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Belief propagation

on replica symmetric random factor graph models

Amin Coja-Oghlan1 and Will Perkins2

Abstract. According to physics predictions, the free energy of random factor graph models
that satisfy a certain “static replica symmetry” condition can be calculated via the Belief
Propagation message passing scheme [Krzakala et al., PNAS 2007]. Here we prove this
conjecture for two general classes of random factor graph models, namely Poisson random
factor graphs and random regular factor graphs. Specifically, we show that the messages
constructed just as in the case of acyclic factor graphs asymptotically satisfy the Belief
Propagation equations and that the free energy density is given by the Bethe free energy
formula.
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1. Introduction

1.1. Belief propagation. Factor graph models are ubiquitous in statistical physics,
computer science and combinatorics [19, 29]. Formally, a factor graph G D

.V .G/; F.G/; @G; . a/a2F .G// consists of a finite set V.G/ of variable nodes,
a set F.G/ of constraint nodes and a function @G WF.G/ !

S

l�0 V.G/
l that

assigns each constraint node a 2 F.G/ a finite sequence @a D @Ga of vari-
able nodes, whose length is denoted by d.a/ D dG.a/. Additionally, there
is a finite set � of spins and each constraint node a 2 F comes with a
weight function  aW�

d.a/ ! .0;1/. The factor graph gives rise to a prob-
ability distribution �G , the Gibbs measure, on the set �V.G/. Indeed, letting
�.x1; : : : ; xk/ D .�.x1/; : : : ; �.xk// for � 2 �V.G/ and x1; : : : ; xk 2 V.G/, we
define the partition function

�G W � 2 �V.G/ 7�!
1

ZG

Y

a2F .G/

 a.�.@a//; (1.1)

where
ZG D

X

�2�V .G/

Y

a2F .G/

 a.�.@a//:

Moreover, G induces a bipartite graph on V.G/ [ F.G/ in which the constraint
node a is adjacent to the variable nodes that appear in the sequence @a. By (slight)
abuse of notation we just write @a D @Ga for the set of such variable nodes.
Conversely, for x 2 V.G/ we let @x D @Gx be the set of all a 2 F.G/ such that
x 2 @a and we let d.x/ D dG.x/ D j@xj. (However, we keep in mind that the
order of the neighbors of a matters, unless the weight function  a is permutation
invariant.)

The Potts model on a finite lattice is an example of a factor graph model. In
this case the lattice points correspond to the variable nodes and each edge ¹x; yº

of the lattice gives rise to a constraint node a. The spins are � D ¹1; : : : ; qº for
some integer q � 2. Moreover, all constraint nodes have the same weight function,
namely �2 ! .0;1/, .s; t / 7! exp.ˇ1¹s D tº/, where ˇ is a real parameter.

Another example is the k-SAT model for some k � 2. The variable nodes
x1; : : : ; xn correspond to Boolean variables and the constraint nodes a1; : : : ; am
to k-clauses. The set of possible spins is � D ¹˙1º and each constraint node
comes with a k-tuple si D .si1; : : : ; sik/ 2 ¹˙1ºk. The weight function is
 ai

W ¹˙1ºk ! .0;1/, � 7! exp.�ˇ1¹� D si º/, where ˇ > 0 is a real parameter.
Combinatorially, ˙1 represent the Boolean values ‘true’ and ‘false’ and ai is
a propositional clause on the variables @ai whose j th variable is negated iff
sij D �1.
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A key problem associated with a factor graph model is to analytically or
algorithmically calculate the “free energy” lnZG . Either way, this is notoriously
difficult in general [24]. But in the (very) special case that G, viz. the associated
bipartite graph, is acyclic it is well known that this problem can be solved via the
Belief Propagation equations (see eg. [21, ch. 14]). More precisely, for a variable
node x and a constraint node a such that x 2 @a let �G;x!a be the marginal of
x with respect to the Gibbs measure of the factor graph G � a obtained from G

by deleting the constraint node a. (To be explicit, �G;x!a.�/ is the probability
that x is assigned the spin � 2 � in a random configuration 2 �V.G/ drawn from
�G�a.) Similarly, let �G;a!x be the marginal of x in the factor graph obtained
from G by deleting all constraint nodes b 2 @x n a. We call �G;x!a the message

from x to a and conversely �G;a!x the message from a to x. If G is acyclic, then
for all x 2 V.G/; a 2 @x; � 2 �,

�G;x!a.�/ D

Y

b2@x

�G;b!x.�/

X

�2�

Y

b2@x

�G;b!x.�/
; (1.2)

�G;a!x.�/ D

X

�2�@a

1¹�.x/ D �º a.�/
Y

y2@anx

�G;y!a.�.y//

X

�2�@a

 a.�/
Y

y2@anx

�G;y!a.�.y//
(1.3)

and the messages�G;x!a; �G;a!x are the unique solution to (1.2),(1.3). In fact, the
messages can be computed via a fixed point iteration and the number of iterations
steps required is bounded by the diameter of G. Furthermore, lnZG is equal to
the Bethe free energy, defined in terms of the messages as

BG D
X

x2V.G/

ln
h

X

�2�

Y

b2@x

�G;b!x.�/
i

C
X

a2F .G/

ln
h

X

�2�@a

 a.�/
Y

x2@a

�G;x!a.�.x//
i

�
X

a2F .G/
x2@a

ln
h

X

�2�

�G;a!x.�/�G;x!a.�/
i

:

(The denominators in (1.2) and (1.3) and the arguments of the logarithms in the
Bethe free energy are guaranteed to be positive because we assume that the weight
functions  a take strictly positive values.)
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1.1.1. An example. Consider the following concrete example of the Belief Prop-
agation equations and the Bethe free energy. Let G be the star graph with center
vertex x0 and leaves x1; x2; x3, and consider the 2-color Potts model (that is, the
Ising model) on G. The factor graph associated to the model consists of the four
variable nodes x0; : : : x3, and three constraint nodes, a1; a2; a3, with ai joining x0
to xi , and each constraint node given the Potts constraint function
 .s; t / D exp.ˇ1¹s D tº/ for s; t 2 � D ¹1; 2º. The partition function is

ZG D 2 � .1C eˇ /3:

By symmetry, all of the messages �G;xi !ai
and �G;ai !xi

are simply the
uniform measure on 2-colors, .1=2; 1=2/. These messages can be easily checked
to satisfy the Belief propagation equations (1.2) and (1.3).

Plugging these messages into the Bethe free energy formula yields:

BG D 3 � lnŒ2 � 1=2�C lnŒ2 � 1=8�C 3 � ln
h1

2
eˇ C

1

2

i

� 6 � lnŒ1=2�

D ln 2C 3 � lnŒeˇ C 1�

D lnZG ;

as expected since G is acyclic. The remainder of the paper explores under what
conditions the Belief propagation equations and Bethe free energy formula can be
expected to hold approximately in factor graphs that are not acyclic.

1.2. Random factor graphs. The present paper is about Gibbs distributions
arising from random models of factor graphs. Such models are of substantial
interest in combinatorics, computer science and information theory [1, 29]. The
following setup encompasses a reasonably wide class of models. Let� be a finite
set of ‘spins’, let k � 3 be an integer, let ‰ ¤ ; be a finite set of functions
 W�k ! .0;1/ and let � D .� / 2‰ be a probability distribution on ‰. Then
for an integer n > 0 and a real d > 0 we define the “Poisson” random factor
graph Gn D Gn.d;�; k; ‰; �/ as follows. The set of variable nodes is V.Gn/ D

¹x1; : : : ; xnº and the set of constraint nodes is F.Gn/ D ¹a1; : : : ; amº, where m
is a Poisson random variable with mean dn=k. Furthermore, independently for
each i D 1; : : : ; m a weight function  ai

2 ‰ is chosen from the distribution �.
Finally, @ai 2 ¹x1; : : : ; xnº

k is a uniformly random k-tuple of variables, chosen
independently for each i . For fixed d;�; k; ‰; � the random factor graph Gn has
a property A asymptotically almost surely (‘a.a.s.’) if limn!1 P ŒGn 2 A� D 1.
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A well known concrete example is the random k-SAT model for k � 2, where
we let � D ¹˙1º and ‰ D ¹ .s/W s 2 ¹˙1ºkº with  .s/W � 2 ¹˙1ºk 7!

exp.�ˇ1¹� D sº/ and � is the uniform distribution on ‰. Further prominent
examples include the Ising and the Potts models on the Erdős-Rényi random
graph [11, 12].

As in the general case, it is a fundamental challenge is to get a handle on the
free energy lnZGn

. To this end, physicists have proposed the ingenious albeit
non-rigorous “cavity method” [22]. The simplest version of this approach, the
replica symmetric ansatz, basically treats the random factor graph as though it
were acyclic. In particular, the replica symmetric ansatz holds that the “messages”
�Gn;x!a, �Gn;a!x, defined just as in the tree case as the marginals of the factor
graph obtained by removing a resp. @x n a, satisfy the Belief Propagation equa-
tions (1.2), at least asymptotically as n ! 1. Moreover, the replica symmetric
prediction as to the free energy is nothing but the Bethe free energy BGn

. If so,
then Belief Propagation can not just be used as an analytic tool, but potentially also
as an efficient “message passing algorithm” [18]. Indeed, the Belief Propagation
fixed point iteration has been used algorithmically with considerable empirical
success [17].

Under what assumptions can we vindicate the replica symmetric ansatz? Let
us write �G;x for the marginal of a variable node x under �G . Moreover, write
�G;x;y for the joint distribution of two variable nodes x; y and let k � kTV denote
the total variation norm. Then

lim
n!1

1

n2

n
X

i;jD1

E




�Gn;xi ;xj
� �Gn;xi

˝ �Gn;xj







TV D 0 (1.4)

expresses that a.a.s. the spins of two randomly chosen variable nodes are asymp-
totically independent. An important conjecture holds that (1.4) is sufficient for the
success of Belief Propagation and the Bethe formula [18].

The main result of this paper proves this conjecture. For a given factor graphG
we call the family of messages �G; � ! � D .�G;x!a; �G;a!x/x2V.G/;a2F .G/;x2@a

an "-Belief Propagation fixed point on G if

X

x2V.G/
a2@x
�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G;x!a.�/ �

Q

b2@xna �G;b!x.�/
P

�2�

Q

b2@xna �G;b!x.�/

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

�G;a!x.�/ �

P

�2�@a 1¹�.x/ D �º a.�/
Q

y2@anx �G;y!a.�.y//
P

�2�@a  a.�/
Q

y2@anx �G;y!a.�.y//

ˇ

ˇ

ˇ

ˇ

ˇ

< "n:
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Thus, the equations (1.2), (1.3) hold approximately for almost all pairs x 2 V.G/,
a 2 @x.

Theorem 1.1. If (1.4) holds, then there is a sequence ."n/n ! 0 such that�Gn; � ! �

is an "n-Belief Propagation fixed point a.a.s.

Corollary 1.2. If (1.4) holds and 1
n
BGn

converges to a real number B in proba-

bility, then limn!1
1
n
EŒlnZG� D B:

If (1.2) holds exactly, then the Bethe free energy can be rewritten in terms of
the marginals of the variable and constraint nodes [31]. Specifically, write �G;a
for the joint distribution of the variables @a and let

B
0
G D

X

x2V.G/

.dG.x/ � 1/
X

�2�

�G;x.�/ ln�G;x.�/

C
X

a2F .G/

X

�2�@a

�G;a.�/.ln a.�/ � ln�G;a.�//:

Once more the fact that all  2 ‰ are strictly positive ensures that B0
G is well-

defined.

Corollary 1.3. If (1.4) holds and 1
n
B

0
Gn

converges to a realB 0 in probability, then

limn!1
1
n
EŒlnZG� D B 0:

1.3. Random regular models. In a second important class of random factor
graph models all variable nodes have the same degree d . Thus, with �; k;‰; �
as before let Gn D Gn;reg.d;�; k; ‰; �/ be the random factor graph with variable
nodes x1; : : : ; xn and constraint nodes a1; : : : ; am,m D bdn=kc, chosen uniformly
from the set of all factor graphsG with dG.xi / � d for all i . As before, the weight
functions  ai

2 ‰ are chosen independently from �. Clearly, if k divides dn, then
all variable nodes have degree d exactly.

In order to study Gn we introduce a “percolated” version of this model. For
 W�k ! .0;1/ and J � Œk� let

 J W�J �! .0;1/; .�j /j2J 7�! �jJ j�k
P

.�j /j 62J 2�k�jJ j  .�/:

In words,  J is obtained from  by averaging over the missing coordinates
j 2 ¹1; : : : ; kº n J ; thus,  ¹1;:::;kº D  . Further, given " > 0 let G

"
n D

G
"
n;reg.d;�; k; ‰; �/ be the random factor graph with variable nodes x1; : : : ; xn

obtained via the following experiment.
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REG1 Choose a random number m D Po.dn=k/.

REG2 Independently for each i 2 ¹1; : : : ; mº,

(a) obtain Ji � ¹1; : : : ; kº by including each number with probability
1� " independently and

(b) choose a function  i 2 ‰ according to � and let  ai
D  

Ji

i .

REG3 If
Pm
iD1 jJi j > dn, then start over from REG1. Otherwise choose G

"
n

uniformly at random subject to the condition that no variable node has
degree greater than d .

A practical method to sample G
"
n uniformly at random is via the “configuration

model” [16, Chapter 9]: we create d ‘clones’ of each variable node and jJi j clones
of each constraint node ai (keeping the clones ordered), then pick a uniformly
random maximum matching between variable node clones and constraint node
clones, then collapse the matching to give our random factor graph (x attached to
constraint ai if some clone of x is matched with a clone of ai ). Note that

Pm
iD1 jJi j

has the distribution Bin.X; 1 � "/ where X has distribution k times a Po.dn=k/.
In particular, its mean is .1 � "/dn and so a Chernoff bound gives

PrŒY > .1� "=2/dn� � exp.��."2n//: (1.5)

Theorem 1.4. Assume that " > 0 is such that

lim
n!1

1

n2

n
X

i;jD1

Ek�G
"
n;xi ;xj

� �G
"
n;xi

˝ �G
"
n;xj

kTV D 0: (1.6)

Then there is .ın/n ! 0 such that �G
"
n; � ! � is a ın-Belief Propagation fixed point

a.a.s.

Indeed, if (1.6) holds for all small enough " > 0, then we obtain the free energy of
Gn D Gn;reg.d;�; k; ‰; �/.

Corollary 1.5. Assume that there is some "0 > 0 such that (1.6) holds for every " 2

.0; "0/ and that there is B 2 R such that lim"&0 lim supn!1 E
ˇ

ˇn�1
BG

"
n

� B
ˇ

ˇD0:

Then limn!1
1
n
EŒlnZGn

� D B:

1.4. Non-reconstruction. In physics jargon factor graph models that satisfy (1.4)
resp. (1.6) are called statically replica symmetric. An obvious question is how (1.4)
and (1.6) can be established “in practice”. One simple sufficient condition is
the more geometric notion of non-reconstruction, also known as dynamic replica
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symmetry in physics. To state it, recall the bipartite graph on the set of variable
and constraint nodes that a factor graph induces. This bipartite graph gives rise
to a metric on the set of variable and constraint nodes, namely the length of a
shortest path. Now, for a factor graph G, a variable node x, an integer ` � 1

and a configuration � 2 �V.G/ we let r`.G; x; �/ be the set of all � 2 �V.G/

such that �.y/ D �.y/ for all y 2 V.G/ whose distance from x exceeds `. The
random factor graph Gn D Gn.d;�; k; ‰; �/ or Gn D G

"
n;reg.d;�; k; ‰; �/ has

the non-reconstruction property if

lim
`!1

lim sup
n!1

1

n

n
X

iD1

X

�2�n

E
�

�Gn
.�/





�Gn;xi
� �Gn;xi

Œ � jr`.Gn; xi ; �/�






TV

�

D 0:

(1.7)

where the expectation is over the choice of Gn. In words, for large enough `
and n the random factor graph Gn has the following property a.a.s. If we pick a
variable node xi uniformly at random and if we pick randomly from the Gibbs
distribution, then the expected difference between the “pure” marginal �Gn;xi

of xi and the marginal of xi in the conditional distribution given that the event
r`.Gn; xi ; / occurs diminishes. We contrast (1.7) to the much stronger uniqueness

property which states that the influence of the worst-case boundary condition on
the marginal spin distribution of xi decreases in the limit of large ` and n.

Lemma 1.6. Let Gn be distributed according to Gn.d;�; k; ‰; �/ or

G"
n;reg.d;�; k; ‰; �/. If (1.7) holds, then

lim
n!1

1

n2

n
X

i;jD1

Ek�Gn;xi ;xj
� �Gn;xi

˝ �Gn;xj
kTV D 0: (1.8)

Non-reconstruction is a sufficient but not a necessary condition for (1.4) and (1.6).
For instance, in the random graph coloring problem (1.4) is satisfied in a much

wider regime of parameters than (1.7) [8, 18, 23].

1.5. Discussion and related work. The main results of the present paper match
the predictions from [18] and thus provide a fairly comprehensive vindication
of Belief Propagation. To the extent that Belief Propagation and the Bethe free
energy are not expected to be correct if the conditions (1.4) resp. (1.6) are vio-
lated [18, 21], the present results seem to be best possible.

In combination with Lemma 1.6 the main results facilitate the “practical” use
of Belief Propagation to analyze the free energy. For instance, Theorem 1.4 and
Corollary 1.5 allow for a substantially simpler derivation of the condensation phase
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transition in the regular k-SAT model than in the original paper [4]. Although non-
trivial it is practically feasible to study Belief Propagation fixed points on random
factor graphs; e.g., [4, 5].

Additionally, as Theorems 1.1 and 1.4 show that the “correct” messages are
an asymptotic Belief Propagation fixed point, these results probably go as far as
one can hope for in terms of a generic explanation of the algorithmic success of
Belief Propagation. The missing piece in order to actually prove that the Belief
Propagation fixed point iteration converges rapidly is basically an analysis of the
“basin of attraction”. However, this will likely have to depend on the specific
model.

We always assume that the weight functions  a associated with the constraint
nodes are strictly positive. But this is partly out of convenience (to ensure that
all the quantities that we work with are well-defined, no questions asked). For
instance, it is straightforward to extend the present arguments extend to the hard-
core model on independent sets (details omitted).

In an important paper, Dembo and Montanari [11] made progress towards
putting the physics predictions on factor graphs, random or not, on a rigorous ba-
sis. They proved, inter alia, that a certain “long-range correlation decay” property
reminiscent of non-reconstruction is sufficient for the Belief Propagation equa-
tions to hold on a certain class of factor graphs whose local neighborhoods con-
verge to trees [11, Theorem 3.14]. Following this, under the assumption of Gibbs
uniqueness along an interpolating path in parameter space, Dembo, Montanari,
and Sun [13] verified the Bethe free energy formula for locally tree-like factor
graphs with a single weight function and constraint nodes of degree 2. Based on
these ideas Dembo, Montanari, Sly and Sun [12] verified the Bethe free energy
prediction for the ferromagnetic Potts model on regular tree-like graphs at any
temperature.

The present paper builds upon the “regularity lemma” for measures on discrete
cubes from [3]. In combinatorics, the “regularity method”, which developed out
of Szemerédi’s regularity lemma for graphs [30], has become an indispensable
tool. Bapst and Coja-Oghlan [3] adapted Szemerédi’s proof to measures on a
discrete cube, such as the Gibbs measure of a (random) factor graph, and showed
that this result can be combined with the “second moment method” to calculate
the free energy under certain assumptions. While these assumptions are (far) more
restrictive than our conditions (1.4) and (1.6), [3] deals with more general factor
graph models.

Furthermore, inspired by the theory of graph limits [20], Coja-Oghlan, Perkins
and Skubch [9] put forward a “limiting theory” for discrete probability measures to
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go with the regularity concept from [3]. They applied this concept to the Poisson
factor graph model from Section 1.2 under the assumption that (1.4) holds and

that the Gibbs measure converges in probability to a limiting measure (in the
topology constructed in [9]). While these assumptions are stronger and more
complicated to state than (1.4), [9] shows that the limiting Gibbs measure induces
a “geometric” Gibbs measure on a certain infinite random tree. Moreover, this
geometric measure satisfies a certain fixed point relation reminiscent of the Belief
Propagation equations.

Additionally, the present paper builds upon ideas from Panchenko’s work [26,
27, 28]. In particular, we follow [26, 27, 28] in using the Aizenman-Sims-Starr
scheme [2] to calculate the free energy. Moreover, although Panchenko only
deals with Poisson factor graphs, the idea of percolating the regular factor graph
is inspired by his “cavity coordinates” as well as the interpolation argument of
Bayati, Gamarnik and Tetali [6]. Other applications of the cavity method to
computing the free energy of Gibbs distributions on lattices include [14].

The paper [27] provides a promising approach towards a general formula for
the free energy in Poisson random factor graph models. Specifically, [27] yields
a variational formula for the free energy under the assumption that the Gibbs
measures satisfies a “finite replica symmetry breaking” condition, which is more
general than (1.4). Another assumption of [27] is that the weight functions of the
factor graph model must satisfy certain “convexity conditions” to facilitate the
use of the interpolation method, which is needed to upper-bound the free energy.
However, it is conceivable that the interpolation argument is not necessary if (1.4)
holds and that Corollary 1.3 could be derived along the lines of [27] (although this
is not mention in the paper). In any case, the main point of the present paper is to
justify the Belief Propagation equations, which are at very core of the physicists
“cavity method” in factor graph models, and to obtain a formula for the free energy
in terms of “messages”.

Finally, the proof of Lemma 1.6 is a fairly straightforward extension of the proof
of [9, Proposition 3.4]. That proof, in turn, is a generalization of an argument
from [25]. For more on non-reconstruction thresholds in random factor graph
models see [7, 10, 15, 23].

1.6. Outline. After introducing some notation and summarizing the results
from [3] that we build upon in Section 2, we prove Theorem 1.1 and Corollaries 1.2
and 1.3 in Section 3. Section 4 then deals with Theorem 1.4 and Corollary 1.5. Fi-
nally, the short proof of Lemma 1.6 can be found in Section 5.
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2. Preliminaries

For an integer l � 1 we let Œl � D ¹1; : : : ; lº. When using O. � /-notation we refer
to the asymptotics as n ! 1 by default. We say two sequences of probability
distributions Qn and Pn are mutually contiguous if for every sequence of events
En, Pn.En/ D o.1/ if and only if Qn.En/ D o.1/. Throughout the paper we
denote by d;�; k; ‰; � the parameters of the factor graph models from Section 1.
We always assume d;�; k; ‰; � remain fixed as n ! 1.

For a finite set X we let P.X/ be the set of all probability measures on X, which
we identify with the set of all maps pWX ! Œ0; 1� such that

P

!2X p.!/ D 1. If
� 2 P.XS / for some finite set S ¤ ;, then we write �; �; �1 ;

�
2 ; : : : for independent

samples chosen from �. We omit the superscript where possible. Furthermore, if
X W .XS /l ! R is a random variable, then we write

hXi� D
˝

X.
�
1 ; : : : ;

�

l
/
˛

�
D

X

�1;:::;�l 2XS

X.�1; : : : ; �l/

l
Y

iD1

�.�i/

for the expectation of X with respect to �˝l . We reserve the symbols EŒ � �, PŒ � �
for other sources of randomness such as the choice of a random factor graph.
Moreover, for a set ; ¤ U � S , ! 2 X and � 2 X

S we let

�Œ!jU � D
1

jU j

X

u2U

1¹�.u/ D !º:

Thus, �Œ � jU � D .�Œ!jU �/!2X 2 P.X/ is the distribution of the spin �.u/ for
a uniformly random u 2 U . Further, for a measure � 2 P.XS / and a se-
quence x1; : : : ; xl 2 S of coordinates we let �x1;:::;xl

2 P.Xl / be the distri-
bution of the l-tuple .�.x1/; : : : ; �.xl//. In symbols, �x1;:::;xl

.!1; : : : ; !l/ D

h1¹8i 2 Œl �W �.xi / D !iºi� :

We use the “regularity lemma” for discrete probability measures from [3]. Let
us fix a finite set X for the rest of this section. If V D .V1; : : : ; Vl/ is a partition
of some set V , then we call #V D l the size of V . Moreover, for " > 0 we say
that � 2 P.Xn/ is "-regular on a set U � Œn� if for every subset S � U of size
jS j � "jU j we have

hkŒ � jS�� Œ � jU �kTVi� < ":

Further, � is "-regular with respect to a partition V if there is a set J � Œ#V �

such that
P

i2J jVi j � .1 � "/n and such that � is "-regular on Vi for all i 2 J .
Additionally, if V is a partition of Œn� and S D .S1; : : : ; S#S/ is a partition of Xn,
then we say that � is "-homogeneous w.r.t. .V ;S/ if there is a subset I � Œ#S�

such that the following is true.
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HM1 We have �.Si/ > 0 for all i 2 I and
P

i2I �.Si/ � 1� ".

HM2 For all i 2 Œ#S� and j 2 Œ#V � we have max�;� 02Si
k�Œ � jVj ���

0Œ � jVj �kTV<":

HM3 For all i 2 I the measure �Œ � jSi � is "-regular with respect to V .

HM4 � is "-regular with respect to V .

Theorem 2.1 ([3, Theorem 2.1]). For any " > 0 there is an N D N.";X/ > 0

such that for every n > N , every � 2 P.Xn/ admits partitions V of Œn� and S of

X
n with #V C #S � N such that � is "-homogeneous with respect to .V ;S/.

A ."; l/-state of � is a set S � X
n such that �.S/ > 0 and

X

x1;:::;xl 2Œn�

k�x1;:::;xl
Œ � jS�� �x1

Œ � jS�˝ � � � ˝ �xl
Œ � jS�kTV < "n

l :

We call � ."; l/-symmetric if the entire cube X
n is an ."; l/-state.

Corollary 2.2 ([3, Corollary 2.3 and 2.4]). For any " > 0; l � 3 there exists ı > 0

such that for all n > 1=ı and all � 2 P.Xn/ the following is true.

If � is .ı; 2/-symmetric, then � is ."; l/-symmetric.

Corollary 2.3 ([3, Corollary 2.4]). For any " > 0 there is a 
 > 0 such that for

any � > 0 there is ı > 0 such that for all n > 1=ı, � 2 P.Xn/ the following is

true.

If � is .ı; 2/-symmetric, then for any .
; 2/-state S with �.S/ � � we have
X

x2Œn�

k�x Œ � jS�� �xkTV < "n:

Lemma 2.4 ([3, Lemma 2.8]). For any "0 > 0 there is " > 0 such that for n > 1="

the following is true.

Assume that� 2 P.Xn/ is "-regular with respect to a partition V . The measure

� is ."0; 2/-symmetric if
X

i2Œ#V �

jVi jhkŒ � jVi �� hŒ � jVi �i�kTVi� < "n:

Additionally, we need the following observation, whose proof follows that of [3,
Corollary 2.4].

Lemma 2.5. For any " > 0 there is � > 0 and n0 > 0 such that for any n > n0

and the following holds. Suppose that � is �-homogeneous w.r.t. .V ;S/ and that

j 2 Œ#S� is such that �Œ � jSj � is �-regular w.r.t. V . Then for any � 2 Sj ,
X

i2Œ#V �

X

x2Vi

k�xŒ � jSj � � �Œ � jVi �kTV < "n:
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Proof. Given " > 0 choose � D �."/ > � D �.�/ > 0 sufficiently small and
assume that n is large enough. With .V ;S/ and j as above set � D �Œ � jSj �

for brevity. Suppose that i 2 Œ#V � is such that � is �-regular on Vi and let
N�i .!/ D hŒ!jVi �i� for ! 2 �. Further, let Wi .!/ D ¹x 2 Vi W �x.!/ < N�i .!/ � �º

and suppose Wi .!/ ¤ ;. Then hŒ!jWi .!/�i� < N�i .!/ � � by the linearity of
expectation. Hence, by Markov’s inequality

h1¹Œ!jWi .!/� � �i .!/ � �=4ºi� �
N�i .!/ � �

N�i .!/ � �=4
�

1 � �

1 � �=4
� 1� �=2:

Consequently, HM2 yields hjŒ!jWi .!/�� Œ!jVi �ji� � hjŒ!jWi .!/�� �i .!/ji� �

� � �2=8. Because � is �-regular on Vi , we conclude that jWi .!/j � �jVi j. Since
this works for every ! 2 �, the assertion follows from the triangle inequality and
HM1–HM3. �

Finally, we recall the following folklore fact about Poisson random factor graphs.

Fact 2.6. For any " > 0 there is ı > 0 such that a.a.s. the Poisson random factor

graph Gn has the following property.

For all sets U � ¹x1; : : : ; xnº of variable nodes of size jU j � ın we

have
P

x2U dGn
.x/ � "n.

3. Poisson factor graphs

Throughout this section we fix .d;�; k; ‰; �/ such that (1.4) is satisfied. Let

‰� D ¹ J W 2 ‰; J � Œk�º.

3.1. Proof of Theorem 1.1. We begin with the following lemma that will prove
useful in Section 4 as well.

Lemma 3.1. For any integerL > 0 and any ˛ > 0 there exist " D ".˛; L;‰/ > 0,

n0 D n0."; L/ such that the following is true. Suppose thatG is a factor graph with

n > n0 variable nodes such that  a 2 ‰� for all a 2 F.G/. Moreover, assume

that �G is ."; 2/-symmetric. If GC is obtained from G by adding L constraint

nodes b1; : : : ; bL with weight functions  b1
; : : : ;  bL

2 ‰� arbitrarily, then �GC

is .˛; 2/-symmetric and

X

x2V.G/

k�G;x � �GC;xkTV < ˛n: (3.1)
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Proof. Because all functions  2 ‰ are strictly positive, there exists ı D

ı.L;‰/ > 0 such that for any  1; : : : ;  L 2 ‰� the following is true. Suppose
that  i W�ki ! .0;1/. Then

ı �

L
Y

iD1

min¹ i .�/W � 2 �ki º �

L
Y

iD1

max¹ i.�/W � 2 �ki º � 1=ı: (3.2)

Now, given ˛ > 0 choose "00 D "00.˛; ı/ > "0 D "0."00/ > " D "."0/ > 0

small enough, let N D N."/ be the number promised by Theorem 2.1 and assume
n > n0 D n0."; N / is large enough. By Theorem 2.1 �GC is "-homogeneous with
respect to partitions .V ;S/ of V.GC/ and �V.G

C/ of sizes K D #V and L D #S

such that K C L � N . Let J be the set of all j 2 ŒL� such that �GC.Sj / � "=N

and �GC Œ � jSj � is "-regular w.r.t. V . Then HM1 and HM3 ensure that
X

j 62J

�GC.Sj / < 2": (3.3)

We claim that �G Œ � jSj � is "=ı2-regular w.r.t. V for all j 2 J . Indeed, suppose
that �GC is "-regular on Vi and let U � Vi be a subset of size jU j � "jVi j.
Because GC is obtained from G by adding L constraint nodes, the definition (1.1)
of the Gibbs measure and the choice (3.4) of ı ensure that

ı �
�G.�/

�GC.�/
� 1=ı for all � 2 �V.G

C/: (3.4)

Further, (3.4) yields

hkŒ � jVi � � Œ � jU �kTVi�G Œ � jSj �
D

X

�2�V .G/

�G.� jSj / k�Œ � jVi �� �Œ � jU �kTV

� ı�2hkŒ � jVi � � Œ � jU �kTVi�
GC Œ � jSj �

< "=ı2;

whence the "=ı2-regularity of �G Œ � jSj � follows.
Moreover, by HM2 and the triangle inequality for any j 2 J we have

X

i2Œ#V �

jVi j

n
hkŒ � jVi � � hŒ � jVi �i�G Œ � jSj �

kTVi�G Œ � jSj � < 3": (3.5)

In combination with Lemma 2.4 and the "=ı2-regularity of�G Œ � jSj �, (3.5) implies
that Sj is an ."0; 2/-state of �G for every j 2 J , provided that " D "."0/ > 0 was
chosen small enough. In addition, (3.4) implies that �G.Sj / � ı2"=N for all
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j 2 J . Consequently, Corollary 2.3 and our assumption (1.4) entail that for each
j 2 J ,

X

x2V

k�G;x � �G;xŒ � jSj �kTV < "
00n; (3.6)

provided "0 D "0."00/ > 0 is sufficiently small and n > n0 is large enough. Further,
by Lemma 2.5 and "=ı2-regularity,

K
X

iD1

X

x2Vi

k�G;xŒ � jSj �� �Œ � jVi �kTV < "
00n for all j 2 J; � 2 Sj :

Hence, by (3.6) and the triangle inequality,

K
X

iD1

X

x2Vi

k�G;x � �Œ � jVi �kTV < 2"
00n for all j 2 J; � 2 Sj : (3.7)

Analogously, we obtain from Lemma 2.5 that

K
X

iD1

X

x2Vi





�GC;xŒ � jSj �� �Œ � jVi �






TV < "
00n for all j 2 J; � 2 Sj : (3.8)

Combining (3.7) and (3.8) and using the triangle inequality, we obtain

X

x2V.G/





�G;x � �GC;xŒ � jSj �






TV � 3"00n for all j 2 J: (3.9)

Moreover, combining (3.3) and (3.9) and applying the triangle inequality once
more, we find

X

x2V





�G;x � �GC;x







TV

� 2"nC
X

j2J

K
X

iD1

X

x2Vi

�GC.Sj /




�G;x � �GC;xŒ � jSj �






TV

< 4"00n;

whence (3.1) follows. Finally, let N�i D hŒ � jVi �i�
GC

. Then
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K
X

iD1

jVi j hkŒ � jVi �� N�ikTVi�
GC

(due to (3.3))

� 2"nC
X

j2J

�GC.Sj /

K
X

iD1

jVi j hkŒ � jVi �� N�ikTVi�
GC Œ � jSj �

(by HM2)

� 4"nC
X

j2J

�GC.Sj /

K
X

iD1

jVi jkhŒ � jVi �i�
GC Œ � jSj �

� N�ikTV

(4-inequality)

� 4"nC
X

j2J

�GC.Sj /
X

x2V.G/





�GC;xŒ � jSj � � N�i






TV

� 4"nC
X

j2J

�GC.Sj /
X

x2V.G/





�GC;xŒ � jSj � � �G;x






TV C k N�i � �G;xkTV

(by (3.9))

� 4"00nC
X

j2J

�GC.Sj /
X

x2V.G/

k N�i � �G;xkTV

(by (3.3) and (3.7))

� 7"00n:

Thus, HM4 and Lemma 2.4 imply that �GC is .˛; 2/-symmetric, provided that "00

was chosen small enough. �

We proceed to prove Theorem 1.1. Fix " > 0, choose L D L."/ > 0 and

 D 
."; L;‰/ > � D �.
/ > ı D ı.�/ > 0 small enough and assume that
n > n0.ı/ is sufficiently large. Because the distribution of the random factor
graph Gn is symmetric under permutations of the variable nodes, it suffices to
prove that with probability at least 1 � " we have

X

a2@xn;�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�Gn;xn!a.�/ �

Q

b2@xna �Gn;b!xn
.�/

P

�2�

Q

b2@xnna �Gn;b!xn
.�/

ˇ

ˇ

ˇ

ˇ

ˇ

< " (3.10)
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and

X

a2@xn;�2�

ˇ

ˇ

ˇ

ˇ

�Gn;a!xn
.�/

�

P

�2�@a 1¹�.xn/ D �º a.�/
Q

y2@anxn
�Gn;y!a.�.y//

P

�2�@a  a.�/
Q

y2@anxn
�Gn;y!a.�.y//

ˇ

ˇ

ˇ

ˇ

< ":

(3.11)

To prove (3.10)–(3.11) we use the following standard trick. Let G
0 be the random

factor graph with variable nodes x1; : : : ; xn comprising of m0 D Po.dn.1 �

1=n/k=k/ random constraint nodes a1; : : : ; am0 that do not contain xn. Moreover,
let � D Po.dn.1 � .1 � 1=n/k/=k/ be independent of m0 and obtain G

00 from G
0

by adding independent random constraint nodes b1; : : : ; b� with xn 2 @bi for all
i 2 Œ��. Then the random factor graph G

00 has precisely the same distribution as
Gn. Therefore, it suffices to verify (3.10)–(3.11) with Gn replaced by G

00.
Since dn.1 � .1 � 1=n/k/=k D d C o.1/, we can choose L D L."/ so large

that

P Œ� > L� < "=3: (3.12)

Furthermore, G0 is distributed precisely as the random factor graph Gn given that
@xn D ;. Therefore, Bayes’ rule and our assumption (1.4) imply

P
�

G
0 fails to be .ı; 2/-symmetric

�

� P ŒGn fails to be .ı; 2/-symmetric� =P Œ@Gn
xn D ;�

� exp.d C o.1//P ŒGn fails to be .ı; 2/-symmetric� < ı;

(3.13)

provided that n0 is chosen large enough. Combining (3.13) and Corollary 2.2, we
see that

P
�

G
0 is .�; 2C .k � 1/L/-symmetricj� � L

�

> 1� ı; (3.14)

provided ı is sufficiently small.
Due to (3.12) and (3.14) and the symmetry amongst b1; : : : ; b� we just need to

prove the following: given that G
0 is .�; 2C .k�1/L/-symmetric and 0 < � � L,

with probability at least 1� "=L we have

X

�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G00;xn!b1
.�/ �

Q�
iD2 �G00;bi !xn

.�/
P

�2�

Q�
iD2 �G00;bi !xn

.�/

ˇ

ˇ

ˇ

ˇ

ˇ

< "=L (3.15)
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and

X

�2�

ˇ

ˇ

ˇ

ˇ

�G00;b1!xn
.�/

�

P

�2�@b1 1¹�.xn/ D �º b1
.�/

Q

y2@b1nxn
�Gn;y!b1

.�.y//
P

�2�@b1  a.�/
Q

y2@b1nxn
�Gn;y!b1

.�.y//

ˇ

ˇ

ˇ

ˇ

< "=L:

(3.16)

To this end, let U D
S

j�2 @bj be the set of all variable nodes that occur in the
constraint nodes b2; : : : ; b�. Because�G00;xn!b1

is the marginal of xn in the factor
graph G

00 �b1, the definition (1.1) of the Gibbs measure entails that for any � 2 �,

�G00;xn!b1
.�/

D

P

�2�V .G00/ 1¹�.xn/ D �º
Q

a2F .G0/  a.�.@a//
Q�
jD2  bj

.�.@bj //
P

�2�V .G00/

Q

a2F .G0/  a.�.@a//
Q�
jD2  bj

.�.@bj //

D

P

�2�U 1¹�.xn/ D �º h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0

Q�
jD2  bj

.�.@bj //
P

�2�U h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0

Q�
jD2  bj

.�.@bj //
:

(3.17)

Similarly, because �G00;bi !xn
is the marginal of xn in G

0 C bi , we have

�G00;bi !xn
.�/

D

P

�2�@bi
1¹�.xn/ D �º h1¹8y 2 @bi n ¹xnºW .y/ D �.y/i�G0

 bi
.�/

P

�2�@bi h1¹8y 2 @bi n ¹xnºW .y/ D �.y/i�G0
 bi

.�/
:

(3.18)

To prove (3.15), recall that the variable nodes @bj n xn are chosen uniformly
and independently for each j � 2. Therefore, if G

0 is .�; .k � 1/L/-symmetric
and 0 < � � L, then

X

�2�U

E
hˇ

ˇ

ˇh1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0
�

Y

y2U

�G0;y.�.y//
ˇ

ˇ

ˇ j G
0
i

� 2�:

Hence, by Markov’s inequality with probability at least 1� �1=3 we have
X

�2�U

ˇ

ˇ

ˇh1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0
�

Y

y2U

�G0;y.�.y//
ˇ

ˇ

ˇ < �
1=3: (3.19)

Set

�i .�/ D
X

�2�@bi

1¹�.xn/ D �º bi
.�/

Y

y2@bi nxn

�G0;y.�.y//: (3.20)
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A.a.s. for any 1 � i < j � � we have @bi \ @bj D ¹xnº. Hence, assuming that
� D �.
/ > 0 is chosen small enough, we obtain from (3.17), (3.18), (3.19) that
with probability at least 1� 
 ,

ˇ

ˇ

ˇ

ˇ

ˇ

�G00;xn!b1
.�/ �

Q�
iD2 �i .�/

P

�2�

Q�
iD2 �i .�/

ˇ

ˇ

ˇ

ˇ

ˇ

< 
 (3.21a)

and
ˇ

ˇ

ˇ

ˇ

�G00;bi !xn
.�/ �

�i .�/
P

�2� �i .�/

ˇ

ˇ

ˇ

ˇ

< 
 (3.21b)

for all i 2 Œ��. Hence, (3.15) follows from (3.21), provided that 
 is chosen small
enough.

Finally, to prove (3.16) we use Lemma 3.1. Let G
000 D G

00 � b1 be the graph
obtained from G

0 by merely adding b2; : : : ; b�. Given that G
0 is .�; 2/-symmetric,

Lemma 3.1 and Corollary 2.2 imply that G
000 is .
3; k�1/-symmetric. As @b1 nxn

is a random subset of size at most k � 1 chosen independently of b2; : : : ; b�, we
conclude that with probability at least 1 � 
 over the choice of G

00,

2
 >
X

�2�@b1

ˇ

ˇ

ˇh1¹8y 2 @b1 n xnW .y/ D �.y/ºi�G000
�

Y

y2@b1nxn

�G000;y.�.y//
ˇ

ˇ

ˇ

D
X

�2�@b1

ˇ

ˇ

ˇh1¹8y 2 @b1 n xnW .y/ D �.y/ºi�G000
�

Y

y2@b1nxn

�G00;y!b1
.�.y//

ˇ

ˇ

ˇ: (3.22)

Moreover, (3.1) implies that with probability at least 1 � 
 ,

2
 >
X

�2�@b1

ˇ

ˇ

ˇh1¹8y 2 @b1 n xnW .y/ D �.y/ºi�G000
�

Y

y2@b1nxn

�G0;y.�.y//
ˇ

ˇ

ˇ: (3.23)

Finally, (3.16) follows from (3.20)–(3.23), provided 
 is chosen small enough.

3.2. Proof of Corollary 1.2. Following Aizenman-Sims-Starr [2] we are going
to show that

lim
n!1

E
h

ln
ZGn

ZGn�1

i

D B: (3.24)

The assertion then follows by summing on n. To prove (3.24) we will couple
the random variables ZGn�1

; ZGn
by way of a third random factor graph yG; a

similar coupling was used in [9]. Specifically, let yG be the random factor graph
with variable nodes V. yG/ D ¹x1; : : : ; xnº obtained by including ym D Po.n Od=k/

independent random constraint nodes, where

Od D d
� n

n � 1

�k�1

:
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For each constraint node a of yG the weight function  a is chosen from the
distribution � independently. Further, set p D ..n � 1/=n/k�1 and let G

0 be a
random graph obtained from yG by deleting each constraint node with probability
1�p independently. Let A be the (random) set of constraints removed from yG to
obtain G

0. In addition, obtain G
00 from yG by selecting a variable node x uniformly

at random and removing all constraints a 2 @ yG
x along with x itself. Then G

0 is
distributed as Gn and G

00 is distributed as Gn�1 plus an isolated variable. Thus,

ZGn

d
DZG0 ; ZGn�1

d
DZG00 : (3.25)

Fact 3.2. The two factor graph distributions yG;Gn have total variation distance

O.1=n/.

Proof. Given that jF. yG/j D jF.Gn/j both factor graphs are identically dis-
tributed. Moreover, jF.Gn/j is Poisson with mean dn=k, which has total variation
distance O.1=n/ from the distribution of Om. �

For x 2 V. yG/, b 2 F. yG/ we define

S1.x/ D ln
h

X

�2�

Y

a2@ yG
x

� yG;a!x
.�/

i

; (3.26)

S2.x/ D
X

a2@ yG
x

ln
h

X

�2�@a

 a.�/
Y

y2@a

� yG;y!a
.�.y//

i

; (3.27)

S3.x/ D �
X

a2@ yG
x

ln
h

X

�2�

� yG;x!a
.�/� yG;a!x

.�/
i

; (3.28)

S4.b/ D ln
h

X

�2�@b

 b.�/
Y

y2@b

� yG;y!b
.�.y//

i

: (3.29)

Lemma 3.3. A.a.s. we have ln
Z yG

ZG0
D o.1/C

P

a2A S4.a/:

Proof. Given " > 0 let L D L."/ > 0 be a large enough number, let 
 D


."; L;‰/ > ı D ı.
/ > 0 be small enough and assume that n is sufficiently
large. Let X D jAj. Then the construction of G

0 ensures that

P ŒX > L� < ": (3.30)
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Instead of thinking of G
0 as being obtained from yG by removing X random

constraints, we can think of yG as being obtained from G
0 by addingX independent

random constraint nodes a1; : : : ; aX . More precisely, let G
0
0 D G

0 and G
0
i D

G
0
i�1Cai for i 2 ŒX�. Then givenX the triple .G0; yG; A/ has the same distribution

as .G0;G0
X ; ¹a1; : : : ; aXº/.

Moreover, because p Odn=k D dn=k, G
0 has the same distribution as Gn.

Therefore, our assumption (1.4) implies that G
0 is .o.1/; 2/-symmetric a.a.s.

Hence, Lemma 3.1 implies that G
0
i�1 retains .o.1/; 2/-symmetry a.a.s. for any

1 � i � min¹X;Lº. Consequently, Corollary 2.2 implies that G
0
i�1 is .o.1/; k/-

symmetric a.a.s. Since @bi is chosen uniformly and independently of b1; : : : ; bi�1,
Markov’s inequality thus shows that for every 1 � i � min¹X;Lº,

P
h

X

�2�k

ˇ

ˇ

ˇh1¹8y 2 @ai W .y/ D �.y/ºi�
G

0
i�1

�
Y

y2@ai

�G
0
i�1

;y.�.y//
ˇ

ˇ

ˇ � ı
i

< ı;

provided n is big enough. Further, since the constraints .ai /i2ŒX� are chosen
independently and because � yG;y!ai

.�.y// is the marginal in the factor graph
without ai , (3.1) and (3.30) imply that

P
h

8i 2 ŒX�W
X

�2�k

ˇ

ˇ

ˇ

Y

y2@ai

� yG;y!ai
.�.y// �

Y

y2@ai

�G
0
i�1

;y.�.y//
ˇ

ˇ

ˇ � ı
i

< 2":

Hence, with probability at least 1 � 3" the bound
X

�2�k

ˇ

ˇ

ˇh1¹8y 2 @ai W .y/ D �.y/ºi�
G

0
i�1

�
Y

y2@ai

� yG;y!ai
.�.y//

ˇ

ˇ

ˇ < 2ı (3.31)

holds for all i 2 ŒX� simultaneously. Further, the definition (1.1) of the partition
function entails that for any i 2 ŒX�,

ZG
0
i
=ZG

0
i�1

D
X

�2�@ai

 ai
.�/ h1¹8y 2 @ai W .y/ D �.y/ºi�

G
0
i�1

:

Thus, if (3.31) holds and if ı is chosen sufficiently small, then
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ZG
0
i

ZG
0
i�1

�
X

�2�@ai

 ai
.�/

Y

y2@ai

� yG;ai !y
.�.y//

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

< 
:

Finally, the assertion follows by taking logarithms and summing over i D

1; : : : ; X . �

Lemma 3.4. Let U D
S

a2@ yG
x
@a. Then a.a.s. we have

ln
Z yG

ZG00
D o.1/C ln

X

�2�U

Y

a2@ yG
x

h

 a.�.@a//
Y

y2@anx

� yG;y!a
.�.y//

i

:
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Proof. Given " > 0 let L D L."/ > 0 be a large enough, let 
 D 
."; L/ >

ı D ı.
/ > 0 be small enough and assume that n is sufficiently large. Letting
X D j@ yG

xj, we can pick L large enough so that

P ŒX > L� < ": (3.32)

As in the previous proof, we turn the tables: we think of yG as being obtained from
G

00 by adding a new variable node x and X independent random constraint nodes
a1; : : : ; aX such that x 2 @ai for all i .

The assumption (1.4), Lemma 3.1 and Corollary 2.2 imply that

P
h

X

�2�U n¹xº

ˇ

ˇ

ˇ h1¹8y 2 U n ¹xºW .y/ D �.y/ºiG00

�

X
Y

iD1

Y

y2@ai nx

� yG;y!ai
.�.y//

ˇ

ˇ

ˇ � ı
ˇ

ˇ

ˇ X � L
i

D o.1/:

(3.33)

Furthermore, (1.1) yields

Z yG

ZG00
D

X

�2�U

h1¹8y 2 U n ¹xºW .y/ D �.y/ºiG00

X
Y

iD1

 ai
.�.@ai//:

Hence, (3.32) and (3.33) show that with probability at least 1� 2",

ˇ

ˇ

ˇ

Z yG

ZG00
�

X

�2�U

X
Y

iD1

h

 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

iˇ

ˇ

ˇ < 
: (3.34)

The assertion follows by taking logarithms. �

Corollary 3.5. A.a.s. we have ln
Z yG

ZG00
D S1.x/C S2.x/C S3.x/C o.1/:

Proof. Let a1; : : : ; aX be the constraint nodes adjacent to x and let

U D

X
[

iD1

@ yG
ai :

With probability 1�O.1=n/ for all 1 � i < j � X we have @ai \ @aj n ¹xº D ;.
If so, then

X

�2�U

X
Y

iD1

h

 ai
.�.@ai//

Y

y2@ai nx

� yG;y!ai
.�.y//

i

D

X

�.x/2�

X
Y

iD1

h

X

�2�@ai nx

 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

i

:
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Hence, Lemma 3.4 entails

P
h

ln
Z yG

ZG00
D S C o.1/

i

D 1� o.1/; (3.35)

where

S D ln
X

�.x/2�

X
Y

iD1

h

X

�2�@ai nx

 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

i

: (3.36)

Further, by Fact 3.2 and Theorem 1.1 the messages� yG; � ! �
are a o.1/-approximate

Belief Propagation fixed point a.a.s. Consequently, since x is chosen uniformly,
we conclude that a.a.s.

S D o.1/C ln
h

X

�2�

X
Y

iD1

� yG;ai !x
.�/

i

C

X
X

iD1

ln
h

X

�2�@ai

 ai
.�/

Y

y2@ai nx

� yG;y!ai
.�.y//

i

:

(3.37)

Moreover, again due to the o.1/-approximate Belief Propagation fixed point prop-
erty, a.a.s. we have

ln
X

�2�

� yG;x!ai
.�/� yG;ai !x

.�/

D o.1/C ln

P

�2�@ai  ai
.�/

Q

y2@ai
� yG;y!ai

.�.y//
P

�2�y2@ai  ai
.�/

Q

y2@ai nx � yG;y!ai
.�.y//

(3.38)

for all i 2 ŒX�. Plugging (3.38) into (3.37), we see that a.a.s.

S D o.1/C ln
h

X

�2�

X
Y

iD1

� yG;ai !x
.�/

i

C

X
X

iD1

ln
h

X

�2�@ai

 ai
.�/

Y

y2@ai

� yG;y!ai
.�.y//

i

� ln
h

X

�2�

� yG;x!ai
.�/� yG;ai !x

.�/
i

D S1.x/C S2.x/C S3.x/C o.1/:

(3.39)

Thus, the assertion follows from (3.35). �
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Combining Lemma 3.3 and Corollary 3.5, we see that a.a.s. yG is such that

E
h

ln
ZG0

ZG00

ˇ

ˇ

ˇ

yG
i

D o.1/C
1

n

h

X

x2V. yG/

.S1.x/C S3.x//C
X

a2F. yG/

S4.a/
i

:

Moreover, by our assumption and Fact 3.2 the r.h.s. converges to B in probability.
Thus, Corollary 1.2 follows by taking the expectation over yG.

3.3. Proof of Corollary 1.3. We begin by deriving formulas for the variable and
constraint marginals in terms of the messages.

Lemma 3.6. We have

1

n
E

n
X

iD1

X

�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�Gn;xi
.�/ �

Q

a2@xi
�Gn;xi !a.�/

P

�2�

Q

a2@xi
�Gn;xi !a.�/

ˇ

ˇ

ˇ

ˇ

ˇ

D o.1/: (3.40)

Proof. Proceeding along the lines of the proof of Theorem 1.1, we let G
0 be

the random factor graph on x1; : : : ; xn containing m0 D Po.dn.1 � 1=n/k=k/

random constraint nodes that do not touch xn. Obtain G
00 from G

0 by adding
� D Po.dn.1� .1� 1=n/k/=k/ random constraint nodes b1; : : : ; b� that contain
xn so that G

00 is distributed as Gn. Let U D
S�
iD1 @bi . In complete analogy

to (3.17) we obtain the formula

�G00;xn
.�/

D

P

�2�U 1¹�.xn/ D �º h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0

Q�
jD1  bj

.�.@bj //
P

�2�U h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0

Q�
jD1  bj

.�.@bj //
:

(3.41)

Further, since P Œ@Gn
xn D ;� D �.1/, (1.4) implies that G

0 is .o.1/; 2/-symmetric
a.a.s. Therefore, Corollary 2.2 shows that G

0 is in fact .o.1/; 2 C .k � 1/�/-
symmetric a.a.s. Consequently, a.a.s.

X

�2�U

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0
�

Y

y2Un¹xnº

�G0;y.�.y//

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D o.1/: (3.42)

Hence, with �i .�/ from (3.20) we see that a.a.s.

�
X

iD1

X

�2�

ˇ

ˇ

ˇ

ˇ

�G00;bi !xn
.�/ �

�i .�/
P

�2� �i .�/

ˇ

ˇ

ˇ

ˇ

D o.1/ (3.43)

Finally, combining (3.41)–(3.43) completes the proof. �
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Lemma 3.7. We have

1

n
E

X

a2F .Gn/

X

�2�@a

ˇ

ˇ

ˇ

ˇ

�Gn;a.�/ �
 a.�/

Q

x2@a �Gn;x!a.�.x//
P

�2�@a  a.�/
Q

x2@a �Gn;x!a.�.x//

ˇ

ˇ

ˇ

ˇ

D o.1/:

(3.44)

Proof. Obtain G
0 from Gn by adding one single random constraint node a. Then

the distribution of the pair .G0; a/ is at total variation distance O.1=n/ from the
distribution of the pair .Gn; a/, where a is a random constraint node of Gn given
F.Gn/ ¤ ;. Therefore, it suffices to prove the estimate

E
X

�2�@a

ˇ

ˇ

ˇ

ˇ

�G0;a.�/ �
 a.�/

Q

x2@a �G0;x!a.�.x//
P

�2�@a  a.�/
Q

x2@a �G0;x!a.�.x//

ˇ

ˇ

ˇ

ˇ

D o.1/: (3.45)

The assumption (1.4) and Corollary 2.2 imply that a.a.s.�Gn
is .o.1/;k/-symmetric.

Hence, because @G0a is random, a.a.s. we have j�Gn;@a.�/�
Q

x2@a �Gn;x.�.x//jD

o.1/ for all � 2 �@a. Since �Gn;x D �G0;x!a for all x 2 @a, this means that a.a.s.

X

�2�@a

ˇ

ˇ

ˇ

ˇ

ˇ

�Gn;@a.�/ �
Y

x2@a

�G0;x!a.�.x//

ˇ

ˇ

ˇ

ˇ

ˇ

D o.1/ (3.46)

Further, by the definition (1.1) of the Gibbs measure,

�G0;a.�/ D
 a.�/�Gn;@a.�/

P

�2�@a  a.�/�Gn;@a.�/
: (3.47)

Thus, (3.45) just follows from (3.46) and (3.47). �

Essentially, we will prove Corollary 1.3 by following the steps of the derivation of
the corresponding formula for acyclic factor graphs [21, Chapter 14]. We just need
to allow for error terms that come in because the right hand sides of (3.6) and (3.7)
are o.1/ rather than 0 (like in the acyclic case). Specifically, by Lemma 3.7 a.a.s.
for all but o.n/ constraint nodes a 2 F.Gn/ we have

�
X

�2�@a

�Gn;a.�/ ln
�Gn;a.�/

 a.�/

D o.1/ �
X

�2�@a

�Gn;a.�/ ln

Q

x2@a �Gn;x!a.�.x//
P

�2�@a  a.�/
Q

x2@a �Gn;x!a.�.x//

D o.1/C ln

2

4

X

�2�@a

 a.�/
Y

x2@a

�Gn;x!a.�.x//

3

5

�
X

x2@a

X

�2�

�Gn;x.�/ ln�Gn;x!a.�/:
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Further, by Lemma 3.6 a.a.s. for all but o.n/ variable nodes x 2 V.Gn/ we have

�
X

�2�

�Gn;x.�/ ln�Gn;x!a.�/

D o.1/ �
X

�2�

�Gn;x.�/ ln

Q

b2@xna �Gn;b!x.�/
P

�2�

Q

b2@xna �Gn;b!x.�/

D o.1/C ln
h

X

�2�

Y

b2@xna

�Gn;b!x.�/
i

�
X

b2@xna

X

�

�Gn;x.�/ ln�Gn;b!x.�/:

Hence, Fact 2.6 implies that a.a.s. for all but o.n/ constraint nodes a 2 F.Gn/,

�
X

�2�@a

�Gn;a.�/ ln
�Gn;a.�/

 a.�/
D o.1/C ln

h

X

�2�@a

 a.�a/
Y

x2@a

�Gn;x!a.�.x//
i

C
X

x2@a

h

ln
h

X

�2�

Y

b2@xna

�Gn;b!x.�/
i

�
X

b2@xna

X

�2�

�Gn;x.�/ ln�Gn;b!x.�/
i

:

(3.48)

Moreover, once more by Lemma 3.6 a.a.s. all but o.n/ variable nodes x satisfy

�
X

�2�

�Gn;x.�/ ln�Gn;x.�/

D o.1/ �
X

�2�

�Gn;x.�/ ln

Q

a2@x �Gn;a!x.�/
P

�2�

Q

a2@x �Gn;a!x.�/

D o.1/C ln
h

X

�2�

Y

b2@x

�Gn;b!x.�/
i

�
X

b2@x

X

�2�

�Gn;x.�/ ln�Gn;b!x.�/:

(3.49)

Finally, combining (3.48) and (3.49), we see that a.a.s.

1

n
B

0
Gn

D o.1/C
X

x2V.Gn/

ln
h

X

�2�

Y

b2@x

�Gn;b!x.�/
i

C
X

a2F .Gn/

ln
h

X

�2�@a

 a.�a/
Y

x2@a

�Gn;x!a.�x/
i

C
X

a2F .Gn/;x2@a

ln

P

�2�

Q

b2@xna �Gn;b!x.�/
P

�2�

Q

b2@x �Gn;b!x.�/

D
1

n
BGn

C o.1/:

Thus, Corollary 1.3 follows from Corollary 1.2.
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4. Regular factor graphs

In this section we fix d;�; k; ‰; �; " such that G"
n D G"

n;reg.d;�; k; ‰; �/ satis-

fies (1.6).

We prove Theorem 1.4 and Corollary 1.5 by adapting the proofs of Theorem 1.1
and Corollary 1.2 to the regular factor graph model. In the proofs in Section 3 we
exploited the Poisson nature of the factor graphs to determine the effect of adding
or removing a few constraint and/or variable nodes. Here the necessary wiggle
room is provided by the “"-percolation” of the otherwise rigid d -regular model
Gn. This enables a broadly similar analysis to that of Section 3. However, some
of the details are subtle, most notably the coupling required for the Aizenman-
Sims-Starr argument in Section 4.2.

4.1. Proof of Theorem 1.4. Fix ı D ı."; ‰/ > � D �.
/ > 0. Again it suffices
to prove that with probability at least 1 � ı we have

X

a2@xn;�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G
"
n;xn!a.�/ �

Q

b2@xna �G
"
n;b!xn

.�/
P

�2�

Q

b2@xnna �G
"
n;b!xn

.�/

ˇ

ˇ

ˇ

ˇ

ˇ

< ı (4.1)

and

X

a2@xn;�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G
"
n;a!xn

.�/

�

P

�2�@a 1¹�.xn/ D �º a.�/
Q

y2@anxn
�G

"
n;y!a.�.y//

P

�2�@a  a.�/
Q

y2@anxn
�G

"
n;y!a.�.y//

ˇ

ˇ

ˇ

ˇ

ˇ

< ı:

(4.2)

Let � D dG
"
n
.xn/. Then 0 � � � d , and PrŒ� D 0� D �."d / by REG2–REG3.

Let G
0 be the random factor graph obtained from G

"
n by deleting all constraint

nodes a such that xn 2 @a. Then the distribution G
0 is at total variation distance

O.1=n/ from the distribution of G
"
n given that @xn D ;. Therefore, the assump-

tion (1.6) and Corollary 2.2 imply

P
�

G
0 fails to be .�; dk/-symmetric

�

D P
�

G
"
n fails to be .�; dk/-symmetricj� D 0

�

C o.1/

�
P

�

G
"
n fails to be .�; dk/-symmetric

�

P Œ� D 0�
C o.1/

D o.1/:

(4.3)
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Furthermore, by the Chernoff bound (cf. (1.5))

P
h

X

a2F .G0/

dG0.a/ � .1� "=2/dn
i

D 1 � o.1/: (4.4)

Hence, we may condition on the event that G
0 is .�; dk/-symmetric and that

P

a2F .G0/ dG0 .a/ � .1 � "=2/dn. If so, then the set R of variable nodes x of
G

0 such that dG0 .a/ < d has size at least jRj � "n=2.
Given G

0 and �, let G
00 be the factor graph obtained from G

0 by adding �
constraint nodes b1; : : : ; b� and perform the following independently for each
i 2 Œ��. Choose  i from ‰ according to � and choose Ji � Œk� by including
each j 2 Œk� with probability .1 � "/ independently, conditioned on the event
that each jJi j � 1. Then let  bi

D  
Ji

i . Connect xn to each bi at a uniformly
random position in Ji . Then connect constraint bi at the remaining slots to
jJi j � 1 variable nodes chosen from R according to the distribution q.x/ D

.d � dG0.x//=
P

y2R.d � dG0 .x//. Our conditioning on
P

a2F .G0/ dG0 .a/ �

.1 � "=2/dn ensures that all variable nodes of G
00 have degree at most d a.a.s.

Hence, the distribution of G
00 is at total variation distance o.1/ of the distribution

of G
"
n given �.

As in the Poisson case we just need to prove the following: with probability at
least 1� ı=d we have

X

�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G00;xn!b1
.�/ �

Q�
iD2 �G00;bi !xn

.�/
P

�2�

Q�
iD2 �G00;bi !xn

.�/

ˇ

ˇ

ˇ

ˇ

ˇ

< ı=d (4.5)

and

X

�2�

ˇ

ˇ

ˇ

ˇ

ˇ

�G00;b1!xn
.�/

�

P

.�y/y2@b1
1¹�xn

D �º b1
.�/

Q

y2@b1nxn
�Gn;y!b1

.�y/
P

.�y/y2@b1
 a.�/

Q

y2@b1nxn
�Gn;y!b1

.�y/

ˇ

ˇ

ˇ

ˇ

ˇ

< ı=d:

(4.6)

If we again let U D
S

j�2 @bj be the set of all variable nodes joined to constraints
b2; : : : ; b�, then since �G00;xn!b1

is the marginal of xn in the factor graph G
00 �b1

and�G00;bi !xn
is the marginal of xn in G

0 Cbi , we obtain the analogous equations
to (3.17) and (3.18):

�G00;xn!b1
.�/

D

P

�2�U 1¹�.xn/ D �º h1¹8y 2 U n ¹xnºW .y/ D �.y/iG0

Q�
jD2  bj

.�.@bj //
P

�2�U h1¹8y 2 U n ¹xnºW .y/ D �.y/i�G0

Q�
jD2  bj

.�.@bj //
;

(4.7)
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and

�G00;bi !xn
.�/

D

P

�2�@bi 1¹�.xn/ D �º h1¹8y 2 @bi n ¹xnºW .y/ D �.y/i�G0
 bi

.�/
P

�2�@bi h1¹8y 2 @bi n ¹xnºW .y/ D �.y/i�G0
 bi

.�/
:

(4.8)

Further, given that
P

a2F .G0/ dG0.a/ � .1� "=2/dn the distribution q is such that
1=.d jRj/ � q.x/ � 1=jRj. Hence, q is “within a factor of d” of being uniform.
In effect, we can choose � > 0 so small that our assumption that G

0 is .�; dk/-
symmetric ensures that with probability at least 1� �1=3 we have

X

�2�U

ˇ

ˇ

ˇh1¹8y 2 U n ¹xnºW .y/ D �.y/iG0 �
Y

y2U

�G0;y.�.y//
ˇ

ˇ

ˇ < �1=3: (4.9)

Due to (4.3) and (4.4) we obtain the assertion from (4.7)–(4.9) by following the
proof of Theorem 1.1 verbatim from (3.19).

4.2. Proof of Corollary 1.5. As in the proof of Corollary 1.2 we couple G
"
nC1

and G"
n via a common supergraph yG obtained as follows. Choose Om from the

distribution d C Po.d.n C 1/=k/ conditional on the event that k Om < dn. Then,
choose yG with variable nodes x1; : : : ; xnC1 and constraint nodes Oa1; : : : ; Oa Om from
the distribution G

"
nC1 given that jF.G"

nC1/j D Om.

Claim 4.1. yG and G
"
nC1 are mutually contiguous.

Proof. Construct a copy of G
"
nC1 by generatingm D Po.d.nC1/=k/. Conditioned

on Om D m, the distributions of yG and G
"
nC1 are identical, and so the claim follows

from the contiguity of the two Poisson variables, m and Om. �

Obtain G
0 from yG by removing d random constraint nodes.

Claim 4.2. G
0 is distributed as G

"
nC1, up to total variation distance exp.��."2n//.

Proof. Couple the distributions as follows. Let m D Po.d.n C 1/=k/. Choose
m constraints with independent random weight functions from ‰ according to
�, and choose a set of active slots J including each slot with probability 1 � ".
Randomly attach the active slots of all constraints to the n C 1 variable nodes
uniformly at random conditioned on no variable node having degree more than
d . This construction yields G

"
nC1 on the event A that the total number of active

slots is at most dn. Now add d additional random constraint nodes, with random
sets of active slots as above, and attach to variable nodes at random proportion to
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the deficit of their degrees from d . On the event A, this yields the distribution yG.
Now remove d constraints at random: the constraints remaining are still matched
to uniformly random variable nodes, and so the distribution is that of G

0. This
coupling succeeds if A holds, and from a similar Chernoff bound to (1.5), PrŒA� �

1 � e��."2n/. �

Furthermore, obtain G
00 from yG as follows.

� Select a random variable node x of yG.

� Remove x and all constraint nodes adjacent to x.

� Remove d � d yG
.x/ further random constraint nodes.

� Remove each remaining constraint node with probability 1=.nC 1/ indepen-
dently.

Claim 4.3. jEŒlnZG00 �� EŒlnZG
"
n
�j D O."/.

Proof. It is not the case that G
00 is distributed exactly as G

"
n: the clauses adjacent

to x have a different degree distribution than clauses drawn uniformly from yG

(for instances, none of them have degree 0). Nevertheless, we will show that the
two distributions are close enough that we can use G

00 in the Aizenman-Sims-
Starr scheme. We will construct the two factor graphs H;H00 with variable nodes
¹x1; : : : ; xnº on the same probability space simultaneously such that the following
properties hold.

(1) Up to total variation distance exp.��."2n//, H
00 is distributed as G

00 and H

is distributed as G
"
n.

(2) With probability 1�O."/ the factor graphs H;H00 are identical.

(3) The probability that H;H00 differ on more than 2d constraint nodes is
exp.��."2n//.

Because the set ‰ of possible weight functions is fixed and all  2 ‰ are strictly
positive, we have lnZH; lnZH00 D O.n/ with certainty. For the same reason
adding or removing a single constraint can only alter lnZH; lnZH00 by some
constant C . Therefore, the assertion is immediate from properties (1)–(3).

To construct the coupling, we will first couple the degree sequences of the
constraints of H;H00 in such a way that with probability 1 � O."/ the sequences
are identical and otherwise they differ in at most 2d places. Formally, let Om D

d C Po.d.n C 1/=k/ and let Ok D . Ok1; : : : ; Ok Om/ 2 ¹0; 1; : : : ; kº Om be a vector with
the same distribution as the vector .d yG

. Oa1/; : : : ; d yG
. Oa Om// of constraint degrees

of yG. Then (1.5) implies that Ok is distributed as a sequence of independent
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Bin.k; 1 � "/ variables, up to total variation distance exp.��."2n//. Further,
let X 00 D .X 00

i /iD0;1;:::;k be distributed as the statistics of the degrees of the d
constraint nodes deleted from yG in the above construction of G00 given that that
d yG. Oaj / D Okj for all j ; that is, X 00

i is the number of deleted constraint nodes of
degree i . Similarly, let X D .Xi /iD0;1;:::;k be the statistics of d elements of the
sequence Ok chosen uniformly without replacement.

Let A be the event that

j Om � dn=kj � "n=.dk/ and dn.1 � 2"/ �

Om
X

iD1

Oki � dn: (4.10)

Then by REG2 and the Chernoff bound we have P ŒA� � 1 � exp.��."2n//. To
couple H;H00 on the event A we make the following two observations.

� P ŒXk D d jA� D 1�O."/; this is immediate from (4.10).

� P
�

X 00
k

D d jA
�

D 1�O."/; for (4.10) implies that the total number of variable
nodes adjacent to a constraint node of degree less than d is bounded by 3"kn.

Consequently, on A we can couple X;X 00 such that PŒX ¤ X 00� D O."/.
If X D X 00, then we choose D D D

00 � Œ Om� uniformly at random subject to
the condition that

P

i2D 1¹ Oki D j º D Xj for all j D 0; 1; : : : ; k. Otherwise we
choose two independent random sets D;D00 � Œ Om� with

P

i2D 1¹ Oki D j º D Xj

and
P

i2D00 1¹ Oki D j º D X 00
j for all j . Further, with .�i /i�1 a sequence of

Be.1=.n C 1// random variables that are mutually independent and independent
of everything else let

E D ¹i 2 Œ Om� n DW �i D 1º; E
00 D ¹i 2 Œ Om� n D

00W �i D 1º:

Now, obtain the random factor graphs H;H00 as follows. For i 2 EnD00 generate
constraint nodes ai of degree ki by choosing @Hai D @H00ai � ¹x1; : : : ; xnº

uniformly subject to the condition that all variable degrees remain bounded by
d . Subsequently, complete H;H00 independently by choosing @Hai for i 2 D

00 nD

and i 2 D n D
00, respectively, conditional on no variable degree exceeding d .

Moreover, the weight functions are chosen from the distribution � so as to coincide
in H;H00 for all i 2 E n D

00. Finally, if the event A does not occur then we choose
H;H00 arbitrarily.

It is immediate from the construction and the fact that P ŒA� � 1�exp.��."2n//
that H;H00 satisfy (1) above. Furthermore, (2) holds because H D H

00 if X D X 00,
which occurs with probability 1 � O."/. In addition, if X ¤ X 00 and A occurs,
then H;H00 only differ on the constraints in jD [ D

00j � 2d constraint nodes,
whence (3) follows. �
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From Claims 4.2 and 4.3 it follows that

E
h

ln
ZG

"
nC1

ZG
"
n

i

D E
h

ln
ZG0

ZG00

i

CO."/: (4.11)

Let us define S1.x/; S2.x/; S3.x/; S4.a/ exactly as in (3.26)–(3.29) (with the
current yG).

Lemma 4.4. Let A0 D F. yG/nF.G0/ be the set of constraint nodes of yG that were

deleted to obtain G
0. Then a.a.s.

ln
Z yG

ZG0
D o.1/C

X

a2A0

S4.a/:

Proof. We mimic the proof of Lemma 3.3. Let � D �."/ > ı D ı.�/ > 0 be
small enough and assume that n > n0.ı/ is sufficiently large. Instead of thinking
of G

0 as being obtained from yG by removing d random constraints, we can think
of yG as being obtained from G

0 by adding d random constraint nodes a1; : : : ; ad .
More precisely, let G

0
0 D G

0 and G
0
i D G

0
i�1Cai for i 2 Œd �, where  ai

is chosen
according to REG2 and @ai is chosen uniformly at random subject to the condition
that no variable ends up with degree greater than d . Then we can identify yG

with G
0
d
. A.a.s. the random factor graph G

0 contains at least �n variable nodes
x such that dG0.x/ < d . Therefore, Claim 4.2, assumption (1.4), Lemma 3.1 and
Corollary 2.2 imply that for every i 2 Œd �,

P
h

X

�2�k

ˇ

ˇ

ˇh1¹8y 2 @ai W .y/ D �.y/ºi�
G

0
i�1

�
Y

y2@ai

�G
0
i�1

;y.�.y//
ˇ

ˇ

ˇ � ı
i

D o.1/:

In addition, (3.1) yields

P
h

8i 2 Œd �W
X

�2�k

ˇ

ˇ

ˇ

Y

y2@ai

� yG;y!ai
.�.y// �

Y

y2@ai

�G
0
i�1

;y.�.y//
ˇ

ˇ

ˇ
� ı

i

D o.1/:

Hence, a.a.s. for all i 2 Œd � simultaneously,
X

�2�k

ˇ

ˇ

ˇh1¹8y 2 @ai W .y/ D �.y/ºi�
G

0
i�1

�
Y

y2@ai

� yG;ai !y
.�.y//

ˇ

ˇ

ˇ < ı (4.12)

As ZG
0
i
=ZG

0
i�1

D
P

�2�@ai  ai
.�/ h1¹8y 2 @ai W .y/ D �.y/ºi�

G
0
i�1

for all i 2

Œd �, (4.12) implies that a.a.s.

ˇ

ˇ

ˇ

ZG
0
i

ZG
0
i�1

�
X

�2�@ai

 ai
.�/

Y

y2@ai

� yG;ai !y
.�.y//

ˇ

ˇ

ˇ < �:

The assertion follows by taking logarithms and summing. �
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Lemma 4.5. Let A00 D F. yG/ n .F.G00/ [ @ yG
x/. Then a.a.s.

ln
Z yG

ZG00
D S1.x/C S2.x/C S3.x/C

X

a2A00

S3.a/C o.1/;

Proof. Given ı > 0, let 
 D 
."; ı/ > � D �.
/ > 0 be small enough and assume
that n > n0.
/ is sufficiently large. We can think of yG as being obtained from G

00

by adding a new variable node x, X � d random constraint nodes a1; : : : ; aX such
that x 2 @ai for all i and another Y random constraint nodes aXC1; : : : ; aXCY such
that x 62 @ai for i > X . Let U D

S

i�XCY @ai . Since G00 has at least 
n variables
of degree less than d a.a.s., Claim 4.3, (1.4), Lemma 3.1 and Corollary 2.2 imply
that

P
h

X

�2�U n¹xº

ˇ

ˇ

ˇ h1¹8y 2 U n ¹xºW .y/ D �.y/ºi�G00

�

X
Y

iD1

Y

y2@ai nx

� yG;y!ai
.�.y//

ˇ

ˇ

ˇ � �
i

D o.1/:
(4.13)

As it is immediate from (1.1) that

Z yG

ZG00
D

X

�2�U

h1¹8y 2 U n ¹xºW .y/ D �.y/ºiG00

XCY
Y

iD1

 ai
.�.@ai//;

(4.13) shows that a.a.s.

ˇ

ˇ

ˇ

Z yG

ZG00
�

X

�2�U

XCY
Y

iD1

h

 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

iˇ

ˇ

ˇ < 
: (4.14)

To complete the proof, we observe that

X

�2�U

XCY
Y

iD1

2

4 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

3

5

D

"

XCY
Y

iDXC1

exp.S4.ai //

#

�
X

�.x/2�

X
Y

iD1

2

4

X

�2�@ai nx

 ai
.�.@ai //

Y

y2@ai nx

� yG;y!ai
.�.y//

3

5 :

Hence, plugging this equation into (4.14) and taking logarithms, we obtain

P
hˇ

ˇ

ˇln
Z yG

ZG00
� S �

Y
X

iDXC1

S4.ai /
ˇ

ˇ

ˇ < ı1

i

> 1 � 2ı1; (4.15)
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where

S D ln
X

�.x/2�

X
Y

iD1

h

X

�2�@ai nx

 ai
.�.@ai//

Y

y2@ai nx

� yG;y!ai
.�.y//

i

:

Finally, by Claim 4.1 and Theorem 1.4 the messages .� yG; � ! �
/ are an o.1/-approxi-

mate Belief Propagation fixed point a.a.s. Therefore, the calculations (3.38)–(3.39)
go through and show that jS � .S1.x/C S2.x/C S3.x//j < ı1 a.a.s. �

Lemma 4.6. A.a.s. we have

E
h

ln
ZG0

ZG00

ˇ

ˇ

ˇ

yG
i

D .nC 1/�1B yG
CO."/: (4.16)

Proof. Let Om be the number of constraint nodes of yG. Combining Claims 4.4
and 4.5, we obtain

E
h

ln
ZG0

ZG00

ˇ

ˇ

ˇ

yG
i

D o.1/C

nC1
X

iD1

S1.xi /C S2.xi /C S3.xi /

nC 1

C
h

�d C
Om � d

nC 1
C

1

nC 1

nC1
X

iD1

.d � d yG.xi //
i

X

a2F . yG/

S4.a/

Om
:

(4.17)

Since Om D Po.d.nC 1/=k/C d , a.a.s. we have

Om�1
�

� d C
Om � d

nC 1
C

1

nC 1

X

x

.d � d yG.x//
�

D �
kd.1 � 1=k/

d.nC 1/
C
d".1 � "/

Om

D �
k � 1

nC 1
CO."/:

(4.18)

On the other hand, in the sum .nC 1/�1
PnC1
iD1 S2.xi / all but an O."/-fraction of

the constraint nodes appear k times. Thus, a.a.s.

1

nC 1

nC1
X

iD1

S2.xi / D O."/C
k

nC 1

X

a2F . yG/

S4.a/: (4.19)

Finally, plugging (4.18) and (4.19) into (4.17), we obtain (4.16). �
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To complete the proof of Corollary 1.5 we take " ! 0 slowly. We begin with
the following observation.

Claim 4.7. We have 1
n
EŒlnZGn

� D 1
n
EŒlnZG

"
n
�CO."/:

Proof. We recall the following Lipschitz property, which is immediate from (1.1):
if a factor graph G0 is obtained from another factor graph G by adding or re-
moving a single constraint node, then j lnZG � lnZG0 j � C for some fixed
number C D C.‰/. We can couple Gn and G

"
n by forming G0 by choosing

m0 D Po..1 � "/kdn=k/ random constraints, joined at random to variable nodes
so that no variable node has degree more than d . To form Gn from G0 we
add bdn=kc � m0 additional random constraints; with probability 1 � e��."2n/

the number of additional constraints is O."n/. To form G
"
n from Gn, we add

Po.
�

k
j

�

.1� "/j "k�jdn=k/ random constraints with degree j , for j D 1; : : : k � 1.

Again with probability 1 � e��."2n/ the total number of additional constraints is
O."n/. Applying the Lipschitz property twice gives the claim. �

Proof of Theorem 1.5. Let X D jF.G0/4F.G00/j be the number of constraint
nodes in which G

0;G00 differ. As in the previous proof, we know deterministically
that j lnZG0 � lnZG00 j � CX . Moreover, the construction of G

0;G00 ensures that
X has a bounded mean. Therefore, Markov’s inequality and Lemma 4.6 ensure
that E ln.ZG0=ZG00/ D .nC 1/�1EŒB yG

� C O."/. Hence, by (4.11), Claim 4.1 and
because lnZG

"
n

D O.n/ with certainty,

E ln.ZG
"
nC1

=ZG
"
n
/ D .nC 1/�1EŒB yG

�CO."/ D .nC 1/�1EŒBG
"
nC1

�CO."/:

(4.20)

Finally, combining (4.20) with Lemmas 4.6 and 4.7, we obtain

lim
n!1

1

n
EŒlnZG� D lim

"&0
lim
n!1

1

n
EŒlnZG" � D lim

"&0
lim
n!1

E ln.ZG
"
nC1

=ZG
"
n
/ D B;

as desired. �

5. Non-reconstruction

Proof of Lemma 1.6. Let Gn be distributed according to either Gn.d;�; k; ‰; �/

or G
"
n;reg.d;�; k; ‰; �/. Assume that (1.7) holds but (1.8) does not. Then there

exist !1; !2 2 � and 0 < ı < 1
10

such that for infinitely many n we have

PŒjh1¹ .x1/ D !1ºj .x2/ D !2i�Gn
� h1¹ .x1/ D !1ºi�Gn

j > 2ı;

h1¹ .x2/ D !2ºi�Gn
> 2ı� > 2ı:

(5.1)
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Let ` be a large enough integer and let E be the event that the distance between
x1; x2 in Gn is greater than 2`. The distribution of Gn is symmetric with respect
to the variables, and the factor graph is sparse: the expected number of variables
nodes within distance 2` of x1 is O..kd/`/, constant with respect to n, and so we
have P ŒE� D 1� o.1/ as n ! 1. Therefore, (5.1) implies

PŒjh1¹ .x1/ D !1ºj .x2/ D !2i�Gn
� h1¹ .x1/ D !1ºi�Gn

j > ı;

h1¹ .x2/ D !2ºi�Gn
> ı; E� > ı:

(5.2)

To complete the proof, let S be the set of all � 2 �V.Gn/ such that � .x2/ D !2. If
the event E occurs, then given r`.Gn; x1; �/ the value assigned to x2 is fixed for
all � 2 S. Therefore, (5.2) implies

Ehk�Gn;x1
� �Gn;x1

Œ � jr`.Gn; x1; /�kTVi�Gn

� EŒ1¹Eºhk�Gn;x1
� �Gn;x1

Œ � jr`.Gn; x1/; �kTVjSi�Gn
h1¹Sºi�Gn

�

� ı3;

in contradiction to (1.7). �
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