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A combinatorial Hopf algebra
for the boson normal ordering problem

Imad Eddine Bousbaa, Ali Chouria, and Jean-Gabriel Luque

Abstract. In the aim of understand the generalization of Stirling numbers occurring in the
bosonic normal ordering problem, several combinatorial models have been proposed. In
particular, Blasiak et al. defined combinatorial objects allowing to interpret the number
of Sy.s(k) appearing in the identity (a¥)™a" --- (a¥)1a%1 = (aT)* Z Ses(k)(@hHkak,
where « is assumed to be non-negative. These objects are used to define a combinatorial
Hopf algebra which projects to the enveloping algebra of the Heisenberg Lie algebra. Here,
we propose a new variant this construction which admits a realization with variables. This
means that we construct our algebra from a free algebra C(A) using quotient and shifted
product. The combinatorial objects (B-diagrams) are slightly different from those proposed
by Blasiak ef al., but give also a combinatorial interpretation of the generalized Stirling
numbers together with a combinatorial Hopf algebra related to Heisenberg Lie algebra.
the main difference comes the fact that the B-diagrams have the same number of inputs
and outputs. After studying the combinatorics and the enumeration of B-diagrams, we
propose two constructions of algebras called. The Fusion algebra F defined using formal
variables and another algebra B constructed directly from the B-diagrams. We show the
connection between these two algebras and that B can be endowed with Hopf structure. We
recognise two already known combinatorial Hopf subalgebras of B: WSym the algebra of
word symmetric functions indexed by set partitions and BWSym the algebra of biword
symmetric functions indexed by set partitions into lists.

Mathematics Subject Classification (2010). 05E05, 05E99, 05A18, 16T05.

Keywords. Normal boson ordering, Fock space, generalized Stirling numbers, combina-
torial Hopf algebras.



62 I. E. Bousbaa, A. Chouria, and J.-G. Luque

Contents
1 Introduction . . . . . ... ... .. 62
2 B-diagrams . . . ... 63
3 Algebraic aspects of B-diagrams . . . . . . ... ... ... .. .... 73
4 Coalgebraic aspects of B-diagrams . . . . .. ... .......... 87
5 Twosubalgebras . . . ... ... ... ... ... 91
6 Conclusion . . ... ... ... 98
References. . . . . . . . . . . 100

1. Introduction

In Quantum Field Theory, the concept of field allows the creation and the annihi-
lation of particles in any point of the space. Like any quantum systems, a quantum
field has an Hamiltonian H and the associated Hilbert space H is generated by
the eigenvectors of H. In the bra—cket notation, the Hilbert space is generated by
the vectors |n) assumed to be orthogonal ((m|n) = 8, ). This representation is
usually called Fock space; the vector |n) means that there are n particles in the
system. The creation and annihilation operators, denoted respectively by a' and
a are non-Hermitian operators acting on the Fock space by

aflny = Vn+1ln+1) and aln) = /nln —1).

These operators generate the Heisenberg algebra abstractly defined as the free
algebra generated by the elements a, a™ and quotiented by the relation

[a.aT] = 1. (1)

The normal ordering problem consists in computing (z|F (a', a)|z) where F(a, a)
is an operator of the Heisenberg algebra, |z) is an eigenstate of the annihilation
operator a (a|z) = z|z)), and (z|a" = (z|z*. The strategy consists in sorting the
letters on each terms of F(a',a) in such a way that all the letters a* are in the
left and all the letters a are in the right by using as many times as necessary the
relation (1).

In a seminal paper, J. Katriel [14] pioneered the study of the combinatorial
aspects of the normal ordering problem. He established the normal-ordered
expression of (aa)” in terms of Stirling numbers of second kind enumerating
partitions of a set of n elements into k non empty subsets

@ay" =3 " S@.i)aha'.
i=1
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The investigation of the normal ordered expression of ((a)"a*)" naturally gives
rise to generalized Stirling numbers S; s(n, k) and Bell polynomials [6, 7]. The
interpretations of some special cases are well known and related to combinatorial
numbers [12, 8]. For instance, for r = 2 and s = 1, the number S, (n,k) =
(}~1)™ is the number of partitions of {1,...,n} into k lists (also called Lah
numbers). More generally, Blasiak e al. [19] studied the bosonic normal ordering
problem,
(aT)r"as” ... (a’f)rlaS1 — (a’r)txn Z Sr,s(k)(aT)kak,

k>s1

with
r=(r1’--~,rn), s=(s1,...,Sn)

and
n

an =Y (ri —si).
i=1

They gave also a combinatorial interpretation of the sequence Sy s(k) in terms
of graphs-like combinatorial objects called bugs. In a further work, Blasiak et
al. [9] constructed a combinatorial Hopf algebras based on bugs to explain the
computations. The aim of our paper is to investigate a variant of their construction.
Our version allows a realization with variables which projects on the Heisenberg—
weyl algebra and the connections with some other combinatorial Hopf algebras
appear clearly. Readers interested by the topic of combinatorial interpretations of
the normal ordering should also refer to [5, 15, 16, 17, 18].

Our paper is organized as follow. In Section 2, we introduce the combinatorial
structure of B-diagrams and we give, in Section 3, an algebraic structure based on
these objects. Also, we describe a second algebra F named Fusion algebra which
specializes to the Heisenberg—weyl algebra. We show that the B-diagram algebra
is isomorphic to a subalgebra of F which allows us to describe the normal ordering
problem in terms of B-diagram. We study the Hopf structure of B-diagrams in
Section 4 and we identify, in Section 5, two already known subalgebras: WSym
and BWSym.

2. B-diagrams

2.1. Definition and first examples. Let us first introduce notation. Let #E
denote the cardinal of the set E, [a,b] := {a,a+1,...,b—1, b} for any pairs of
integersa < b, E = E'W E” when E = E' U E”[n] and E’' N E"[n] = @, where
E”[n] means that we add n = #E’ to each integer occurring in E”. For example,
if we set E = {1,2,3}, thus E[2] = {3,4,5).
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Definition 1. A B-diagram is a 5-tuple G = (n, A, E*, E¥, E) such that
(1) neN,
2) A =[A1,...,A,] with &; € IN\ {0} for each i,
3) EVEY C LA+ + A,
(4) E C{(a,b):ac E",b e EY,v(a) < v(b)} where
v LA + -+ 4] — [1,1]

isdefinedby v(k) =i ifk € [Ay + -+ Aic1 + L AL +--- + A,

(5) foreacha € Et and b € EV, the sets {(a, ¢): (a,c) € E} and {(c., b): (c.b) €
E'} contain at most one element.

Graphically, a B-diagram can be represented as a graph with n vertices. The
vertex i has exactly A; inner (resp. outer) half-edges labelled by

A4+ A+ LA+ + AL

The inner (resp. outer) half-edges which does not belong to EV (resp. E') are
denoted by x. An element of E is represented by an edge relying an outer half-
edge a of a vertex i to an inner half-edge b of a vertex j withi < ;.

Example 2. For instance, the B-diagram

G = (3.[3.1.2]. [1.5].[1.6].{(1.6).(2.4).(4.5)})

is represented in Figure 1

Figure 1. The B-diagram (3, [3,1,2], [1, 5], [1. 6], {(1,6), (2,4), (4,5)}).

Also consider G’ = (4,1, 3,2,2],{1,3,4,6},{1,3,6,7},{(1,6), (3,7)}) which
is represented in Figure 2.
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Figure 2. The B-diagram (4,1, 3,2,2],{1,3,4,6},{1,3,6,7},{(1,6),(3,7)}).

Let G = (n, A, ET, EY, E), we define some tools in order to manipulate more
easily the B-diagrams:

(1) the number of vertices is |G| := n;
(2) we write (G) := A1 + --- + A, for the number of half-edges.
(3) Let t(G) := #E, be the number of edges;
(4) the number of non used outer (resp. inner) half-edges is
h(G) = o(G) — #e' (E)
(resp. WY (G) 1= w(G) — #eV(E)) where e’ (a, b) = a (resp. e¥(a,b) = b),
(5) the set of non used outer (resp. inner) non cut half-edges is

H}(G) = EY\ M (E)

(resp. H}(G) 1= EV\ e}(E));
(6) the number of non used outer (resp. inner) non cut half-edges is
hH(G) = #H](G)
(resp. h}(G) := #H [ (G));
(7) the number of non used cut half-edges is

he(G) := h1(G) = h}(G) + h*(G) — h}(G):
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(8) the set of half-edges associated to a vertex i is

HG):=[A ++Aicg + LA+ 4+ A

(9) the set of outer (resp. inner) non cut half-edges associated to a vertex i,
A1) = EVO A+ o+ Aicy + LA+ + 4]

(resp. I-AI}(i) = EVO A 4+ i + LA 4+ 4]
(10) we will also use the map v of Definition 1; this map will be denoted vg in

case of ambiguity.

Example 3. Consider the B-diagram G = (n, A, E', EV, E) represented in
Figure 1. We have |G| = 3, w(G) = 6, and 7(G) = 3. We also have 11 (G) = 3,
WHG) = 2, h%(G) = hy(G) = 3, and he(G) = 1 since H}(G) = {3.5}
and H}(G) = {1,2,3}. Furthermore H (1) = ﬁ}(l) = ﬁ}(l) = {1,2,3},
A =A@ = A7) = (4. HB) = A}(3) = {5.6},and A](3) = {5}.
Finally, v(1) = v(2) = v(3) = 1, v(4) = 2, and v(5) = v(6) = 3.

A special example B-diagram is given by the empty diagram ¢ := (0, [], @, @, 9).
This is the only diagram of weight 0.

Definition 4. Let G = (n, A, ET, EV, E) be a B-diagram. A sub B-diagram of G
is completely characterized by a sequence 1 <i; < --- < i,y < n. More precisely,
we define the B-diagram Gli,...,in ] = (W', X', E'", E"Y, E") by

() XV =1[A,.. .,lin,];

@) Et = ¢(EY U, H(ip)) and EY = ¢(EY NI, H (ig)) where ¢ is the
only increasing bijection sending UZ/:I Hig)to [1. Ay +--+ Ai s

3) E' = ¢(EnUjZ, Al ) x B (ip).
Let I = [i1,....iy] be a sequence of vertices of G, we let
Col =[1,n]\ {i1,....in}

denote the complement of I in G.
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Example 5. Let G be the B-diagram of Figure 1. We have H() = H } 1) =

Ay () =1{1,2,3}, HR) = H(2) = H}(2) = {4}, H(3) = H}(3) = {5.6},and

PAI} (3) = {5}. Seti; = 1 and i, = 3. Following Definition 4, we have

() A =1[3.2];

(2) ¢ sendsrespectively 1,2,3,5,6t01,2,3,4,5 Hence, E'M = ¢$({1,2,3,5}) =
{1,2,3,4}and E" = ¢({1,2,3,5,6)) = {1,2,3,4,5);

(3) E'=¢({(1,6)}) = {(1,5)}.

We deduce that G[1, 3] = (2,[3,2],[1, 4], [1,5].{(1, 5)}) (see Figure 3).

45

1
4 5

Figure 3. G[1, 3] for G = (3,[3,1,2],[1,5], [1.,6],{(1,6),(2,4), (4,5)}).

2.2. Connections and compositions

Definition 6. A B-diagram G = (n, A, E1, EV, E) is connected if and only if for
each 1 <i < j < n, there exists a sequence of edges (a1, b1),...,(ax,bx) € E
satisfying

(1) i € {v(a1),v(by)} and j € {v(a),v(br)} and

(2) foreach1 <{ <k

v(ag) € {v(ag+1), v(bey1)} or v(by) € {v(ag+1), v(be+1)}-

A connected component of a B-diagram G is a sequence i; < --+ < i, such
that G[iy, . . ., iy’] is a connected sub B-diagram which is maximal in the sense that
if we add any vertex i in the sequence iy < --- < i,y then we obtain a sequence
iy <--- <, suchthat G[if,... i, ] is not connected. Let Connected(G)
denote the set of the connected components of G.
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Example 7. The B-diagram in Figure 1 is connected whilst the B-diagram in
Figure 2 has two connected components [1, 3] and [2, 4].

Asequence | <iy <...,iy < nisisolatedin G if for each (a, b) € E implies
that v(a) and v(b) are both in {iy, ..., i} or bothin Cg{ii, ..., in}.
Claim 8. The following assertions are equivalent:
(1) I isisolated in G;
(2) CgI is isolated in G;

. .1 .1 .p .p
(3) there exist j, < < g Ji <<, such that
.1 .1 . .
I ={]1’... ’jkl""’jlp"“ ’jk’;;}
and each sequence [ j f cee, j,fe] is a connected component of G.

Remark 9. e A B-diagram G and the empty diagram ¢ are both isolated in G.

e If ] is a connected component of G then it is isolated in G.

Let Iso(G) denote the set isolated sequences in G and set
Split(G) := {(I.CgI): I € Iso(G)} .

Definition 10. Let G = (n, A, ET, EY, E) and G’ = (0, A", E', EV, E') be two
B-diagrams. For any k > 0, any strictly increasing sequence a; < --- < a in
H ; (G) and any k-tuple of distinct integers by, ..., by in H } (G"), we define the
composition

i? — G//

where G” is the 5 tuple (n +n',[A1, ..., An, A}, ..., ALl E”T, E"V E”) with
(1) E"" = EYU{i + w(G):i € EM}and E"Y = EV U {i + w(G):i € EVY,
(2) E" = EU{(ag,bi+w(G)):1 <L <k}U{(a+w(G),b+w(G)): (a,b) € E'}.
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We easily check that the definition of composition is coherent with the structure
of B-diagram.

Claim 11. Let G = (n, A, EY, EY,E) and G' = (', ), E'’Y, EY, E') be two B-
diagrams. For any k > 0, any strictly increasing sequence a1 < .-+ < ay in
H; (G) and any k-tuple of distinct integers by, . .., by in H} (G"), the 5-tuple

is a B-diagram.
Example 12. Figure 4 gives an example of composition.
1314

T
13 14

I
xm/
- X~
]
X%

X
w
X

T
XN

4o e
~

Figure 4. An example of composition.
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Note that the special case where k = 0 corresponds to a simple juxtaposition
of the B-diagrams (see Figure 5 for an example). We set

G//
G'|G":= v .

G/

The operation | endows the set of the B-diagrams B with a structure of monoid
whose unity is e.

Definition 13. A B-diagram G is indivisible if G = G’|G” implies G’ = G or
G" = G. Let G denote the set of indivisible B-diagrams.

It is easy to check that the indivisible diagrams are algebraically independent.
It follows

Proposition 14. The monoid (B, |) is freely generated by G: B ~ G*.

X8
X

=

IS
wiX

[t
0
X
X 00

X_
-
[+]

—X
w4
WX
XN
w
-
o0X

%
Il

X

.
X8

e

)
NX
w

X
~ Tk
£X
o -
ox

Figure 5. An example of composition when k = 0.
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Now, we give an alternative recursive definition for the B-diagrams using the
compositions.

Lemma 15. Let G = (n, A, ET, EV, E) be a B-diagram. Either G = ¢ or there
exists a B-diagram
V =(1[pl.E} E}. Ey),

a B-diagram
G=m-1A1E"EYE)

and two sequences

l<ay<--<ap<p and 1<by,....bg <w(G)
distinct satisfying
G
b1,....bx
G =
Al ...y ay
V
Let us set
G/
b1 yeesbi a1 <---<ag € HT(G)bl b € HL(G’) distinct
G*Gl — * f 5 ’ f 5
4 k=0
1seees ax
G

2.3. Enumeration. Let d,, denote the number of B-diagrams G such that
w(G) = p and h} (G) = g (see in Table 1 the first values of d, 4 or the sequence
A265199 in [25]).

From lemma 15, we find the induction

b EEEE) )

i=1j=0k=0/{=0

with the special cases dpop = 1l and d,, = 01if p.g < 0 and (p,q) # (0,0).
Indeed, we obtain a diagram with p half-edges and ¢ non used outer non cut half-
edges by branching £ inner half-edges of an elementary B-diagram with i half-
edges, j < i non used inner non cut half-edges, and k < i non used outer non cut
half-edges to a B-diagram with p —i half-edges and ¢ — k + £ non used outer non
cut half-edges. The number of ways to do that is £!(})(*~ ’ZM)( )(;). Indeed, the
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factor £! is the number of permutation of the inner half-edges of the elementary

B-diagram, the factor (é) corresponds to the choice of £ half-edges in the set of
the j possible non cut half-edges, the coefficients (q_le) is the number of ways
to choose ¢ outer half-edges in the second B-diagram, and the factor (})(;) is the

number of ways to select j inner half-edges and k outer half-edges in i half-edges.

Table 1. First values of dp, 4.

dpg] O 1 2 3 4 5 6
0 1

1 2 2

2 10 18 8

3 62 154 124 32

4 | 462 | 1426 | 159 | 760 128

5 | 3982 | 14506 | 20380 | 13680 | 4336 | 512

6 | 38646 | 161042 | 269284 | 229448 | 104032 | 23520 | 2048

The number «, of B-diagrams having exactly p half-edges is given by

14
q=0

The first values (see sequence A266093 in [25]) are

1, 4, 36, 372, 4372, 57396, 828020, 12962164, 218098356,

Example 16. Let us illustrate this enumeration by counting the B-diagrams of
weight 3. A B-diagram of weight 3 is

(1) either an elementary diagram of weight 3 (2° possibilities),

(2) or it is composed by an elementary diagram of weight 2 and another ele-
mentary diagram of weight 1. The two diagrams are either juxtaposed (27
possibilities) or branched 26 possibilities.

(3) or it is composed by three elementary diagrams of weight 1. The three
diagrams are either juxtaposed (2° possibilities), or two of the three diagrams
are connected (3 x 24 possibilities), or the three diagrams are connected (22
possibilities).

Hence, we obtain 26 4 27 + 26 + 26 + 3 x 2% + 22 = 372 as predicted by (2).
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3. Algebraic aspects of B-diagrams

3.1. Fusion algebra. We consider the alphabets

° A(x = {a((,'l)m(ik)Ik S N,il,...,ik,jl,.--,jk € ]N\{O}}’

J1 Jk

° A)x = {a)(,'l)m(ik)Ik S N,il,...,ik,jl,.--,jk € ]N\{O}}’

J1 Jk

Axi = 1{by; ik e INVig, .. ik, J1, -y Je € IN\ {0}},
i ( {(Jll)(il/i)( I Ik, J1 Jk \ {0}}

° andﬂx)z{b iy (i ke INiy, ..., ik, 1., jx € N\ {0}}.
()-Go)

For simplicity, we also set

Ag) = AU Ay,
Ay (= AU Ax,
HAex = Ax U Ayx,
Axo = Ax( U Axy,
A=A UA (.
Definition 17. Let Jr be the ideal of C({A) (the free associative algebra generated
by A) generated by the polynomials

(1) [e,f] =ef —feforanye € A(yand f € A,
(2) ef —feforanye, f € Ay, and any e, f € A.x,

(3) uaeqVby(a)gxbgey —UaeqVaygby(Xbgoy —UaeqgVXbegoy for any u, v, x,y €

. i ~ i irs

A* (the free monoid generated by A), @ = (})---(}). B = (].1{)---(]."/2/)

(with k, k" € Nand iy, ....ik, Jiseoos jlos igseeesipss jiooos i € N\ AO}),
and e, o € {{,)}.

We call fusion algebra the quotient F := C(A)/4,..

Remark that A is in the center of F and that the subalgebra of J generated
by Axo (resp. Aex) is commutative.
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Using rule 3 of Definition 17, we show by induction the following result:

Lemma 18. We have

Ay - -+ Ay Py (- Py ()81 - - 2B PBI(- - DB

min{n,m} ; ;

17"'7 k
> (X 2 e, o, )
k=0

1<iy<-<ig<n Tl Jk

A mmIL= 1o, ji <m distinet . .
11, ...,k b b
ol . N L R L

J1s---s Jk
where
i1, ..., 0
P(jl jk) = [To T2
TR G i} Tk}
and
i1, ...
Q(Jl Jk) Hbﬂj l_[b"‘j('
B ]¢{]ls a]k} l¢{ils"'sik}
Proof. We proceed by induction on m. If m = 0 then the result is obvious.

Otherwise applying successively many times rule 3 of Definition 17 and hence
rule 2, one obtains

Ayg; - - Ay by (- - Py (3)) - - )8, 08, (- DB

ﬂll_[aazl_[ba, Haﬂj Hbﬂj (bg (
j=2

i=1 i=1 =

m m
+ Z S IEILTIIEY ]_[ (Do, 1 (-

i=1 JE A =2

“)

Hence, applying the induction hypothesis to each term

n
l_[ a,l_[ba, l_[a [ Tbs:
| 1

j=1
and
m m
H Aoy H b"‘j( 1_[ 1_[ (b, g1 (5
JE A =2 =2
for 1 < i < n, and again rule 2 of Definition 17 for writing each factor in the
suitable order, we find the result. O



A combinatorial Hopf algebra for the boson normal ordering problem 75

Whilst formula (3) seems rather technical, it is easy to understand. Indeed, it
means that each of the letters by, (, ..., by, ( can be paired or not with any of the
letters ayg,,....a)g,.

Example 19. Let us illustrate formula (3) on the following example

A)a; A)ar by (Par(2)812)8,08, (08> ( = 3)8,2)8,3)ar; A2z DB (085 (bery (Par(
+2)8,3)as ) 1 D2 (Pas (Bary 1 ¢ +2)8,3)a; 2)az 1 P> (Pay (Par ¢
+2)8, )z A)ay B2 D81 (Pas (Bary B +2)8, 3)a; A)az 8,81 (Pa; (Paz B2
+a)a; 81 Q)2 2 Paty B (P B +a)ay8) A)ar) B2 Pz 1 (Pt (-

Now, we define F as the subspace of F generated by the elements under the
form

Aeqqy - - - AeparPajo; - - - Dagop

with ;, 0; € {(,)},forany 1 <i <k and k € IN.
Proposition 20. Fisa subalgebra of F.

Proof. It suffices to prove that is stable for the product.

Let
U= Qe -- - AepayPajor - - Pagop
and
V= agg) e, bo/1<>1 "'b"‘;c/ok"
Let i1,...,i¢ be the indices such that ¢;, = --- = ¢;, =) and {ji,..., jr—¢} =
i k} \ {i1,...,i¢}. In the same way, let i{, ...,1;, be the indices such that
. .
o ==y = (and {j{,....j_pt = {1,...., K"} \ {i{,...,ij}. From the
relatlons 1 and 2 of Definition 17, one has
UV = e, oy, -+ e, a(o,l,i T é/u V'bg w0y - b“;é, o, bail) .. .baiz),
with
!/
u Aej )y -0y oy, b"‘h("'b"‘jk—z(
and
/
vV =a ...a b .
)a}{ )ajl/c/—e/ a;,{oj{ &, 0,

Hence, one has only to prove that u'v’ € F which is a direct consequence of
equality (3). |



76 I. E. Bousbaa, A. Chouria, and J.-G. Luque

Example 21. We consider the elements

= b b y = b b a?,
TEAMAGHCOI™ TG0 GG ©
and w = w;w,. First from the point (1) of Definition 17, b(l)) is in the center of the
algebra F. Hence, 2

T =A0A0POAE N EPEPE)

Now we use the point (3) and compute

=0 0 HEe 90 PerePe)
= ua)( )va (%

P OEPE) T UM E) 0 @)Y
(

)
=030 °ORE ) PwPE)
00N 0 E)PLPE)

We use again the point (3) on the first terms of the last sum and find

"EA0AOIOIRPOCOCWE)
TR0 COCHE)
TAMHEIGIRHECOPE)

Finally, using the point (2) of Definition 17, we show w € F. Indeed

"0 OLOPGCE)

For each element c € A we define
|c| ;= max{i;: 1 <€ <k}.
Let w(w) := max{j;:1 < £ < k} for any c € A with ¢ = a,(il)m(il) or

Ji/ N
c= b(i_l)___<i_l)o (o, € {{(,)}). Also we set, for any word w in A*, |w| = w(w) =0
i\
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if w is the empty word, |w| = max{|u|, |c|} and w(w) = max{w(u),w(c)} for
w = uc with c € A.

We define on C(A) the shifted product as the only associative product satisfy-
ing, for each u, v € A*, u % v = uv[|u|, w(u)], where

a.(".l )-(%) [m,n] = a.(i1+n )y

J1 Jk J1+m/ \jr+m

bi\ (i ] =b,; :
(1) (i)l TN = Pirm). (5

(o,¢ €{{(,)}), and w[n, m] = u[n, m|c[n,m] ifu € A* and c € A.

Claim 22. (1) Let P € Jr. Forany Q € C{A) we have P % Q,Q % P € Jr.
In consequence, the operation % is well defined on .

(2) IfP,Q € Fthen P %k Q € 7.

These properties implies that we can endow the space F with the associative
product %. Let F denote this algebra.

Example 23. Consider the element

One has

3.2. The algebra of B-diagrams. We consider the algebra B consisting in the
space formally generated by the B-diagrams and endowed with the product %
defined by

cko-yo =¥ H .
G"eG Y G’ qy<w<areHN(G) @19k
by,....bpyeHY (G’) distinct
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For simplicity, forany 1 < a; < -+ <ar <w(G)and 1 < by,..., b < w(G')
distinct, we set

G/
G/ b] ..... bk
i St ifa; <---<ax € H'(G)and by, ..., by € HY(G'),
— ap,..., ay
at,..., ay G
G
0 otherwise.

With this notation we have

G/
by,....bk

GkG = ) * (6)
1<aj<-<ax<w(G) 4158k

1<by,...bp <w(G') distinct G

We set By = span{G:w(G) = k}. Note that B splits into the direct sum
B = P, Bx and the dimension of each space By is finite.
Straightforwardly from the definition, we check:

Claim 24. (B, %) is a graded algebra with finite dimensional graded component.
The unit of this algebra is the empty B-diagram e.

Example 25. See Figures 6 and 7 for two examples of product.

We remark that the product is triangular in the sense that all the B-diagrams
different from G” = G|G’ which appear in the product G % G’ have strictly less
connected components than G”. Hence, since B = C[B] and B is isomorphic to
the free monoid generated by G* (see Proposition(14)), we obtain the following
result.

Proposition 26. The algebra B is free on the indivisible B-diagrams. In other
words, it is isomprphic to B := C(G).

3.3. From B-diagrams algebra to Fusion algebra. The aim of this section is
to prove that the algebra B is isomorphic to a subalgebra of &F.

Definition 27. A path in a B-Diagram G = (n, A, E TEY, E) is an increasing
sequence of integers 1 < iy < -+ < iy < o(G) such that (i1, 1), (i2,i3), ...,
(ix—1,i) € E, i1 € H}(G) and iy € H;(G). Let Paths(G) denote the set of the
paths in G.
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Let p = (i1,...,ix) € Path(G). For simplicity, we define
e p¥ =ijand pt =iy;

o if iy € 35, nd o = ¢ ifip €+,
- ( otherwise, i ) otherwise;

e seqg(p) = (vGi(lil)) T (sz’Sk))'
Remark 28. It is easy to check that
(1) h} = #{p € Paths(G): 0, = (},
(2) h¥ = #{p € Paths(G): s, =)},
(3) he = #{p € Paths(G): o, =)} + #{p € Paths(G): e, = (}.
Example 29. Consider the B-diagram G of Figure 1. One has
Paths(G) = {(1, 6), (2,4, 5), (3)}.

Suppose that p = (1, 6), one has

or=h oy =) and seao(r = (1)(3)

We have h} = 2 = #{(2.4.5.(3)}, h} = 3 = #{(1.6).(2.4.5).(3)}, and
he =1 = #{(1,6)}.

For any B-diagram G we define

w(G) := l_[ e ,seq: () Hbseq(p)GOp e F.
p€EPaths(G) p€EPaths(G)

Clearly, a B-diagram G is completely characterized by the values of seq(p), e,
and ¢, associated to each of its paths p. So w is into. Furthermore, w sends the
empty B-diagram ¢ to the unit 1 of .

Example 30. If we consider the B-diagram G = (1, 6) in Figure 1, one has
"D=90EIHEIOPHRPOAE) Q)

Definition 31. Let F5¢ denote the subalgebra of F generated by the elements w(G)
where G is a B-diagram.
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Lemma 32. The set {w(G): G is a B-diagram} is a basis of the space Fy.

Proof. One has to prove that for any sequence of distinct B-diagrams Gy, . .., Gy,
> aiw(Gi) = 0 implies ¢ = -+ = «a, = 0. We proceed as follows: first we
consider the partially commutative free algebra C(A4, 0) = C(A)/4, where J; is
the ideal generated by the polynomials of the points 1 and 2 of Definition 17. Notice
that C(A4, 8) = C[IM(A, 0)] is the algebra of the free partially commutative monoid
M(A, 8) = A*/=, where =4 is the congruence generated by uefv = ufev for
eachu,ve A*, (e e Ajyand f € A)ore, f € A, ore, f e A,. Hence, we
define J, the ideal of C(A4, 0) generated by the polynomials

UdeqVby(2)gXbgey — UleqVaygby(Xbgoy — Uaeqg VEbygoy

foranyu,v,x,y € M(A, 0),a = (3,11) ‘e (’]/;), B = (;i{) . (;/;Z’/) (with k,k’ € N and

i1seeidls J1oooos o i1seendpn j1-oos Ji € N\ {0}), and e, o € {(,)}. Observe
that I = C[M(A, 0)]/4,. We define
ﬁ(G) = l_[ aopsqu(p) Hbseq(p)Gop € C<A, 0)
pePaths(G) pePaths(G)
Let W be the subspace generated by the monomials w(G). Remarking that the map
w is into, our statement is equivalent to W N J,=0. Let P € W N J,. We have

P = Q(uaeqVhy(a)gxbgey — UaeqVayghy(Xbgoy — Udeqg VEbgoy) R
= Z i l_[ depseqg, () l_[ Bseq(p)g, op-
i pePaths(G;) pePaths(G;)
Since uasqvby(a)gxbgey can not be written under the form []; aea; [1; ba;o,

this is not possible unless P = 0 (because of the factor by (ayg ). O

The behaviour of the paths with respect to the composition is summarized as
follows:

G/
biseosbi
Paths | <% | ={p €Paths(G): p" ¢ {ar.....ax}}
al’é’ak U {p'[0(G)]: p’ € Paths(G'): p* & {by, ..., bi}}

U {pp'[w(G)]: p € Paths(G), p’ € Paths(G’),
plefan. . oar) p e {bi.. . b,
(7

where pp’ denotes the sequence obtained by catening p and p’ and p[n] is the
sequence obtained from p by adding » to each element.
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Example 33. Examine Figure 4. Let G denote the lower B-diagram in the left
hand sides of the equality and by G’ . We have

Paths(G) = {(1,6),(2).(3,7).(4). (5). (8)}

and
Paths(G') = {(1,6), (2,4,5), (3)}
Hence
G’
Paths ;\é ={(2),(3,7),(5), )y U {(10,12, 13)} U {(1,6,9, 14), (4, 11)}.
46
G

Theorem 34. The algebras B and Fq¢ are isomorphic and an explicit isomor-
phism sends each B-diagram G to w(G).

Proof. First let us prove that w can be extended as a morphism of algebra. In
other words, we first extend w as linear map and we prove that w(G % G') =
w(G) % w(G’). Observe that from (5), we obtain

G/
J1seesJk
wO*G) =3 w| 5t
i1<"'<ik€H;(G) 015ee0ifc
J1seesJk EH}(G’) distinct
But if
G/
jlggk
G// — ,
D1 yeees ix
G
equality (7) implies
(%) (%) (k%)
w(G") = 1_[ depseqqr (p) 1_[ de,rseqgr (p') 1_[ depseqcr (pp')
(x ()
) () (kxk)
l_[ Pseqgr (p)o, l_[ Dseqq (p")op Hbsquu (pp')o
(*)
where the products [] are over the paths p € Paths(G) such that p® ¢ {iy, ..., i},

(%)
the products [ are over the paths p’ € Paths(G’) such that p’¥ & {j1...., ji},and



82 I. E. Bousbaa, A. Chouria, and J.-G. Luque
(kxk)
the products [ | are over the pairs of paths p € Paths(G) and p’ € Paths(G’) with
pt =i, and p’¥ = j, forsome 1 < h <k.
Now, we examine w(G) % w(G’). One has

w(@) % w(@) = ( [Taepeson [ [Peaginos)

p€ePaths(G) p€Paths(G)

* ([T, 50000 [ [ Pseacrono, )

P’ €Paths(G) p/€Paths(G)

= l_[ de,seqg (P) H(a(seqcx(p) [|G|7 a)(G)])(U. * u/) )
p€Paths(G) p’ €Paths(G”)
op=) o, =(

[ [scacon [ [®scagr 070, [1G1. (G)]).

pePaths(G)  p’ePaths(G’)

op=) )y =(
where
u= 1_[ 2epseqe (p) 1_[ Bseq (p)¢
p€EPaths(G) p€EPaths(G)
op=( op=(
and

[
u = 1_[ Ayseqq/ (p') 1_[ bsqu/(p’)op/-
p’ €Paths(G”) p’ €Paths(G”)

.p’:) Op/=)

Hence we apply equality (3) to u % u’. Observing that the pairs of sequences

i1 < --- < irand ji,...,jr in (3) are in a one to one correspondence with the
B-diagrams
G/
jl%&;jk
I 5eees ix
G
we obtain
() Gex)’ (k%)
ukxu = Z (1_[ Ae,seqs (p) 1_[ A(seqgr (p'[w(G)]) 1_[ de,seqgr (pp'[w(G)])
G//

O ()’ ()
[ Toseacr (] [Pseacrwio@ne, [ [Pseasrwrio@ne, )
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where the sum is over the B-diagrams

(x)
withiy <.-- <iy € H}(G) and ji,..., jx € H}(G) distinct, the products [ are
over the paths p € Paths(G) such that pt & {iy,...,ix} and ©p = (, the products
(xx)

[ are over the paths p’ € Paths(G’) such that p™¥ & {1, ..., jix} and e, =), and
(k%)

the products [ [ are over the pairs of paths p € Paths(G) and p’ € Paths(G’) with

pl =iy and p¥ = j, forsome 1 < h < k.

Notice that for a given G” the paths which do not appear in the product

(o ()’ ()
PG") =[] aepsear o [ [ 2tseagriw@n [ | 2spseagr oo 0
oY ()’ () (10)

l_[ Dseqq () l_[ Bseqsr (p/[0(G)D)o, l_[ bseqgr (pp' 0G0,

are exactly the paths p of G such that ¢, =) and the paths p’[w(G)] where
p’ € Paths(G’) and e,y = (. Hence, comparing (10) to (8), one obtains

W(G//) = 1_[ de,seqq (P) H(a(seqc/(p)HGL a)(G)])T(G//)
p€Paths(G) p’ €Paths(G)
PT=) Op/=(

l_[ bsqu (p)) l_[(bseqcx(p/)op/ [|G|’ a)(G)])
pePaths(G)  p’€Paths(G’)
op=) o, =(
So (9) becomes

w(G) Kk w(G) =) w(G")

G//
where the sum is over the B-diagram
G/
FIEREY)
G// —
I 5eees ik
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withi; <--- <ij € H} (G)and jy,..., Jk € H} (G) distinct. In other words,
w(G) k w(G') = w(G % G').

Lemma 32 allows us to conclude. O

Example 35. Compare the computation in Figure 6 with Example 23.

3 4 3 4

12 12 12 3 4 ‘34‘1 34

m*=+/+/

12 12 12 34 12 ;2
1]

T 1
12 12

Figure 6. An example of computation in B.

Also compare Figure 7 to

As a consequence, one has:
Corollary 36. The algebra B is associative.

Alternatively, this result can be shown in a combinatorial way. First, we extend
by bi-linearly the composition
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1N}
1S}

[>f
[>f
]

T
*
T

o -
(S}

)
-
)
&
)
o~

1S}
)
~
IS
w
N
w
N
w
IS

|

=T

Iof

4

A

+

+

™~

+
N

S}
w
IS
1S}
N}
N}

=T
=T
=T
=T

)
o~
)
~
[}
[N}
[N}
[S)

of
[F

w
= -
w
= -

_|_

_|_

-1
=<

o -
o -

Figure 7. A second example of computation in B.

to the whole algebra. Hence, we observe

G’ G' xG”
B1,--sBp b1,....bi
* "= Kk . (11)
o1,...,0p aj,...,ag
G G
where the sum is over the sequences 1 < a; < --- < ax < w(G) and the sequences
of distinct elements 1 < by,...,br < w(G') + w(G”) such that there exists
1 <iy <---<ipsatisfying a;; = a1, by = B1,...,ai, = ap, b, = Bp.
From (6) we obtain,
G/
B1,--Bp
(GhG)kG" =) * *G”
1<aj<-<ap<w(G) A1 yenes ap
1<B1,....Bp<w(G’) distinct G
G/ * G//
Bisbi
=2 * =Gk (G kG,
1<a)<-+<ar<w(G) A1 yeeny aj

1<b1,....bg <(G)+w(G") distinct G
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3.4. Application to the boson normal ordering. The Heisenberg—weyl algebra
is defined as the quotient HW = C({a,a’})/g,c10,» Where e is the ideal
generated by aa” — afa — 1. The algebra HW is classically related to the boson
normal ordering problem. We consider a slightly different algebra J{ which is
obtained by adding a central element e to HW. We will see that e has a natural
combinatorial interpretation. Indeed, let us define the map p: A — {a,al, e}
sending each element of Ay, to af, each element of Ax( to a, and each element of
Ay to e. The map p can be extended as linear maps p: F > K, p: F — %, and
pac: Fg¢ — H. We also define the linear map pg: B — H by

ps (G) — (aT)#{pePaths(G):op=)}a#{pePaths(G):<>p=(}

e#{pePaths(G):op =(}+#{pePaths(G):0p=)} ' (12)

Equivalently, from Remark 28, one has

v T
p5(G) = (@H)tr (@ (6) ghe (@)

Example 37. If G is the B-diagram of Figure 1, one has
p2(G) = (@")’a’e.
From (12) it is easy to check that p3 factorizes through F4.. More precisely
pB =paow. (13)

Furthermore, one has
Proposition 38. The maps p, 9, ps, and ps(G) are morphisms of algebras.

Proof. The fact that p, p, and pg¢ are morphisms is straightforward from their def-
initions. The map p5(G) is a morphism of algebras because it is the composition
of two morphisms of algebras (see formula (13)). O

We easily check the product formula

min{n,r}
(aT)maneq'(aT)ras t _ Zl'(q) (r) (aT)m—l—r—ian—l—s—i R‘an
=0 l 1
This formula has the following combinatorial interpretation. Consider two B-di-
o Vi
agrams G and G’, there are i !(hf l.(G)) (hf EG )) ways to compose G with G’ and
obtain a B-diagram G” such that h}(G”) = h}(G) + h}(G/) -1, h}(G”) =

WHG) + (G — i, and he(G") = he(G) + e (G).
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Example 39. Compare Figure 7 to
(@ah?2a2.(a")%a? = (af)*a* + 4(a")%a® + 2(af)?a.
The relationships between the algebras defined in this section are summarized

in Figure 8 where the dashed arrow indicates that we replace the product in F by
a shifted product.

C(A)
u/
CIA, 0) = CLA) /4, B
— Foo----- rF— T
F=C(A)/g3 = C(A,0)/4,
K

HW

Figure 8. The different algebras related to the B-diagrams.

4. Coalgebraic aspects of B-diagrams

4.1. The Hopf algebras of B-diagrams. We define the linear map
A:B—BRB

by setting
A(G) = G[I1® G[CI].
Ielso(G)
Equivalently, from Claim 8, one has
a6 =Y 6[Ut]ed[tsJ1] (14)
JCConnected(G) I€J Ied
For simplicity we set
G[I] if 1 €Iso(G),

G(I) =
0 otherwise.



88 I. E. Bousbaa, A. Chouria, and J.-G. Luque

With this notation, one has
AG)=>"G(I)®G(.J).
TWJ=[1,|G[]
We also define €: B — C as the projection to By. Obviously, A is a coassocia-
tive, cocommutative product and ¢ is its counity. So,

Proposition 40. (B, A, €) is a connected graded co-commutative coalgebra.

Proof. Since dimBy = 1, we have only to check that A is graded. That is
A(Bk) C @D+ j—k Bi ® B;. This is straightforward from the definition of A. [

Since B is a connected coalgebra and an algebra with finite graded dimension,
if it is a bialgebra then it is a Hopf algebra. Hence, one has only to prove that A is
a morphism of algebra.

Let us prove that for each pair (G, G') of B-diagrams one has

A(G % G') = A(G) & A(G).
We start from the equality
AG*G)=> GhkG(I)®GkG'(J).
T19J=[1,|G|+|G’|]]
Each I appearing in the sum splits into two sets
I N[LIGIDW U N[IG] + LIG| +|G']]).
Also, it is the case for the set J. Hence,

AG*G)=> (GHRGNIUI')®(G*G)JUJ').
T19J=[1,|G|]
I'wJ'=[|G|+1,|G|+|G|]

Applying 6, we obtain

G/
bi,....by
AG*G)=) > * |(ur)
1<aj<-<ap<w(G) I1WJ=[1,|G|] als---5ak

1<by ,....bx <w(G) distinct ['wJ'=[|G|+1,|G|+|G|] G
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Observe that the elements of / and J define two complementary subdiagrams of
G and the elements of /” and J’ define two complementary subdiagrams of G’.
Hence,

G'(I') G'(J')
[B1sebic ]t b, bk’
AGHKG)=)" > Y ® ) ¢
IWJ=[1,|G[] 1<a;<+<aip<w(G) lat,....ax ]! [at,....ax]”
I'yJ’=[1,|G’|] 1<b1,....bx <w(G) distinct G(]) G(])
where [aq,...,ar)’ (resp. [ai,....ar]”, [b1,....bk]", and [by,....bi]" ) de-
notes the image of subsequence of [ay,...,a] (resp. [ai,...,ar], [b1,---, bkl
and [by, ..., b)) in G[I] (resp. G[J], G[I'] and G[J']). In other words, each se-
quence 1 < a; < --- < ax < w(G) (resp. by, ..., by) splits into two subsequences

one corresponding to half-edges in G[/] (resp. G[I']) and the second to half-edges
in G[J] (resp. G[J']). Hence, we deduce

G'(I') G'(J')
b1y dy,e..dy
AG*G)=>" Y| % |e| * |.
ILﬂJ=|Il7|GH] A yeeny aj Clyeeny Cr
I'wl’=[1|6'l] G(I) G(J)
where the second sum is over the sequences 1 < a1 < --- < a; < w(G({])),
1 < by,....h; < o(G'{I") distinct, 1 < ¢; < ...,< ¢; < w(G{(J)), and

1 <di,...,d; <w(G'(J)) distinct. Finally, one computes

AG* G') =D (G(I) k G'(I') ® (G(J) % G'(J'))
T¥J=[1,|G|]
I'dJ'=[1,|G'|]

(¥ enecm)x( ¥ Gurecw)

TwJ=[1,|G] 'eJ'=[1,G']]

— A(G) % A(G).

This shows that B is a graded bialgebra with finite dimensional graded compo-
nents. Hence,

Theorem 41. (B, % , A) is a graded Hopf algebra.
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4.2. Primitive elements. It is classical and easy to show that the primitive
elements endowed with the bracket product [P, Q] = P % Q — Q % P form a Lie
algebra. The Cartier—Quillen—Milnor—Moore theorem (see e.g., [22]) assures that
each graded, connected, and cocommutative Hopf algebra is isomorphic to the
universal enveloping of the Lie algebra of its primitive elements. Obviously, it is
the case for B. More precisely, B is a Hopf algebra which is graded by the number
of half-edges of the B-diagrams and the dimensions of its graded components are
finite. Since B is free on the indivisible B-diagrams, the dimensions of the graded
components of the space Prim(B) of the primitive elements are necessarily the
same than those of the free Lie algebra £(G) generated by the indivisible elements.
Now, let us recall a few facts about the Eulerian idempotent. The convolution
product is classically defined on Hom(B, B) by f * g = po(f ® g) o A where
denotes the linear map from B ® B to B sending P ® Q to P % Q. The Eulerian
idempotent is defined by (see e.g., [24])
(-1

)k+1
(Id — £)** (15)

mp :=log,(Id) = Z 3

k>0

where £ denotes the unity of the convolution algebra, that is the projection on the
space generated by the empty B-diagram e. Remarking that (Id — £)** sends to 0
any B-diagram that can be written as G| - - - |Gy with each G; # &, 71 maps each
B-diagram to a finite linear combination of B-diagrams which is known to belong
in Prim(B).

Example 42. Examine the following example

6 6 4

6

56 56 3 4 56

B= +C

N[—
(1l

Ea1
N T 12 s N

where C is a linear combination of connected B-diagrams. Setting

£=A—Id®8—8®ld,

we observe the three B-diagrams occurring in the above formula have the same
image by A



A combinatorial Hopf algebra for the boson normal ordering problem 91

4 4
o o
® + ®

2 222

12 12 12 12

Hence, 71 (B) is primitive.

A fast examination of 71(G), where G is a indivisible B-diagram, shows
that 71(G) = G + ---, where --- means a linear combination of B-diagrams
which are non indivisible or have less connected components than G. Since, the
indivisible B-diagrams are algebraically independent, this shows that Prim(B)
contains a subalgebra which is isomorphic to £(G). Hence, the dimensions of the
graded components of Prim(B) being the same than those of £(G), we deduce
the following result.

Theorem 43. The Lie algebra of the primitive elements of B is isomorphic to
the free Lie algebra generated by the indivisible B-diagrams. Indeed, Prim(B) is
freely generated as a Lie algebra by {71(G): G € G}.

5. Two subalgebras

5.1. Word symmetric functions. In this section, we investigate a combinatorial
Hopf algebra whose bases are indexed by set partitions. A set partitions is a
partition of [1,n] for a given n € IN. Let 7 F n denote the fact that 7 is a set
partition of [1, n] and define nWr' := 7 U{{i;+n, ..., ix+n}: {i1,..., i} € 7’ for
7 E n. The set of set partitions is endowed with the partial order < of refinement
defined by = < 7’ if the sets of 7/ are the union of sets of 7. Finally, we say that
a set partition 7 is indivisible if 1 = n’ & " where 7’ and 7" are set partitions
implies either 7’ = 7w or 7"/ = 7.

The algebra of word symmetric functions was introduced by Wolf [26] as a
noncommutative analogue of the algebra of symmetric functions. The Hopf struc-
ture of this algebra was described in [4, 2] (see also [3] for the polynomial real-
ization with finite alphabets). In order to avoid confusion with some other ana-
logues of symmetric functions (see e.g. [13]), we denote this algebra by WSym
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which is described (as an abstract bialgebra) as the space spanned by the elements
M., where  is a set partitions, and endowed with the product

MnMn" = ZMTI”! (16)
oW’ <n” <{{1,...n},{n+1,...,n" +1}}
if 7 F nand 7’ F n’, and the coproduct
AMy) = Z M) ® Mga(r). (17)
w=eld f

with std(e) = {{¢(i1),...,¢(r)}: {i1,...,ir} € e} where ¢ is the unique increas-
ing bijection from | J,c, @ to [1,)",c, #«]. The following result is well known
and is an easy consequence of (16).

Proposition 44. The algebra WSym is freely generated as an algebra by
{My: 7 is an indivisible set partition}.
To each set partition = F n, we associate a B-diagram
by = (n,[1,...,1],[1,n],[1,n], Ex)

where E is the set of the pairs (i, j) such thati, j € e € w, and j = {min({) €
e:i < {}. Graphically, the components of 7 corresponds to the connected sub
B-diagrams of b;;.

Example 45. Consider in Figure 9, the graphical representation of

bi(1,33,(21,44,7,8}.45.6}}
= (81 [17 17 17 17 17 17 1]1 [[17 8]]1 [[17 8]]1 {(17 3)’ (4’ 7)’ (7’ 8)’ (5’ 6)})'

Obviously, the space B| generated by the elements by, is stable by product and
A sends Bl to Bl ® Bi. So, Bl is a sub Hopf algebra of B. More precisely, one
checks
br K bp =Y by, (18)
rwn’<n” <{{1,..n},{n+1,..n'+1}}
ifm Enand 7’ En', and

A(bz) =Y byd(e) ® baa(s)- (19)
w=el¥ f
Remarking that = is indivisible if and only if the B-diagram b, is indivisible,
we deduce that Bl is the free subalgebra of B generated by the s et {b,: 7 is
an indivisible set partition}. Hence, comparing (18) to (16) and (19) to (17),
Proposition (44) implies the following result.
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Figure 9. Graphical representation of by¢1 3y,(2},14,7.8}.(5.6}} -

Theorem 46. The subalgebra B} generated by

{by: 7 is an indivisible set partition}
is a Hopf algebra isomorphic to WSym.
Example 47. For instance, compare

My 3.0 Miay,en = My syeniansy + Mysyie.a.6n
+ M ,3,43,020.4050 + Mg1,30.42,5), 440
+ M350, 0204040 + Mig1,3,40,02,5 + Mi1,3,5),42,4))
to the product pictured in Figure 10.

5.2. Bi-words symmetric functions. In this section, we consider the Hopf al-
gebra BWSym of set partitions into lists defined in [11, 1].

A set partition into lists is a set of lists IT = {[i, .. .,iell], ik .,ié‘k]}sat—
isfying k > 0, ¢; < 1foreach 1 < j <k, the integers i}, ....if ,....if,....if
are distinct, and [1,n] = {i/:1 < j < k.1 < t < ¢} for a certain

n € IN; we let [T E n denote this property. As for the set partitions we define
NOwIl' = MU {[i; +n,...,ir +n]:[i1,...,ix] € II'} for IT E n and we will
say that I is indivisible if T1 = T1’ W T1” for some set partitions in lists TT’, IT”
implies either IT" = IT or I1” = TI.

The underlying space of BWSym is freely generated by the set {®T: TT E »,
n > 0}. Whence endowed with the product

qDHq)H/ — qDHH'JH/ (20)



94 I. E. Bousbaa, A. Chouria, and J.-G. Luque
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Figure 10. An example of product in B}.

and the coproduct
A(q)l'[) — Z q)Std(E) ® q)Std(F)’ (21)
N=EWF
with std(E) = {[¢(i1), ..., P ()]: [i1, ..., ix] € e} where ¢ is the unique increas-
ing bijection from Uy, o jeplor. .. ap}t 0 [1, 3, o 1cp p], BWSymisa
Hopf algebra.
We need the following property which is straightforward from (20).

Proposition 48. BWSym is freely generated as an algebra by the set
{®™: 11 is indivisible}.

Let B2 be the subspace of B generated by the set G2 of B-diagrams under the
form

(n,[2,...,2],[1,2n],4{1,3,5,...,2n — 1}, E).

Remarking that G is exactly the set of the B-diagrams whose each vertex has two
outer non cut half-edges, one inner non cut half-edge and one inner cut half-edge,
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the space B? is stable for the product % and A sends B? to B} ® B3. In other
words, B is a sub Hopf algebra of ‘B.

Let us describe a graded one-to-one correspondence between the set partitions
into lists and the B-diagrams of G2. First we associate to each permutation o € &,
a connected B-diagram m, = (n,[2,...,2],[1,2n],{1,3,5,...,2n — 1}, E;)
where 2i — 1,2j — 1) € Es ifandonly if i < j and j = min{k:e; <
o~ (k) < o7 1(i)} where o; = sup{o~l(k):k < i,o7'(k) < o7'(i)} and
(2i,2j — 1) € Ey ifand only if i < j and j = min{k:071(i) < o~ !(k) < Bi}
where B; = inf{o~1(k):k <i,o™ (k) > o71(i)}.

Example 49. Consider the permutation o = [5,2,4,1,3,7,6]. We have a; =
a =as = —0o,a3 =4 o4 = 2,06 =7 =5, f1 = B3 = P = +o00,
B2 = Ba =4, Bs = 2, and B7 = 7. Hence,

me = (7.[2.2,2,2,2.2,2]. [1,14].{1.3,5,7.9, 11, 13},
{(1,3),(2.5),(3,9), (4,7). (6, 11), (11, 13)}).

See Figure 11 for a graphical representation.

B3 14
1‘31>§1
1
9 10 8 11
9 10 7% L)
3 4 6
3% ;X
'
5 2 4 1 3 7 6

Noticing that any connected B-diagram G in G2 satisfies that h} (G) =|G|+1,
we construct n + 1 different B-diagrams by adding one vertex to G. A quick rea-
soning by induction on the number of vertices shows that the set of the connected
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B-diagram in G2 with n vertices is exactly the set of the B-diagrams m,, foro € &,
and the correspondence 0 — m, is one to one.

We extend the construction to the set partitions into lists as follows. To
each integer sequence I = [iy,...,i,] of n distinct integers, we associate the
permutation std(/) obtained by replacing each j; by k in I for each k where
j1 < -+ < jpand {j1,..., jn} = {i1,...,in}. To each set partition into lists
I ={Ly,..., Ly}, weassociate the unique B-diagram myy in 9% with k£ connected
components obtained by replacing the integers £ in each mgq(z,) by j; in L, where
Ly =[i{,....ip ), j{ <--- < j} and {if,....i} } = {j{ <--- < j} }. Hence,
9% = {my: Il is a set partition into lists} and the correspondence I1 — myy is
one to one. Furthermore, by construction, IT is indivisible if and only if mpy is
indivisible.

We deduce from the above discussion that the algebra B? has the same graded
dimension than BWSym and that it is freely generated as a an algebra by the set

{mm: 11 is an indivisible set partition into lists}.

Also, notice that (5) allows us to interpret the product mp % mpy in terms of
set partitions in lists. Let IT = [Ly,...,Lg] Fnand IT" = [L},..., L}, ] F n’ be
two set partitions into lists. One has

mn X mry = mnwr + Y moe (22)
where the sum is over the set partitions in list I1” = [L],..., L},] E n + n’ such
that each L/ is

(1) either alist Lj,
(2) oralist [j; +n,..., j¢+n] with [jq,..., jg € IT',

(3) oralist[iv,....ip,, ji +1. . jl Fn0ip + 1y jE R R 0,
cedpy F i ) i 1 i, ] Where t > 1,
p1 < p2 < -+ < prt1, [i1,.. . 0p, ] € T, and for each 1 < s < 1,

Uf.....jilen”.

Example 50. For instance, compare

M3ALRYL2l = TY[3,10,[20,04,51) T 7{[3,1],[2,4,5]} T 7{[3,1],[4,5,2]}
+my(3,1,4,51,[21y T M{[3,4,5,1,121} T M{[4,5,3,1],[2]}-

to the product pictured below.
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6 3 4 56 9 1
3% 5%

N RN /"
3 4 4 8
1) (2,0 _ 0 () [
e LS5 35 73
910 10

We deduce the following result.
Theorem 51. The Hopf algebras BWSym and B? are isomorphic.
Proof. From the above discussion and Proposition 48, the algebras BWSym and

B2 are isomorphic. An explicit isomorphism 7 sends ® to mp for each non-
splitable set partition into lists I1. It remains to prove that it is a morphism of
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coalgebras. Remarking that the lists of a set partition into lists I1 correspond to
the connected components of myy, we show that equality (14) implies

(®NA@T) = (1@ ®e+e® ) = mn@e+e®mn = A(mn) (23)
for each nonsplitable partition IT. So since
n ® n: BWSym ® BWSym — B1 ® B}
is a morphism of algebras, the equality
(@ MA@™ .- dT)) = A(nm, K - K mm,)

holds for any k-tuples (I1y, ..., [1z) of nonsplitable set partitions into lists. This
proves that 7 is a morphism of bialgebra and implies our statement. O

6. Conclusion

In this paper, we have described a combinatorial Hopf algebra which gives a
diagrammatic representation of the calculations involved in the normal boson
ordering. This algebra is rather close to the one proposed by Blasiak et al., but
there are many differences which can be exploited to understand soundly the
combinatorial aspects of these computations. First, the underlying objects are
slightly different. Our objects are graphs with labeled vertices whilst those of
Blasiak ef al. are unlabeled; furthermore our graph have vertices which have the
same number of inner edges and outer edges and each edge is either valid or stump.
So our algebra is bigger. The algebra of Blasiak et al. specializes to the enveloping
algebra of the Heisenberg Lie algebra which is described in terms of quotient as
follows: U(Lgc) ~ C(af,a,e’)/y where J' is the ideal generated by the three
polynomials [af, a] — ¢/, [af, e’], and [a, /]. The role of the letter e’ consists in
collecting the statistic of the number of edges denoted by |I'g| in [9] and by 7(G)
in our paper. Consider the algebra H’ obtained by adding a central element e to
U(Lg¢). This algebra allows us to take into account both the statistics i.(G) and
7(G). Indeed, it suffices to consider the morphism of algebra p’,. sending each
a)(i.l)___(i!() to afe’*~1, each element of Ay, to a, and each element of A to e.
Rerjlllarki]r];g that
> _(lseq(p) — 1) = (G)
p€EPaths(G)
where £(s) denotes the length of the sequence s, we obtain

b (0(G)) = (a1 (6) (O ghe (@) g/e(©),
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Now, the multiplication formula reads

min{n,r}
. r _ _ .
@h"a"ele” (af) a’e'e™ =) z!(?)(.)(aT)m“ Tt gdttglvtw Al
l
i=0

Section 5 gave two examples of subalgebras which are related to combinatorial
objects. These construction can be generalized to a family of Hopf combinatorial
algebras generated by colored partitions [1]. Some combinatorial properties of
these objects can be deduced from simple manipulations. For instance, the number
of set partitions into lists of # is equal to the number of set partitions of 2n such
that each part contains at most one even number and, in that case, this number is
the minimum of the part. This comes from the morphism B? — Bl sending the

element

1
X
L)

to
12

together with the interpretations in terms of set partitions and set partitions
into lists described in Section 5. For instance, the explicit isomorphism sends
{[4,5,3,1],[2]} to {{1, 5,7}, {2}, {3}, {4}, {6}, {8, 9}, {10}}. This comes from the
correspondence

9 10
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Applying this strategy to various subalgebras, we find interpretations of some
generalizations of Bell polynomials, like r-Bell [20] or (ry,...,rp)-Bell [21], in
terms of B-diagrams. All these investigations are relegated to a forthcoming paper.
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