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Perfect and separating hash families:

new bounds via the algorithmic cluster expansion local lemma
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Abstract. We present new lower bounds for the size of perfect and separating hash families

ensuring their existence. Such new bounds are based on the algorithmic cluster expansion

improved version of the Lovász local lemma, which also implies that the Moser–Tardos

algorithm finds such hash families in polynomial time.
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1. Introduction and results

In this initial section we will review rapidly the state of the art of the Lovász

local lemma, a powerful tool in the framework of the probabilistic method in

combinatorics, focusing specifically on the recent cluster expansion improvement

of the Moser–Tardos algorithmic version of the Lemma. We then will recall the

main results in the literature concerning Perfect Hash Families and Separating

Hash Families. Finally we will present the results of the paper.

1.1. Lovász local lemma: state of the art. The Lovász local lemma (LLL) was

originally formulated by Erdös and Lovász in [8] and since then it has turned

out to be one of the most powerful tools in the framework of the probabilistic
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method in combinatorics to prove the existence of combinatorial objects with

certain desirable properties. The philosophy of the Lemma is basically to consider

a collection of “bad” events in some suitably defined probability space whose

occurrence, even of just one of them, prevents the existence of a certain “good”

event (i.e. the combinatorial object under analysis). Then the Lemma provides a

sufficient condition which, once satisfied, guarantees that there is a strictly positive

probability that none of the bad events occurs (so that the good event exists). Such

sufficient condition can be inferred from the so-called dependency graph of the

collection of events. We remind that a dependency graph for a or a collection of

random events B is a (simple and undirected) graph G with vertex set B such that

each event B 2 B is independent from the �-algebra generated by the collection

of events B n ��
G.B/ where ��

G.B/ D �G.B/ [ ¹Bº, with �G.B/ denoting the

neighborhood of B in G, i.e. the set of vertices of G which are connected to the

vertex B by an edge of G.

The connection between the LLL and the cluster expansion of the abstract polymer

gas, implicitly implied by an old paper by Shearer [15], has been sharply pointed

out in [14] by Scott and Sokal who also showed that the LLL (with dependency

graph G) can be viewed as a reformulation of the Dobrushin criterion [7] for the

convergence of the cluster expansion of the hard-core lattice gas (on the same

graph G).

In a later paper [9] Fernández and Procacci improved the Dobrushin criterion

and this has then been used straightforwardly by Bissacot et al. in [3] to obtain

a correspondent improved cluster expansion version of the LLL (shortly CLLL).

Such new version of the LLL has been already implemented to get new bounds

on several graph coloring problems (see [12] and [5]).

As the original Lovász local lemma by Erdös-Lovász, the improved cluster

expansion version by Bissacot et al. given in [3] is “non-constructive”, in the

sense that it claims the existence of a certain event without explicitly exhibiting it.

Nevertheless, an algorithmic version of the CLLL, based on a breakthrough paper

by Moser and Tardos [11], has been recently provided in [13] and [1].

1.1.1. Moser–Tardos setting (general case). In the Moser–Tardos setting all

events in the collection B depend on a finite family V of mutually independent

random variable with � being the sample space determined by these variables so

that a outcome ! 2 � is just a random evaluation of all variables of the family V.

Each event B 2 B is supposed to depend only on some subset of the variables V,

denoted by vbl.B/. Since variables in V are assumed to be mutually independent,

any two events B; B 0 2 B such that vbl.B/ \ vlb.B 0/ D ; are necessarily
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independent. Therefore the family B has a natural dependency graph, i.e. the

graph G with vertex-set B and edge-set constituted by the pairs ¹B; B 0º � B such

that vbl.B/ \ vbl.B 0/ ¤ ;.

In this setting Moser and Tardos define the following random algorithm, whose

output, when (and if) it stops, is an evaluation of the variables of the family V (i.e.

an outcome ! 2 �) which avoids all the events in the collection B.

MT-algorithm (gereral case)

– Step 0. Sample all random variables in the family V.

Let !0 2 � be the output.

– Step k (k � 1).

a) Take !k�1 2 � and check all bad events in the family B.

b) i) If some bad event occurs, choose one, say B , and resample its variables

vbl.B/ leaving unchanged the remaining variables.

ii) If no bad event occurs, stop the algorithm.

Let !k 2 � be the output.

We are now in a position to state the algorithmic version of the CLLL, which

will be the basic tool to get our results on perfect and separating hash families.

We remind that an independent set in a graph G is a set of vertices of G no two of

which are connected by an edge of G.

Theorem 1.1 (algorithmic CLLL). Given a finite set V of mutually independent

random variables, let B be a finite set of events determined by these variables with

natural dependency graph G. Let � D ¹�BºB2B be a sequence of real numbers

in Œ0; C1/. If, for each B 2 B,

Prob.B/ �
�B

X

Y ���

G
.B/

Y independent in G

Y

B02Y

�B0

then the MT-algorithm reaches an assignment of values of the variablesV such that

none of the events in B occurs. Moreover the expected total number of resampling

steps made by the MT-algorithm to reach this assignment is at most
P

B2B �B .

The proof of Theorem 1.1 can be found in [13] and [1].
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1.2. Perfect hash families and separating hash families. Given a finite set U

we denote by jU j its cardinality. Given an integer k, we denote shortly Œk� D

¹1; 2; : : : ; kº. A collection of sets ¹W1; : : : ; Wkº such that Wi \ Wj D ; for all

¹i; j º � Œk� will be called hereafter a “disjoint family”.

Let n; w be integers such that 2 � w � n. We denote by Pw.Œn�/ the set of all

subsets of Œn� with cardinality w.

Given s; w1; w2; : : : ; ws integers such that
Ps

iD1 wi D w, we denote by

P �
w.Œn�/ the set whose elements are the disjoint families S D ¹W1; : : : ; Wsº such

that Wi � Œn� and jWi j D wi for i D 1; : : : ; s.

Let A be a N � n matrix. Given W 2 Pw.Œn�/ we denote by AjW the N � w

matrix formed by the w columns of the matrix A with indices in W . Analogously,

given a disjoint family S D ¹W1; : : : ; Wsº 2 P �
w.Œn�/, we denote by AjS the N �w

matrix formed by the w columns of the matrix A with indices in W1 [ � � � [ Ws .

Perfect hash family. Let X and Y be finite sets with cardinality jX j D n and

jY j D m. Let w 2 N such that 2 � w � n. Then a perfect hash family of size N is

a sequence f1; : : : ; fN of functions from X to Y such that for any subset W � X

with cardinality jW j D w there exists i 2 ¹1; : : : ; N º such that fi is injective when

restricted to W . Such perfect hash family will be denoted by PHF.N I n; m; w/.

A perfect hash family PHF.N I n; m; w/ is usually viewed as a matrix A with

N rows and n columns, with entries in the set of integers Œm� � ¹1; 2; : : : ; mº such

that for any set W 2 Pw.Œn�/, the N � w matrix AjW formed by the w columns of

the matrix A with indices in W has at least one line with distinct entries.

Separating hash family. Given X and Y finite sets with cardinality jX j D n and

jY j D m and the integers w1; : : : ; ws such that w D w1C� � �Cws � n, a separating

hash family of size N is a sequence f1; : : : ; fN of functions from X to Y such

that for all disjoint families of subsets ¹W1; : : : ; Wsº of X such that jWj j D wj

(j D 1; : : : ; s), there exists i 2 ¹1; : : : ; N º such that ¹fi .W1/; : : : ; fi .Ws/º is a

disjoint family of subsets of Y .

A separating hash family SHF.N I n; m; ¹w1; : : : ; wsº/ can be viewed as a

matrix A with N rows and n columns, with entries in the set of integers Œm� such

that for any disjoint family S D ¹W1; : : : ; Wsº 2 P �
w.Œn�/, the N � w matrix AjS

formed by the w columns of the matrix A with indices in W1 [� � �[Ws has at least

one line which “separate AjW1
; : : : ; AjWs

”, i.e., for any unordered pair ¹r; r 0º � Œs�,

the entries of this line belonging to AjWr
are different from the entries of the same

line belonging to AjWr0
.
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The probabilistic method has been already used several times in the past to

face the problem of the existence of perfect and separated hash families. In

particular lower bounds for N , ensuring the existence of a perfect hash family

with fixed values n; m; w have been first obtained by Mehlhorn in [10] using

standard techniques of the probabilistic method. The Local Lovász Lemma has

been subsequently used by Blackburn [4] to improve the Mehlhorn bound. In the

same year, another technique in the framework of the probabilistic method, the

so-called expurgation method, has been used to get alternative bounds for perfect

hash families [16]. Later the Lovász local lemma has also been used in [6] to get

similar bounds also for separating hash families. In the same paper [6] the authors

also outlined a comparison between the LLL and the expurgation method for

perfect hash families suggesting that the expurgation method yields better bounds

than the LLL. In a related paper [17] an alternative technique still based on the

expurgation method has been used to obtain new lower bounds for N , for fixed

values n; m; ¹w1; w2º, guaranteeing the existence of separating hash families. We

finally mention that there have been also several results regarding upper bounds

for N ensuring the non-existence of Separating and Hash families (see, e.g., [2]

and references therein)

1.3. Results. We conclude this introductory section by presenting our main

results which consist in new bounds for perfect hash families and separating hash

families.

Our first result concerns a lower bound for perfect hash families.

Theorem 1.2. Let N; n; m; w be integers such that 2 � w � n. Then there exists

a perfect hash family PHF.N I n; m; w/ as soon as

N �
lnŒ'0

w;n.�/� C .w � 1/ ln .n � w/ � ln .w � 1/Š

ln.mw/ � ln
�

mw � wŠ
�

m
w

�� (1.1)

where � is the first positive solution of the equation 'w;n.x/ � x'0
w;n.x/ D 0 and

'w;n.x/ D 1 C

bn=wc^w
X

kD1

�

w

k

�

z�k.w; n/xk (1.2)

with
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z�k.w; n/ D

w�k
X

j D0

�

w � k

j

� k.w�1/�j �1
Y

`D1

�

1 �
`

n � w

�h w

n � w

ij

X

i1C���CikDj
is�0

j Š

i1Š : : : ikŠ

k
Y

`D1

h 1

il C 1

i`
Y

sD1

�

1 �
s

w

�i

:

(1.3)

Moreover the MT-algorithm (described in Section 1.3.1 below) finds such perfect

hash family PHF.N I n; m; w/ in an expected time which is polynomial in the input

parameters N , n and m for any fixed w.

The second result concerns a similar lower bound for separating hash families.

To state this result we need to introduce the following definition. Given a multi-

set w1; : : : ; ws of integers such that w1 C � � � C ws D w, we denote by mp

the multiplicity of the integer p 2 ¹1; 2; : : : ; wº in the multi-set w1; : : : ; ws, i.e.

mp D
Ps

iD1 1¹wi Dpº.

Theorem 1.3. Let N; n; n be integers and let w be an integer such that 2 � w � n.

Let s � 2 and let ¹w1; : : : ; wsº be a family of integers such that w1 C� � �Cws D w.

Then there exists a separating hash family SHF.N I n; m; ¹w1; : : : ; wsº/ as soon as

N �
lnŒ'0

w;n.�/� C .w � 1/ ln .n � w/ � ln .w � 1/Š C ln.mw/

ln
�

1
q

� (1.4)

where '0
w;n.�/ is the same number introduced in Theorem 1.2,

mw D
1

Qw
pD1 mpŠ

wŠ

w1Š � � � wkŠ
(1.5)

and

q D 1 �
�Gs

.m/

mw

with �Gs
.m/ being the chromatic polynomial of the complete s-partite graph Gs

with w1; : : : ws vertices. Moreover the MT-algorithm (described in Section 1.3.1

below) finds such separating hash family SHF.N I n; m; ¹w1; : : : ; wsº/ in an ex-

pected time which is polynomial in the input parameters N , n and m for any

fixed w.

As claimed in the abstract, we will use the algorithmic version of the CLLL,

i.e., Theorem 1.1, to prove Theorems 1.2 and 1.3. Let us thus conclude this section

by describing how to adapt the Moser–Tardos setting and the MT-algorithm to the

case of Perfect and separated hash families.
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1.3.1. Moser–Tardos setting for (perfect [separating] hash families). In the

present case of Hash families. the finite family V of the Moser–Tardos setting is

constituted by a set of Nn mutually independent random variable taking values

in the set Œm� according to the uniform distribution and representing the possible

entries of a N � n matrix. The sample space generated by the family V is thus

� D Œm�N �n and an outcome in � is a N � n matrix A.

The bad events. For each W 2 Pw.Œn�/ [for each S D ¹W1; : : : ; Wsº 2 P �
w.Œn�/],

let EW be the event such that in any line of AjW at least two entries are equal [let

ES be the event such that for any line of AjS D Aj[s
rD1

Wr
there is a pair ¹r; r 0º � Œs�

such that two entries of this line, one in AjWr
and the other in AjWr0

, are equal].

We have thus a family W � ¹EW ºW 2Pw.Œn�/ [a family S � ¹ESºS2P �

w.Œn�/] of bad

events containing
�

n
w

�

members [containing
�

n
w

�

mw members, with mw defined

in (1.5)]. If A is a sampled matrix such that no bad event of the family W [S]

occurs, then for every W � Pw.Œn�/ [for every S 2 P �
w.Œn�/] at least one line of

AjW [of AjS ] has distinct entries [separates S D ¹W1; : : : ; Wsº], that is to say A is

a PHF.N I n; m; w/ [SHF.N I n; m; ¹w1; : : : ; wsº/].

We are now in the position to outline the MT-algorithm for PHF [SHF]

MT-algorithm (for PHF [for SHF])

– Step 0. Pick an evaluation all Nn variables of the family V (the matrix entries).

Let A0 be the output matrix.

For k � 1

– Step k (k � 1).

a) Take the matrix Ak�1 and check all bad events of the family W

[of the family S].

b) i) If some bad event occurs, choose one, say EW [ES ], and take a new

random evaluation of the entries of Ak�1jW [of the entries of Ak�1jS ]

leaving unchanged the remaining entries of Ak�1.

ii) If no bad event occurs, stop the algorithm.

Let Ak be the output matrix.

Note that when the algorithm stops the output matrix is a PHF.N I n; m; w/ [the

output matrix is a SHF.N I n; m; w/]. We will see in the next section this algorithm

stops after an expected number of steps equal to
�

n
w

�

.

The rest of the paper is organized as follows. In Section 2 we give the proofs

of Theorems 1.2 and 1.3. Finally, in Section 3 we discuss some comparisons with

previous bounds given in the literature.
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2. Proofs of Theorems 1.2 and 1.3

2.1. Proof of Theorem 1.2. Let us apply Theorem 1.1 for the family of events

W D ¹EW ºW 2Pw.Œn�/ introduced in the previous section (Section 1.3.1). Clearly

two events EW ; EW 0 2 W are independent if W \ W 0 D ;. Therefore the

dependency graph G of the family of events ¹EW ºW 2Pw.Œn�/ can be identified with

the graph whose vertices are the elements W of Pw.Œn�/, i.e. the subsets W of Œn�

with cardinality w, and two vertices W and W 0 of G are connected by an edge of

the dependency graph G if and only if W \ W 0 ¤ ;. Thus the neighborhood of

W in G is the set

�G.W / D ¹W 0W W 0 2 Pw.Œn�/ and W 0 \ W ¤ ;º

The probability of an event EW is

P.EW / D
Œmw � m.m � 1/ � � � .m � w C 1/�N

mwN
D

�

mw � wŠ

�

m

w

��N

mwN

and, according to Theorem 1.1, the MT-algorithm (as it was described in Sec-

tion 1.3.1) finds a perfect hash family PHF.N I n; m; w/ if, for some � > 0

P.EW / D

�

mw � wŠ

�

m

w

��N

mwN
�

�W
X

Y ���

G
.W /

Y independent in G

Y

W 02Y

�W 0

(2.1)

We set �W D � for all W 2 Pw.Œn�/ so that

X

Y ���

G
.W /

Y independent in G

Y

W 02Y

�W 0 D
X

Y ���

G
.W /

Y independent in G

�jY j D 1 C

bn=wc^w
X

kD1

�k.w; n/�k

where

�k.w; n/ D
X

Y ���

G
.W /WjY jDk;

Y independent in G

1 (2.2)

Hence (2.1) rewrites

P.EW / D

�

mw � wŠ

�

m

w

��N

mwN
�

�

1 C

bn=wc^w
X

kD1

�k.w; n/ �k

(2.3)
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Let us now calculate explicitly the number �k.w; n/ defined in (2.2). We have

�k.w; n/ D
1

kŠ

X

i0Ci1C���CikDw

is�1; s�1

wŠ

i0Ši1Š � � � ikŠ

�

n � w

w � i1

��

n �w �.w � i1/

w � i2

�

� � �

 

n �w �.w � i1/ �: : :�.w � ik�1/

w � ik

!

D
1

kŠ

� 1

wŠ

�k
w�k
X

i0D0

wŠ

i0Š

X

i1C���CikDw�i0

is�1

k
Y

lD1

�

w

il

�

.n � w/Š

.n � kw � i0/Š

D

�

w

k

�

h.n � w/w�1

wŠ

ik
w�k
X

j D0

�

w � k

j

�

k.w�1/�j �1
Y

`D1

�

1 �
`

n � w

�

.n � w/j

j Š
X

i1C���CikDj

is�0

k
Y

lD1

�

w

il C 1

�

D

�

w

k

�

h.n � w/w�1

wŠ

ik
w�k
X

j D0

�

w � k

j

�

k.w�1/�j �1
Y

`D1

�

1 �
`

n � w

�

.n � w/j

X

i1C���CikDj

is�0

j Š

i1Š � � � ikŠ

k
Y

lD1

h wŠ

.il C 1/.w � il � 1/Š

i

D

�

w

k

�

h.n � w/w�1

.w � 1/Š

ik
w�k
X

j D0

�

w � k

j

�

h w

n � w

ij
k.w�1/�j �1

Y

`D1

�

1 �
`

n � w

�

X

i1C���CikDj
is�0

j Š

i1Š � � � ikŠ

k
Y

lD1

"

il
Y

sD1

�

1 �
s

w

�

.il C 1/

#

:

I.e. we get

�k.w; n/ D

�

w

k

�

h .n � w/w�1

.w � 1/Š

ik
z�k.w; n/; (2.4)

with z�k.w; n/ given by (1.3). Therefore, setting ˛ D .n�w/w�1

.w�1/Š
� the condi-

tion (2.3) becomes
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.n � w/w�1

.w � 1/Š

"mw � wŠ

�

m

w

�

mw

#N

� max
˛>0

˛

'w;n.˛/
D

1

'0
w;n.�/

(2.5)

where

'w;n.˛/ D 1 C

bn=wc^w
X

kD1

�

w

k

�

z�k.w; n/˛k

and � is the first positive solution of the equation '.x/ � x'0.x/ D 0. Taking the

logarithm on both sides of (2.5), condition (2.3) is thus implied by the following

inequality

N �
An.w/

Dm.w/
; (2.6)

where

An.w/ D lnŒ'0
w;n.�/� C .w � 1/ ln .n � w/ � ln .w � 1/Š (2.7)

and

Dm.w/ D ln.mw/ � ln

�

mw � wŠ

�

m

w

��

: (2.8)

In conclusion once (2.6) is satisfied then also (2.1) is satisfied and therefore,

according to Theorem 1.1, a PHF.N I n; m; w/ exists and the MT-algorithm (as

described in Section 1.3.1) finds it in an expected number of steps

X

W 2Pw.Œn�/

� D jPw.Œn�/j� D

�

n

w

�

� �

�

n

w

�

;

where the last inequality follows from the fact that the optimum � which maximize

the right hand side of (2.3) is surely less than one.

Now, at each step k � 1 of the MT-algorithm described in Section 1.3.1, in

order to check in item a) whether or not a bad event of the family ¹EW ºPw.Œn�

occurs, we need to consider all the N lines of (at worst) all the
�

n
w

�

matrices AjW

with W 2 Pw.Œn�, and for each line of a given matrix AjW we need to compare

all pair of entries of the line to check whether they are equal or not. This is done

in (at most) N
�

w
2

��

n
w

�

operations.

This concludes the proof of Theorem 1.2.

2.2. Proof of Theorem 1.3. We first recall that, for a fixed sequence of integers

w1; w2; : : : ; ws such that w D w1 C : : : ws � n, P �
w.Œn�/ is the set whose elements

are the disjoint families S D ¹W1; : : : ; Wsº of subsets of Œn� with cardinality

w1; : : : ; ws resp. and AjS is the N � w matrix formed by the w columns of the
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matrix A with indices in
Ss

iD1 Wi . Given two disjoint families S D ¹W1; : : : ; Wkº

and S 0 D ¹W 0
1; : : : ; W 0

k
º, we also denote shortly S\S 0 :

D
�
Ss

iD1 Wi

�

\
�
Ss

iD1 W 0
i

�

.

Let us apply Theorem 1.1 for the family of events S D ¹ESºS2P �

w.Œn�/ introduced

in Section 1.3.1.

For S D ¹W1; : : : ; Wsº 2 P �
w.Œn�/, the probability of the event ES is given by

P.ES / D

N
Y

iD1

Pi .S/;

where Pi .S/ is the probability that the line i of the matrix AjS do not separate S .

To calculate Pi .S/ just observe that

Pi .S/ D
# favorable cases

# number of all cases
D 1 �

# unfavorable cases

# number of all cases
:

Setting w D w1 C w2 C � � � C ws,

# number of all cases D mw :

To count the number of unfavorable cases, consider the complete s-partite graph

Gs with vertex set W and independent sets of vertices set W1; : : : Ws. Then,

# unfavorable cases D # proper colorings of Gs with m colors D �Gs
.m/;

where �Gs
.m/ is the chromatic polynomial of the graph Gs . Thus

Pi .S/ D 1 �
�Gs

.m/

mw

:
D q

and therefore

P.ES / D qN :

As before two events ES ; ES 0 2 S are independent if S \ S 0 D ;. Therefore The

dependency graph for the family of events S D ¹ESºS2P �

w.Œn�/ can be identified

with the graph G with vertex set P �
w.Œn�/ such that two vertices S D ¹W1; : : : ; Wsº

and S 0 D ¹W 0
1; : : : ; W 0

s º are connected by an edge of G if and only S \ S 0 ¤ ;,

where recall that S\S 0 :
D
�
Ss

iD1 Wi

�

\
�
Ss

iD1 W 0
i

�

. This implies that the neighbor

��
G.S/ of a vertex S of G is given by

��
G.S/ D ¹S 0W S 0 2 P �

w.Œn�/ and S 0 \ S ¤ ;º:
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By Theorem 1.1, the Moser–Tardos algorithm (as described in Section 1.3.1)

finds a separating hash family SHF.N I n; m; ¹w1; : : : ; wsº/ if the following condi-

tion is satisfied: there exists � > 0 such that

qN �
�

X

Y ���

G
.S/

Y independent in G

�jY j
: (2.9)

Note that, as we did in the previous section, we have set �S D � for all S 2

P �
w.Œn�/.

The denominator of the right hand side of (2.9) can be evaluated similarly as

we did for the case of perfect hash families. Indeed, given a disjoint family S D

¹W1; : : : ; Wsº, the neighbor of S in G is formed by all vertices S 0 D ¹W 0
1; : : : ; W 0

s º

such that
�
Ss

rD1 Wr

�
T
�
Ss

rD1 W 0
r

�

¤ ;. The only thing that changes respect

to the calculations done for case of the perfect hash families is that now, fixed

a set of columns W with cardinality w D w1 C : : : ws, the number of different

disjoint families S D ¹W1; : : : ; Wsº such that W D
Ss

rD1 Wr and jWr j D wr for

r D 1; : : : ; s is given by the quantity mw defined in (1.5). Therefore we have

X

Y ���

G
.S/

Y independent in G

�jY j D 1 C

bn=wc^w
X

kD1

�k.w; n/.mw�/k ;

where �k.w; n/ is exactly the same number defined in (2.2). Hence posing

mw � D � we have that a separating hash family SHF.N I n; m; ¹w; : : : ; wsº/ exists

and can be found in polynomial time by the Moser–Tardos algorithm if

mwqN �
�

1 C

bn=wc^w
X

kD1

�k.w; n/ �k

: (2.10)

Note that the right hand side of inequality (2.10) and the right hand side of

inequality (2.3) are the same. Hence we get that the condition (2.9) becomes

.n � w/w�1

.w � 1/Š
mwqN �

1

'0
w;n.�/

;

where '0
w;n.�/ is the same number as in (2.5). In other word the condition (2.9)

rewrites as

N �
Sn.w/

ln
�1

q

�

(2.11)
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with

Sn.w/ D lnŒ'0
w;n.�/� C .w � 1/ ln .n � w/ � ln .w � 1/Š C ln.mw/: (2.12)

According to Theorem 1.1 the MT-algorithm (as described in Section 1.3.1) finds

a SHF.N I n; m; ¹w1; : : : ; wsº/ satisfying (2.11) and hence (2.9) in an expected

number of steps

X

S2P �

w.Œn�/

� D jP �
w.Œn�/j� D

�

n

w

�

mw� D

�

n

w

�

� �

�

n

w

�

;

where the last inequality follows from the fact that the optimum � which maximize

the right hand side of (2.10) is surely less than one. The number
�

n
w

�

of these steps,

similarly to what done for PHF, has to be multiplied by N
�

w
2

�

mw

�

n
w

�

which is the

number of operations needed to check item a) of step i � 1 of the MT-algorithm

for SHF described in Section 1.3.1.

This concludes the proof of Theorem 1.3.

3. Comparison with previous bounds

Let us first observe that the polynomial 'w;n.x/ introduced in (1.2) is such that

lim
n!1

'w;n.x/ �! .1 C x/w ;

and therefore the number '0
w;n.�/ appearing in bounds (1.1) and (1.4) for perfect

hash families and separating hash families resp. is such that

lim
n!1

'0
w;n.�/ D w

�

1 C
1

w � 1

�w�1

: (3.1)

3.1. Perfect hash families. We first recall the previous lower bounds obtained

in the literature via the Probabilistic method.

First, via the usual Lovász local Lemma (see, e.g., [6]) one obtains

N �
Ln.w/

Dm.w/
; (3.2)

where

Ln.w/ D ln

�

e

��

n

w

�

�

�

n � w

w

���

: (3.3)

On the other hand, via the expurgation method (see [16] and [6]) one gets

N �
En.w/

Dm.w/
; (3.4)
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where

En.w/ D ln

�

2n

w

�

� ln n: (3.5)

Let’s first compare our bound (2.6) with (3.4) obtained via expurgation method.

Note that the numerator En.w/ appearing in the right hand side of (3.4) can be

written as

En.w/ D ln

�

2n

w

�

� ln n

D w ln 2 C .w � 1/ ln n C

w�1
X

j D1

ln
�

1 �
j

2n

�

� ln.wŠ/

D w ln 2 C .w � 1/ ln.n � w/ � ln.wŠ/ C

w�1
X

j D1

ln

0

B

@

1 �
j

2n

1 �
w

n

1

C

A
:

(3.6)

So that asymptotically

En.w/ � Ew C .w � 1/ ln n � lnŒ.w � 1/Š� (3.7)

with

Ew D w ln 2 � ln w:

On the other hand, in view of (3.1), the numerator of the right hand side of (2.6)

is asymptotic to

An.w/ � Aw C .w � 1/ ln .n/ � lnŒ.w � 1/Š� (3.8)

with

Aw D ln w C ln
h�

1 C
1

w � 1

�w�1i

:

Observe that while Ew grows linearly in w, the factor Aw in (3.8) grows only

logarithmically w. Thus, to compare (2.6) with (3.4) as n ! 1 we have that

An.w/ < Bn.w/ () 2 ln w C ln
h�

1 C
1

w � 1

�w�1i

< w ln 2

which happens as soon as

w > 6:91043:

This means that, asymptotically in n, for all w � 7 our bound beats the expurgation

bound. Moreover, numerical evidence suggests that the function

�n.w/ D En.w/ � An.w/ D ln
�2w

w

�

C

w�1
X

j D1

ln

0

B

@

1 �
j

2n

1 �
w

n

1

C

A
� lnŒ'0

w;n.�/� (3.9)



Perfect and separating hash families 167

is decreasing in n for fixed w. If this were the case (we do not have a proof of

that), our bound would be always better as long as w � 7 (see Table 1). For values

of w � 6, one can perform numerical calculations with the bounds (2.6) and (3.4)

and see that our bound beats the bound obtained via expurgation only for low

values of n and the lower is w the lower is the n for which we win. In particular,

we get that for w D 6, w D 5, w D 4, and w D 3 our bound beats expurgation

bound for all n � 97, n � 34, n � 15, and n � 7 resp. (see also Table 2).

Table 1. Bounds on the cardinality of perfect hash families with w � 7.

n m w Theorem 1.2 Expurgation

15 7 7 1437 1926

50 7 7 3034 3191

200 7 7 4529 4572

1000 7 7 6139 6152

50 8 8 8463 9159

200 8 8 12965 13282

1000 8 8 17774 17988

1000 12 8 900 911

1000 50 8 53 54

1000 50 15 730 781

1000 50 18 2812 3037

Table 2. Bounds on the cardinality of perfect hash families with w < 7.

n m w Theorem 1.2 Expurgation

10 4 4 57 62

15 4 4 76 77

50 4 4 121 114

10 5 5 144 187

15 5 5 211 234

50 5 5 369 364

15 6 6 558 681

50 6 6 1072 1092

90 6 6 1284 1287

200 6 6 1557 1546

By theoretical reasons (see [3]) the cluster expansion Lovász Lemma is always

better than the usual Lovász local lemma, so that bound (2.6) always beats the

bound (3.2) for any pair .w; n/. In any case, it is interesting to compare our bound

with the Lovász Lemma bound asymptotically as n ! 1. We have that they are
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not equivalent, i.e. our bound beats LLL even asymptotically since

lim
n!1

lnŒ'0
n;w.�/� C .w � 1/ ln .n � w/ � ln .w � 1/Š

ln

�

e

��

n

w

�

�

�

n � w

w

���
D

w � 1

w
:

3.2. Separating hash families. We can compare the bound (1.4) obtained in

Theorem 1.3 with that obtained via expurgation method and see that the improve-

ment is completely analogous to that obtained for the perfect hash families. First

observe that, recalling (1.5), the quantity Sn.w/ defined in (2.12) can be rewritten

as follows:

Sn.w/ D lnŒw'0
w;n.�/� C .w � 1/ ln .n � w/ �

s
X

iD1

ln.wi Š/ �

w
X

pD1

ln.mpŠ/:

Let us then consider for simplicity the case k D 2 and w1 ¤ w2. For this case

Sn.w/ becomes

Sn.w/ D lnŒw'0
w;n.�/� C .w � 1/ ln .n � w/ � ln.w1Šw2Š/:

Via the expurgation method (see [6]) one gets

N �
Fn.w/

ln
�1

q

�

; (3.10)

where

Fn.w/ D ln

�

2n

w1

�

� ln

�

2n � w1

w2

�

� ln n: (3.11)

As before we can write

Fn.w/ D w ln 2 C .w � 1/ ln.n � w/ C

w�1
X

j D1

ln

0

B

@

1 �
j

2n

1 �
w

n

1

C

A
� ln.w1Šw2Š/:

So we have

Fn.w/ � Sn.w/ D �n.w/;

where �n.w/ is the same quantity defined in (3.9). This means that all that we

discussed for perfect hash families holds also for separating hash families. In

particular, our bound beats the bound obtained via expurgation method reported

in [6] asymptotically in n as soon as w > 6.
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We finally compare our bound with still another bound given by Stinson

and Zaverucha [17] in 2008. These authors claim that a SHF.N I n; m; ¹w1; w2º/

exists if

n �
�

1 �
1

Cw

�h1

q

i
N

w�1

; (3.12)

where w D w1 C w2 and

Cw D

´

w1Šw2Š if w1 ¤ w2;

2w1Šw2Š if w1 D w2:

Our bound (1.4) on the other hand implies that a SHF.N I n; m; ¹w1; w2º/ exists if

.n � w/w�1 �
Cw

w'0.�/

h1

q

iN

:

Once again, for sake of simplicity we perform this comparison asymptotically as

N (and hence n) large. In this case we have seen that '0.�/ � w.1 C 1
w�1

/w�1.

Therefore asymptotically we have the bound

n �
�Cw

w2

�
1

w�1 w � 1

w

h1

q

i
N

w�1

: (3.13)

The comparison of this with bound (3.12) in now straightforward. We see that our

bound (3.13) beats (3.12) as soon as w is larger than 6.
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