond to the case
where

N
b D C1�1. See [5, Section 4.2] for their connection with steep tilings.

We leave as an exercise the task of making fully explicit the changes of coordinates
and the calculations for pyramid partitions, similarly as we will do for the Aztec
diamond in the next section.



Dimers on rail yard graphs 523

Remark 20. Going from rail yard graphs to steep tilings induces, in a sense, no
loss of generality. Indeed, by forbidding diagonal dimers in the column i of a
rail yard graph (by taking their weight xi to be zero), this column becomes trivial
in the sense that its two boundary states are necessarily equal, and hence it can
be contracted in the graph (i.e. we can drop the corresponding elements from the
LR and sign sequences). Starting from an in�nite alternating LR sequence, it is
possible to produce any LR sequence by performing such contractions, and hence
to obtain any RYG. The coordinates of rail yard graphs however allow to express
the dimer correlations in a more compact form, which is one of our motivations
for introducing them.

6. The Aztec diamond revisited

In order to illustrate Theorem 5 on a concrete example, we concentrate in this
section on the particular case of domino tilings of the Aztec diamond of size
n [22, 23], which can be obtained as a rail yard graph associated with the sequences

N
a D .LR/n and

N
b D .C�/n, see Figures 16 and 17. We will suppose that ` D 0 and

r D 2n�1, and denote byGn the corresponding rail yard graph. Note that, though
Gn is an in�nite graph, its admits only a �nite number (2n.nC1/=2) of pure dimer
coverings. Those pure dimer coverings coincide with the fundamental covering
outside a �nite region which is isomorphic to the Aztec diamond graph of size n,
see [5, Section 4.1] for a discussion of this phenomenon in the language of steep
tilings. The Aztec diamonds are essentially the only RYGs having a �nite number
of pure dimer con�gurations (this can be seen from the enumerative results of
Section 2.4 and Remark 20).

Let us now discuss the probability distributions over domino tilings of the
Aztec diamond that we are considering. Recall the de�nition (1) of the weight
of a con�guration in the multivariate RYG dimer model. For a generic sequence
x0; : : : ; x2n�1, we obtain the so-called Stanley weighting scheme [47, 55], see also
[5, Remark 2]. The partition function reads

Z.Gn; N
x/ D

Y

0�i<j �2n�1

i even, j odd

.1C xixj / (87)

which is a polynomial in the x’s. By specialization we obtain the following
distributions considered originally in [22]:
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� the uniform distribution, obtained by taking xi D 1 for all i ,

� the biased distribution, obtained by taking xi D 1 for i even and xi D � > 0

for i odd (or equivalently xi D
p
� for all i): this corresponds to attaching a

weight � to each pair of diagonal dimers (which become vertical dominos in
the Aztec diamond picture),

� the so-called qvol distribution, obtained by taking xi D qi for i odd and
xi D q�i for i even (which is the q-RYG specialization), and more generally
the biased qvol distribution, obtained by taking xi D �qi for i odd and
xi D q�i for i even.

Let us mention that our present approach does not seem to apply to the two-
periodic weighting considered in [17, Section 6], nor to the weightings considered
in [19].

The study of correlations in domino tilings of the Aztec diamond has been a
popular topic (especially among the members of the “domino forum”) and there
are many previously known results, published or unpublished. In the rest of
this section, we rederive several of these results as consequences of our general
Theorem 5.

6.1. The biased creation rate and edge-probability generating function. Let
us consider the Aztec diamond of size n in the natural coordinates with the origin
at the center. We are interested in the probability to �nd a domino of a given type
at a given position, under the biased distribution. Recall that we may distinguish
four types of dominos: north-, south-, west- and east-going [15]. By symmetry it
is enough to consider only one type of domino, and we denote by P�.x; y; n/ the
probability that .x � 1=2; y/ is the center of a west-going domino in a biased
random tiling of the Aztec diamond of size n. Due to parity constraints, this
probability vanishes unless x and y are integers such that x C y C n is odd.
As apparent from Figures 16 and 17, west-going dominos correspond in the RYG
setting to diagonal dimers in columns of type LC (which makes them easier than
north-going dominos to deal with, since there can be no spurrious diagonal dimers
outside the “interesting” region).

Getting an expression for P�.x; y; n/ (or its analogues for other domino orien-
tations) ameneable to asymptotic analysis has been of interest to several people,
for instance it is used in [15] as a way to proving the arctic circle theorem and its
generalization to arbitrary �. However, this paper states the required expressions
without proofs, and refers instead to a preprint by Gessel, Ionescu and Propp that
has not appeared so far (some of its ideas can be found in [49]). The proof for
� D 1 (uniform distribution) can be found in Helfgott’s senior thesis [26]. More
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recently, an expression for the related generating function (still for � D 1 only)
was proved by two methods in Du’s master thesis [20], and was used in [12] as yet
another route to the arctic circle theorem (we note that those two references men-
tion another lost “DGIP” preprint). At the suggestion of James Propp, which we
thank for pointing out this gap in the literature, we will explain how expressions
for P�.x; y; n/ (for general �) can be obtained as applications of our Theorem 5.

The �rst step consists in going from dominos to dimers on RYGs. Using the
identi�cation discussed above, a west-going domino centered on .x � 1=2; y/

corresponds to a dimer on the edge .˛; ˇ/ with

˛ D .2m; y�1=2/; ˇ D .2m�1; yC1=2/; m D nC x � y C 1

2
2 Œ1; : : : ; n�:

(88)

By Theorem 5 we immediately deduce the expression

P�.x; y; n/

D 1

.2i�/2

I

Cz

I

Cw

�1 �w
1� z

�m�1C �=w

1C �=z

�nC1�m .w=z/y

.z �w/.1�w/dzdw;
(89)

where Cz is a positively oriented contour containing 0 and �� in its interior,
but not 1, and Cw is a positively oriented contour containing Cz in its interior.
Simpler expressions can be obtained for two related quantities: the so-called
biased creation rate

Cr�.x; y; n/ D �C 1

�
.P�.x; y; n/ � P�.x C 1; y; n� 1// (90)

and the edge-probability generating function

…�.u; v; t / D
X

x;y;n

P�.x; y; n/u
xvytn: (91)

Note that, in [15], the bias p is related to our � by p D 1=.1C �/, and the biased
creation rate is expressed in terms of north-going dominos hence the present
de�nition is adapted to the case of west-going dominos.

Let us �rst consider the biased creation rate. Taking the di�erenceP�.x; y; n/�
P�.xC 1; y; n� 1/ in the double contour integral (89), the integrand is multiplied
by a factor 1 � 1C�=z

1C�=w
D �.z�w/

z.wC�/
, leading to a cancellation of the denominator

.z �w/, hence to the factorization

Cr�.x; y; n/ D .1C �/

� I

Cz

.1 � z/�m.z C �/�.nC1�m/znC1�m�y dz

2i�z

�

� I

Cw

.1 �w/m�1 .w C �/n�mwyCm�n dw

2i�w

�

:

(92)
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Note that, by Cauchy’s residue formula, the second integral is equal to the coe�-
cient of wn�m�y in .1 � w/m�1.w C �/n�m, which is a Krawtchouk polynomial.
The �rst integral is of a similar nature, except that the role of the zeros ¹1;��º and
of the poles ¹0;1º in the integrand are exchanged. This suggests to perform the
change of variables z D 1�u

1C��1u
which transforms the �rst integral in (92) into

.1C �/�n�m�1

I

Cu

u1�m.1C ��1u/mCy�1.1 � u/n�m�y �du
2i�u

; (93)

where Cu is a small negatively oriented contour encircling u D 0 (note that
the image of the negatively oriented contour Cu under the change of variable
z D 1�u

1C��1u
is a negatively oriented contour encircling z D 1, which is ho-

motopic in C [ ¹1º n ¹1;��º to the positively oriented contour Cz). Using
Cauchy’s residue formula, the second integral is equal to the coe�cient of um�1 in
.1C ��1u/mCy�1.1� u/n�m�y . Redistributing powers of � we �nally obtain the
following result.

Proposition 21. The biased creation rate reads

Cr�.x; y; n/ D
� �

1C �

�n�1

c�.A; B; n� 1/c�.B; A; n� 1/ (94)

where A D n�m� y D .n� 1� x � y/=2, B D m� 1 D .n� 1C x � y/=2 and

c�.A; B; n/ is the coe�cient of zA in .1 � z/B.1C ��1z/n�B .

Note that �
1C�

D .p � 1/ and ��1 D p
1�p

, so we recover [15, Proposition 23],
up to the exchange p 7! 1 � p and the antidiagonal re�ection .x C y; x � y/ 7!
.�x � y; x � y/ that correspond to the fact that we consider west-going rather
than north-going dominos. [15, Proposition 2] also follows, by taking � D 1, i.e.
p D 1=2.

We now turn to the edge-probability generating function. We need to mul-
tiply (89) by uxvytn D .tu/m.t=u/nC1�m.uv/y=t and sum over all n � 0,
m 2 Œ1; : : : ; n� and y 2 Z. Assuming that � < 1, Cz and Cw can be taken as
circles with center 0 and radiuses between � and 1. For t small enough and u; v
of modulus close to 1, it is possible to interchange the double sum over n;m and
the double contour integral to yield

…�.u; v; t /D
X

y2Z

1

.2i�/2

I

Cz

I

Cw

�.z; w/.uvw=z/y
dz

z

dw

w
; (95)
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where

�.z; w/ D

tu.1 �w/
1� z

1 � tu.1�w/
1 � z

�

t .1C �=w/

u.1C �=z/

1 � t .1C �=w/

u.1C �=z/

� zw

t.z � w/.1�w/: (96)

The sum over all y allows to get rid of one integral. More precisely, assuming
juvj < 1 and jwj �xed, we take two di�erent contours Cz depending on the sign
of y, namely a circle CC

z (resp. C�
z ) of radius slightly larger (resp. smaller) than

juvwj if y � 0 (resp. y < 0). Splitting the sum over y in two accordingly, we may
interchange each sum with the integral, resulting in

…�.u; v; t /D 1

.2i�/2

I

Cw

�� I

C
C
z

�
I

C �
z

�

�.z; w/

z � uvw
dz

�

dw

w

D 1

2i�

I

Cw

�.uvw;w/
dw

w
:

(97)

In the latter integral, the integrand has two poles, but only one of them falls within
Cw for t small and juvj close to 1, and we end up with the following result.

Proposition 22. The biased edge-probability generating function reads

…�.u; v; t / D �t

.1� t=u/
�

.1C �/.1C t2/ � t .uC u�1/ � �t.v C v�1/
� : (98)

For � D 1, we recover the expression given in [20, 12] (again up to the change
of variables needed to pass from west-going to north-going dominos).

Remark 23. The generating function associated with the biased creation rate
takes a much more symmetric form, namely

X

x;y;n

Cr�.x; y; n/u
xvytn D �C 1

�
.1 � t=u/…�.u; v; t /

D .�C 1/t
�

.1C �/.1C t2/ � t .uC u�1/ � �t.v C v�1/
� ;

(99)

and it remains the same for other types of dominos. The combinatorial explanation
of this phenomenon (and of the meaning of the term “creation rate”) comes from
the domino shu�ing algorithm [23, 49], which implies that Cr�.x; y; n/ is the
probability that, in a biased random tiling of the Aztec diamond of size n, the
2 � 2 square centered at .x; y/ is covered by exactly two dominos (regardless of
their orientation).
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6.2. The inverse Kasteleyn matrix. Chhita and Young gave in [17, Section 5]
a formula for the inverse Kasteleyn matrix of the Aztec diamond of size n, for
the biased qvol distribution (whose de�nition is recalled on page 524). Under this
distribution the probability for a tiling is proportional to q to the number of �ips
from the fundamental con�guration times

p
� to the number of vertical dominos.

We now explain how to relate their formula with the entries C˛;ˇ .
Let ˛ D .˛x; ˛y/ be an even vertex and ˇ D .ˇx; ˇy/ an odd vertex, which

have survived the contraction of edges. The coordinates we will use are those of
the contracted graph, so ˛x 2 Œ0; : : : ; 2n� 2� and ˇx 2 Œ�1; : : : ; 2n� 1�.

In this particular case, for k 2 Œ�1; : : : ; 2n � 1�, the function Fk.z/ from
Equation (8) becomes

Fk.z/ D 1

bk=2c
Y

j D0

.1�
p
�q�2j z/

n�1
Y

j Db.kC1/=2c
.1C

p
�q2j C1=z/

: (100)

Chhita and Young use coordinates .x1; x2/ (resp. .y1; y2/) to localize odd
(resp. even) vertices. In their terminology, they are white and black respectively.
These coordinates correspond to axes that are along the diagonals of Figure 17 on
the right.

The correspondence between the two systems of coordinates is
8

<

:

x1 D 1C ˇx C 2ˇy;

x2 D 1C ˇx;

8

<

:

y1 D 1C ˛x C 2˛y;

y2 D 1C ˛x:
(101)

Performing the change of variable

� D �q
y2�2

w
; � D �q

y2�2

z
; (102)

in the integral de�ning K�1
col in [17, Theorem 5.1] in the case when x2 � y2, one

recovers the same factors for the rational fraction in � and � as for G˛;ˇ .�; �/,
up to possibly numerical multiplicative constants. One has just to check that the
contours enclose the same sets of poles. Under the change of variables, the contour
�1;q becomes a contour for � enclosing �

p
�qy2;�

p
�qy2C2; : : : ;�

p
�q2n�1

(and which may or may not enclose zero, since the original rational fraction in
w is regular at in�nity), and the contour �0 is mapped to a large contour for
� containing separating in�nity from a domain containing all the poles and the
contour for � . This contour can be deformed freely as long as it does not cross the
one for � or in�nity, because 1=Fk.�/ is a polynomial, and thus has no poles.
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In the case when x2 > y2, the extra term in [17] comes from the residue at
w D z, which can be integrated to the double integral, at the cost of interchanging
the nesting of the contours.

6.3. The arctic circle theorem. Under the uniform measure, domino tilings of
a large Aztec diamond exhibit a spatial phase transition, known as the arctic circle
phenomenon [30, 29]. Outside the inscribed circle, with probability exponentially
close to 1, all dominos are arranged in a brickwall fashion. This is called the frozen
region. Inside the circle, the probability of each orientation is non degenerate and
does not go to 0 or 1. We now explain how to recover this phenomenon from our
formalism. The parameters q and � are now set to 1.

Let ˛ D .˛x; ˛y/ D
�

2m; y � 1
2

�

be an even vertex. The probability �˛ that
a dimer connects ˛ with ˇ D .ˇx; ˇy/ D

�

2m � 1; y C 1
2

�

is given by (89) with
� D 1. In the scaling limit n ! 1,m=n ! � , y=n ! �, this probability becomes

�˛ D
I

Cz

I

Cw

exp.n.S.z; �; �/� S.w; �; �/C o.1///
d z dw

.z �w/.2i�/2 (103)

where

S.z; �; �/ D �� log.1� z/ � .1� z/ log.1C 1=z/ � � log.z/: (104)

We now proceed as in [42] to obtain the asymptotics of this probability. For
�xed .�; �/, the function z 7! S.z; �; �/ has two critical points.

� If the two critical points are real, the integral goes to 0 or 1 exponentially fast
with n by the saddle point method. The point .�; �/ is in the frozen region.

� If the two critical points are complex conjugate, one can move the contours
so that they cross transversally at the complex critical points to apply again
the saddle point method. By doing so, we pick the contribution of the residue
at z D w, which gives the main contribution of the integral, giving a result
strictly between 0 and 1.

The transition between those two regimes correspond to the value of .�; �/ for
which the two critical points merge. This happens when the discriminant of the
numerator of @S.z; �; �/=@z is equal to zero. This gives

.2� � 1/2 � 4.� C �/.1� � � �/ D 0; (105)

which under the change of variables
´

u D 2� C �;

v D �
(106)

corresponds to the circle 2.u � 1/2 C 2v2 D 1 inscribed in the limiting square of
the Aztec diamond, given by ju � 1j C jvj � 1.
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7. Conclusion

We have introduced the rail yard graph dimer model, and computed its partition
function and correlation functions. We point out that it corresponds essentially to
the most general Schur process with nonnegative transition probabilities, see the
discussion in [11, Sections 1 and 2]: we handle an arbitrary �nite number of “˛”
and “ˇ” specializations, and any other specialization can be obtained by taking
suitable limits (in particular, to get the Poissonized Plancherel measure, one shall
consider the “dilute” limit of RYGs, namely take a sign sequence of the form
Cn�n, an arbitrary LR sequence, and a constant weight sequence z=n, then let
n ! 1).

Many directions can be explored from here. By applying the random genera-
tion algorithms of [3], we may generate large RYG dimer con�gurations, which
allows to observe limit shape phenomena as in the cases of (skew) plane parti-
tions [42, 43] and of the Aztec diamond, discussed above. RYG seem to allow
for an even larger variety of singular points on limit shapes, and of corresponding
limiting processes, which are currently under investigation.

The appearance of the rational edge-probability generating function (98) in the
context of the Aztec diamond (when summing over diamonds of all sizes) raises
the question whether such rationality phenomenon may subsist for other types
of RYGs. A natural idea is to consider RYGs with periodic LR, sign and weight
sequences. Preliminary research indicates the rationality phenomenon occurs only
in another case, namely skew plane partitions of “staircase” shape. In other cases,
we obtain an algebraic, but not rational, generating function (algebraicity being
expected from the very nature of our computations).

In this paper we have obtained the correlations for pure RYG dimer con�g-
urations (by computing vacuum-to-vacuum expectation values of fermionic op-
erators). Other types of boundary conditions can be considered, as in [5] where
the corresponding partition functions were computed (and the extension to RYGs
is straightforward). However, adapting the computation of correlation functions
done in the present paper is not so easy, since it requires an adaptation of Wick’s
formula. For arbitrary but �xed boundary conditions, we know from general facts,
namely the generalized Wick theorem [2] or the Eynard-Mehta theorem [13], that
correlations will still be of determinantal form, however it is not clear how to com-
pute explicitly the propagator/determinantal kernel. Such computation could be
done by Petrov [46] for some lozenge tilings, and we are looking for other tractable
cases. Also of interest is the case of free boundary conditions (that is, we sum
over all possible boundary states). When only one of the boundaries of the RYG
is free (corresponding to symmetric RYG dimer con�gurations), the correlations
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are known to be Pfa�an [13], and we have found an adaptation of Wick’s formula
which would allow for a computation similar to that done in the present paper,
bypassing the use of the (Pfa�an analogue of) Eynard-Mehta’s theorem. Details
should appear in a subsequent publication, see also [18, 54, 44] for related results.
When the two boundaries of the RYG are free, the nature of the correlations is
unknown, even though the partition function can be computed following the lines
of [5]. We believe they should be the Pfa�an analogues of correlations for RYGs
with periodic boundary conditions, related to the periodic Schur process of [10].

Finally, a tantalizing question is whether it is possible to consider “interact-
ing” deformations of our dimer models. Besides the directions mentioned in the
conclusion of [5], let us mention that fermionic techniques have been recently
used, together with methods from constructive �eld theory, to prove rigorous re-
sults about interacting dimer models, see e.g. [25] and references therein. Another
intriguing fact is that identities arising from z-measures (which are instances of
Schur measures) have found applications in the context of quantum integrable sys-
tems [36].

Acknowledgments. We would like to thank Dan Betea, Alexei Borodin, Sunil
Chhita, Philippe Di Francesco, Patrik Ferrari, Jean-Michel Maillet, Richard
Kenyon, Leo Petrov, Senya Shlosman and Mirjana Vuletić, for their constructive
comments and helpful discussions.

Appendices

A. Commutation of bosonic and fermionic operators

In this section, we give a self-contained combinatorial proof of the commutation
relations between the bosonic and the fermionic operators stated in Proposition 11.

Proof. Let us �rst prove (37). It is equivalent to prove that for any k and for any �,

�RC.x/ k j�i D . k C x k�1/�RC.x/j�i: (107)

De�ne

nk D #¹j > k; �j D �º: (108)
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Case 1: � has a white marble in position k. �RC.x/ k j�i enumerates the
admissible dimer covers of an elementary rail yard graph of type .R;C/ and with
right boundary equal to  k j�i. Each dimer cover is speci�ed by the value � of the
left boundary. Here,

 k j�i D .�1/nk j�.k/i; (109)

so the vertex in position k on the right boundary has to be incident to a certain
edge ek in the dimer cover. Thus �RC.x/ k j�i is a sum of two types of terms, the
�rst (resp. second) type corresponds to ek horizontal (resp. diagonal).

By the same argument as for the localization of horizontal dimers on a “double”
column, dimer covers of the �rst type are in bijection with (and have the same
weight as) dimer covers with right boundary � and with left boundary �.k/. Such
covers are enumerated by �RC.x/j�i. To obtain the original left boundary, �,
from this new cover, we need to apply  k to �RC.x/j�i. The sign appearing is
again .�1/nk , because the number of black marbles above position k is the same
in �.k/ as in �. So the �rst term in the sum is equal to

 k�RC.x/j�i: (110)

By using the bijection used to localize diagonal dimers, and observing that the
weights di�er by a factor x, we obtain that the second term of the sum is equal to

x k�1�RC.x/j�i: (111)

Note that the signs cancel out correctly because the number of black marbles
above position k � 1 on the left boundary is equal to the number of black marbles
above position k on the right boundary.

Thus we conclude in Case 1.

Case 2: � has a black marble in position k. Here,  k j�i D 0, so the left-hand
side of (107) vanishes.

�RC.x/j�i enumerates the admissible dimer covers of an elementary rail yard
graph of type .R;C/ and with right boundary equal to �. Each dimer cover
is speci�ed by the value � of the left boundary. The vertex in position k on
the right boundary has to be incident to a certain edge ek in the dimer cover.
Thus �RC.x/ k j�i is a sum of two types of terms, the �rst (resp. second) type
corresponds to ek horizontal (resp. diagonal).
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If � is a term of the �rst type, � has a black marble in position k, thus
 k C x k�1j�i D x k�1j�i and

x k�1j�i D

8

<

:

x.�1/nkC1�.k�1/ if � has a white marble in position k � 1,

0 otherwise:
(112)

The sign is due to the fact that the number of black marbles in � above the
position k � 1 is equal to the number of black marbles in � above the position k,
to which we must add the black marble in � in position k.

If � is a term of the second type, � has a black marble in position k � 1, thus
 k C x k�1j�i D  kj�i and

 k j�i D

8

<

:

.�1/nk�.k/ if � has a white marble in position k,

0 otherwise.
(113)

So all the nonzero terms of
�

 k C x k�1

�

�RC.x/j�i have black marbles in
positions k�1 and k, and each term appears twice, with the same weight (because
if � is a term of the second type in �RC.x/j�i, it already carries a factor x coming
from the diagonal dimer ek) and with opposite sign.

Thus the right-hand side of (107) also vanishes.
This concludes the proof of (37). Formula (41) is proved similarly, replacing

 k�1 by  kC1 and z by 1
z
.

We noted that �RC.x/ was conjugated to �LC.x/ via !. Observe now that
 �

l
is conjugated to  l via !, up to a sign .�1/sl verifying .�1/slC1 D �.�1/sl

(sl is de�ned by an equation analogous to (35)). This enables us to deduce
formulas (38) and (42).

Using that �RC.x/, �LC.x/ and  .z/ are respectively adjoint of �R�.x/,
�L�.x/ and  .1=z/, we deduce the last four formulas. �

B. Wick’s formula

In this section, we provide a proof of the identity

h;jT
�

‰.˛1/; ‰
�.ˇ1/; : : : ; ‰.˛s/; ‰

�.ˇs/
�

j;i

D det
1�i;j �s

h;jT
�

‰.˛i /; ‰
�. ǰ /

�

j;i (114)

used in (59).
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Let … be the set of partitions of ¹1; : : : ; 2sº into unordered pairs. An element
� 2 … can be canonically written �D¹¹i1; j1º; : : : ; ¹is; jsºº with i1 < i2 < � � � < is
and it < jt for all t , and viewed as a permutation

� D
�

1 2 � � � 2s � 1 2s

i1 j1 � � � is js

�

; (115)

which allows to de�ne its sign �.�/. Recall that the Pfa�an of a 2s � 2s antisym-
metric matrix A D .Aij /1�i;j �2s is de�ned as

Pf.A/ D
X

�2…

�.�/

s
Y

tD1

A�.2t�1/;�.2t/: (116)

Let F be the space of (countably in�nite) linear combinations of  k’s and  �
k
’s.

Proposition 24 (Wick’s formula). For X1; : : : ; X2s elements of F , we have

h;jX1 � � �X2s j;i D Pf.A/ (117)

whereA is the 2s�2s antisymmetric matrix such thatAij D h;jXiXj j;i for i < j .

Proof. Let FC (resp. F�) be the vector space spanned by the  k with k > 0 and
the  �

k
with k < 0 (resp. the  k with k < 0 and the  �

k
with k > 0), so that

F D FC ˚ F �. For X 2 F , we denote by XC and X� its projections on these
two subspaces: observe that h;jXC D 0 and X�j;i D 0.

Let X1; : : : ; X2s be elements of F . Observe that, by proposition 9, ¹X�
i ; X

C
j º

is a scalar for any i < j , and

h;jXiXj j;i D h;jXC
i X

C
j CXC

i X
�
j C X�

i X
�
j CX�

i X
C
j j;i

D h;jXC
i X

C
j CXC

i X
�
j C X�

i X
�
j C ¹X�

i ; X
C
j º � XC

j X
�
i j;i

D ¹X�
i ; X

C
j º:

(118)

We proceed similarly to compute the left-hand side of (117): we write each of the
Xi as Xi D XC

i C X�
i , expand the product and get a sum of 22s terms. In each

of these terms, we move all the X�
i to the right. To get a nonzero contribution,

we must pair up each X�
i with one XC

j such that i < j , and multiply all the
anticommutators obtained in this fashion. So each nonzero contribution is equal,
up to a sign, to

s
Y

tD1

¹X�
�.2t�1/; X

C
�.2t/

º (119)
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where � 2 … is some partition into pairs of ¹1; : : : ; 2sº. Furthermore, the sign
of this contribution corresponds to the number of swaps needed to bring each
X�

�.2t�1/
exactly to the left ofXC

�.2t/
, i.e. it is the signature of � . This yields exactly

the right-hand side of (116) with Aij D ¹X�
i ; X

C
j º D h;jXiXj j;i. �

To prove the wanted identity (114), we set Y2t�1 D ‰.˛t / and Y2t D ‰�.ˇt /,
t D 1; : : : ; s. By the de�nition of natural ordering, there is a permutation � such
that

T .Y1; : : : ; Y2s/ D �.�/Y�.1/ : : : Y�.2s/: (120)

By Proposition 24 and since Y�.i/Y�.j / D T.Y�.i/; Y�.j // for any i < j , we have

h;jT .Y1; : : : ; Y2s/ j;i D �.�/Pf1�i;j �2sh;jT.Y�.i/; Y�.j //j;i

D Pf1�i;j �2sh;jT.Yi ; Yj /j;i
(121)

(when we simultaneously permute the rows and columns of an antisymmetric
matrix, the Pfa�an is multiplied by the sign of the permutation). Finally, we
observe that h;jT.Yi ; Yj /j;i is nonzero if and only if i; j have di�erent parities,
which allows to rewrite the Pfa�an as the wanted determinant without sign.
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