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A symmetry breaking transition

in the edge/triangle network model

Charles Radin, Kui Ren, and Lorenzo Sadun

Abstract. Our general subject is the emergence of phases, and phase transitions, in large
networks subjected to a few variable constraints. Our main result is the analysis, in the
model using edge and triangle subdensities for constraints, of a sharp transition between
two phases with different symmetries, analogous to the transition between a fluid and a
crystalline solid.
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1. Introduction

Our general subject is the emergence of phases, and phase transitions, in large

networks subjected to a few variable constraints, which we take as the densities

of a few chosen subgraphs. We follow the line of research begun in [21] in which,
for k given constraints on a large network one determines a global state on the
network, by a variational principle, from which one can compute a wide range of
global observables of the network, in particular the densities of all subgraphs. A
phase is then a region of constraint values in which all these global observables
vary smoothly with the constraint values, while transitions occur when the global
state changes abruptly. (See [7, 8, 21, 22, 20, 10] and the survey [19].) Our main
focus is on the transition between two particular phases, in the system with the
two constraints of edge and triangle density: phases in which the global states
have different symmetry.

If one describes networks (graphs) on n nodes by their n�n adjacency matrices,
we will be concerned with asymptotics as n ! 1, and in particular limits of these
matrices considered as 0-1 valued graphons. (Much of the relevant asymptotics
is a recent development [1, 2, 11, 12, 13]; see [14] for an encyclopedic treatment.)
Given k subgraph densities as constraints, the asymptotic analysis in [21] leads
to the study of one or more k-dimensional manifolds embedded in the infinite
dimensional metric space W of (reduced) graphons, the points in the manifold
being the emergent (global) states of a phase of the network. That is, there are
smooth embeddings, of open connected subsets (called phases) of the phase space
� � Œ0; 1�k of possible constraint values, into W . The embeddings are obtained
from the constrained entropy density s.P /, a real valued function of the constraints
P 2 �, through the variational principle [21, 22]: s.P / D sup¹S.g/ j C.g/ D P º,
the constraints being described by C.g/ D P , for instance edge density ".g/ D P1

and triangle density �.g/ D P2, and S being the negative of the large deviation
rate function of Chatterjee–Varadhan [5].

The above framework is modeled on that of statistical physics in which the
system is the simultaneous states of many interacting particles, the constraints
are the invariants of motion (mass and energy densities for simple materials)
and the global states, ‘Gibbs states’, can be understood in terms of conditional
probabilities [27]. The relevant variational principle was proven in [26]. In
contrast, for large graphs the constrained entropy optima turn out to be much easier
to analyze than Gibbs states. First, it has been found that in all known cases entropy
optima are ‘multipodal’, i.e. for each phase in any graph model they lie in some
M dimensional manifold in W corresponding to a decomposition of all the nodes
into M equivalence classes [7, 8, 10]. This brings the embedding down into a fixed
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finite dimension, at least within each phase, in place of the infinite dimensions of
W . In practice, for k D 2 this often allows one to find an embedding into 4
dimensions, so it only remains to understand how our 2 dimensional surface sits
in those 4 dimensions. The main goal of this paper is to study this near a particular
transition for edge/triangle constraints. The phase space � of possible values of
edge/triangle constraints is the interior of the scalloped triangle of Razborov [24],
sketched in the left side of Figure 1.

Figure 1. Left: Boundary of the phase space for subgraph constraints edges and triangles.
The scalloped region is exaggerated for better visualization; Right: Boundaries of phases I,
II and III.

In [22] it was proven that the entropy, viewed as a function of " and � , is not
differentiable at the Erdös–Rényi curve � D "3. See the right side of Figure 1.
Extensive numerical simulation suggests that the entire region above this curve
consists of a single phase, which we call Phase I. Moreover, it was proven in [8]
that for ."; �/ in an open set just above the curve � D "3, the entropy-optimizing
graphons are bipodal (see definition below) and of a form agreeing with the
numerical simulations. Numerical simulations also indicate that the bulk of the
region below the Erdös–Rényi curve consists of two distinct phases, which we call
phases II and III.

The main focus of this paper is the transition between phases II and III.
Simulations indicate that all entropy optimal graphons for edge/triangle densities
in phases II and III are bipodal, that is given by a piecewise constant function of
the form:

g.x; y/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

a x; y < c;

d x < c < y;

d y < c < x;

b x; y > c:

(1)
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Bipodal graphons are generalizations of bipartite graphons, in which a D b D 0.
Here c; a; d and b are constants taking values between 0 and 1. This bipodal
structure was proven [22] for certain points in the interior of Phase II, and is
supported by a perturbative analysis [21], but has not been proven in general.

In this paper, we prove the existence of a transition between phases II and
III, and examine the structure of this phase transition, under the simplifying
assumption that the entropy-maximizing graphons in the relevant regions are
indeed bipodal. We do not assume that these entropy optimizers are unique.
However, from the bipodal assumption we can prove uniqueness, and also derive,
as shown already in [20], the equations determining the transition curve. We
further prove that the optimal graphons for edge/triangle constraints ."; �/ to the
left of the II $ III transition have the form:

g.x; y/ D

8

<

:

" � ."3 � �/1=3 x; y < 1=2 or x; y > 1=2;

" C ."3 � �/1=3 x < 1
2

< y or y < 1
2

< x;
(2)

which is highly symmetric in the sense that c D 1=2 and a D b.

This gives a simple description of what phases I, II and III mean, which we
reprise. Phase I is the region above the Erdös–Rényi curve � D "3. Phase II is
the region below the Erdös–Rényi curve where the optimizing graphon is bipodal
and symmetric under the interchange c $ 1 � c, a $ b. Phase III is the region
below the Erdös–Rényi curve where the optimizing graphon is bipodal but the
symmetry is broken. In addition, there exist three infinite families of smaller
phases, clustered near the lower boundary of the profile, where the optimizing
graphons are not bipodal; see [9] for investigations of those.

The main result of this paper is the derivation of the lower order terms in "

and � of the bipodal parameters a; b; c; d as the constraints move to the right of
the II $ III transition. That is, we determine how the symmetry is broken at the
transition. Before we get into details we should explain the connection between
this study of emergent phases and their transitions, and other work on random
graphs using similar terminology.

The word phase is used in many ways in the literature, but ‘emergent phase’
is more specific and refers to a coherent, large scale description of a system of
many similar components, in the following sense. Consider large graphs, thought
of as systems of many edges on a fixed number of labeled nodes. To work at a
large scale means to be primarily concerned with global features or observables,
for instance densities of subgraphs.
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Finite graphs are fully described (i.e. on a small scale) by their adjacency
matrices. In the graphon formalism these have a scale-free description in which
each original node is replaceable by a cluster of m nodes, which makes for a
convenient analysis connecting large and small scale.

Phases are concerned with large graphs under a small number k of variable
global constraints, for instance constrained by the 2 subdensities of edges and
triangles. We say one or more phases emerge for such systems, corresponding
to one or more open connected subsets of parameter values, if: 1) there are
unique global states (graphons) associated with the sets of constraint values;
2) the correspondence defines a smooth k-dimensional surface in the infinite
dimensional space of states.

Note that not all achievable parameter values (the phase space) belong to
phases, in particular the boundary of the phase space does not. In fact emergent
phases are interesting in large part because they exhibit interesting (singular)
boundary behavior in the interior of the phase space. For graphs we see this in
at least two ways familiar from statistical mechanics. In the edge/2-star model,
studied in detail in [7], there is only one phase but there are achievable parameter
values with multiple states associated (as in the liquid/gas transition); see Figure 2.
(See also [25] for some related developments.)

Figure 2. Transition ending in a critical point for edge/2-star model.

In most models constraint values on the Erdös–Rényi curve – parameter values
corresponding to iid edges – provide unique states which however do not vary
smoothly across the curve, and this provides boundaries of phases [21]. For
edge/triangle constraints there is another phase boundary associated with a loss of
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symmetry (as in the transition between fluid and crystalline solid). In all models
studied so far phases make up all but a lower dimensional subset of the phase space
but this may not be true in general.

From an alternative vantage random graphs are commonly used to model some
particular network, the idea being to fit parameter values in a parametric family
of probability distributions on some space of possible networks, so as to get a
manageable probabilistic picture of the one target network of interest; see [4, 16]
and references therein. The one parameter Erdös–Rényi (ER) family is often used
this way for percolation, as are multiparameter generalizations such as stochastic
block models and exponential random graph models (ERGMs). Asymptotics is
only a small part of such research, and for ERGMs it poses some difficulties as is
well described in the introduction of [4].

Newman et al considered phase transitions for ERGMs; see [17] for a particu-
larly relevant example. Chatterjee–Varadhan introduced in [5] a powerful asymp-
totic formalism for random graphs with their large deviations theorem, within the
previously developed graphon formalism; see [3] for a thorough exposition. This
tool was applied to ERMGs in [4], which was then married with Newman’s phase
analysis in [23] and numerous following works, for instance [15, 28, 6] to cite
recent examples.

We now contrast this use of the term phase with the emergent phase analysis
discussed above. In the latter a phase corresponds to an embedding of part of the
parameter space into the emergent (global) states of the network, so transitions
could be interpreted as singular behavior as those global network states varied.
For ERGMs it was shown in [4] that the analogous map from the parameter space
� into W , determined by optimization of a free energy rather than entropy, is often
many-to-one; for instance all states of the 2-parameter edge/2-star ERGM model
actually belong to the 1-parameter ER family. Therefore transitions in an ERGM
are naturally understood as asymptotic behavior of the model under variation of
model parameters, rather than singular behavior among naturally varying global
states of a network; in keeping with its natural use, a transition in an ERGM says
more about the model than about constrained networks.

Acknowledgments. This work was partially supported by NSF grants DMS-
1208191, DMS-1509088, DMS-1321018, DMS-1101326 and PHY-1125915.
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2. Outline of the calculation

The purpose of this calculation is to understand the transition, in the edge/triangle
model, between phases II and III in Figure 1. We take as an assumption that our
optimizing graphon at fixed constraint ."; �/ is bipodal as in (1), and with c being
the size of the first cluster of nodes. We denote this graphon by gabcd ; see Figure 3.
With the notation

So.z/ D �1

2
Œz ln.z/ C .1 � z/ ln.1 � z/�; 0 � z � 1 (3)

and

S.g/ D
Z

Œ0;1�2
SoŒg.x; y/� dxdy; (4)

to obtain s.P / we maximize S.gabcd / by varying the four parameters .a; b; c; d/

while holding P D ."; �/ fixed.
It is not hard to check that the symmetric graphon with a D b D "C.� �"3/1=3,

c D 1
2

and d D " � .� � "3/1=3 is always a stationary point of the functional S.
But is it a maximum? Near the choices of ."; �/ where it ceases to be a maximum,
what does the actual maximizing graphon look like?

We answer this by doing our constrained optimization in stages. First we fix
c and vary .a; b; d/ to maximize S.g/ subject to the constraints on " and � . Call
this maximum value S.c/. Since the graphon with parameters .b; a; 1 � c; d/ is
equivalent to .a; b; c; d/, S.c/ is an even function of c� 1

2
. We expand this function

in a Taylor series:

S.c/ D S
�1

2

�

C 1

2
RS
�1

2

��

c � 1

2

�2

C 1

24

::::
S

�1

2

��

c � 1

2

�4

C � � � (5)

where dots denote derivatives with respect to c. It appears likely that the infinite
Taylor series is convergent, thanks to the analytic inputs to the optimization
problem, but this is not actually needed for our analysis. All we need are estimates
on the errors in the 2nd- and 4th-order Taylor polynomials, which follow from the
smoothness of S .

If RS
�

1
2

�

is negative, then the symmetric graphon is stable against small changes
in c. If RS

�

1
2

�

becomes positive (as we vary " and �), then the local maximum
of S.c/ at c D 1

2
becomes a local minimum. As long as

::::
S

�

1
2

�

< 0, new local

maxima will appear at c � 1
2

˙
q

�6 RS
�

1
2

�

=
::::
S

�

1
2

�

. In this case, as we pass from
Phase II to Phase III (say, along a curve 
.t/ that crosses the phase transition curve
transversally at t D 0), we should expect the optimal

ˇ

ˇc � 1
2

ˇ

ˇ to be exactly zero for
t < 0, and to vary as

p
t for t > 0.
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If
::::
S

�

1
2

�

is positive when RS
�

1
2

�

passes through zero, something very different
happens. Although c D 1

2
is a local maximum whenever RS

�

1
2

�

< 0, there are local
maxima elsewhere, at locations determined largely by the higher order terms in
the Taylor expansion (5). When RS

�

1
2

�

passes below a certain threshold, one of
these local maxima will have a higher entropy than the local maximum at c D 1

2
,

and the optimal value of c will change discontinuously.
The calculations below give analytic formulas for RS

�

1
2

�

and
::::
S

�

1
2

�

as functions
of " and � . We can then evaluate these formulas numerically to fix the location
of the phase transition curve and determine which of the previous two paragraphs
more accurately describes the phase transition near a given point on that curve.
We then compare these results to numerical sampling that is done without the
simplifying assumption that optimizing graphons are bipodal.

Our results indicate that

� The assumption of bipodality is justified, and

�
::::
S

�

1
2

�

remains negative on the phase transition curve, implying that c does not
change discontinuously. Rather, in the asymmetric bipodal phase III,

ˇ

ˇc � 1
2

ˇ

ˇ

goes as the square root of the distance to the phase transition curve. And
c D 1

2
on the curve.

3. Exact formulas for RS
�

1

2

�

and
::::
S

�

1

2

�

We now present our perturbation calculations. The argument is long and compli-
cated, yet elementary. To improve flow while still providing the necessary details
to make a convincing case of the correctness of the results, some of the steps have
been placed in the appendix.

3.1. Varying .a; b; d/ for fixed c. The first step in the calculation is to derive the
variational equations for maximizing S.gabcd / for fixed ."; �; c/. We first express
the edge and triangle densities and S D S.gabcd / as functions of .a; b; c; d/:

Figure 3. The parameter set .a; b; c; d / of a bipodal graphon.
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" D c2a C 2c.1 � c/d C .1 � c/2b; (6a)

� D c3a3 C 3c2.1 � c/ad 2 C 3c.1 � c/2bd 2 C .1 � c/3b3; (6b)

S D c2So.a/ C .1 � c/2So.b/ C 2c.1 � c/So.d/: (6c)

Next we compute the gradient of these quantities with respect to .a; b; d/, where
r3 is an abbreviation for .@a; @b; @d /:

r3 " D .c2; .1 � c/2; 2c.1 � c//; (7a)

r3 � D .3c3a2 C 3c2.1 � c/d 2; 3.1 � c/3b2 C 3c.1 � c/2d 2;

6c2.1 � c/ad C 6c.1 � c/2bd/
(7b)

r3 S D .c2S
0

o.a/; .1 � c/2S
0

o.b/; 2c.1 � c/S
0

o.d//: (7c)

The maximum of S (for fixed c, " and �) must occur at a point where a is
strictly between 0 and 1, thanks to the divergence of S

0

o.a/ to ˙1 as a ! 0 or
a ! 1. Likewise, b and d remain bounded away from 0 and 1. Thus r3 S must
be a linear combination of r3 " and r3 � so

0 D det

0

@

r3 "

r3 �

r3 S

1

A

D c2.1 � c/26c.1 � c/

det

0

@

1 1 1

a2c C d 2.1 � c/ d 2c C b2.1 � c/ cad C .1 � c/bd

S
0

o.a/ S
0

o.b/ S
0

o.d/

1

A

(8)

Expanding the determinant and dividing by 6c3.1 � c/3, we obtain

0 D f .a; b; c; d/ WD S
0

o.a/Œcd.a � d/ � .1 � c/b.b � d/�

C S
0

o.b/Œca.a � d/ � .1 � c/d.b � d/�

C S
0

o.d/Œc.d 2 � a2/ C .1 � c/.b2 � d 2/�:

(9)

3.2. Strategy for varying c. We just showed how optimizing the entropy for
fixed ", � , and c is equivalent to setting f D 0. From now on we treat f D 0 as
an additional constraint. The three constraint equations " D "o, � D �o, f D 0

define a curve in .a; b; d; c/ space, which we can parametrize by c. Since ", �
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and f are constant, derivatives of these quantities along the curve must be zero.
By evaluating these derivatives at c D 1=2, we will derive formulas for Pa.1=2/,
Pb.1=2/, etc., where a dot denotes a derivative with respect to c along this curve.
These values then determine RS

�

1
2

�

and
::::
S

�

1
2

�

.
We also make use of symmetry. The parameters .a; b; c; d/ and .b; a; 1 � c; d/

describe the same reduced graphon. Thus, if the conditions " D "0, � D �0, f D 0

trace out a unique curve in .a; b; c; d/ space, then we must have

Pa.1=2/ C Pb.1=2/ D Ra.1=2/ � Rb.1=2/

D :::
a.1=2/ C

:::
b.1=2/

D ::::
a.1=2/ �

::::
b.1=2/

D Pd.1=2/

D
:::
d.1=2/

D 0;

(10)

since all of these quantities are odd under the interchange .a; b; c; d/ $ .b; a,
1 � c; d/.

In fact, it is possible to derive the relations (10), and similar relations for higher
derivatives, without assuming uniqueness of the curve. We proceed by induction
on the degree k of the derivatives involved. At 0-th order we already have that
a.1=2/ D b.1=2/.

The kth derivative of " and � , evaluated at c D 1=2, are

".k/.1=2/ D 1

4
.a.k/.1=2/ C b.k/.1=2/ C 2d .k/.1=2//

C (lower order derivatives of a; b; d ),
(11a)

� .k/.1=2/ D 3

8
..a.1=2/2 C d.1=2/2/a.k/.1=2/ C .b.1=2/2 C d.1=2/2/b.k/.1=2//

C 3

4
.a.1=2/ C b.1=2//d.1=2/d .k/.1=2/

C (lower order derivatives and their products).

(11b)

When k is odd, the lower-order terms vanish by induction, and we are left with

0 D a.k/.1=2/ C b.k/.1=2/ C 2d .k/.1=2/; (12a)

0 D .a.1=2/2 C d.1=2/2/.a.k/.1=2/ C b.k/.1=2// C 4a.1=2/d.1=2/d .k/.1=2/;

(12b)
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since b.1=2/ D a.1=2/. The matrix
�

1 2
a.1=2/2Cd.1=2/2 4a.1=2/d.1=2/

�

is non-

singular, having determinant �2.d.1=2/ � a.1=2//2, so a.k/.1=2/ C b.k/.1=2/ D
d .k/.1=2/ D 0.

When k is even, the kth derivative of f , evaluated at c D 1=2, is of the form

(even function with respect to the interchange) � .a.k/.1=2/ � b.k/.1=2//

C lower order derivatives.
(13)

As before, the lower order terms vanish by induction, and the even function is
nonzero, so we get a.k/.1=2/ D b.k/.1=2/.

Henceforth we will freely use the relations in (10) to simplify our expressions.

Here are the steps of the calculation:

� setting Pf .1=2/ D 0 determines Pa.1=2/;

� setting R".1=2/ D R�.1=2/ D 0 determines Ra.1=2/ and Rd.1=2/ (in terms of
Pa.1=2/);

� setting
:::

f .1=2/ D 0 determines
:::
a.1=2/;

� setting
::::
".1=2/ D ::::

�.1=2/ D 0 determines
::::
a.1=2/ and

::::
d.1=2/;

� once all derivatives of .a; b; d/ up to 4th order are evaluated at c D 1=2,
we explicitly compute RS.1=2/ and

::::
S.1=2/.

3.3. Derivatives of " and �. The edge density and its first four derivatives are

" D c2a C 2.c � c2/d C .1 � c/2b; (14a)

P" D c2 Pa C 2.c � c2/ Pd C .1 � c/2 Pb C 2ca � 2.1 � c/b C 2.1 � 2c/d; (14b)

R" D c2 Ra C .1 � c/2 Rb C 2.c � c2/ Rd C 4c Pa � 4.1 � c/ Pb C 4.1 � 2c/ Pd
C 2a C 2b � 4d;

(14c)

:::
" D c2:::

a C .1 � c/2
:::
b C 2c.1 � c/

:::
d C 6c Ra � 6.1 � c/ Rb C 6.1 � 2c/ Rd

C 6 Pa C 6 Pb � 12 Pd
(14d)

::::
" D c2::::a C .1 � c/2

::::
b C 2c.1 � c/

::::
d C 8c

:::
a � 8.1 � c/

:::
b C 8.1 � 2c/

:::
d

C 12 Ra C 12 Rb � 24 Rd:
(14e)



262 Ch. Radin, K. Ren, and L. Sadun

Setting c D 1=2 and applying the symmetries (10) gives

P".1=2/ D 1

4
. Pa C Pb C 2 Pd/ D 0; (15a)

R".1=2/ D 1

4
. Ra C Rb C 2 Rd/ C 4 Pa C 4.a � d/

D 1

2
. Ra C Rd/ C 4 Pa C 4.a � d/;

(15b)

:::
".1=2/ D 1

4
.
:::
a C

:::
b C 2

:::
d/ D 0; (15c)

::::
".1=2/ D 1

4
.
::::
a C

::::
b C 2

::::
d / C 8

:::
a C 24 Ra � 24 Rd

D 1

2
.
::::
a C

::::
d / C 8

:::
a C 24. Ra � Rd/;

(15d)

where all terms on the right hand side are evaluated at c D 1=2.
Similarly, the derivatives of the triangle density at c D 1=2 are as follows (see

appendix for details):

P�.1=2/ D 0; (16a)

R�.1=2/ D .3=4/Œ.a2 C d 2/ Ra C 2ad Rd� C .3=2/a Pa2

C 3.3a2 C d 2/ Pa C 6a.a2 � d 2/;
(16b)

:::
�.1=2/ D 0; (16c)

::::
�.1=2/ D .1=4/Œ3a2::::a C 24a Pa:::

a C 18a Ra2 C 36 Pa2 Ra
C 3d 2::::a C 36d Rd Ra C 18a Rd 2 C 6ad

::::
d �

C 6Œ3a2:::
a C 18a Pa Ra C 6 Pa3 C :::

ad 2 C 6 Pad Rd�

C 36Œ3a2 Ra C 6a Pa2 � d 2 Ra � 2ad Rd�

C 48Œ3a2 Pa � 3d 2 Pa�;

(16d)

where once again all quantities on the right hand side of these equations are
evaluated at c D 1=2.

3.4. Derivatives of f .a; b; c; d/. Computing derivatives of f with respect to c

involves organizing many terms. We use the notation xi to denote one of ¹a; b; dº,
and fi to denote a partial derivative with respect to i . Since f is linear in c, we
need only take one partial derivative in the c direction, but arbitrarily many in the
other directions.
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We have

Pf D fc C
X

i

fi Pxi ; (17)

Rf D 2
X

i

fci Pxi C
X

i

fi Rxi C
X

ij

fij Pxi Pxj ; (18)

since fcc D 0, and
:::

f D D 3
X

i

fci Rxi C 3
X

ij

fcij Pxi Pxj C
X

i

fi
:::
xi C 3

X

i;j

fij Rxi Pxj C
X

ijk

fijk Pxi Pxj Pxk

D 3fca Ra C 3fcb
Rb C 3fcd

Rd C 3fcaa Pa2 C C6fcab Pa Pb
C 6fcad Pa Pd C 3fcbb

Pb2 C 6fcbd
Pb Pd C 3fcdd

Pd 2

C fa
:::
a C fb

:::
b C fd

:::
d C 3faa Pa Ra C 3fab Pa Rb C 3fad Pa Rd

C 3fab
Pb Ra C 3fbb

Pb Rb C 3fbd
Pb Rd C 3fad Ra Pd C 3fbd

Rb Pd
C 3fdd

Rd Pd C faaa Pa3 C 3faab Pa2 Pb C 3faad Pa2 Pd
C 3fabb Pa Pb2 C 6fabd Pa Pb Pd C 3fadd Pa Pd 2 C 3fbbd

Pb2 Pd
C 3fbdd

Pb Pd 2 C fddd
Pd 3 C fbbb

Pb3:

(19)

When c D 1=2 we have Pd D
:::
d D 0, so many of the terms vanish. We then

have
:::

f .1=2/ D 3fca Ra C 3fcb
Rb C 3fcd

Rd C 3fcaa Pa2 C 6fcab Pa Pb
C 3fcbb

Pb2 C fa
:::
a C fb

:::
b C 3faa Pa Ra C 3fab Pa Rb

C 3fad Pa Rd C 3fab
Pb Ra C 3fbb

Pb Rb C 3fbd
Pb Rd

C faaa Pa3 C 3faab Pa2 Pb C 3fabb Pa Pb2 C fbbb
Pb3

D .3fca C 3fcb/ Ra C 3fcd
Rd C .3fcaa � 6fcab C 3fcbb/ Pa2

C .fa � fb/
:::
a C .3faa C 3fab � 3fab � 3fbb/ Pa Ra

C .3fad � 3fbd / Pa Rd C .faaa � 3faab C 3fabb � fbbb/ Pa3;

(20)

evaluated at c D 1=2, where in the last step we have also used Pb.1=2/ D �Pa.1=2/,
Rb.1=2/ D Ra.1=2/ and

:::
b.1=2/ D �:::

a.1=2/. Solving for
:::
a.1=2/ then gives

:::
a.1=2/ D

�

3.fca C fcb/ Ra C 3fcd
Rd C 3.fcaa � 2fcab C fcbb/ Pa2

C 3.faa � fbb/ Pa Ra C 3.fad � fbd / Pa Rd
C .faaa � 3faab C 3fabb � fbbb/ Pa3

�

=.fb � fa/;

(21)

evaluated at c D 1=2. What remains is to compute the partial derivatives of f that
appear in equation (21).
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Computing all the partial derivatives fa, fb, etc. is a long but straightforward
exercise in calculus that can be found in the appendix.

3.5. Evaluating Pa, Ra, Rd ,
:::
a,

::::
a, and

::::
d . Using the partial derivatives of f com-

puted in the appendix, we have

Pf .1=2/ D S
0

o.a/Œa2 � d 2 C .1=2/d Pa C .1=2/d Pb � b Pb�

C S
0

o.b/Œa2 � d 2 C a Pa � .1=2/d Pa � .1=2/d Pb�

C S
0

o.d/Œ2d 2 � 2a2 � a Pa C b Pb�

C PaS
00

o .a/Œ�.1=2/.a � d/2� C PbS
00

o .b/Œ.1=2/.a � d/2�

D S
0

o.a/Œ2a2 � 2d 2 C 2a Pa� C S
0

o.d/Œ2d 2 � 2a2 � 2a Pa�

� PaS
00

o .a/.a � d/2;

(22)

where all terms on the right are evaluated at c D 1=2. Setting this equal to zero
then yields

0 D 2.a2 � d 2/ŒS
0

o.a/ � S
0

o.d/� C PaŒ2a.S
0

o.a/ � S
0

o.d// � S
00

o .a/.a � d/2� (23)

and

Pa.1=2/ D 2.d 2 � a2/ŒS
0

o.a/ � S
0

o.d/�

2aŒS
0

o.a/ � S
0

o.d/� � S
00

o .a/.a � d/2
; (24)

evaluated at c D 1=2. It is convenient to define the ratio

˛ WD Pa.1=2/

a.1=2/ � d.1=2/
: (25)

We now use this value of Pa.1=2/ to compute Ra.1=2/ and Rd.1=2/:

0 D 2 R".1=2/ D Ra C Rd C 8 Pa C 8.a � d/; (26)

where all quantities are computed at c D 1=2. Likewise,

0 D 4

3
R� D .a2 C d 2/ Ra C 2ad Rd C 2a Pa2 C 4.3a2 C d 2/ Pa C 8a.a2 � d 2/: (27)

However, 2ad times equation (26) is

0 D 2ad Ra C 2ad Rd C 16ad Pa C 16ad.a � d/: (28)
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Subtracting these equations gives

0 D .a � d/2 Ra C 2a Pa2 C .12a2 C 4d 2 � 16ad/ Pa
C 8a3 � 8ad 2 � 16a2d C 16ad 2

D .a � d/2 Ra C 2a Pa2 C 4.a � d/.3a � d/ Pa C 8a.a � d/2:

(29)

Solving for Ra then gives

Ra.1=2/ D �2a. Pa2 � 4.a � d/.3a � d/ Pa � 8a.a � d/2

.a � d/2

D �2a˛2 � 4˛.3a � d/ � 8a:

(30)

We then obtain Rd.1=2/ from equation (26):

Rd.1=2/ D �Ra � 8 Pa � 8a C 8d

D 2a˛2 C 4˛.a C d/ C 8d: (31)

Plugging all of these expressions back into equation (21) yields

:::
a.1=2/ D

�

¹Œ6S
00

o .a/.a2 � d 2/ C 12a.S
0

o.a/ � S
0

o.d//� Ra
C Œ6S

00

o .d/.d 2 � a2/ C 12d.S
0

o.d/ � S
0

o.a//� Rd
C Œ6S

000

o .a/.a2 � d 2/ C 24.d � a/S
00

o .a/ C 12.S
0

o.a/ � S
0

o.d//� Pa2

C Œ�3.a � d/2S
000

o .a/ C 6dS
00

o .a/ C 6.S
0

o.a/ � S
0

o.d//� Pa Ra
C 6Œ.a � d/S

00

o .a/ � aS
00

o .d/� Pa Rd
C Œ�S

0000

o .a/.a � d/2 C 6aS
000

o .a/ � 6S
00

o .a/� Pa3
¯

�

S
00

o .a/.a � d/2 � 2aŒS
0

o.a/ � S
0

o.d/
��1

:

(32)

Finally, we need
::::
a.1=2/ and

::::
d.1=2/. From equations (15) and (16),

0 D 2
::::
".1=2/

D ::::
a C

::::
d C 16

:::
a C 48. Ra � Rd/;

0 D 4

3

::::
�.1=2/

D .a2 C d 2/
::::
a C 2ad

::::
d C 8a Pa:::

a C 6a Ra2 C 12 Pa2 Ra C 12d Rd Ra C 6a Rd 2

C 8Œ3a2:::
a C 18a Pa Ra C 6 Pa3 C :::

ad 2 C 6 Pad Rd�

C 48Œ3a2 Ra C 6a Pa2 � d 2 Ra � 2ad Rd� C 64Œ3a2 Pa � 3d 2 Pa�

(33)
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0 D .4=3/
::::
�.1=2/ � 4ad

::::
".1=2/

D .a � d/2::::a C 8a Pa:::
a C 6a Ra2 C 12 Pa2 Ra

C 12d Rd Ra C 6a Rd 2

C :::
a.24a2 C 8d 2 � 32ad/ C 144a Pa Ra C 48 Pa3 C 48 Pad Rd

C 48Œ Ra.3a2 � 2ad � d 2/ C 6a Pa2� C 192.a2 � d 2/ Pa:

(34)

Solving for
::::
a gives

::::
a.1=2/ D �

�

8a Pa:::
a C 6a Ra2 C 12 Pa2 Ra C 12d Rd Ra C 6a Rd 2

C :::
a.24a2 C 8d 2 � 32ad/ C 144a Pa Ra C 48 Pa3 C 48 Pad Rd

C 48Œ Ra.3a2 � 2ad � d 2/ C 6a Pa2�

C 192.a2 � d 2/ Pa
�

=.a � d/2:

(35)

We then obtain
::::
d.1=2/ D �::::

a � 16
:::
a � 48. Ra � Rd/ (36)

3.6. Derivatives of S . Finally, we compute derivatives of the functional S . We
have

S D c2So.a/ C .1 � c/2So.b/ C 2c.1 � c/So.d/; (37)

PS D 2cSo.a/ � 2.1 � c/So.b/ C 2.1 � 2c/So.d/

C c2S
0

o.a/ Pa C .1 � c/2S
0

o.b/ Pb C 2c.1 � c/S
0

o.d/ Pd;
(38)

RS D 2ŒSo.a/ C So.b/ � 2So.d/� C 4cS
0

o.a/ Pa � 4.1 � c/S
0

o.b/ Pb
C 4.1 � 2c/S

0

o.d/ Pd C c2ŒS
0

o.a/ Ra C S
00

o .a/ Pa2� C .1 � c/2ŒS
0

o.b/ Rb C S
00

o .b/ Pb2�

C 2c.1 � c/ŒS
0

o.d/ Rd C S
00

o .d/ Pd 2�;

(39)

:::
S D 6ŒS

0

o.a/ Pa C S
0

o.b/ Pb � 2S
0

o.d/ Pd�

C 6cŒS
0

o.a/ Ra C S
00

o .a/ Pa2� � 6.1 � c/ŒS
0

o.b/ Rb C S
00

o .b/ Pb2�

C 6.1 � 2c/ŒS
0

o.d/ Rd C S
00

o .d/ Pd 2�

C c2ŒS
0

o.a/
:::
a C 3S

00

o .a/ Pa Ra C S
000

o .a/ Pa3�

C .1 � c/2ŒS
0

o.b/
:::
b C 3S

00

o .b/ Pb Rb C S
000

o .b/ Pb3�

C 2c.1 � c/ŒS
0

o.d/
:::
d C 3S

00

o .d/ Pd Rd C S
000

o .d/ Pd 3�;

(40)
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::::
S D 12ŒS

0

o.a/ Ra C S
00

o .a/ Pa2 C S
0

o.b/ Rb C S
00

o .b/ Pb2 � 2S
0

o.d/ Rd � 2S
00

o .d/ Pd 2�

C 8cŒS
0

o.a/
:::
a C 3S

00

o .a/ Pa Ra C S
000

o .a/ Pa3�

� 8.1 � c/ŒS
0

o.b/
:::
b C 3S

00

o .b/ Pb Rb C S
000

o .b/ Pb3�

C 8.1 � 2c/ŒS
0

o.d/
:::
d C 3S

00

o .d/ Pd Rd C S
000

o .d/ Pd 3�

C c2ŒS
0

o.a/
::::
a C 4S

00

o .a/ Pa:::
a C 3S

00

o .a/ Ra2 C 6S
000

o .a/ Pa2 Ra C S
0000

o .a/ Pa4�

C .1 � c/2ŒS
0

o.b/
::::
b C 4S

00

o .b/ Pb
:::
b C 3S

00

o .b/ Rb2 C 6S
000

o .b/ Pb2 Rb C S
0000

o .b/
::::
b�

C 2c.1 � c/ŒS
0

o.d/
::::
d C 4S

00

o .d/ Pd
:::
d C 3S

00

o .d/ Rd 2

C 6S
000

o .d/ Pd 2 Rd C S
0000

o .d/ Pd 4�

(41)

Evaluating at c D 1=2 and using symmetry gives PS.1=2/ D
:::
S.1=2/ D 0 and

RS.1=2/ D 4ŒSo.a/ � So.d/� C 4S
0

o.a/ Pa
C .1=2/ŒS

0

o.a/ Ra C S
00

o .a/ Pa2 C S
0

o.d/ Rd�;
(42a)

::::
S.1=2/ D 24ŒS

0

o.a/ Ra C S
00

o .a/ Pa2 � S
0

o.d/ Rd�

C 8ŒS
0

o.a/
:::
a C 3S

00

o .a/ Pa Ra C S
000

o .a/ Pa3�/

C .1=2/ŒS
0

o.a/
::::
a C 4S

00

o .a/ Pa:::
a C 3S

00

o .a/ Ra2 C 6S
000

o .a/ Pa2 Ra C S
0000

o .a/ Pa4�

C .1=2/ŒS
0

o.d/
::::
d C 3S

00

o .d/ Rd 2�;

(42b)

where the right hand sides of both equations are evaluated at c D 1=2, using the
equations (24), (30), (31), (32), (35), and (36).

In this and the previous five subsections we have derived relations between
certain derivatives, which will be used in the next subsection and in the following
section.

3.7. 2-star densities. We illustrate the power of these results by analyzing how
the density �2 of 2-stars behaves near the phase transition. The parameters of
the optimizing graphons are not directly observable, and a skeptic might argue
that non-analyticity of these parameters does not prove the existence of a phase
transition. However, �2 is an observable, and we shall see that its derivatives with
respect to ."; �/ change discontinuously at the transition.

For any graphon g, the 2-star density is

�2.g/ D
•

Œ0;1�3
g.x; y/g.x; z/dx dy dz: (43)



268 Ch. Radin, K. Ren, and L. Sadun

This is neatly expressed in terms of the degree function D.x/ D
R 1

0 g.x; y/dy:

�2.g/ D
Z 1

0

D.x/2dx: (44)

For bipodal graphons, this works out to

�2 D cD2
1 C .1 � c/D2

2 ; (45)

where
D1 D ca C .1 � c/d and D2 D cd C .1 � c/b: (46)

When c D 1=2 and a D b, both D1 and D2 equal ", so �2 � "2 is identically zero
in the symmetric bipodal phase II. To approximate �2 � "2 on the other side of
the phase transition, we simply take derivatives of �2 with respect to c and use a
Taylor series. We have

�2 D cD2
1 C .1 � c/D2

2 ; (47a)

P�2 D D2
1 � D2

2 C 2cD1
PD1 C 2.1 � c/D2

PD2; (47b)

R�2 D 4D1
PD1 � 4D2

PD2 C 2c PD2
1 C 2cD1

RD1 C 2.1 � c/ PD2
2 C 2.1 � c/D2

RD2:

(47c)

Evaluating at c D 1=2, using previously determined values of Pa, Ra, Pb, Rb, Pd , and
Rd , gives P�2 D 0 and

R�2 D .2 C ˛/2.d � a/2=2: (48)

Thus,

�2 � "2 D .2 C ˛/2.d � a/2
�

c � 1

2

�2

=4 C O..c � 1

2
/4/

D �3.2 C ˛/2.d � a/2 RS=.2
::::
S/ C O. RS2/;

(49)

when RS > 0 and
::::
S < 0. If we imagine crossing from Phase II to Phase III at time

t D 0 along a curve that intersects the phase boundary transversally, then �2 � "2

will be zero for t < 0 and will grow linearly with t for t > 0.

4. Expansion near the triple point ."; �/ D
�

1

2
; 1

8

�

The phase transition between phases II and III occurs where RS D 0. This curve
intersects the ER curve � D "3 (i.e., the boundary of phase I) at the triple point
."; �/ D

�

1
2
; 1

8

�

. A natural question is how the transition curve approaches that
triple point. In this section we prove that it is tangent to second order to the Erdös–
Rényi curve.
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Theorem 4.1. Suppose that optimizing graphons in a neighborhood of ."; �/ D
�

1
2
; 1

8

�

are all bipodal, and hence that the boundary between phases II and III
can be expressed by the condition RS D 0. Then, on the restriction of the phase

boundary to the neighborhood, � can be expressed as a function of ", and as

" ! 1
2

C
, � D "3 � 8

�

" � 1
2

�3 C O
�

" � 1
2

�4
:

Proof. Let

A.a; d/ D 1

2
S

00

o .a/.a � d/2 � a.S
0

o.a/ � S
0

o.d//; (50a)

B.a; d/ D �2.a C d/.S
0

o.a/ � S
0

o.d//; (50b)

C.a; d/ D 4.So.a/ � aS 0

o.a/ � So.d/ C dS 0

o.d//: (50c)

Then

˛ D �B

2A
; (51)

(evaluated as usual at c D 1=2) and our formula for RS works out to

RS D A˛2 C B˛ C C D 4AC � B2

4A
: (52)

As long as A ¤ 0 (i.e. d ¤ a), the phase transition occurs precisely where the
discriminant � D B2 � 4AC vanishes.

We now do series expansions for A, B and C in powers of ıa WD a � 1
2

and
ıd WD d � 1

2
. We begin with the Taylor Series for So.z/ and its derivatives:

So.z/ D ln.2/

2
�

1
X

nD0

4n
�

z � 1
2

�2nC2

.n C 1/.2n C 1/
; (53a)

S 0

o.z/ D �2

1
X

nD0

4n
�

z � 1
2

�2nC1

2n C 1
; (53b)

S 00

o .z/ D �2

1
X

nD0

4n
�

z � 1

2

�2n

: (53c)

(To derive these expressions, expand

S 00

o .z/ D �1

2

�1

z
C 1

1 � z

�

D �2

1 � 4
�

z � 1
2

�2
(54)
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as a geometric series, and then integrate term by term to obtain the series for S 0
o.z/

and So.z/.) Plugging these expansions into the formula for A yields

A D �.ıa � ıd/2

1
X

nD0

4n.ıa/2n C .1 C 2ıa/

1
X

nD0

4n

2n C 1
.ıa2nC1 � ıd 2nC1/

WD
1

X

mD1

Am;

(55)

where Am is a homogeneous m-th order polynomial in ıa and ıd . The first few
terms are

A1 D ıa � ıd; (56a)

A2 D ıa2 � ıd 2; (56b)

A3 D 4

3
.ıa3 � ıd 3/; (56c)

A4 D 4

3
.�ıa4 C 6ıa3ıd � 3ıa2ıd 2 � 2ıaıd 3/: (56d)

We do similar expansions of B and C :

B D 4.a C ıa C ıd/

1
X

nD1

4n.ıa2nC1 � ıd 2nC1/

2n C 1
D

1
X

mD1

Bm; (57a)

B1 D 4.ıa � ıd/; (57b)

B2 D 4.ıa2 � ıd 2/; (57c)

B3 D 16

3
.ıa3 � ıd 3/; (57d)

B4 D 16

3
.ıa4 C ıa3ıd � ıaıd 3 � ıd 4/ (57e)

and

C D 4

1
X

nD0

4n.ıa2nC1 � ıd 2nC1/

2n C 1
C 4

1
X

nD0

4n.ıa2nC2 � ıd 2nC2/

n C 1
D

1
X

mD1

Cm;

(58a)

C1 D 4.ıa � ıd/; (58b)

C2 D 4.ıa2 � ıd 2/; (58c)
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C3 D 16

3
.ıa3 � ıd 3/; (58d)

C4 D 8.ıa4 � ıd 4/: (58e)

Note that 4Am D Bm D Cm when m D 1, 2, or 3. This implies that the
discriminant � vanishes through 4th order, and the leading nonzero term is

�5 D 2B1B4 C 2B2B3 � 4A1C4 � 4A2C3 � 4A3C2 � 4A4C1

D 2B1B4 C 2B2B3 � B1C4 � B2B3 � B3B2 � 4A4C1

D B1.2B4 � C4 � 4A4/

D 8B1

3

�

3ıa4 � 8ıa3ıd C 6ıa2ıd 2 � ıd 4
�

D 32

3
.ıa � ıd/4.3ıa C ıd/:

(59)

In fact, all terms in the expansion of � are divisible by .ıa � ıd/4, as can be seen
by evaluating � and its first three derivatives with respect to ıd at ıd D ıa. We
can view 3ıa C ıd as the leading term in the expansion of 3�

32.ıa�ıd/4
. Setting

� D 0 then gives
ıd D �3ıa C O.ıa2/: (60)

Since

" D a C d

2
I � � "3 D .a � d/3

8
; (61)

we have

� D "3 � 8
�

" � 1

2

�3

C O
��

" � 1

2

�4�

; (62)

as required. Note that these expressions only apply when ıa < 0, i.e., when d > a,
i.e., for " > 1

2
. When " < 1

2
, bipodal graphons with ıd D �3ıa would lie above

the ER curve. �

5. Numerical values of RS and
::::
S

We now evaluate RS and
::::
S numerically, following the formulas given in (42), with

help from formulas (24), (30), (31), (32), (35), and (36).

Figure 4 shows the boundary of the symmetrical bipodal phase II. For better
visualization, we use the coordinate ."; � �"3/ instead of ."; �/ (in which the phase
boundary curve bends too much to see the details). In these new coordinates, the
ER � � "3 D 0 curve becomes horizontal, and is the upper boundary in the plot.
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The part of the phase boundary on which RS D 0, denoted by †, is illustrated with
thick red line.

Figure 4. The boundary of the bipodal phase in the ."; � �"3/ coordinate. The part of phase
boundary on which RS D 0 is shown in the thick red line. Note how this line is tangent to
the ER curve at the triple point, as required by Theorem 4.1.

In Figure 5, we show the values of RS and
::::
S on a tube around the phase transition

curve †. The plot is again in the ."; � � "3/ coordinate. To better visualize the
transition, we also plot the functions sgn. RS/ and sgn.

::::
S/, where

sgn.x/ D

8

<

:

1; x � 0;

�1; x < 0;

is the sign function. Note how
::::
S is always negative along †. Near the transition,

we should thus expect optimizing graphons to have jc � 1
2
j �

q

�6 RS
�

1
2

�

=
::::
S

�

1
2

�

when RS
�

1
2

�

> 0, and to have c D 1
2

when RS
�

1
2

�

< 0. In the next section we confirm
this prediction with direct sampling of graphons.

The function
@ RS
@"

along †, expressed as a function of ��"3, is shown separately

in Figure 6. Since
�

c � 1
2

�2
is proportional to � RS=

::::
S , this gives a measure of how

quickly
ˇ

ˇc � 1
2

ˇ

ˇ grows as we cross † from left to right. This sensitivity is greatest
near the bottom of †, and approaches zero as we approach the triple point.
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Figure 5. The functions RS (top left), sgn. RS/ (bottom left),
::::
S (top right) and sgn.

::::
S/ (bottom

right) in a neighborhood of the phase transition curve †.

Figure 6. The plot of
@ RS
@"

on the curve †, i.e. as a function of � � "3.
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6. Comparison to numerical sampling

In this section, we perform some numerical simulations using the sampling algo-
rithm we developed in [20], and compare them to the results of the perturbation
analysis. The algorithm samples random values of S in the parameter space of
graphons (with constrained values of ."; �/), and then takes the maximum of the
sampled values. This sampling algorithm is extremely expensive computation-
ally, but when sufficiently large sample sizes are reached, we can achieve desired
accuracy; see the discussions in [20]. We emphasize that our sampling algorithm
does not assume bipodality of the maximizing graphons. In fact, we always start
with the assumption that the graphons are 16-podal. Bipodal structure is deduced
when all but two clusters have zero size.

In Figure 7 we show how a density fails to be analytic in ."; �/ near the
transition between phase II and phase III. We plot the sampled values of �2 �"2 as
a function of " for two fixed values of � � "3, where �2 is the density of two-stars.
Within phase II, �2 � "2 D 0 is identically zero. Outside of phase II, we see that
�2 � "2 grows linearly with distance to †, as suggested by equation (49).

Figure 7. The value of �2 � "2 as a function of " at two different � values, 0:2184 (left) and
0:2147 (right), cross the boundary of phase II.

In Figure 8, we plot the values of
ˇ

ˇc � 1
2

ˇ

ˇ for optimizing graphons (found with

the numerical sampling algorithm) and the real part of
q

�6 RS
�

1
2

�

=
::::
S

�

1
2

�

(given

by the perturbation analysis) as functions of " for two different values of � � "3.
As should be expected, the perturbative calculation gives a very good fit when we
are reasonably close to the phase transition curve †, but starts to be less accurate
when we go farther out. A similar plot for the corresponding values of a, b, and
d are shown in Figure 9. The parameters a and b show square root singularities,
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just like c, but d does not. This is to be expected from the fact that Pd.1=2/ D 0,
while Pa.1=2/ and Pb.1=2/ are nonzero.

Figure 8. Comparison between the curve
�

"; jc� 1

2
j
�

(in ı, given by the sampling algorithm)

and
�

";

q

�6 RS
�

1

2

�

=
::::
S

�

1

2

��

(in �, given by the perturbation calculation) at two different � �"3

values: �0:0348 (left), �0:0300 (right).
P P

Figure 9. The plots of a (left), b (middle) and d (right) versus " � "0 at two different values
of � : 0:2147 (top row) and 0:2184 (bottom row).

Finally, we show in Figure 10 some typical graphons that we obtained using
the sampling algorithm. We emphasize again that in the sampling algorithm, we
did not assume bipodality of the optimizing graphons. The numerics indicate
that the optimizing graphons are really bipodal close to (on both sides) the phase
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transition curve †. These serve as numerical evidence to justify the perturbation
calculations in this work.

Figure 10. Typical graphons at points close to the phase boundary. The values of ."; �/

are (from top left to bottom right): .0:6299; 0:2147/, .0:6315; 0:2147/, .0:6290; 0:2184/ and
.0:6306; 0:2184/.

7. Conclusion

Our analysis began with the assumption that all entropy optimizers for relevant
constraint parameters are multipodal; in fact bipodal, but we emphasize the more
general feature. Multipodality is a fundamental aspect of the asymptotics of
constrained graphs. It is the embodiment of phase emergence: the set of graphs
with fixed constraints develops (“emerges into”) a well-defined global state as
the number of nodes diverges, by partitioning the set of all nodes into a finite

(usually small) number of equivalent parts, ¹P1; P2; : : :º, of relative sizes cj , and
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uniform (i.e. constant) probability pij of an edge between nodes in Pi and Pj .
This unexpected fact has been seen in all simulations, and was actually proven
throughout the phase spaces of edge/k-star models [7] and in particular regions
of a wide class of models [8]. In this paper we are taking this as given, for a
certain region of the edge/triangle phase space; we are assuming that our large
constrained graphs emerge into such global states, and not just multipodal states
but bipodal states, in accordance with simulation of the relevant constraint values
in this model.

We analyzed the specific constraints of edge density approximately 1=2 and
triangle density less than 1=8, and drew a variety of conclusions. First we used
the facts, proven in [20], that there is a smooth curve in the phase space, indicated
in Figure 1, such that: (i) to the left of the curve the (reduced) entropy optimizer
is unique and is given by (2); (ii) the entropy optimizer is also unique to the right
of the curve but is no longer symmetric. The curve thus represents a boundary
between distinct phases of different symmetry. These facts were established
in [20]. The analysis in this paper concerns the details of this transition. Here we
want to speak to the significance of the results, in terms of symmetry breaking.

We take the viewpoint that the global states for these constraint values are
sitting in a 4 dimensional space given by a; b; d and c, quantities which describe
the laws of interaction of the elements of the parts Pj into which the node set is
partitioned. (The notion of ‘vertex type’ has been introduced and analyzed in [10]
and is useful in more general contexts.)

The symmetry c1 D c2 D 1=2 and a D b is therefore a symmetry of the
rules by which the global state is produced. Each part Pj into which the set
of nodes is partitioned can be thought of as embodying the symmetry between
the nodes it contains, but the symmetry of the global states is a higher-level
symmetry, between the way these equivalence classes Pj are connected. In
this way the transition studied in this paper is an analogue of the symmetry-
breaking fluid/crystal transition studied in the statistical analysis of matter in
thermal equilibrium [27].

One consequence is a contribution to the problem concerning the fluid/crystal
transition. It has been known experimentally since the work of PW Bridgman
in the early twentieth century that no matter how one varies the thermodynamic
parameters (say mass and energy density) between fluid and crystal phases one
must go through a singularity or phase transition. An influential theoretical
analysis by L. Landau attributed this basic fact to the difference in symmetry
between the crystal and fluid states, but this argument has never been completely
convincing [18]. In our model this fact follows for phases II and III from the two-
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step process of first simplifying the space of global states to a finite dimensional
space (of interaction rules) and then realizing the symmetry as acting in that space;
it is then immediate that phases with different symmetry cannot be linked by a
smooth (analytic) curve. This is one straightforward consequence of the powerful
advantage of understanding our global states as multipodal, when compared say
with equilibrium statistical mechanics.

Appendix A. Calculational details

The calculation of our results is very long, with many opportunities for error, so
to aid any reader who doubts its correctness we include in these appendices those
details which were left out of the main text for readability.

A.1. Derivatives of �. We compute the triangle density and its derivatives as
follows:

� D c3a3 C 3c2.1 � c/ad 2 C 3c.1 � c/2bd 2 C .1 � c/3b3; (63a)

P� D c3 d

dc
.a3/ C 3c2.1 � c/

d

dc
.ad 2/ C 3c.1 � c/2 d

dc
.bd 2/ C .1 � c/3 d

dc
.b3/

C 3c2a3 C 3.2c � 3c2/ad 2 C 3.1 � 4c C 3c2/bd 2 � 3.1 � c/2b3;

(63b)

R� D c3 d 2

dc2
.a3/ C 3c2.1 � c/

d 2

dc2
.ad 2/ C 3c.1 � c/2 d 2

dc2
.bd 2/

C .1 � c/3 d 2

dc2
.b3/ C 6c2 d

dc
.a3/ C 6.2c � 3c2/

d

dc
.ad 2/

C 6.1 � 4c C 3c2/
d

dc
.bd 2/ � 6.1 � c/2 d

dc
.b3/

C 6ca3 C 6.1 � 3c/ad 2 C 6.3c � 2/bd 2 C 6.1 � c/b3;

(63c)

:::
� D c3 d 3

dc3
.a3/ C 3c2.1 � c/

d 3

dc3
.ad 2/ C 3c.1 � c/2 d 3

dc3
.bd 2/

C .1 � c/3 d 3

dc3
.b3/ C 9c2 d 2

dc2
.a3/ C 9.2c � 3c2/

d 2

dc2
.ad 2/

C 9.1 � 4c C 3c2/
d 2

dc2
b.d 2/ � 9.1 � c/2 d 2

dc2
.b3/ C 18c

d

dc
.a3/

C 18.1 � 3c/
d

dc
.ad 2/ C 18.3c � 2/

d

dc
.bd 2/ C 18.1 � c/

d

dc
.b3/

C 6a3 � 18ad 2 C 18bd 2 � 6b3;

(63d)
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::::
� D c3 d 4

dc4
.a3/ C 3c2.1 � c/

d 4

dc4
.ad 2/ C 3c.1 � c/2 d 4

dc4
.bd 2/

C .1 � c/3 d 4

dc4
.b3/ C 12c2 d 3

dc3
.a3/ C 12.2c � 3c2/

d 3

dc3
.ad 2/

C 12.1 � 4c C 3c2/
d 3

dc3
.bd 2/ � 12.1 � c/2 d 3

dc3
.b3/

C 36c
d 2

dc2
.a3/ C 36.1 � 3c/

d 2

dc2
.ad 2/

C 36.3c � 2/
d 2

dc2
.bd 2/ C 36.1 � c/

d 2

dc2
.b3/ C 24

d

dc
.a3/

� 72
d

dc
.ad 2/ C 72

d

dc
.bd 2/ � 24

d

dc
.b3/:

(63e)

Once again we evaluate at c D 1=2, making use of symmetry to simplify terms:

P�.1=2/ D .1=8/
h d

dc
.a3/ C 3

d

dc
.ad 2/ C 3

d

dc
.bd 2/ C d

dc
.b3/

i

C .3=4/.a3 C ad 2 � bd 2 � b3/

D .1=8/
h d

dc
.a3/ C 3

d

dc
.ad 2/ C 3

d

dc
.bd 2/ C d

dc
.b3/

i

D 3

8
Œ.a2 C d 2/. Pa C Pb/ C 4ad Pd�

D 0

(64)

where all quantities on the right hand side are evaluated at c D 1=2. Continuing
to higher derivatives,

R�.1=2/ D .1=8/
h d 2

dc2
.a3/ C 3

d 2

dc2
.ad 2/ C 3

d 2

dc2
.bd 2/ C d 2

dc2
.b3/

i

C .3=2/
h d

dc
.a3/ C d

dc
.ad 2/ � d

dc
.bd 2/ � d

dc
.b3/

i

C 3Œa3 � ad 2 � bd 2 C b3�

D .1=4/
h d 2

dc2
.a3/ C 3

d 2

dc2
.ad 2/

i

C 3
h d

dc
.a3/ C d

dc
.ad 2/

i

C 6.a3 � ad 2/;

(65)

:::
� D 0; (66)
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::::
�.1=2/ D .1=8/

h d 4

dc4
.a3/ C 3

d 4

dc4
.ad 2/ C 3

d 4

dc4
.bd 2/ C d 4

dc4
.b3/

i

C 3
h d 3

dc3
.a3/ C d 3

dc3
.ad 2/ � d 3

dc3
.bd 2/ � d 3

dc3
.b3/

i

C 18
h d 2

dc2
.a3/ � d 2

dc2
.ad 2/ � d 2

dc2
.bd 2/ C d 2

dc2
.b3/

i

C 24
h d

dc
.a3/ � 3

d

dc
.ad 2/ C 3

d

dc
.bd 2/ � d

dc
.b3/

i

D .1=4/
h d 4

dc4
.a3/ C 3

d 4

dc4
.ad 2/

i

C 6
h d 3

dc3
.a3/ C d 3

dc3
.ad 2/

i

C 36
h d 2

dc2
.a3/ � d 2

dc2
.ad 2/

i

C 48
h d

dc
.a3/ � 3

d

dc
.ad 2/

i

:

(67)

To continue further we must expand the derivatives of a3 and ad 2:

d

dc
.a3/ D 3a2 Pa; (68a)

d 2

dc2
.a3/ D 3a2 Ra C 6a Pa2; (68b)

d 3

dc3
.a3/ D 3a2:::

a C 18a Pa Ra C 6 Pa3; (68c)

d 4

dc4
.a3/ D 3a2::::a C 24a Pa:::

a C 18a Ra2 C 36 Pa2 Ra; (68d)

and

d

dc
.ad 2/ D Pad 2 C 2ad Pd; (69a)

d 2

dc2
.ad 2/ D Rad 2 C 4 Pad Pd C 2a Pd 2 C 2ad Rd; (69b)

d 3

dc3
.ad 2/ D :::

ad 2 C 6 Rad Pd C 6 Pad Rd C 6 Pa Pd 2 C 2ad
:::
d C 6a Pd Rd; (69c)

d 4

dc4
.ad 2/ D ::::

ad 2 C 8
:::
ad Pd C 12 Rad Rd C 12 Ra Pd 2

C 8 Pad
:::
d C 24 Pa Pd Rd C 2ad

::::
d C 8a Pd

:::
d C 6a Rd 2:

(69d)
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At c D 1=2, Pd D
:::
d D 0, so this simplifies to

d

dc
.ad 2/.1=2/ D Pad 2; (70a)

d 2

dc2
.ad 2/.1=2/ D Rad 2 C 2ad Rd; (70b)

d 3

dc3
.ad 2/.1=2/ D :::

ad 2 C 6 Pad Rd; (70c)

d 4

dc4
.ad 2/.1=2/ D ::::

ad 2 C 12 Rad Rd C 6a Rd 2 C 2ad
::::
d; (70d)

all evaluated at c D 1=2.

Plugging back in, this yields

R�.1=2/ D .1=4/
h d 2

dc2
.a3/ C 3

d 2

dc2
.ad 2/

i

C 3
h d

dc
.a3/ C d

dc
.ad 2/

i

C 6.a3 � ad 2/

D .1=4/Œ3a2 Ra C 6a Pa2 C 3 Rad 2 C 6ad Rd� C 3Œ3a2 Pa C Pad 2�

C 6a.a2 � d 2/

D .3=4/Œ.a2 C d 2/ Ra C 2ad Rd� C .3=2/a Pa2 C 3.3a2 C d 2/ Pa
C 6a.a2 � d 2/

(71)

and

::::
�.1=2/ D .1=4/

h d 4

dc4
.a3/ C 3

d 4

dc4
.ad 2/

i

C 6
h d 3

dc3
.a3/ C d 3

dc3
.ad 2/

i

C 36
h d 2

dc2
.a3/ � d 2

dc2
.ad 2/

i

C 48
h d

dc
.a3/ � 3

d

dc
.ad 2/

i

D .1=4/Œ3a2::::a C 24a Pa:::
a C 18a Ra2 C 36 Pa2 Ra

C 3d 2::::a C 36d Rd Ra C 18a Rd 2 C 6ad
::::
d �

C 6Œ3a2:::
a C 18a Pa Ra C 6 Pa3 C :::

ad 2 C 6 Pad Rd�

C 36Œ3a2 Ra C 6a Pa2 � d 2 Ra � 2ad Rd�

C 48Œ3a2 Pa � 3d 2 Pa�;

(72)

where all quantities on the right hand side of these equations are evaluated at
c D 1=2.
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A.2. Partial derivatives of f .a; b; c; d/. This is a long but straightforward
exercise in calculus:

f D S
0

o.a/Œcd.a � d/ � .1 � c/b.b � d/�

C S
0

o.b/Œca.a � d/ � .1 � c/d.b � d/�

C S
0

o.d/Œc.d 2 � a2/ C .1 � c/.b2 � d 2/�I
(73)

fa D S
00

o .a/Œcd.a � d/ � .1 � c/b.b � d/�

C S
0

o.a/.cd/ C S
0

o.b/.2ac � cd/ C S
0

o.d/.�2ac/;
(74a)

fb D S
00

o .b/Œca.a � d/ � .1 � c/d.b � d/�

C S
0

o.a/Œ.1 � c/d � 2.1 � c/b� C S
0

o.b/Œ�.1 � c/d � C S
0

o.d/Œ2.1 � c/b�;

(74b)

fc D S
0

o.a/Œad � d 2 C b2 � bd� C S
0

o.b/Œa2 � ad C bd � d 2�

C S
0

o.d/Œ2d 2 � a2 � b2�
(74c)

fd D S
00

o .d/Œc.d 2 � a2/ C .1 � c/.b2 � d 2/�

C S
0

o.a/Œ�2cd C ac C .1 � c/b� C S
0

o.b/Œ�ac C 2.1 � c/d � .1 � c/b�

C S
0

o.d/Œ2cd � 2.1 � c/d �I
(74d)

fac D S
00

o .a/Œad � d 2 C b2 � bd� C dS
0

o.a/ C .2a � d/S
0

o.b/ � 2aS
0

o.d/;

(75a)

fbc D S
00

o .b/Œa.a � d/ C d.b � d/� C S
0

o.a/.�d C 2b/ C S
0

o.b/d � 2bS
0

o.d/;

(75b)

fdc D S
00

o .d/Œ2d 2 � a2 � b2� C S
0

o.a/Œa � b � 2d�

C S
0

o.b/Œ�a � 2d C b� C S
0

o.d/4d;
(75c)

faa D S
000

o .a/Œcd.a � d/ � .1 � c/b.b � d/� C S
00

o .a/.2cd/

C 2cS
0

o.b/ � 2cS
0

o.d/;
(75d)

fbb D S
000

o .b/Œca.a � d/ � .1 � c/d.b � d/�

C S
00

o .b/.�2.1 � c/d/ � 2.1 � c/S
0

o.a/ C 2.1 � c/S
0

o.d/;
(75e)
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fad D S
00

o .a/Œ�2cd C ca C .1 � c/b� C cS
0

o.a/ � cS
0

o.b/ � 2acS
00

o .d/; (75f)

fbd D S
00

o .b/Œ�ac C 2.1 � c/d � .1 � c/b� C .1 � c/S
0

o.a/ � .1 � c/S
0

o.b/

C 2.1 � c/bS
00

o .d/I
(75g)

fcaa D S
000

o .a/Œd.a � d/ C b.b � d/� C 2dS
00

o .a/ C 2S
0

o.b/ � 2S
0

o.d/; (76a)

fcab D S
00

o .a/.2b � d/ C .2a � d/S
00

o .b/; (76b)

fcbb D S
000

o .b/Œa.a � d/ C d.b � d/� C 2dS
00

o .b/ C 2S
0

o.a/ � 2S
0

o.d/; (76c)

faaa D S
0000

o .a/Œcd.a � d/ � .1 � c/b.b � d/� C 3cdS
000

o .a/; (76d)

faab D S
000

o .a/Œ�2.1 � c/b C .1 � c/d � C 2cS
00

o .b/; (76e)

fabb D S
000

o .b/.2ac � dc/ � 2.1 � c/S
00

o .a/; (76f)

fbbb D S
0000

o .b/Œca.a � d/ � .1 � c/d.b � d/� � 3.1 � c/dS
000

o .b/: (76g)

We now compute the relevant terms at c D 1=2. (The right hand side of
equations (77-36) are all intended to be evaluated at c D 1=2.) We have

fa.1=2/ D S
00

o .a/Œ.1=2/d.a � d/ � .1=2/a.a � d/� C .1=2/dS
0

o.a/

C .a � d=2/S
0

o.a/ � aS
0

o.d/

D S
00

o .a/Œ�.1=2/.a � d/2� C aŒS
0

o.a/ � S
0

o.d/�

(77a)

and

fb.1=2/ D S
00

o .a/Œ.1=2/a.a � d/ � .1=2/d.a � d/� C S
0

o.a/Œ.d=2/ � b�

C S
0

o.a/Œ�.d=2/� C bS
0

o.d/

D .1=2/S
00

o .a/.a � d/2 � aŒS
0

o.a/ � S
0

o.d/�

D �fa.1=2/;

(77b)

so

fb.1=2/ � fa.1=2/ D S
00

o .a/.a � d/2 � 2aŒS
0

o.a/ � S
0

o.d/�: (78)

Note that this is the same as the denominator in the formula (24) for Pa.1=2/.
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We have

fca.1=2/ D fcb.1=2/ D S
00

o .a/.a2 � d 2/ C 2aŒS
0

o.a/ � S
0

o.d/�;

(79a)

fcd .1=2/ D 2S
00

o .d/.d 2 � a2/ C 4dŒS
0

o.d/ � S
0

o.a/�;

(79b)

fcaa.1=2/ D fcbb.1=2/ D S
000

o .a/Œa2 � d 2� C 2dS
00

o .a/

C 2ŒS
0

o.a/ � S
0

o.d/�;
(79c)

fcab.1=2/ D 2S
00

o .a/.2a � d/; (79d)

fcaa.1=2/ � 2fcab.1=2/ C fcbb.1=2/ D 2S
000

o .a/.a2 � d 2/ C 8.d � a/S
00

o .a/

C 4ŒS
0

o.a/ � S
0

o.d/�I
(79e)

faa.1=2/ D �fbb.1=2/ D S
000

o .a/Œ�.1=2/.a � d/2� C dS
00

o .a/ C S
0

o.a/ � S
0

o.d/;

(80a)

faa.1=2/ � fbb.1=2/ D �.a � d/2S
000

o .a/ C 2dS
00

o .a/ C 2ŒS
0

o.a/ � S
0

o.d/�;

(80b)

fad .1=2/ D �fbd .1=2/ D .a � d/S
00

o .a/ � aS
00

o .d/; (80c)

fad .1=2/ � fbd .1=2/ D 2.a � d/S
00

o .a/ � 2aS
00

o .d/I (80d)

faaa.1=2/ D �fbbb.1=2/ D S
0000

o .a/Œ�.1=2/.a � d/2� C .3=2/dS
000

o .a/;

(81a)

faab.1=2/ D �fabb.1=2/ D .1=2/S
000

o .a/.d � 2a/ C S
00

o .a/; (81b)

.faaa � 3faab C 3fabb � fbbb/.1=2/ D �S
0000

o .a/.a � d/2 C 6aS
000

o .a/ � 6S
00

o .a/:

(81c)
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