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Flowing to the continuum limit

in tensor models for quantum gravity

Astrid Eichhorn1 and Tim Koslowski

Abstract. Tensor models provide a way to access the path-integral for discretized quantum

gravity in d dimensions. As in the case of matrix models for 2-dimensional quantum

gravity, the continuum limit can be related to a Renormalization Group fixed point in a

setup where the tensor size N serves as the Renormalization Group scale. We develop

functional Renormalization Group tools for tensor models with a main focus on a rank-3

model for 3-dimensional quantum gravity. We rediscover the double-scaling limit and

provide an estimate for the scaling exponent. Moreover, we identify two additional fixed

points with a second relevant direction in a truncation of the Renormalization Group flow.

The new relevant direction might hint at the presence of additional degrees of freedom in

the corresponding continuum limit.
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1. Introduction

Several approaches to quantum gravity implement a discrete structure of space-

time. This is generally expected to lead to a nontrivial phase structure for gravity:

One phase, a “pre-geometric” phase, consists of building blocks of spacetime,

which are not connected in a way that is like spacetime in today’s universe. A sec-

ond phase, which can be reached if the fundamental interactions in the model are

tuned appropriately, corresponds to a geometric phase of spacetime, in which the

discrete building blocks “condense” to form a continuum spacetime. This phase

structure can be interpreted in two conceptually very different ways: In one in-

terpretation, the discreteness of the fundamental building blocks is physical, in

which case the “condensation” of building blocks can be understood as a physical

mechanism, see, e.g., [1, 2], see also [3]. In a different interpretation, the dis-

creteness is viewed purely as a mathematical tool, that allows one to rewrite the

path-integral for continuum quantum gravity in a discrete fashion. This provides

a basis for the application of Monte Carlo algorithms to evaluate the discrete path

integral, as, e.g., in Causal Dynamical Triangulations, see [8, 6, 9, 7, 5, 4]. The

physical content of the theory only emerges, if the continuum limit is taken. This

is akin to lattice formulations of quantum field theory, where a lattice regulariza-

tion is introduced to ensure the existence of a family of partition functions, but the

physical content of the model is exclusively contained in the continuum limit.

A specific example of such models are matrix models for 2-dimensional quan-

tum gravity [10, 11, 12, 13, 14, 15, 16], and their generalization, tensor models

[17, 18, 19, 20], for reviews see, e.g., [21, 22, 23, 24, 25, 26]. There, the path

integral over random geometries is given by

ZŒJ � D
Z

DTe�SŒT �CJ �T ;

where T is a rank-d tensor of size N d . SŒT � is a suitable action. For instance, for

the case of matrix models, where d D 2, the action is built out of trace invariants,

i.e., traces of products of matrices. This choice of action ensures that the Feynman

diagrams of the matrix model admit a dual description that corresponds to all

possible tesselations of 2-dimensional surfaces. This allows one to interpret

the matrix model action geometrically. The continuum limit in the geometric

description is attained by the simultaneous limit of taking the matrix size N to

infinity and a tuning of the couplings. The large N limit without fine tuning of

the couplings is dominated by planar graphs, corresponding to tesselations of the

sphere. To obtain contributions from higher orders in the 1=N expansion, one has

to consider the double-scaling limit [27, 28, 29], where N 5=4.gcrit � g/ is held



Flowing to the continuum limit 175

fixed, where gcrit is the critical value of the coupling. In that limit, all topologies

contribute. As a generalization to d > 2 one considers rank-d tensor models

and constructs the analogous dual geometric interpretation of the tensor model

Feynman graphs. For some time, a major obstacle to generalize the success-story

of the 2-dimensional case has been the lack of a 1=N expansion. This changed

with a breakthrough by Gurau who introduced so-called colored models, where

the tensors in an invariant interaction term are distinguished by different colors

[30, 31, 32, 33, 34], for a review, see [35]. These models admit a well-defined

1=N expansion. Subsequently, it was shown that all but one of the tensors can

be integrated out, yielding a model of an uncolored tensor [36]. The interaction

structure of that tensor is such that all interactions can be represented in terms of

colored graphs, i.e., the indices of the tensors are distinct. These are the models

that we will focus on: They transform under a U.N /˝� � �˝U.N / symmetry, such

that each index transforms under one of the symmetry groups only. This provides

the basis for a combinatorics that admits a 1=N expansion. The symmetry entails

a distinction of the indices that can be encoded in a coloring of the corresponding

strands in a graphical representation of the interaction terms.

This class of models has recently also been studied in the context of the SYK

model [37]. There the tensor models were used to explore the large N limit of the

SYK model, which is a model of fermions [38, 39]. There, the � expansion was

used to study these models. It has been shown in several other cases, that the �

expansion and the functional Renormalization Group can go hand in hand, see,

e.g., [40], with the former providing an accurate benchmark for the latter, where

the latter, once its accuracy is investigated by comparing with the benchmark

results, can then also be used to explore a possible nonperturbative regime. While

we will focus on quantum gravity when discussing conceptual aspects of our

results, our technique could be applied to a tensor model in a different physical

context, such as, e.g., the SYK model.

In this paper we will develop the functional Renormalization Group approach

that we previously applied to matrix models [41, 42] to colored tensor models,

by applying it to the pure bipartite colored1 rank-3 tensor model. We use the

functional Renormalization Group to investigate fixed points of the model as

the tensor size N goes to infinity. The dual geometric interpretation of the

Feynman graphs of the model provides an interpretation of the large N -behavior

1 Note that there are two meanings of the word „colored” that are used in group field theory

and general tensor models: The first refers to models with colored tensors and global color

rotation symmetry, the second refers to a tensor model with colored indices. Here we use the

second meaning.
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of the tensor model as a continuum limit in the dual geometric description. This

allows us in particular to investigate the double scaling limit of the tensor models

and reproduce the benchmark result of [43] within the context of the functional

Renormalization Group approach.

2. The model

We consider a rank-3 tensor model of a complex tensor T and its complex conju-

gate xT with a U.N /˝U.N /˝U.N / symmetry, where each tensor index transforms

separately, i.e., the order of the indices matters, and the i th index of one tensor can

only be contracted with the i th index of a complex conjugate tensor in order for the

symmetry to remain intact. An easy way to keep track of that is to assign a color

to each of the indices, so that the graphical representation of tensor invariants that

enter the action is provided by colored graphs with a white vertex for a tensor T

and a black vertex for its complex conjugate xT , and lines come in three different

colors, e.g., red (for the first index), green (for the second index) and blue (for the

third index).

The symmetries that we assume do not allow any index-dependent interactions,

thus the theory space of our model consists of all index-dependent fully contracted

expressions with the same number of T ’s as xT ’s where the contraction respects

the order of the indices, see also [44]. This is a clear distinction of the model that

we investigate in this paper and group field theories, where the group Laplacian is

usually used to define the kinetic term. This implies in particular that there exists

a unique quadratic term in our case, which takes the form

Skin D Tijk
xTijk:

2.1. Operators and their geometric interpretation. The geometric interpreta-

tion of rank 3 tensors is straightforward: To each tensor T we associate a triangle

with positive orientation, i.e., the colors of the edges of the triangles are ordered

clockwise. The complex conjugate tensors xT is linked to triangles of negative ori-

entation, i.e., the colors of the edges of the triangle are ordered counterclockwise.

The contraction of an index of color i is geometrically represented by a gluing of

the two edges. In this way one can associate a triangulation of a closed 2-surface

with any colored bipartite tensor invariant.

The Feynman graphs of a tensor model can be interpreted as rank-4 tensor

invariants by simply associating an additional color “0” to each tensor, which rep-

resents a fiducial index, whose contraction represents that a propagator connects
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the two vertices. With this identification one proceeds analogous to the geomet-

ric interpretation of the rank-3 model, but now uses a geometric interpretation in

which one associates a tetrahedron to each of the fiducial rank-4 tensors and the

gluing of a boundary triangle to the contraction of the fiducial indices. In this way

one obtains a geometric interpretation of the Feynman diagrams as 3-dimensional

simplicial complexes whose boundary is given by the geometric interpretation of

the 2-dimensional contraction patterns of the legs of the Feynman diagram.

The geometric interpretation of the Feynman graphs can be used to obtain a

geometric interpretation of the action. This is done by assuming that all tetrahedra

are of equal size and equilateral. One then considers the logarithm of the Feynman

amplitude associated with each Feynman graph and expresses it in terms of Regge-

type curvature invariants. In this way one can interpret the partition function as

a sum over simplicial geometries with a geometric Boltzmann weight for each

simplicial geometry.

2.2. Melonic operators. An important class of interactions are so-called “cyclic

melons,” which are operators of the form

Ti1j1kn
xTi1j1k1

Ti2j2k1
xTi2j2k2

: : : Tinjnkn�1
xTinjnkn

:

Geometrically, this glues together neighboring triangles along two edges and

then glues the remaining edges to each of the triangles’s other neighbors. These

operators triangulate the .2 � d/-surface of a sphere in 3-dimensions in a manner

like the surface of a melon is usually sliced. Starting at order .T xT /3, one can also

form non-cyclic melonic operators which do not feature the maximum number of

“submelons” (this is to say a melon slice in the picture we used above), such as

Tijk
xTijlTmnl

xTmokTpoq
xTpnq . As long as they contain at least one “submelon,” such

as Tijk
xTijl in the above case, they still triangulate a 3-sphere, as one can convince

oneself by drawing the corresponding triangles.

At each order n in the fields (note that n must be even), one can form discon-

nected operators with up to n=2 disconnected parts. For the melonic case, these

correspond to triangulations of several disconnected spheres. At a first glance,

one might expect that the couplings of those operators simply have to vanish at

a fixed point corresponding to a physically meaningful continuum limit. As we

will see below, that expectation is fulfilled for the fixed point corresponding to

the double-scaling limit. On the other hand, we will see that they approach finite

fixed-point values at another fixed point that we discover. In that case, they might

signal the presence of additional, non-geometric degrees of freedom.
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2.3. Notation. To distinguish the couplings of the tensor invariants, we intro-

duce the following notation

Ngk; m; :::
i; j

for the coupling in front of an operator with i tensors, i.e., i=2 T ’s and i=2 xT ’s.

The number of connected components is denoted by j , i.e., in a “single-trace”

operator with j D 1 one can follow a closed line (disregarding the color) from

any T to any xT . So far, this structure is reminiscent of matrix models, where

matrix invariants are distinguished by the number of matrices and the number of

connected components, i.e., single-trace versus multi-trace operators. The tensor-

specific structure is encoded in the upper indices. Here, we will stick to a notation

where the first index counts the number of “sub-melons,” i.e., pairs of the form

Tabc
xTdbc, or Tabc

xTadc or Tabc
xTabd . Graphically, these appear as pairs of a tensor

T and a complex conjugate xT with two connected lines. Further, the 2nd index

(and for operators beyond i D 8 also additional ones) denotes the distinguished

color. For instance, all cyclic melons distinguish one color, which is the one that

labels all single lines (and consequently does not appear as an internal line on the

sub-melons).

For instance, the action containing all quadratic and quartic operators is of the

form

S D ZN Tabc
xTabc C Ng2;1

4;1Tabc
xTdbcTdef

xTaef C Ng2;2
4;1Tabc

xTadcTedf
xTeaf

C Ng2;3
4;1Tabc

xTabd Tefd
xTefa C Ng2

4;2Tabc
xTabcTdef

xTdef :
(1)

Graphically, it is represented in figure 1.

�N D ZN

C g2;1
4;1

C g2;2
4;1

C g2;3
4;1

C g2
4;2

Figure 1. We denote a tensor T by a white circle and a tensor xT by a black, filled circle.

The first index is denoted by a red, dashed, the second by a green thick and the third by a

blue dotted line.
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3. Functional Renormalization Group for tensor models

The FRG approach to tensor models follows the conceptual insight of [45], which

suggested that a coarse-graining procedure for matrix models can be set up by

using the matrix-size N as the RG scale, and successively integrating out rows

and columns. This idea underlies the FRG approach to matrix models, developed

in [41, 42], that has subsequently been adapted to the group-field theory case

[46, 47, 48, 49, 50, 51, 52]. Using a variant of the Polchinski equation for tensor

models is also possible, see [53, 54]. Conceptually, this form of coarse graining,

which does not rely on a local coarse-graining procedure in spacetime, but instead

makes use of a more abstract notion of coarse graining, is well-suited to quantum

gravity, where local coarse-graining in spacetime is difficult to reconcile with

background-independence, see, e.g., [55, 56, 57, 58]. Here, we implement an

RG flow in the sense of an interpolation between models with a large number of

degrees of freedom and one with a smaller number of degrees of freedom, which

describes the same physics for all coarse enough observables. This interpolation

is obtained by embedding the coarser model into the finer model and integrating

out the additional degrees of freedom that appear in the finer model. On the other

hand, we will see that even in this case, the coarse-graining procedure breaks a

symmetry of the model.

Note that in group field theories, for reviews see [59, 60, 61, 62], which

feature the combinatorical structure of tensor models, combined with a non-local

quantum field theoretic structure as they are quantum field theories living on an

abstract group manifold, the Renormalization Group can be set up in a more

standard way, and provides many examples for perturbatively renormalizable and

even asymptotically free models [63, 64, 65, 66, 67], for a review see [62].

We will set up a Wilsonian RG flow for the effective average action, which is

defined by a modified Legendre transform based on the generating functional

ZN ŒJ; xJ � D
Z

N 0

DTe�SŒT ��TabcRN ..aCbCc/=N / xTabc CJ �T C xJ � xT ;

where J is a source and the dot is shorthand for a full contraction of the indices.

We have indicated that the tensor size is now taken to be N 0 > N , i.e., the cutoff

“scale” N of course is smaller than the “UV cutoff,” i.e., the maximal tensor size

N 0. RN ..a C b C c/=N / is an infrared cutoff operator: As N decreases, more

modes are integrated out in the path integral. We define the effective average or

flowing action as

�N ŒT; xT � D sup
J

.J � T C xJ � xT � ln ZN ŒJ; xJ �/ � TabcRN ..a C b C c/=N / xTabc :
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Note that herein T denotes the expectation value of the variable in the path

integral. In a slight abuse of notation we will not distinguish these here. We follow

the steps laid out in [41, 42] to obtain a flow equation for rank-3 tensor models,

of the usual structure of the one-loop equation for the flowing action [68, 69], for

reviews in the usual case of a continuum QFT see, e.g., [70, 71, 72, 73, 74, 75, 76]

@t�N D Tr.�
.2/
N C RN /�1@t RN ;

where @t D N @N , and

�
.2/
N D �

.2/

N ijklmn
D ı

ıTijk

ı

ı xTlmn

�N :

As N is changed, quantum fluctuations are integrated out in a scale-dependent

fashion. In that process, all interactions compatible with the symmetries of the

model are generated, as usual in a Wilsonian setting. The Wetterich equation thus

defines a vector field in theory space, i.e. the (infinite dimensional) space of all

couplings. This vector field encodes the scale dependence of the couplings, i.e.,

it provides the beta functions.

Specifically, we will then employ the P�1F expansion, where

P D �
.2/
N

ˇ

ˇ

T D0; xT D0
C RN ;

F D �
.2/
N � �

.2/

k

ˇ

ˇ

T D0; xT D0
;

i.e., F contains only the field-dependent part of the inverse propagator. The flow

equation can then be expanded as follows

@t�N D Tr Q@tP
�1 C

1
X

nD0

.�1/n�1

n
Q@t .P

�1F/n;

where Q@t only acts on the scale-dependence of the regulator and not on the scale-

dependence within F. This provides a straightforward way of extracting the beta

functions associated to tensor invariants at any given order in the tensors.

3.1. Choice of regulator. The FRG setup for matrix models can straightfor-

wardly be generalized to tensor models - essentially by adding the third index.

Accordingly, a suitable infrared regulator takes the form

RN .i; j; k/ D ZN

� N

i C j C k
� 1

�

�.N � .i C j C k//:
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This regulator term gives a mass term of order N to tensor components with

i C j C k � N while not changing the kinetic term for tensor components with

i C j C k > N , so the “index position” i C j C k plays a role analogous to the

total momentum in the application of the FRG in standard Euclidean field theory.

Analogous to the case of matrix models, imposing an infrared cutoff on the

matrix size breaks the U.N 0/ ˝ U.N 0/ ˝ U.N 0/-symmetry of the tensor model.

In particular, the fact that the cutoff should diverge as N ! 1, combined

with the requirement that it has the same canonical dimensionality as the kinetic

term, implies that it must be a non-trivial function of the indices. Thus, this

choice of cutoff cannot even preserve a U.N / ˝ U.N / ˝ U.N / subgroup of the

symmetry. The only symmetry that is preserved is a U.1/N 0

, which preserves the

graph structure of the interactions, but introduces an additional index-dependent

prefactor for each interaction structure.

The summation over the indices on the right-hand-side of the Wetterich equa-

tion can be performed once we have projected onto a particular operator, as we

will discuss below. The sum can then be rewritten as an integral, which takes the

same value as the sum at leading order in N .

3.2. Criteria to define a truncation. We aim at discovering interacting fixed

points underlying a possible continuum limit and characterizing their spectrum

of eigenperturbations, with a particular focus on the relevant directions. At an

interacting fixed point, one cannot a priori know which operators are relevant,

as quantum fluctuations result in corrections to canonical scaling which a priori

might be large. Nevertheless, canonical dimensionality can provide a powerful

guiding principle to set up truncations in the nonperturbative regime, as shown

by examples in continuum quantum gravity, see, e.g., [77, 78, 79], as well as in

the case with matter, see, e.g., [80, 81, 82]: There, one assumes that the effect of

quantum fluctuations on the scaling dimensions is to add a finite shift of O.1/.

Then, canonically marginal or just irrelevant operators might become relevant,

but operators which are highly irrelevant remain irrelevant. One can then test

the consistency of this assumption by constructing a truncation according to that

guiding principle and testing whether the operators do indeed follow that pattern at

an interacting fixed point. In many cases, this principle is also supported by the fact

that the fixed point can be traced to a free fixed point as one approaches the critical

dimensionality of the model. For instance, the Wilson-Fisher fixed point emerges

from the Gaußian fixed point for d < 4, and is interacting in d D 3. There,

the critical exponents follow canonical scaling, as the mass operators generates a

relevant interaction, but all further interactions are irrelevant.
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Following this reasoning, we will use the canonical dimensionality as a guiding

principle to set up truncations for tensor models. As in the case of pure matrix

models a new challenge appears in these pre-geometric models: the canonical

dimensionality does not follow from straightforward scaling arguments as in

the continuum case. While interactions with a higher number of tensors are

increasingly irrelevant canonically, the detailed structure of the interaction plays

a role in determining the scaling dimensionality. We will determine it from the

functional Renormalization Group equation directly.

Note that as an important check on the consistency of this procedure it is

necessary to increase the truncation until the addition of further operators does

not result in additional relevant directions at the fixed point of interest.

3.3. Canonical dimensionality. The canonical dimensionality can be deter-

mined as follows: If all couplings xGi are expressed in terms of their dimensionless

counterparts Gi D N
�dxGi xGi , then the leading-order term in a 1=N expansion of

the flow equation must be dimensionless, i.e., it must be finite in the limit N ! 1
(it can also be zero). This allows to determine a unique scaling dimensionality of

the couplings by following an iterative procedure.

(1) As a normalization condition we demand that the prefactor of the kinetic

term is dimensionless. As there is a one-vertex diagram proportional to Ng2;i
4;1

for each i , this determines (a lower limit on) the canonical dimensionality

of Ng2;i
4;1. Moreover, there is a one-vertex diagram proportional to Ng2

4;2, which

accordingly provides (a lower limit on) the canonical dimensionality of that

coupling.

(2) The consistency of the thus determined d
Ng

2;i
4;1

and d Ng2
4;2

can be checked by

evaluating the 2-vertex diagrams containing those couplings. A diagram

which generates a contribution to the beta function of a particular coupling

without being linear in that coupling itself provides an upper limit on the

dimensionality of the coupling. Together with the first step, this provides a

unique assignment of dimensionality for the quartic coupling.

(3) All Ng:;:
6;: couplings are generated from 3-vertex diagrams containing Ngi;i

4;i .

These determine the upper bound on the canonical dimensionality of Ng:;:
6;:.

(4) The consistency of the assignment of d Ng
:;:
6;:

can be determined by evaluating

all diagrams � Ng:;:
4;:; g

:;:
6;: as well as the Ng6-tadpole diagrams, which provide

lower bounds on the canonical dimensionality.
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This procedure can then be iterated to higher-order truncations. Note that it fails

to give a unique assignment of dimensionality, if a coupling does not appear

in the beta-functions of other couplings, or if its beta function does not feature

contributions from other couplings. This is a problem for “too small” truncations,

where this may happen due to the absence of effective operators that link the

coupling to those whose canonical dimensionality has already been determined.

We will see a specific example within our largest truncation, which features only

one coupling representing a distinct combinatorial structure. Due to its being the

only representative of that combinatorial structure in our truncation, there is a

partial decoupling of that coupling from the RG flow which does not provide us

with a unique canonical dimension for that coupling. We expect this to change in

even more extended truncations.

The above procedure provides us with an assignment for the melonic operators

with the maximum number of “submelons”:

d
Ng

i=2;:

i;j

D �.i � 2/ � .j � 1/:

Thus, the couplings of highest canonical dimensionality are g
2;i
4;1 with dimension-

ality -2, g2
4;2 with dimensionality -3, and g

2;i
6;1 with dimensionality -4. Note that

the canonical irrelevance of all couplings does not preclude the existence of an

interacting fixed point with relevant directions.

Using this notion of canonical dimension, we introduce dimensionless cou-

plings. In that step, we also redefine the quadratic term to have a canonical pref-

actor ZN , absorbing the resulting factors of ZN in the couplings:

g
:;:
i;j D Ng:;:

i;j Z
�i=2
N N

�d Ng
:;:
i;j : (2)

3.4. Projection prescription. Leaving the breaking of the three U.N / symme-

tries by the regulator aside, the flowing action contains all operators that can be

constructed from contractions of i tensors T and i tensors xT , such that the j th

index of a T is connected to the j th index of some xT . To project uniquely onto

an operator On with n pairs of T; xT , we use the following prescription: As a first

step, we evaluate the derivative

� ı

ıTa1b1c1

ı

ı xTd1e1f1

� � � ı

ıTanbncn

ı

ı xTdnenfn

On

�ˇ

ˇ

ˇ

T; xT D0
DW �Oa1;:::;e1;:::an;:::;en

:

In the tensor �Oa1;:::;e1;:::an;:::;en
, we introduce a UV cutoff on the indices, which

are all restricted to be � N . Then, the contraction

�Oa1;:::;e1;:::an;:::;en
�Oa1;:::;e1;:::an;:::;en

D #N 3n; (3)



184 A. Eichhorn and T. Koslowski

where the sum over each index runs from 0 to N provides the number #. We now

have all ingredients required to define a projection operator for the invariant On:

at leading order in 1=N , it is given by

…O D 1

#N 3n
�Oa1;:::;e1;:::an;:::;en

ı

ıTa1b1c1

ı

ı xTd1e1f1

� � � ı

ıTanbncn

ı

ı xTdnenfn

ˇ

ˇ

ˇ

T D0D xT
;

(4)

where it is understood that the tensor and its conjugate are only set to zero after

the appropriate number of derivatives of the object of interest (typically the right-

hand-side of the Wetterich equation) has been taken.

We have that …OO D 1. Note that this only works, because we imposed the

additional UV cutoff on the indices, effectively working with N � N � N tensors.

Intuitively, this resembles a restriction of the amplitude of a continuum field to be

less than the IR momentum cutoff. If we had not imposed a finite UV cutoff on

the size of the tensors, eq. (4) would require taking the limit N ! 1 carefully.

In contrast, the projector vanishes at leading order in N when applied to any

other invariant: Clearly, it vanishes when applied to an invariant which has more

or less than n tensors T . When applied to an invariant with the same number of

tensors, the derivatives with respect to T and xT produce a different pattern of ı’s,

which follows the different way in which colored lines are drawn in the different

invariants. At leading order in 1=N , the contraction of �Oa1;:::;e1;:::an;:::;en
with

that structure will be supressed.

For the simplest example, let us show that this prescription distinguishes the

three different cylic, melonic, connected graphs with couplings g
2;i
4;1, i.e., let us

choose

�k4;1 D Ng2;1
4;1Tabc

xTdbcTdef
xTaef C Ng2;2

4;1Tabc
xTadcTedf

xTeaf

C Ng2;3
4;1Tabc

xTabd Tefd
xTefa:

such that

ı

ıTa1b1c1

ı

ı xTd1e1f1

ı

ıTa2b2c2

ı

ı xTd2e2f2

�k4;1

D 2 Ng2;1
4;1

�

ıa1;d1
ıb1;e2

ıc1;f2
ıb2;e1

ıc2;f1
ıa2;d2

C ıa1;d2
ıb1;e1

ıc1;f1
ıa2;d1

ıbc ;e2
ıc2;f2

�

C 2 Ng2;2
4;1

�

ıa1;d1
ıc1;f1

ıb1;e2
ıb2;d1

ıa2;d2
ıc2;f2

C ıa1;d2
ıc1;f2

ıb1;e1
ıa2;d1

ıc2;f1
ıb2;e2

�

C 2 Ng2;3
4;1

�

ıa1;d1
ıb1;e1

ıc1;f2
ıc2;f1

ıa2;e2
ıb2;e2

ıa1;d2
ıb1;e2

ıc1;f1
ıa2;d1

ıb2;d1
ıc2;f2

�

:
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We thus define

…
O

2;1
4;1

D 1

4N 6

�

ıa1;d1
ıb1;e2

ıc1;f2
ıe1;b2

ıf1;c2
ıa2;d2

C ıa1;d2
ıb1;e1

ıc1;f1
ıa2;d1

ıb2;e2
ıc2;f2

�

ı

ıTa1b1c1

ı

ı xTd1e1f1

ı

ıTa2b2c2

ı

ı xTd2e2f2

:

This yields

…
O

2;1
4;1

�k4;1 D Ng2;1
4;1

�

1 C 1

N 3

�

C
Ng2;2

4;1

N 6
.N 5 C N 4/ C

Ng2;3
4;1

N 6
.N 5 C N 4/;

D Ng2;1
4;1 C O

� 1

N

�

:

Similarly, by a simple exchange of the distinguished color, we can define …
O

2;2
4;1

and …
O

2;3
4;1

, which provide a unique projection onto Ng2;2
4;1 and Ng2;3

4;1, respectively.

At higher order in the vertex expansion, the distinct contraction patterns of

tensors in the different invariants again allow us to find projections which uniquely

identify a given invariant at leading order in 1=N .

Note that the right-hand-side of the Wetterich-equations generates symmetry-

breaking operators due to the regulator. However, to identify the beta functions,

we need a notion of vertical projection onto our truncation.

While our projection prescription does not mix the different invariants in

the symmetric theory space, it mixes invariants in the symmetric theory space

with operators which break the symmetry. In that sense, our beta functions are

“contaminated” by symmetry-breaking contributions.

4. Fixed-points in a .T xT /3 truncation

We set up a truncation order by order in the tensors. While the combinatorical

structure has an impact on the canonical dimension, it is mainly determined by

the number of tensors in an interaction: For every additional tensor or its conju-

gate in the interaction, we associate an extra factor of
p

N
�1

. Thus, starting from

a dimensionless wave-function renormalization, the couplings of the .T xT /2 op-

erators must have at least dimension �2. Every extra trace adds an extra factor

of N , lowering the canonical dimension of the double-trace couplings by one in

comparison to the single-trace couplings. Further, we observe that the combina-

torial structure of the interactions can further lower the canonical dimensionality.
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As we will discover using the FRG, the melonic interactions seem to be those with

the lowest canoncial dimensionality at any order in the tensors.

�N;6 D g3;1
6;1

Cg3;2
6;1

Cg3;3
6;1

C g3;1
6;2

Cg3;2
6;2

Cg3;3
6;2

Cg3
6;3

C g2;1
6;1

Cg2;2
6;1

Cg2;3
6;1

Cg0
6;1

Figure 2. The interactions in �6 are sorted according to decreasing canonical dimensional-

ity. All interactions apart from those in the last line are cyclic melons. The first three terms

in the last line are melonic, the last one is not.

The first appearance of melonic, non-cylic invariants, as well as of non-

melonic ones is at order .T xT /3. We will analyze a complete truncation at

that order, which in addition to those invariants in (1) and figure 1 features, cf.

figure 2,

�N;6 D Ng3;1
6;1Tabc

xTadeTfde
xTfghTigh

xTibc C Ng3;2
6;1 C � � � C Ng3;3

6;1 C � � �
C Ng2;1

6;1Tabc
xTdbeTdfgThie

xThig
xTafc C Ng2;2

6;1 C � � � C g
2;3
6;1 C � � �

C Ng0
6;1Tabc

xTadeTfdg
xThbgThie

xTf ic

C Ng3;1
6;2Tabc

xTadeTfde
xTf bcTijk

xTijk C Ng3;2
6;2 C � � � C g

3;3
6;2 C : : :

C Ng3
6;3Tabc

xTabcTdef
xTdef Tghi

xTghi ;

where the ellipsis stand for the obvious change of preferred index. To understand

how these interactions are generated from the lower-order ones, consider that

�
.2/
N is obtained by removing a tensor T and a complex conjugate xT from the
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invariants, leaving the corresponding tensor indices open. The trace on the right-

hand-side of the flow equation then glues these open legs together, respecting the

colors. For instance, the entry in �
.2/
N proportional to g

2;1
4;1 features one term with

a closed melon, and one with “two pieces of sliced melon,” cf. figure 3. Thus, the

combination g
2;1
4;1 � g

2;2
4;1 � g2

4;2 contains one term which generates g
2;3
6;1 .

Figure 3. �
.2/

N

ˇ

ˇ

g
2;1
4;1

(upper panel) contains two terms, one that still contains a melon, and

serves as a building block for further melonic invariants, and one that contains “two halves

of sliced melon” and that can be used to construct non-melonic invariants as well. �
.2/

N

ˇ

ˇ

g2
4;2

(lower panel) contains two terms; one that contains a closed T xT -interaction and generates

further disconnected interactions, and the second, which can be used to construct non-

melonic invariants as well.

We obtain the following beta-functions for the dimensionless counterparts of

the couplings in our truncation

� D 1

20
.g

2;1
4;1 C g

2;2
4;1 C g

2;3
4;1 C g2

4;2/.5 � �/;

ˇ
g2;i

4;1

D .2 C 2�/g
2;i
4;1 C .g

2;i
4;1/2 13

630
.21 � 4�/ � g

3;1
6;1

5 � �

15
� g

3;1
6;2

5 � �

40
;

ˇg2
4;2

D .3 C 2�/g2
4;2 C 6 � �

15

�

.g2
4;2/2 C 2g2

4;2.g
2;1
4;1 C g

2;2
4;1 C g

2;3
4;1/

C 2g
2;1
4;1g

2;2
4;1 C 2g

2;1
4;1g

2;3
4;1 C 2g

2;2
4;1g

2;3
4;1

�

� 5 � �

20
.g

3;1
6;2 C g

3;2
6;2 C g

3;3
6;2/:

(5)

The equation for the anomalous dimension can be solved to give

� D
5.g

2;1
4;1 C g

2;2
4;1 C g

2;3
4;1 C g2

4;2/

20 C g
2;1
4;1 C g

2;2
4;1 C g

2;3
4;1 C g2

4;2

: (6)
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The beta functions for the higher-order couplings in our truncation are given by

ˇ
g

3;1
6;1

D .4 C 3�/g
3;1
6;1 C 13

210
.21 � 4�/g

2;1
4;1g

3;1
6;1 � 8.g

2;1
4;1/3 5769 � 1049�

60480
;

ˇ
g2;1

6;1

D .5 C 3�/g
2;1
6;1 � g

2;1
4;1g

2;2
4;1g

2;3
4;116

93869 � 15729�

362880

� .g
2;2
4;1.g

2;3
4;1/2 C g

2;3
4;1.g

2;2
4;1/2/8

46500 � 8887�

151200

C .g
2;2
4;1g

3;3
6;1 C g

2;3
4;1g

3;2
6;1/13

21 � 4�

210

C .g
2;2
4;1 C g

2;3
4;1/g

2;1
6;113

21 � 4�

630
;

ˇg0
6;1

D .�dg0
6;1

C 3�/g0
6;1 � g

2;1
4;1g

2;2
4;1g

2;3
4;116

73160 � 13889�

604800

N �d
Ng0
6;1

N 6
;

ˇ
g

3;1
6;2

D .5 C 3�/g
3;1
6;2 C .g

2;2
4;1 C g

2;3
4;1/g

3;1
6;1

6 � �

5

� .g
2;1
4;1/2.g

2;2
4;1 C g

2;3
4;1/8

2764 � 467�

10080
C .g

2;2
4;1 C g

2;3
4;1/g

3;1
6;2

6 � �

15

C g
3;1
6;1g2

4;2

6 � �

5
C g

3;1
6;2g2

4;2

6 � �

15
C g

3;1
6;2g

2;1
4;1

399 � 73�

315
;

ˇg3
6;3

D .6 C 3�/g3
6;3 C

�

g
2;2
4;1 Œg

3;1
6;2 C g

3;3
6;2� C g

2;1
4;1 Œg

3;2
6;2 C g

3;3
6;2 �

C g
2;3
4;1 Œg

3;1
6;2 C g

3;2
6;2 �

�6 � �

15
2

C g3
6;3.g

2;1
4;1 C g

2;2
4;1 C g

2;3
4;1/

6 � �

5
� g

2;1
4;1g

2;2
4;1g

2;3
4;1

7 � �

84
16

C g2
4;2g3

6;3

6 � �

5
� 8.g2

4;2/3 7 � �

84
� .g2

4;2/2.g
2;1
4;1 C g

2;2
4;1 C g

2;3
4;1/2

7 � �

7

� .g
2;1
4;1 Œg

2;2
4;1 C g

2;3
4;1 � C g

2;2
4;1g

2;3
4;1/g2

4;22
7 � �

7
:

Corresponding equations hold for the couplings with a preferred second or third

index under appropriate permutations of all couplings.

Interestingly, it turns out that there is no contribution � g0
6;1 to any of the beta

functions at leading order in 1=N in our truncation. We find

dg0
6;1

� �6: (7)
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We assume in the following dg0
6;1

D �6, however due to the decoupling, the fixed-

point search does not need to include g0
6;1, as it always automatically features a

fixed point at

g0
6;1� D 73160 � 13889��

604800

16

�d Ng0
6;1

C 3��

g
2;1
4;1�g

2;2
4;1�g

2;3
4;1�:

The corresponding critical exponent is given by

� D d Ng0
6;1

� 3��: (8)

As a consequence of the decoupling, our assignment of dimensionality is not

unique: We could choose a less negative canonical dimensionality for that cou-

pling than the one that saturates the bound (7) such that g0
6;1 would appear at

leading order in the 1=N expansion of other coupling constants. Such a less neg-

ative scaling would imply that the terms in ˇg0
6;1

would vanish at leading order in

the 1=N expansion. Therefore, the coupling could be set to zero consistenly on all

scales for that alternative choice of canonical dimension. As a consequence, one

would obtain a fixed point at g0
6;1� D 0 with the same critical exponent as in (8).

Since the existence of a real fixed point for g0
6;1 is guaranteed as soon as the

other couplings assume real fixed-point values, and the corresponding critical

exponent is clearly negative for all admissable values of �, we will neglect g0
6;1

in our fixed point analysis.

The canonical dimensionality for all other couplings is fixed if we insist that

the 1=N expansion is well-defined. In accordance with the result that the melonic

interactions dominate the large-N limit [32, 33, 34], the melonic interactions have

the largest canonical dimensionality at each order in .T xT /n and at fixed number

of traces. In particular, the single-trace cyclic melons are the canonically leading

operators at each order in .T xT /n. Thus, the flow equation independently hints

at the dominance of melons in the leading order in 1=N , as this is the only

assignment of dimensionality consistent with a well-defined 1=N expansion of

the flow equation.

4.1. Fixed-point search and critical exponents. We will discuss how to tenta-

tively distinguish truncation-induced fixed points from actual ones. Moreover, we

will explain different schemes for obtaining the critical exponents.

Eq. (6) for the anomalous dimension has a non-perturbative structure in the

quartic couplings, as couplings appear in the denominator, leading to a Taylor ex-

pansion containing arbitrarily high powers in the couplings. Thus the non-trivial

denominator can induce additional zeros. These are generically nonperturbative,
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and thus a truncation scheme relying on the canonical dimensionality might not

reliably describe these fixed points. We will therefore discard them and only focus

on those fixed points which arise “semi-perturbatively,” i.e., from the polynomial

structure of the beta-functions. We will therefore apply two simplifications to the

beta-functions and only analyze fixed points which persist under both simplifica-

tion steps:

The first consists in a semi-perturbative approximation, in which all �’s that

arise from the scale-derivative of the regulator are neglected. This leaves those

factors of � that come paired with the canonical dimensionality, and arise from the

definition of the dimensionless coupling in (2). The same logic has been applied,

e.g., in the context of asymptotically safe gravity in [90]. This yields the following

expression for the anomalous dimension

�semi-pert D 5

20
.g

2;1
4;1 C g

2;2
4;1 C g

2;3
4;1 C g2

4;2/:

The second approximation, which we call the perturbative one consists in

setting Z D 1 and therefore � D 0. Checking whether a fixed point persists with

limited quantitative changes as we go from the full result to the first and second

approximation can be understood as checking the stability of the fixed point under

changes of the truncation.

We define the critical exponents as minus the eigenvalues of the stability matrix

of the couplings in our truncation, i.e.,

�I D � eigMij D � eig
�@ˇgi

@gj

�ˇ

ˇ

ˇ

EgD Eg�

;

such that they agree with the canonical dimensionality for the non-interacting fixed

point. Note that, the model cannot become asymptotically free, as all couplings

have negative dimensionality, i.e., they correspond to UV repulsive directions of

the free fixed point. Herein, we have summarized the different couplings in one

vector which is labelled by one index, i.e.,

EgT D
�

g
2;1
4;1 ; g

2;2
4;1 ; g

2;3
4;1; g2

4;2; g
3;1
6;1; g

3;2
6;1; g

3;3
6;1; g

2;1
6;1 ; g

2;2
6;1 ; g

2;3
6;1 ;

g
3;1
6;2 ; g

3;2
6;2; g

3;3
6;2; g3

6;3

�

:

For the critical exponents, we will compare two different schemes: In the first

scheme, the derivative of the anomalous dimension with respect to the couplings

is taken into account in the stability matrix, i.e.,

Mij D
�@ˇgi

@gj

C
X

k

@ˇgi

@�k

@�k

@gj

�ˇ

ˇ

ˇ

EgD Eg�

: (9)
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In the second prescription, we hold � D const to evaluate the entries of the stability

matrix:

M0
ij D

�@.ˇgi
j�D��

/

@gj

�ˇ

ˇ

ˇ

EgD Eg�

: (10)

We will denote the critical exponents obtained from the second prescription by � 0.

The second prescription has been discussed in detail in [83] for the appli-

cation of the FRG in the context of multicritical phenomena for models with

O.N / ˚ O.M/ symmetry, see [84]: There, interacting fixed points emanate from

the Gaußian fixed point to become interacting below d D 4, and can thus be fol-

lowed to d D 3 employing the � expansion. For one of the critical exponents of a

particular, decoupled fixed point, a scaling relation holds order by order in the �

expansion [85]. It then turns out that the FRG in a local potential approximation

with anomalous dimensions only respects the scaling relation when the second

prescription for the critical exponents is employed. This is presumably linked to

the fact that the anomalous dimension only arises at 2-loop order in the perturba-

tive expansion, while the beta functions obtained from the FRG in that truncation

are only one-loop exact, not 2-loop exact. Therefore the first prescription for the

critical exponents actually leads to a larger deviation form the exact result than the

second. Of course, the first prescription would be exact in an untruncated theory

space.

4.2. Fixed point with one relevant direction: Double-scaling limit from the

FRG . The double scaling limit requires taking N ! 1 while tuning one of the

couplings.

We discover a fixed point with corresponding qualitative features, i.e., a fixed

point with just one relevant direction. This requires that the fixed-point values of

all multi-trace couplings vanish, as all fixed points with nonvanishing multi-trace

contributions feature additional relevant directions. This in turn is only possible if

the fixed point does not exhibit a color symmetry; in fact, only melonic couplings

with one preferred color can be non-zero. This can be seen directly by considering

ˇg2
4;2

, cf. eq. (5): As soon as two of the single-trace quartic couplings have non-

vanishing fixed-point values, g2
4;2 D 0 no longer solves its fixed-point equation.

The fixed-point properties are shown in table 1 and table 2.

These fixed point properties suggest that it is color-asymmetric, but we want

to point out that this color-asymmetry might be an artifact of the truncation

and projection procedure. To explain this, we consider a simple system of two

couplings g1; g2 and two functions ˇ1.g2
1 C g2

2/; ˇ2.g2
1 C g2

2/ that we imagine to

be their exact ˇ functions, which are obviously invariant under the SO.2/ action
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Table 1. Fixed-point values of the couplings. All couplings which are not shown explicitly

are understood to be zero. Couplings which are not included in a truncation are indicated by

a dash. Within each truncation, the properties of the fixed point are given in the case with

the full anomalous dimensions, in the semi-perturbative approximation, in which all �s that

arise when the scale-derivative acts on the regulator are set to zero, and in the perturbative

approximation, where no anomalous dimension is taken into account.

scheme g2;1
4;1�

g2
4;2�

g3;1
6;1�

g2;1
6;1�

g3;1
6;2�

g3
6;3�

full -1.94 0 – – – –

semi-pert -2.14 0 – – – –

pert -4.62 0 – – – –

full -1.37 0 -2.14 0 0 0

semi-pert -1.47 0 -2.46 0 0 0

pert -2.14 0 -6.12 0 0 0

�W .g1; g2/ 7! .g1 cos � Cg2 sin �; g2 cos � Cg1 sin �/. Moreover, we assume that

we find ˇ2.a2/ D 0, but that, due to our approximation scheme, we know ˇ1 only

to first order around .g1 D 0; g2 D 0/, i.e., we can calculate the dependence of ˇ1

only to the order ˇ1.g1; g2/ D ˇ1.0/ C 2.g1 C g2/ˇ0
1.0/, which vanishes for

g1 C g2 D b WD � ˇ1.0/

2ˇ0
1.0/

:

We thus find two fixed points

.g�
1 ; g�

2 /˙ D b

2
�

p
2a2 � b2;

b

2
˙

p
2a2 � b2;

which are related by a discrete color exchange symmetry, while any fixed point

of the exact system would be color symmetric. We see that this breaking of color

symmetry to a discrete exchange symmetry is due to two practical limitations that

occur in FRGE calculations: (1) the choice of coordinates on theory space which

is not adapted to the symmetry and (2) the finite approximation of the ˇ functions.

It might thus be possible that the double scaling limit that we find here is due

to a color symmetric fixed point, since both of these limitations occur in our

calculation. If this possibility is confirmed by more detailed calculations, then

the most obvious interpretation of this fixed point is the color-symmetric double

scaling limit, which features, according to [86, 43], one relevant direction with

� D D � 2, where D is the rank, i.e., D D 3 in our case.
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The multiplicity of some of the irrelevant critical exponents arises from the dis-

crete symmetry-enhancement in the theory space: There is an exchange symmetry

between those couplings belonging to the same combinatorical structure of ten-

sor contractions, which are set to zero at the fixed point, e.g., g
2;2
4;1 ; g

2;3
4;1 . There are

two eigendirections of the stability matrix associated to those couplings, which are

on an equal footing, i.e., the critical exponents associated to those directions are

equal. The same pattern must persist at higher orders in the truncation, whenever

there are three different couplings associated to the same combinatorial structure

of the tensors, only one of which is nonzero. Note that although the couplings

g
2;2
4;1 ; g

2;3
4;1 , and so on are set to zero at the fixed point, the interactions in the third

sector, associated to g
2;1
4;1 are sufficient to generate nontrivial critical exponents,

just as discussed in detail in [84].

Under an enlargement of the truncation from quartic to hexic, the fixed-point

value for the quartic coupling changes by about 30%. Encouragingly, the differ-

ence between the fixed-point estimates for the leading-order coupling in the dif-

ferent schemes decreases under the enlargement of the truncation, as it should be

expected for an actual fixed point.

The negative fixed-point values might be interpreted as pointing towards a

phase of broken symmetry. Specifically, the model is invariant under phase

rotations of the tensors, where

Tijk �! ei˛Tijk; xTijk �! e�i˛ xTijk:

The negative fixed-point values of the couplings hint towards either an unstable

potential, or towards a non-trivial minimum that would break this symmetry.

The first case cannot be identified reliably when a polynomial expansion of the

potential is used. The second case would suggest that the fixed-point values

and critical exponents can be determined more reliably by expanding around the

nontrivial mininum of the potential. We will defer the study of the corresponding

parameterization of the potential to future work, and merely remark, that this could

be a reason why our critical exponents are quantitatively imprecise.

We observe a significant difference between the leading critical exponent in

the two schemes. The second scheme, in which the critical exponents do not

include contributions from the derivative of the anomalous dimension, gives a

result significantly closer to �1 D 1, as we would expect for the double-scaling

limit according to [86, 43]. The difference between the schemes is significantly

less pronounced in the larger truncation. On the other hand, it is clear that these

values have not yet converged to numerically reliable results. We tentatively

conclude that our results are consistent with the interpretation that we redisover

the scaling underlying the double-scaling limit with our method.
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4.3. Fixed point with two relevant directions: beyond double-scaling. Allow-

ing multi-trace operators to feature non-zero fixed-point values induces a fixed

point with a second relevant direction, cf. table 3 and table 4. We conjecture that

this could be a way of taking the continuum limit beyond the double-scaling limit.

Due to the presence of nonvanishing multi-trace operators, which correspond to

disconnected chunks of spacetime, the geometric interpretation of this fixed point

is less straightforward than that of the one with one relevant direction. The exis-

tence of degrees of freedom which are not part of the continuous geometry, but

which contain disconnected bits might point towards a topologically nontrivial

phase, or to the presence of further degrees of freedom in the continuum limit

which could potentially be interpreted as matter degrees of freedom. In the sim-

plest case this could be an additional scalar field with a Z2 symmetry, in order

to exclude the simplest form of instability from the microscopic potential. For

Z2 symmetric scalar field theory in 3-dimensions, a well-known interacting fixed

point exists, the Wilson-Fisher fixed point, which features one relevant direction.

Potentially, that fixed point survives under the coupling to quantum gravity, see,

e.g., [87, 88], in the simplest case adding one additional relevant direction to the

spectrum of critical exponents. Whether the fixed point that we discover can in-

deed be interpreted in this manner remains an exciting open question at this stage.

Table 3. Fixed-point values of couplings. All couplings which are not shown explicitly are

understood to be zero.

scheme g2;1
4;1

g2
4;2

g3;1
6;1

g2;1
6;1

g3;1
6;2

g3
6;3

full -1.05 -1.33 – – – –

semi-pert -1.58 -1.05 – – – –

pert -4.62 1.73 – – – –

full -0.53 -2.11 -0.14 0 -0.39 –

semi-pert -0.63 -2.35 -0.20 0 -0.57 –

pert -2.01 -1.64 -4.43 0 -4.84 –

full -1.04 -0.84 -0.97 0 -0.64 -0.99

semi-pert -1.15 -0.89 -1.21 0 -0.78 -1.14

pert -2.10 -0.54 -5.54 0 -1.68 -0.47
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On the other hand, it is interesting to compare the results for the critical ex-

ponents to those obtained at a UV fixed point in truncations of the RG flow for

continuum quantum gravity based on metric variables, for reviews of the asymp-

totic safety scenario for that case see [89]. The results on both sides, in particular

for the tensor model, are insufficiently converged to make a quantitatively precise

comparison. Here, we simply observe that the results in continuum quantum grav-

ity within the Einstein–Hilbert truncation are �1 D 2:47, �2 D 0:77 [91], which

is not incompatible with our results for the critical exponents in tensor models,

cf. table 4. Note however, that results in [92] suggest that even in d D 3, R2

adds another relevant direction beyond the two from the Einstein–Hilbert action.

If those results persist to higher order, then the fixed point that we have explored

for the tensor model does not directly correspond to the same universality class,

discovered in a different formulation of quantum gravity, as it lacks one relevant

direction.

We can also compare our leading relevant exponent to the critical exponent for

the Newton coupling, obtained in numerical studies of Regge gravity [93], which

is given by � D 1=� � 1:7. Again, our results are not quantitatively precise, but

the value from lattice gravity lies right within the range �1 2 .1:17; 2:56/ that we

obtain from the two different schemes for � from our largest truncation.

It is encouraging to see that the difference between the leading critical expo-

nents in the two schemes, �1 �� 0
1 and �2 �� 0

2, decreases, as we enlarge the trunca-

tion. Moreover, the fixed-point values for the quartic couplings show a smaller dif-

ference between the full, semi-perturbative and perturbative scheme in the largest

truncation, compared to the quartic one. Together with the results on the critical

exponents this could be interpreted as a sign of stability of the fixed point, i.e.,

it does not show the characteristics expected of a truncation artifact, and might

therefore exist in the full theory space.

4.4. Universality in the continuum limit. The distinction of the indices and

the corresponding U.N / ˝ U.N / ˝ U.N / symmetry, while necessary for a well-

defined 1=N expansion to exist, does not have any obvious physical interpretation

in the continuum limit. In other words, it should be possible to find a fixed point

such that the coloring of the edges in the graphs corresponding to the different

interactions does not impact the continuum limit. Thus, one could expect that

the distinction of the different indices and the corresponding couplings (e.g., g
2;1
4;1

and g
2;2
4;1) should not matter for the discovery of a fixed point. In fact, we can



198 A. Eichhorn and T. Koslowski

confirm this hypothesis, by comparing critical exponents of fixed points in the

model where the distinction of indices in the invariants leads to the distinction of

couplings, and the model with a global exchange symmetry, which maps the three

colors onto each other. In that model, the couplings g
k;i
n;m for the different i’s should

be identified with each other, e.g., g
2;1
4;1 D g

2;2
4;1 D g

2;3
4;1 . We then find a fixed point

with two relevant directions when we take into account single- and double-trace

terms up to T 6, cf. table 5 and 6. To understand whether the global symmetry

affects that fixed point, and in particular the number of relevant directions, we

search for the same fixed point in the extended theory space, where we distinguish

the couplings. Setting the different couplings to the previous fixed-point values

does of course lead to a fixed point with a degeneracy in the fixed-point values,

cf. table 5.

Table 5. We show the fixed-point values in the theory space with global color symmetry

and that without. For the latter case, we do not explicitly write the fixed-point values for

all additional couplings, as they are given by the fully color-symmetric choice.

global sym. scheme g2;1
4;1

g2
4;2

g3;1
6;1

g2;1
6;1

g3;1
6;2

g3
6;3

yes full 0 -2.88 – – – –

yes semi-pert 0 -3.33 – – – –

yes pert 0 -7.5 – – – –

yes full 0.36 -4.38 0.03 0.20 0.43 –

yes semi-pert 0.44 -5.25 0.04 0.68 0.29 –

yes pert 1.38 -18.01 0.34 3.63 27.59 –

yes full 0.99 -6.06 0.31 3.61 2.84 -16.41

yes semi-pert 1.18 -7.17 0.45 4.10 5.28 -23.73

yes pert 6.54 -27.44 17.09 210.51 201.79 -694.99

none full 0 -2.88 – – – –

none semi-pert 0 -3.33 – – – –

none pert 0 -7.5 – – – –

none full 0.36 -4.38 0.03 0.40 0.43 –

none semi-pert 0.44 -5.25 0.04 0.68 0.29 –

none pert 1.38 -18.01 0.35 3.63 27.59 –

none full 0.99 -6.06 0.31 2.84 3.61 -16.41

none semi-pert 1.18 -7.17 0.45 4.10 5.28 -23.73

none pert 6.54 -27.44 17.09 210.51 201.79 -694.99
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The existence of the fixed point is guaranteed due to the fact that symmetry-

enhanced subspaces of the theoryspace are closed under the RG flow, if the

regulator respects the symmetry, just as the regulator does for the global color

symmetry in our case. Thus, the symmetry-enhanced fixed point must also exist

in the enlarged theory space. The pivotal question in this context is whether it

features more relevant directions. If that were the case, we would have to find

a physical interpretation for the distinction of the indices. However it turns out

that the fixed point in the enlarged theory space only features additional irrelevant

directions, cf. table 6. Thus, the distinction of the couplings by the color structure

is a microscopic detail that leaves the universality class intact.

Finally, we mention one additional fixed point that arises in the .T xT /4 trun-

cation and without the distinction of colors in the couplings for the first time. It

features four relevant directions,

�1 D 2:75; �2;3 D 2:68 ˙ i1:87;

�4 D 0:93; �5 D �0:91;

�6 D �1:02:

Its coordinates are given by

g
2;1
4;1 D �0:96; g2

4;2 D �0:45; g
3;1
6;1 D 1:67;

g
2;1
6;1 D �4:42; g

3;1
6;2 D �1:86; g3

6;3 D 11:33;

and the anomalous dimension is

� D �0:998:

As we do not enlarge the truncation further, it is difficult to say whether this fixed

point is merely a truncation artifact. We leave this question for future work.
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5. Conclusions and outlook

Tensor models are a discrete approach to quantum gravity, related to a sum over

triangulations of spacetime. The double-scaling limit, which is a continuum limit

taking into account interactions beyond those that triangulate spheres, is linked

to the large N limit, where N is the tensor size. Universal scaling behavior in

that limit can be related to a Renormalization Group fixed point. We have gen-

eralized the functional Renormalization Group approach that we have developed

for discrete matrix models to the case of rank-3 tensor models. In these models,

the notion of Renormalization Group scale is abstract and not related to a notion

of local coarse-graining in position space. Instead, it relies on the property that

the Functional Renormalization Group provides an interpolation between effec-

tive descriptions of physics with a decreasing number of degrees of freedom to

set up an RG framework. To implement this in practice, we use the tensor size N ,

which controls the number of degrees of freedom as an RG scale.

In particular one can use this RG setup to search for the double-scaling limit,

which in this way can be found as a fixed point with one relevant direction and

suitable critical exponent. For this purpose, we derive the functional Renormal-

ization Group equation for these models and apply it to a truncation with 16 differ-

ent couplings including all tensor invariants up to sixth order in the tensors. This

truncation already takes into account several distinct combinatorial structures with

different geometric interpretation. We show how the FRG equation automatically

provides a unique assignment of the canonical scaling dimensionality for most of

the couplings in the truncation. This allows us to discover interacting fixed points

of the RG flow. We find a double scaling limit and provide an argument that,

with a reasonably good approximation of the value of the relevant critical expo-

nent, it might be stemming from a color symmetric fixed point. The 15 additional

directions in our truncated theory space are increasingly irrelevant, a posteriori

justifying our choice of truncation. Further, we discover additional fixed points,

which we discuss in the context of a possible relation to continuum gravity. These

fixed point feature several relevant directions, and could thus be interpreted as

underlying a continuum limit beyond double scaling. On the other hand, the rele-

vance of disconnected microscopic interactions (multi-trace-terms) at those fixed

points might hint towards a scenario where additional, e.g., matter-like degrees of

freedom are present. We also elucidate how the expectation that certain properties

of the microscopic model should not play a role for the universal continuum limit

is reflected in the fixed point structure, where the introduction of additional mi-

croscopic structure does not lead to additional relevant directions at a fixed point,

thus leaving the universality class intact.
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As a drawback of the method, the use of the tensor size N as an RG scale

necessarily leads to the breaking of the U.N / ˝ U.N / ˝ U.N / symmetry of

the model. This is reminiscent of the application of the Renormalization Group

to continuum gravity, where the procedure of coarse graining is challenging to

reconcile with an intact background independence. In this work, we neglect that

the theory space of our model is accordingly enlarged by terms which break the

symmetry. We thus set up projection prescriptions onto the couplings which are

unique in the symmetric theory space, but which lead to contaminations of our

beta functions by contributions from operators with broken symmetry.

Several distinct but equally critical open questions can be addressed in the

future:

Firstly, a systematic extension of the truncation is important to establish the

existence and properties of interacting fixed points. In particular, going be-

yond a finite number of couplings, and exploring, e.g., a truncation of the type

tr F.Tijk
xTilmTnlm

xTnop/ with a function F is now possible. Due to the relevance of

the leading term in a Taylor expansion of F at the fixed points that we discovered,

we conjecture that this particular truncation could already provide quantitative

information on fixed points.

Secondly, the breaking of the U.N / ˝ U.N / ˝ U.N / leads to an enlargement

of the theory space which we have ignored. Instead, our projection technique

leads to a mixing of symmetric and symmetry-breaking terms. In the future, it

will be critical to disentangle these contributions, study the effect of symmetry-

breaking operators and explore the consequences of the corresponding modified

Ward-identity.

Thirdly, a model with real tensors and a O.N / ˝ O.N / ˝ O.N / symmetry

contains simplicial interactions of the form TijkTilmTnjmTnlk , etc. The model

can be explored along the same lines as the model that we have studied here. The

possibility of additional interactions with a geometric interpretation makes the

study worthwhile.

Finally, our method is straightforward to generalize to rank-4 tensors which

provide a discrete description of 4-dimensional spacetime. The major difference

to the rank-3 model lies in the larger number of invariants already at the quartic

level, making the extension to higher order in the tensors slightly more challenging

on the technical level. On the other hand, the double-scaling limit should again

correspond to a fixed point with only one relevant direction, implying that already

small truncations should be sufficient to rediscover the double-scaling limit, and

then go beyond to explore further fixed points.
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