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Collapse transition of the interacting prudent walk

Nicolas Pétrélis and Niccolo Torri!

Abstract. This article is dedicated to the study of the 2-dimensional interacting prudent
self-avoiding walk (referred to by the acronym IPSAW) and in particular to its collapse
transition. The interaction intensity is denoted by 8 > 0 and the set of trajectories consists
of those self-avoiding paths respecting the prudent condition, which means that they do
not take a step towards a previously visited lattice site. The IPSAW interpolates between
the interacting partially directed self-avoiding walk (IPDSAW) that was analyzed in details
in, e.g., [16], [4], [5] and [10], and the interacting self-avoiding walk (ISAW) for which the
collapse transition was conjectured in [11].

Three main theorems are proven. We show first that IPSAW undergoes a collapse
transition at finite temperature and, up to our knowledge, there was so far no proof in
the literature of the existence of a collapse transition for a non-directed model built with
self-avoiding path. We also prove that the free energy of IPSAW is equal to that of a
restricted version of IPSAW, i.e., the interacting two-sided prudent walk. Such free energy
is computed by considering only those prudent path with a general north-east orientation.
As a by-product of this result we obtain that the exponential growth rate of generic prudent
paths equals that of two-sided prudent paths and this answers an open problem raised in
e.g., [3] or [8]. Finally we show that, for every § > 0, the free energy of ISAW itself is
always larger than 8 and this rules out a possible self-touching saturation of ISAW in its
conjectured collapsed phase.
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1. Introduction

The collapse transition of self-interacting random walks is a challenging issue,
arising in the study of the #-point of an homopolymer dipped in a repulsive
solvent. Different mathematical models have been built by physicists to try and
improve their understanding of this phenomenon. For such models, the possible
spatial configurations of the polymer are provided by random walk trajectories.
In [11], Saleur studies the interacting self-avoiding walk (referred to as ISAW) that
is built with self-avoiding paths which are relevant from the physical viewpoint
because they fulfill the exclusion volume effect, a feature that real-world polymers
indeed satisfy. However, self-avoiding paths, especially in dimension 2 and 3,
are complicated objects. This is the reason why, in the mathematical literature,
collapse transition models were rather built by either relaxing the self-avoiding
feature of the paths (see for instance [14] or [15]) or by considering partially
directed paths. This is the case for the interacting partially directed self-avoiding
walk (referred to as IPDSAW) that was introduced in [16] and subsequently studied
in e.g. [4] or [10], [5] and [6]).

In the present paper, we focus on the interacting prudent self-avoiding walk
(referred to as IPSAW), a model built with prudent paths, i.e., non-directed self-
avoiding paths which can not take a step towards a previously visited lattice
site. The IPSAW clearly interpolates between IPDSAW and ISAW since partially
directed paths are prudent paths which themselves are self-avoiding paths. An
interesting feature of prudent paths is that although they are non-directed and
self-avoiding, the prudent condition, especially in dimension 2, imposes some
geometric constraints that makes them more tractable than self-avoiding paths
themselves. This can be observed in the existing literature dedicated to prudent
walks e.g., in [3] or [2].
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Organization of the paper. In Section 2, we give a rigorous mathematical
definition of IPSAW and we state our main results. Section 3 is dedicated to the
comparison of our result with the existing literature. We will in particular show
how IPSAW can be viewed as a limiting case of the undirected polymer in a poor
solvent studied in [14] and [15] and therefore shed some new light on the existence
of a conjectured critical curve for this model. In Section 4, we start by increasing
the complexity of the partially directed self-avoiding path by introducing the two-
sided prudent self-avoiding path. Then, we show how to decompose a generic
prudent path into a collection of two-sided paths. Section 5 is dedicated to the
proof of Theorem 2.2 that states the existence of a collapse transition for [IPSAW
at finite temperature. Section 6 provides an algorithm which shows that the free
energy of IPSAW coincides with that of North-East interacting prudent self-
avoiding walk (referred to as NE-IPSAW), which is a restriction of IPSAW built
with a particular type of two-sided paths, i.e., the Nort-East prudent paths. With
Section 7, we provide a lower bound on the free energy of ISAW which allows
us to compare the nature of the collapse transitions of IPDSAW or IPSAW with
that of ISAW. Finally, in Section 8 we prove the existence of the free energy of
NE-IPSAW.

2. The interacting prudent self-avoiding walk (IPSAW)

2.1. Description of the models. Let L € IN be the system size and let Q3*" be
the set of L-step prudent paths in Z2, i.e.,

QYA = Ly = (wi)fey € (ZH)E T wo = 0, wit —wi € {«,—, |, 1}

w satisfies the prudent condition},

where the prudent condition for a path w means that it does not take any step in
the direction of a lattice site already visited. We also consider a subset of 54
denoted by QY containing those L-step prudent paths with a general north-east
orientation. We postpone the precise definition of QJF to Section 4.2 because this
requires some additional notations but one easily understands what such path look
like with Figure 1 (b).

At this stage we build two polymer models: the IPSAW for which the set of
allowed spatial configurations for the polymer is given by Q754" and its North-
East counterpart (NE-IPSAW) for which the set of configurations is given by QY.
For both models, each step of the walk is an abstract monomer and we want to take
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into account the repulsion between monomers and the environment around them.
This is achieved indirectly, by encouraging monomers to attract each other, i.e.,
by assigning an energetic reward 8 > 0 to any pair of non-consecutive steps of the
walk though adjacent on the lattice Z2. To that aim, we associate with every path w
the sequence of those points in the middle of each step, i.e., u; = w;_j + “L==L
(1 <i < L) and we reward every non-consecutive pair (u;,u;) at distance one,
i.e, |lu; —u;|| = 1, see Figure 1. The energy associated with a given w € Q, is

defined by an explicit Hamiltonian, that is

L
Hw) =) gy =1 22)
i,j=0
i<j
so that Zg 7, the partition function of IPSAW and Z"; the partition function of
the North-East model equal

Zg.p =y PN and ZJF =" FHW) (2.3)

PSAW NE
weQ weQy

The key objects of our analysis are the free energies of both models, i.e., F(8)
and F'E(B) which record the exponential growth rate of the partition function
sequences (Zg, 1)ren and (Z%E 1 )Len, respectively. Thus,

T | NE oy o i L NE
F(B) := Lll)n;oLlongg,L and F™(B) := Lll»n;oLlogZﬂ’L' 2.4)

The convergence in the right hand side of (2.4) will be proven in Section 8. The
convergence in the left hand side of (2.4) is more complicated and it will be
obtained as a by-product of Theorem 2.1 below.

2.2. Main results. In the present Section we state our main results and we
give some hints about their proof. We pursue the discussion in Section 3 below,
by explaining how our results answer some open problems leading to a better
comprehension of interacting self-avoiding walk.

With Theorem 2.1 below, we state that the free energies of IPSAW and of NE-
IPSAW are equal. Our proof is displayed in Section 6 and is purely combinatorial.
It consists in building a sequence of path transformations (My,) e such that for
every L € IN, My, maps every generic path in Q754" onto a 2-sided prudent path
in QYF and satisfies the following properties:

o for every w € QPSMW  the difference between the Hamiltonians of w and of
Mp(w) is o(L),
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o the number of ancestors of a given path in Q,’iE by M}, can be shown to be
e,

Such a mapping allows us to prove the following theorem.

Theorem 2.1. For § > 0,
F(B) = F(B). (2.5)

The free energy equality in (2.5) will subsequently be used to establish Theo-
rem 2.2 below, which states that IPSAW undergoes a collapse transition at finite
temperature.

Theorem 2.2. There exists a BIFSAV € (0, 00) such that

F(B) > B forevery p < BIPSAV, (2.6a)

F(B) =B foreveryp > /SCIPSAW. (2.6b)

Thus, the phase diagram [0, c0) is partitioned into a collapsed phase, C =

[BIPSAV o0) inside which the free energy (2.4) is linear and an extended phase,

& = [O ﬁIPSAW)‘

The proof of Theorem 2.2 is displayed in Section 5. It requires to exhibit a loss
of analyticity for § — F(B) at some positive value of 8 (which is subsequently
denoted by BIPSA"), The nature of the proof is much more probabilistic than that of
Theorem 2.1. It indeed relies, on the one hand, on the random walk representation
of the partially directed version of our model displayed initially in [10] and, on the
other hand, on the fact that prudent path can be naturally decomposed into shorter
partially directed paths.

Since a partially directed self-avoiding path is in particular a generic prudent
path, we can compare the critical point of IPSAW with the critical point of
IPDSAW, which was computed explicitly in e.g. [4, 10]. We obtain that

ﬁgPDSAW < ﬁgPSAW. (27)

The inequality in (2.7) is somehow not satisfactory since one wonders whether it
is strict or not. This issue is left as an open question and will be discussed further
in Section 3.3.
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We conclude this section by considering the 2-dimensional Interacting Self-
Avoiding Walk (ISAW) defined exactly like the IPSAW in (2.2) but with a larger
set of allowed configurations, that is (in size L € IN)

QzAw = {w = (w; l-LZO € (Z2)L+1: wo =0, wit+1 —w; € {<~,—, |, 1},
0<i<L-—1,
w satisfies the self-avoiding condition}.
(2.8)

We denote by Z7°" the partition function of ISAW and we define its free energy
as

1
ISAW, B\ -— Tin ISAW
F>2 () = hLII_l)lOIgf I log Z;°5", (2.9)
where the lim inf in (2.9) is chosen to overstep the fact that the convergence of the
free energy remains an open issue.

Theorem 2.3. For every B € [0, o0),

FISA gy 5 g, (2.10)

A straightforward consequence of Theorem 2.3 is that the conjectured collapse
transition displayed by ISAW at some BISAW does not correspond to a self-touching
saturation as it is the case for IPDSAW and IPSAW.

3. Discussion

3.1. Background. The ISAW has triggered quite a lot of attention from both the
physical and the mathematical communities. Much efforts have been put, for in-
stance, to estimate numerically the value of the critical point BISA¥ (see e.g. [12]
or [13] in dimension 3) or to compute the typical end to end distance of a path
at criticality (see e.g. [11]). However, only very few rigorous mathematical results
have been obtained about it so far. For example, the existence of a collapse transi-
tion is conjectured only and if such transition turns out to occur, obtaining some
quantitative results about the geometric conformation adopted by the path inside
each phase is even more challenging. In view of the mathematical complexity
of ISAW, other models have been introduced, somehow simpler than ISAW and
therefore more tractable mathematically.
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The first attempt to investigate a simplified version of ISAW is due to [16]
with the Interacting Partially Directed Self-Avoiding Walk (IPDSAW). Again the
model is defined as in (2.2), but with a restricted set of configurations, i.e.,

QIS = L= (wi)fLg € (N x Z)ET i wg = 0, wig1 —wi € {—, |. 1),
0<i<L-1,
w satisfies the self-avoiding condition}.
(3.1)

The IPDSAW was first investigated with combinatorial methods in e.g., [4] where
the critical temperature, BIPPSAY i computed. Subsequently, in [10] and [5] and [6]
a probabilistic approach allowed for a rather complete quantitative description of
the scaling limits displayed by IPDSAW in each three regimes (extended, critical
and collapsed).

Another simplification of ISAW gave birth to the Interacting Weakly Self-
Avoiding Walk (IWSAW), which is built by relaxing the self-avoiding condition
imposed to ISAW such that the set of configurations €27, contains every L-step
trajectory of a discrete time simple random walk on Z¢ (d > 1). The Hamiltonian
associated with every path rewards the self-touchings and penalizes the self-
intersections, i.e, for every w € Qp,

Hw) ==y Y Ljww;=0y + B Y Ljuy—u;|=1)- (3.2)

0<i<j<L 0<i<j<L

Thus, y > 0 is a parameter that can be tuned to approach the ISAW through
the IWSAW, since in the limit y = oo both models coincide. The IWSAW is
investigated in two papers, i.e., [14] and [15] whose results are reviewed in [7,
Section 6.1]. In [15], the existence of a critical curve y = 2d 8 between a localized
phase and a collapsed phase (also referred to as minimally extended) is proven in
every dimension d > 1. Inside the localized phase (i.e., for 8 > y/2d) and with
probability arbitrarily close to 1 the polymer is confined inside a squared box of
finite size. Inside the collapsed phase in turn, the typical diameter of the polymer
is proven to be at least L'/9. It is conjectured that at criticality (8 = 2dy), the
polymer scales as L'/4+1, This is made rigorous in [I5] when d = 1. In dimension
d > 2, IWSAW is conjectured to undergo another critical curve y +— S(y)
between the previously mentioned collapsed phase and an extended phase inside
which the typical extension of the path is expected to be the same as that of the
self-avoiding walk. This critical curve is expected to have an horizontal asymptote
B = B* € (0, 00) and B* is itself expected to equal BISAY.,
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3.2. Discussion of the results. As mentioned above, one of the interest of
IPSAW is that it interpolates between IPDSAW, which is now very well under-
stood, and ISAW (or IWSAW at y = o0) about which most theoretical issues
remain open. From this perspective, Theorem 2.2 clearly constitutes a step for-
ward in the investigation of ISAW since, up to our knowledge, IPSAW is the first
non-directed model of interacting self-avoiding walk for which the existence of a
collapse transition is proven rigorously.

At first sight, Theorem 2.1 may appear as an intermediate step in the proof
of theorem 2.2. The fact that the free energies of IPSAW and of NE-IPSAW are
equal allows us to prove Theorem 2.2 with 2-sided prudent paths only. However,
the importance of Theorem 2.1 goes beyond IPSAW itself. The 2-sided prudent
trajectories have indeed been studied already in the mathematical litterature, see
e.g., [3], [8], or [1]. It was conjectured in [3] or [8] that the exponential growth rate
of the cardinality of 2-sided prudent paths (as a function of their length) equals
that of generic prudent paths and this is precisely what Theorem 2.1 says at § = 0.
Moreover this result supports somehow the conjecture that the scaling limit of the
uniform prudent walk should be the same as that of its 2-sided counterpart, see [3].
We discuss this conjecture in Section 3.3 below.

As mentioned below Theorem 2.3, the fact that ISAW does not give rise to a
self-touching saturation when 8 becomes large enough indicates that the nature
of its phase transition differs from that of IPDSAW and IPSAW. Theorem 2.3
tells us that for every f§ > 0, one can display a subset of trajectories whose
contribution to the free energy is strictly larger than 8. As a consequence, there
is no straightforward inequality between the conjectured critical point 8154W and
BIPDSAW o1 between BISAW and BIPSAW,

3.3. Open problems. We state 3 open problems which, in our opinion, are
interesting but require to bring the instigation of IPSAW and ISAW some steps
further. We discuss those 3 issues subsequently.

(1) Compute BIPSAW and therefore determine whether or not BIFSAV > GIPDSAW,

(2) Provide the scaling limit of IPSAW in its three regimes, i.e., extended,
critical and collapsed.

(3) Prove that ISAW also undergoes a collapse transition at some 8 > 0.

Concerning the first open question above, one should keep in mind Theorem 2.1.
Proving that BIPSAW > BIPDSAW jndeed requires to check that FNE(BIFDSAW)
IPDSAW For simplicity we set B = BIPSAW. We recall the grand canonical
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characterization of the free energy, i.e.,

F¥(8,) — o = inf {y >0: 3 7N PNl o oo} (3.3)
L>1

and we observe that a generic NE-prudent path is a concatenation of partially
directed path (see (4.3)) satisfying an additional geometric constraint called exit-
condition (see Definition 4.3). If we denote by Z["2°*" (%) the partition function of
IPDSAW restricted to those configurations respecting the exit-condition and if we
forget about the interactions between the partially directed subpaths constituting
a NE-prudent path, we deduce that the inequality

Dz () e el > 1 (3.4)
L>4

would be sufficient to claim that the left hand side in (3.3) is positive. Without
the exit condition, i.e., with ZEBCSAW instead of its restricted counterpart, the
inequality (3.4) is true. This is a consequence of the random walk representation
of IPDSAW displayed in [10] which gives that }"; .., Z]p%* e 7Pl = o0 because
it equals the expected number of visits at the origin of a recurrent random walk
on Z. However, the exit condition imposed to every partially directed subpath
constituting a NE-prudent path induces a strong loss of entropy and this is why
we are not able to show that (3.4) also holds true.

The second open question would complete the scaling limit of the prudent walk
(at B = 0). This problem has been investigated with combinatorial technics in, e.g.
[3, Proposition 8] for the 3-sided prudent walk. In this case the scaling limit is a
straight line along the diagonal and it is conjectured that also the generic prudent
walk displays the same scaling limit. With probabilistic tools, the scaling limit
of the (kinetic) prudent walk was explored in [2]. We refer to [2] for the precise
definition of the kinetic prudent walk, but let us emphasize that its scaling limit is
described by an explicit non trivial continuous process, cf. [2, Theorem 1].

We may assume that inside its extended phase the scaling limit of IPSAW
remains very similar to that of the prudent walk (at 8 = 0). From this perspective,
it would be interesting to get a better understanding of the geometry of IPSAW
inside its collapsed phase as well. Since F(8) = B when 8 > BIPSAW 'we can state
that the fraction of self-touching of a typical path is 1 + o(1). However, there are
various type of paths achieving this condition, e.g., the collapsed configurations
of IPDSAW (see [5, Section 4]) or configurations filling a square box by turning
around their range, and it is not clear at this stage which subclass would contribute
the most to the partition function.
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The third open question is the most difficult. The fact that one can not display
a subset of parameters in [0, oo) inside which the free energy of ISAW becomes
linear illustrates this difficulty.

H
- ————o——o0—0
X X
(a) IPDSAW (b) NE-IPSAW (c) IPSAW

Figure 1. Examples of a PDSAW (A), NE-PSAW (B) and PSAW (C) path. Any path starts
at x and its orientation is given by the arrow. In (A) we have drawn an IPDSAW path made
of 11 stretches: £1 =9, {p=—7,43=9, £4=0,{5=—12, 46 =0, £7=5, g =0, Lo =35,
£10=—7,£11 =0. That path performs 19 self-touching (drawn in red).

4. Decomposition of a generic prudent path

In this section we describe the different type of path that we will have to take into
account in the paper. By order of increasing complexity, we will first introduce
in Section 4.1 the partially directed self-avoiding paths and their counterparts
satisfying the so called exit condition which is an additional geometric constraints
allowing for their concatenation. In section 4.2, we concatenate such partially
directed paths to build the two-sided prudent paths. Those two-sided paths have 4
possible general orientations; north-east (NE), north-west (NW), south-east (SE)
and south-west (SW). Finally in Section 4.3, we will introduce the generic prudent
path and observe that each such path can be decomposed in a unique manner into
a succession of macro-blocks. Those macro-blocks are particular cases of two-
sided prudent paths obeying some additional constraints imposed by the prudent
condition to allow for their concatenation.

We need to define & a concatenation operator on prudent path. We pick r € IN

and we consider r prudent paths denoted by wy, ..., w,. Weletw; @w, ®---®w,
be the path obtained by attaching the last step of w;_; with the first step of w; for
every 2 < i < r. Then, the sequence (wy,...,w,) is said to be concatenable

if wy & --- ® w, itself is a prudent path. Finally, we extend the notation & to the
concatenation of sets of prudent path. Therefore, if (A;)!_, are r sets of paths such
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that any sequence in A; x --- x A, is concatenable, then A; & --- & A, contains
all paths obtained by concatenating sequences in A X -+ X A;.

4.1. Partially directed self-avoiding walk (PDSAW). The partially directed
self-avoiding walk is a random walk on Z? whose increments are unitary and
can take only three possible directions. For instance, when the increments of the
path are chosen in {1, |, —}, then the path is west-east oriented. By rotating an
west-east path by /2 radians we obtain a south-north path, whose increments are
chosen in {1, «<—, —}, see Figure 2 for two examples of such paths. By repeating
twice this rotation, we recover the east-west and the north-south paths. In what
follows and for L € I, the set of west-east partially directed paths of length L
(south-north, east-west, north-south respectively) will be denoted by szd (Qz’ pd?

QZpd, Qi’pd respectively).

Definition 4.1 (inter-stretch). We call inter-stretch every increment in the direction
which gives the orientation of a given partially directed path. Therefore, any par-
tially directed path of finite length can be partitioned into (N — 1)-inter-stretches
and N-stretches, ({1,...,Ly) € ZN, for some N € N. Fori € {1,..., N}, the
modulus of ¢; gives the number of unitary steps composing the i-th stretch and
when ¢; # 0, the sign of ¢; gives its orientation. In a west-east or east-west path,
we say that £; has a south-north orientation (1) if £; > 0 and north-south (|)
if £; < 0. In a south-north or north-south path, we say that £; has an west-east
orientation (—) if £; > 0 and east-west (<) if £; < 0 (see Figure 2). Thus, e.g.,

L
Q7= (1= ()", €ZV: N =14 ]6]+ -+ |ty] = L}
N=1

Remark 4.2. In this paper we also take into account those partially directed
path with only one vertical stretch and zero inter-stretches (thus N = 1 in
Definition 4.1). This is a slight difference with respect to [5]), in which N > 2.

In Section 4.2 we define the two-sided path. They are obtained by concate-
nating alternatively, e.g., some west-east partially directed paths with some south-
north partially directed paths. However, concatenating such oriented path requires
an additional geometric constraint called exit-condition which requires a proper
definition.
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Definition 4.3 (exit condition). Let N € N andlet £ = ({1,...,4x) € Z" be an
arbitrary sequence of stretches. Then, ¢ satisfies the upper exit condition if its last
stretch finishes strictly above all other stretches, i.e.,

b+ +4L4y > max £y + -+ £;},
0<i<N

and /£ satisfies the lower exit condition or if its last stretch finishes strictly below
all other stretches, i.e.,

Ly +-- 44y < min {{; + -+ £;}.
0<i<N

Definition 4.4 (oriented blocks). An arbitrary west-east partially directed path
(1,45, ...,£LN) is called upper oriented if its first stretch is negative and if it obeys
the upper exit condition (see Figure 2 (A)). Otherwise, it is called lower oriented
if its first stretch is positive and if it obeys the lower exit condition. We denote by
0" the set of upper west-east oriented blocks of size L and by and by O, the
set of lower west-east oriented blocks, i.e.,

OZ)’JF ={le QZpd: £1 < 0 and ¢ satisfies the upper exit condition}, (4.1)

OZ)’_ ={l e QZpd: £1 > 0 and ¢ satisfies the lower exit condition}.  (4.2)

We define analogously the sets Oz’+ and Oz’_ of upper south-north oriented
blocks and of lower south north oriented blocks, respectively, and so on.

We stress that for satisfying the exit condition it must hold that N > 2, i.e., we
need at least two stretches.

4.2. Two-sided prudent path. With the oriented blocks (recall definition 4.4)
in hand, we can define a larger class of prudent paths: the 2-sided prudent paths,
which ultimately will constitute the building bricks of the prudent path. Those
2-sided prudent path have a general orientation that can be north-east (NE), north-
west (NW), south-west (SW) or south-east (SE). In the rest of the section we focus
on NE-prudent path, but all definitions we give can easily be adapted to consider
a generic oriented (NE, NW, SE, SW) prudent self-avoiding path.

As mentioned above, north-east prudent path are obtained by considering a
family of west-east oriented blocks and a family of south-north oriented blocks
and by concatenating them alternatively.
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—=

| O
OSSN —

(a) A west-east block. (b) A south-north block.

Figure 2. The west-east oriented block (A) is made of 12 stretches and is upper oriented
since {1 <Oand €1 +---+ €12 > lmax“{él + .-+ + £;}. Analogously, the south-north
<i=<

block (B) is upper oriented as well.

Definition 4.5 (NE-prudent path). To define a NE-prudent self-avoiding path of
length L € IN we consider » € IN oriented blocks, (71, ..., w,), of length#q,....¢
respectively, with ¢t +---+1¢ = L andt; > 4. We assume that those blocks indexed
by odd integers are either all upper west-east oriented (in which case all blocks
indexed by even integers are upper south-north oriented) or all upper south-north
oriented (in which case all blocks indexed by even integers are upper west-east
oriented). In Definition 4.4 we have imposed that an upper oriented block starts
with a negative stretch but this constraint can be relaxed for 7r; (the first oriented
block of the sequence). We have also imposed that an upper oriented block satisfies
the upper exit condition but this constrain can be relaxed for 7, (the last block of
the sequence). See Figure 3 for an example of a NE-prudent path with these 2
constraints relaxed. Then, we concatenate 71, ..., 7w, (which is possible because
the first r — 1 blocks satisfy the exit condition) and the resulting path is denoted
by 71 @ --- @ 7. We call such path a NE-prudent self-avoiding path, see Figure 3.
The sequence (71, ..., w,) is called the block decomposition of the path and it is
unique.

We now provide a formal definition of QY:

of = U U eo e 00, Teolh]

2N 1)+t =L
re 1 r U [O;Tl,:: ® OZH‘ DD O;Traj‘l ® o:’a‘

U Ulgieolte-eolt a0

€2N—1 1 +-tty=L
ANl (ot 607 @ -0 07 @ O] E)

4.3)
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where the notations Ot'”f means that the condition £; < 0 has been removed
from (4.1) and O, ’S means that the exit condition has been removed from (4.1).

&

l

Figure 3. A NE-PSAW path made of three blocks: the first and the third blocks are west-
east (in green) and the second block is south-north (in blue). The first block starts at x, the
second block starts at y and the third block starts at z. Their orientation is given by the
arrow. Interactions in each block and between different blocks are highlighted in red.

Remark 4.6. Let us observe that indeed QZpd and Qz,pd are NE-prudent self-
avoiding walk. It corresponds to the case in which we have only one block, i.e.,
r=1.

4.3. Interacting prudent self-avoiding walk. In this section we show how a
general prudent path can be decomposed in a unique manner into a sequence of
2-sided prudent paths called macro-blocks. There is a difference between the de-
composition of a two-sided path into oriented blocks and that of a generic prudent
path into macro-blocks. We have indeed seen in Section 4.5 above that the exit
condition, which is an intrinsic constraint, was sufficient to make sure that ori-
ented blocks alternatively west-east and south-north are concatenable. However,
to make sure that a given family of 2-sided prudent paths is concatenable, one
can not rely on some intrinsic geometric constraint anymore. Such a family must
indeed satisfy a global constraint, that is, each 2-sided prudent path has to satisfy
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the prudent condition with the all path it will be attached to and this condition is
not intrinsic anymore, see Figure 5.

We recall that a walk is said to be prudent if none of its steps point in the
direction of its range. In the sequel we refer to this constraint as the prudent
condition.

§d3 N>

N>

H — d3
- S

— f1

Figure 4. On the left, a NE-PSAW path made of three blocks. In the picture we zoom in
on the interactions between the third block and the rest of path. We recall that the third
block can only interact with its two preceding blocks, i.e., the first and the second one. We
call fi the last vertical stretch of the first block and d3 the first vertical stretch of the third
block. The interactions between the first and the third blocks involve fi and d3 while the
interactions between the second and the third blocks involve d3 and N> (the number of
inter-stretches in the second block that may truly interact with d3, on the picture N> =1).
Such interactions are bounded above by (N> + f1) Ads.

4.3.1. Macro-block decomposition. Let us start by noticing that a prudent walk
can be viewed as a sequence of NE, NW, SE, SW two-sided sub-paths that we will
call macro-block, see Figure 5.

Definition 4.7. For very m,L € IN we denote by ®,, ; the set gathering all
concatenable sequences of m two-sided paths such that the cumulated length of
the two-sided paths in the sequence is L and such that:
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(A) First macro-block NE  (B) Second macro-block SW (C) Third macro-block NE
- y

e

X
l
‘ .m
B¢~
Concatenating macro-blocks A and B Add the macro-block C. It can interact with A,
y : y
X —

=T

z

Figure 5. Decomposition of a prudent walk into macro-blocks. In the picture we have
a sequence of three macro-blocks, A, B, and C. The first macro-block (A) has a NE-
orientation. The second block (B) has a SW-orientation and it is compatible with the first
macro-block, that is, the prudent condition is satisfied. This allows us to concatenate A with
B. The third macro-block (C) has a NE-orientation and it satisfies the compatibly condition
with A @ B. The interaction between macro-blocks are highlighted in red.

(1) two consecutive two-sided paths in the sequence do not have the same
orientation,

(2) the first m — 1 two-sided paths in the sequence contain at least 2 oriented
blocks.

For the ease of notation, we recall (4.3) and we let Q,’iE A be the set of north-east
prudent path containing at least two oriented blocks (the same definition holds
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with the 3 others possible orientations of a two-sided path). Thus,

Om.L = U U{(Al’ s Am) € QF! A X x QT
vt tm=L (x;)" .
frbet (i ’;_fgffN?ff’SW} (A1,..., Ap) is concatenable}.
4.4)

Finally, we observe that any prudent path of length L can be decomposed into
a sequence of macro-blocksin (_J,,,~ ; ©m,z and moreover, thanks to the conditions
(1) and (2) in Definition 4.7 we can assert that such decomposition is unique.
Therefore, we may partition Q754" as

QESsz U{Al@...@Am:(AI,...,Am)€®m,L} (4.5)

m=>1

An example of such decomposition is provided in Figure 5.

4.3.2. Upper bound on the number of macro-block in the decomposition of a
generic prudent path. The prudent condition imposes strong constraints on the
number of macro-block composing the path: if we consider the smallest rectangle
embedding the whole path, then whenever the random walk wants to start a
new macro-block, it must cross the whole rectangle in one direction and in such
direction the length of the rectangle is increased by at least one unit. Therefore the
longer it is the path, the harder (expensive) it becomes to start a new macro-block.
In Lemma 4.8 we provide an upper bound on the number of macro-blocks in a
prudent path of a given length.

Lemma 4.8. Let L be the path length. Then the number of macro-blocks compos-
ing the path is bounded from above by O(v/L).

Proof. Pick w € Qp, and let r be the number of macro-blocks in w. For j €
{1...,r}, we denote by R; the smallest rectangle containing the first j macro-
blocks of w. In order to complete the j-th macro-block and to start a new one, the
path should either cross R; horizontally and increase the width of R; by at least
1 or vertically and increase the height of R; by at least 1. Therefore, we define
n, the number of times that a macro-block ends with a vertical cross, and ny, its
horizontal counterpart. As a consequence, by keeping in mind that w has length
L, it must hold that

ny np
Di+Y ji<L. (4.6)
i=1 j=1
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From (4.6) it comes that n, (ny+1)+n,(nj+1) < 2L and therefore n2+n7 < 2L.
Under such condition, the quantity n, + nj; is maximal when n, = n; = VL.
Thus, the number of macro-blocks made by w is not larger than 2+/L. O

5. Proof of Theorem 2.2

In this section we prove Theorem 2.2 subject to Theorem 2.1 which ensures that
FYE(B) = F(B) for any B € [0, o). Therefore it is sufficient to prove Theorem 2.2
for NE-PSAW. Theorem 2.1 will be proven in Section 6.

We consider the free energy of NE-IPSAW
1
FEB) = ngn;o T log Zy' ) . 5.1)

In Section 8 we prove that this limit exists and is finite. Let us observe that, by
Remark 4.6, FNE(B) > FIPPSAV(B) thus it follows that F¥E(B) > B cf. (1.9) in [5].
To complete the proof of Theorem 2.2 we have to show that there exists a S
such that ZJ* | < eF+o) for any B > By and L € N. To that purpose we
disintegrate the partition function ZgE ;. by using the decomposition of any L-step
NE-PSAW path 7 into a family of oriented blocks (xy,...,7,) with r < L/4
(cf. Definition 4.3). As displayed in (4.3), we can distinguish between 4 types
of NE-PSAW paths depending on the orientation of their first and last oriented
block. For simplicity we will only consider Z NEL which is computed by restricting
the partition function to those paths starting with a west-east block and ending
with a south-north block (this corresponds to the first decomposition in (4.3)).
The contribution to ZgE , of those path satisfying one of the 3 other possible
decompositions in (4.3) are handled similarly. Therefore,

Zg = doexp{BY. Hm) + B 0. 1)}, (5.2)

re2lN t+-+ty=L (my,...,mr)€ED j=1

where
—_ (>t t+ —,+ T+
O =04 x 05" x---x 0,77 x 0,1,
and ®(ry, ..., m,) is a suitable function that takes into account the interactions be-

tween different oriented blocks, i.e., counts the number of self-touchings involving
monomers belonging to two different oriented blocks.

Henceforth, for every i € {1,...,r} we let d; (respectively f;) be the
first stretch (resp. last stretch) of 7; and we let N; be the number of stretches
constituting ;. We note that ®(mq,..., ) can be computed by summing for
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i = 1,...,r — 1 the number of self-touchings between 7;4+; and the sub-path
w1 @D - - - @ 7. Moreover, the prudent condition implies that ;4 can interact with
716D - -®m; only through r;_; and 7r;. To be more specific (see Figure 4), the self-
touchings between m; and ;41 may only happen between d;+; (the first stretch
of m;4+1) and some of the inter-stretches of &; (whose number is denoted by 1\~/,~),
while the self-touchings between x;_; and r;4; may only happen between d; 4
and f;_; (the last stretch of w;_;). Of course, for every i € {0,. — 1}, the
number of inter-stretches in 7; that may interact with d;j is not larger than the
number of inter-stretches in 7;, i.e., N; < N; — 1. By assigning to N; the same sign
as fi_1, we can check without further difficulty (see Figure 4) that the number of
self-touchings between 7;_;, 7r; and ;41 is bounded from above by

(N;i + fi—1) Adit1,

where the A operator is defined in (5.5) below. We stress again that N; and f;_;
have the same sign, while d; ;1 has the opposite orientation. By using the definition
of A in (5.5) and the triangle inequality, we have the following inequality for every
ce(0,1/2),ie.,

1
(Rt fi) Ry = sldiial+ gl fial+ (54N =c | fior +dial. 53)

fori =1,---,r —1, where fy = 0 by definition. It turns out that the value of ¢ is
worthless: in the sequel we choose ¢ = 1/4. We use (5.3) to conclude that

e B mtr) < p 5 (daltH1dr]) p 5 (f1 14+ fr—2])
GBIt N—) B ( fotdal et fratdr ) SA
At this stage, we let Qﬂ,,,d, 7.~ be the partition function associated with those
oriented blocks made of N stretches ({1, ..., £y), of total length ¢, starting with
a stretch £; = d, finishing with a stretch £ = f. Since Qﬁ,,,d, #,N is a partition
function involving partially directed paths only, we can use the Hamiltonian repre-
sentation displayed in [5] with the help of the operator A : for any pair (x, y) € Z?
we let

~ 1 min{|x|, |y|} ifxy <O,
xAy = S(xl+ |yl = lx+yD)= , (5.5)
2 otherwise.
In such a way for a given sequence of N-stretches, ({1, ...,{y), the Hamiltonian

in (2.2) becomes
N-1

H((Cr tv) = (i Rig). (5.6)

i=1
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Since we are looking for an upper bound on Z ﬁN,E , we forget about the exit
condition that a block must satisfy (cf. Definition 4.3) and we define Qg, .4, 7.V
on Ly, the set of all partially-directed paths of length ¢ with N —1 inter-stretches.
To be more specific, for N € IN we let

N
Ly i= {K=(€1,...,£N):Z|£,~|=t—N—|—1}, (5.7)
i=1
and we define
N-1
Qpeasn =Y exp{B Y (la Kb, (5.8)
ZGLNJ n=1
ti=din=f

In such way Qg ;.q.sn < Qp.r.a.sn- It follows that an upper bound on ZﬂNEL can
be obtained from (5.2). To that aim, fora givenr € {1, ..., L/4}and t; +---+¢, =
L, we rewrite the inner summation in (5.2) depending on the value taken by
(d;, fi, N;) for i € {l,...,r}. We recall that d; < 0 fori > 2 and we lighten
the notation with

Ety,enty) = {(di,fi,Ni)lei |di| + | fil + Ni —1 <t;, d; <O0,foralli > 2,
N; > 2, forall i # r},

where the (71, ..., t,)-dependency of E may be omitted when there is no risk of
confusion. We plug (5.4) inside (5.2) to obtain

L/4

,
2D DY > (T wasm)

r=1 ty+-+tr=L (dl',fi,Nl'){=1EE i=1
¢ SUdal++1drD) o B (Lf1++] fr—2D)
o 3B WNi+-+Nr=1) , =8 (| fo+da|++| fr—2+dy )

5.9

Remark 5.1. According to Definition 4.4 and 4.3, we want to stress that x,, the
last block of the path, can have zero inter-stretches, i.e., it may happen that N, = 1.
For the other blocks, ny, ..., 7,—;, N; must be larger or equal to 2, because the
exit condition (cf. Definition 4.3) implies that each such block contains at least
two stretches.
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With the help of (5.5) we can rewrite Qg s 4, 7,5 in (5.8) as

- B~ B, P
Qurasv = 2 exp{B 3 Mal =5 3 1o+ buial = 51/1=51d1}.
n=1 n=1

ZELN![ =
ti=dAn=f

(5.10)

Recall (5.7). For every { € Ly, the equality fo:l |€n] =t — N + 1 can be
plugged into (5.10) to obtain

N—-1
Qp,rapn = e TNFI=3/=3) S [T exp f § [ + Lo}, (S5.11)

ZELN![ n=1
ti=dAn=f

According to the method used in [5, Section 2.1], the right hand side of (5.11)
admits a probabilistic representation. Let us introduce a random walk
V= (Vi)ien

with i.i.d. increments (U; ), following a discrete Laplace distribution, i.e.,

=5 Ikl
Pg (Ui =k) = , keZ, (5.12)
cp
where cg is the normalization constant, i.e.,
B8 1+ e‘g
cp=> e =——— - (5.13)
kez l—e™2
In such a way the relation V; = (=1)'=1; fori =0, ..., N which is equivalent to
Ui = (=1)"""lics + &), fori=1,---,N, (5.14)

with £y = 0, defines a one-to-one map between £y, and the set of all possible
random walk paths of length ¢ and geometric area G (V) that satisfies

N
GN(V):=) [Val=1—N+1. (5.15)

n=1
Therefore (5.11) becomes

Qp,t.d,fN = cé"—leﬂ(t—NH—%lfl—%wD

Ps(GN(V)=t—N+1,Vy = (D17 |V, =d).

(5.16)

We plug (5.16) into (5.9) and we observe that all the factors e§|di|, i=2,...,r
and egm', i = 1,...,r — 2 in the second line of (5.9), are simplified by the
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corresponding quantities appearing in the exponential factor of (5.16), with
f = fi,d =d;j,and N = N;.Sincet; + --- + t, = L, we obtain that

L/4
205 =y Y
r=1 t;++tr=L
e~ h +---+Nr—r)cévl+---+Nr—re—§|d1 lo=3 15+ o=5 1111

(d;, fi:Ni);_ €&

:
[1PsGn, (V) =ti = Ni + 1. Vi, = (=DM fi | Vi = dy)

i=1
r—2
[ e 40+,
i=0
(5.17)
At this stage we consider the homogeneous Markov chain kernel (recall (5.12))

e —50x+y)
plx,y) = ————=Pgp(V1=—y| Vo =x), (5.18)
€p/2
where the 8 dependency of p is dropped for simplicity. We observe that p is
symmetric, i.e. p(x, y) = p(—x,—y). Since we are working with upper bounds
we can safely replace /2 in e‘g|f"|,e_g|fr—1| and 541l by 8/4 and (5.17)
becomes (with f_; = fo =0and d,+; = dy+2 = 0)

L

- ; cp\N1+-+N, =)
Zg =cppe Y cpp ) > (5)
r=1 ti+-+tr=L (d;,f;,N;)[_ & €%

[[Ps(Gn, (V) =t = Ni + 1, Vy, = (=D)Ni 7 fi | vy = dy) (5:19)
i=1

[1 p(fi.dis2).

i=—1

Now, we focus on the second line in (5.19), our aim is to concatenate all the even
blocks on the one hand, and all the odd blocks on the other hand (see Figure 6).

For this purpose, for a given sequence (Ny,..., N,) € IN" and for a given index
subset = {vi,...,vm} C{—1,...,r} we set
Ne:i=) N, fork=—1,....r (5.20)

iev,1<i<k
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Note that N_; = Ny = 0. We let (135,\,, V) be a non-homogeneous random walk
V= (Vl-)?;aL 1, starting from 0, for which all increments have law Pg except those
between Vy; and Vn; 41 for i € {vy,..., vy} that have law Pg/, (cf. (5.18)). In
other words,

Pgo(VN+1 =¥ | VN, = x) =Pga(Vi =y | Vo = x) (5.21a)
form € {vy,..., v}, and
Pgu(Var1 =y | Vo =x) =Pg(Vi =y | Vg = x), (5.21b)
fora ¢ {Ny,,...,N,,,. Weset,fork € {—1,...,7},
ie{l,....k}N2IN ie{l,...k}N(2IN-1)

We let (?" , V), (ﬁ" , V?) be two independent Markov chains of law

132 = f’ﬁ,{—l ..... riN2z
and

PS :=Pg _1..nez+)
respectively. We have to look at (Vf)?j:{ " and (V;.’):.\Z;r ' as the random walks
obtained by concatenating the even blocks and the odd blocks respectively, see

Figure 6.
For a random walk trajectory V' € Z™ and for two indices i < j we let
Gi,j(V) := Y7_, |Vs|. be the geometric area described by V' between i and ;.

We are now ready to concatenate the even blocks and the odd blocks in (5.19).
We consider separately the odd and even terms in the second line of (5.19). For
the odd terms, since p(x, y) = p(—x, —y) (cf. (5.18)), and since for any odd index
i <r,N? =N?_,+ N;, the odd terms in the integrand of (5.19) can be rearranged
as follows (/=1 = fo = dr+1 = dr+2 = 0 by definition)

T1Ps(Gr, (V) =t = Ny + 1, Vi, = (—DN7 £ | i = dy)
ig{l ..... r} . L
i€2Z+1 HPB/Z(VI = (—1)N’d,’+2 | Vo = (_1)Nl lfl)
ie{—1,...,r}

i€27+1
GN;’_2+1,N;’(V") =t —N;+1, Vﬁ;’_z-f—l — (—l)Ni—Zdl-,

= ﬁ% Ve = (DN £, foralli e {1,....,r}NQRZ+1), |,
V0N;'+1 =0

(5.23)
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An analogous decomposition holds true for the even terms in the integrand
of (5.19).

With the help of (5.23) we interchange the sum over the #;’s with the sum over
the N;’s in (5.19) and we remove the restriction #; + --- + t, = L to obtain the
following upper bound,

> X (%

>(N1 +e+Np—r)
ti+-+tr=L (d;,f;,N})i_ €8 ¢

.
[[Ps(Gn, (V) =t = Ni + 1, Viy, = (DN fi | Vi = dy)
i=1

.

[ o dita)

i=—1

D5

B
Ni+-+Ny<L+r, €% (5.24)
N;>2i=1,..,r—1

GOne +180(VO) =1 = Ni + 1,
Y Py [ foralli e {1,....r} N QZ+ 1),
;> N;i—1
i=1,...,r V§0+1 =0
GOne ,+1Ne(VO) =1 = Ni + 1,

cg )(Nl +-+Np—1)

P¢ | foralli e{1,....ryn 2z,

VeNf+1 =0

We note that the sum over the #;’s in the right hand side of (5.24) is bounded from
above by 1. It remains to plug (5.24) into (5.19) in which we have exchanged the
summation over the ¢;’s with that over the N;’s. This leads to

L/4

. (N1+-+Ny—r)
NE L B
2y < cpae®t Y cpn ) (_g)
r=1  Ny+-+Nr<L+r, €%

Ni>2i=1,..,r—1 (5.25)
o , e cg NAr
< cpae” [Cﬂ/zg( ) ];,C"’”[szl(e_f) ]

At this stage, by using the definition of cg in (5.13), there exists By € (0, 00)
such that cg/eP/* < 1/4 and cg/ < 2, for any B > PBo. This implies that
ZﬂNEL < C(B) ePL for some suitable constant C(B) € (0, 00).
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Figure 6. A NE-prudent path made of two west-east blocks (the first and the third, in green)
and two south-north blocks (the second and the fourth, in blue). The blocks startat x, y, z, w
respectively and the orientation of each block is given by the arrow next to its starting point.
Then we can concatenate the even blocks (see top right picture) and the odd blocks (see
bottom right picture), obtaining two partially directed self-avoiding path.

6. Proof of Theorem 2.1

To prove Theorem 2.1, we show that for any 8 > 0 the partition function of
IPSAW can be bounded from below and from above by the partition function of
NE-IPSAW, by paying at most a sub-exponential price, i.e.,

Zy, <Zpp <e®PZE, . forall L €N, B e 0. 00). (6.1)

Where the o(L) depends on .

The lower bound in (6.1) is trivial because NE-paths are a particular subclass
of prudent paths. The proof of the upper bound is harder and needs some work. In a
few word, we will apply a strategy which consists, forevery L. € IN and 8 € (0, o0),
in building a mapping My: Q¥*" — QUE which satisfies the following conditions:

(1) there exists a real function f; such that |(Mz)~'(0)| < e/ 1) where f; (L)

is uniform in % € QY and fi(L) = o(L);

(2) there exists areal function f, suchthat H (w)—H (Mg (w)) < f2(L), where
f>(L) is uniform in w € Q¥ and f>(L) = o(L).
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The existence of (M) satisfying the aforementioned properties is sufficient
to prove the upper bound in (6.1). The dependency in f is dropped for simplicity.

We will build the mapping with the help of the macro-block decomposition of
every path w € QFSA¥ (recall Section 4.3). By a succession of systematic trans-
formations we will indeed map each macro-block onto an associated NE-macro-
block in such a way that the resulting NE-macro-blocks can be concatenated into
a NE-prudent path which will be the image of w by M} . Then, it will be enough
to check that (M )1 e satisfies the aforementioned properties.

The first property, (1), will be rigorously proven below and it is mostly a
consequence of Lemma 4.8 which states that the macro-block number is at most
O(+/L). The second property, (2), is the hardest to check. On the energetic point
of view, the main difference between a generic prudent paths and their North-
East counterpart is that generic paths undergo interactions between macro-blocks.
Such interactions turn out to be tuned by the first stretches of each macro-blocks.
Moreover, Lemma 4.8 implies that an important loss between w and My (w) can
only be observed when those first stretches are very large. This is the reason why
we remove such stretches from the path as soon as they are larger than a prescribed
size, e.g., L'/#. This only triggers a sub-exponential loss of entropy since those
large stretches are at most L3/4. It might cause a large loss of energy, but this loss
will be compensated by the construction of a large square block (i.e., maximizing
the energy) containing all those stretches that we have removed.

We now start with the precise construction of My. For such purpose, we
define four sequences of applications that are mapping trajectories onto other
trajectories. To be more specific, for every L € IN, we define 5 sets of trajectories
Wi, i = 1,...,5, interpolating QIS4 = W, ; with Q¥F = Ws ;, and four
sequences of applications wi: Wi — Wit1,L, cf. Steps 1-4 below. We define
M, as the composition of such maps ¥/, . co Yiie, My = ytoyioytoyl.
To prove property (1) we show that each v, fori = 1,..., 4 is sub-exponential,
ie,

Definition 6.1. The sequence of mappings (Y1) Len, with ¥: Wy, — W/, | is sub-
exponential if there exist ¢y, c; € (0,00) and « € [0, 1) such that for every L € IN
and every w € W}

|(YL) " (w)] < cre2t”, (6.2)

In Step 5 we complete the proof by showing that such M;, satisfies also the
second property (2).
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6.1. Step 1. Let w € QP be a prudent path. We can decompose w into
a sequence of macro-blocks, A = (A1,...,A,), where m = m(w) € N,
cf. (4.5) and Section 4.3. We observe that each macro-block A; € QZ , with
x; € {NE,NW, SE,SW} and L; € N such that L; + --- + L,, = L. Each
macro-block A; can be decomposed into a sequence of blocks (n{, .. .,nﬁi),
cf. Section 4.2. We stress that both such decompositions are uniques. For every
i =1,...,m, we consider separately the subsequence of blocks with odd indices,

.....

.....

procedure (1-4), drawn in Figure 7. In the sequel, this procedure will be referred
to as the large stretches removing procedure.

(1) We consider the first macro-block A; and the odd block subsequence,
@1 = (mh)keqt,...rynn—1). We start by considering the first stretch of
the first block, 7z} . If this stretch is not larger than /4 we stop the procedure
for the subsequence 7 ®>! and we jump to (2). Otherwise, if the first stretch
is larger than L'/4, we pick it off, and we reapply the procedure to the next
stretch of the block.

It may be that the procedure leads to removing all the stretches in the first
block. In such case we re-apply the same procedure to the next block of
7©-1 and so on, until we find the first stretch smaller than L'/#. For instance,
in the odd subsequence, if we have entirely removed the first block, then
we re-apply the procedure to the third block. If none of the stretches in
the subsequence 7(®-! is smaller than L'/4, then the whole subsequence
of blocks is removed and we stop the procedure for the subsequence.

(2) We apply the procedure (1) to the even block subsequence,

a1
7® —(JTk)ke{l ,,,,, r1}N2IN>

i.e., we start with the procedure (1) by considering the first stretch of the
second block, }.

(3) We apply the procedure (1) to the very last block of the macro-block A; (if
it has not been already modified).

We will see in Step 3 below the importance of applying the large-stretch
removing procedure to the very last block.

(4) We repeat (1-3) for the macro-blocks A,, ..., Ay.
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Figure 7. A NE-prudent path decomposed into 4 blocks (71, 72, 73, w4). We apply the
large-stretch removing procedure. The first 2 stretches of 71 are longer than L'/4, there-
fore we pick them off. The third stretch is smaller than L!/4 and thus we stop the procedure
on the odd subsequence. We apply the large-stretch removing procedure to the even subse-
quence. In this case we remove only the first stretch of 7, and we stop the procedure. Since
74 is the last block of the trajectory we re-apply the large-stretch removing procedure to
4. Also in this case we remove only the first stretch. The result is the block sequence
(71, 2, 703, 7T4).

Remark 6.2. We note that picking off stretches does not change the exit condition,
cf. Definition 4.3. To be more precise, given an oriented block with N -stretches,
(£1,...,€N), if we remove the first k-stretches (k < N), then the path obtained

by concatenating ({x41,...,£y) still satisfies the same exit condition. The exit
condition indeed means that £; + --- + €y > max{0,€;,...,¢1 +---+€y_1}
and therefore {41 + -+ £€n > max{0,€x41,..., k1 + -+ €n—1}. However,

picking off stretches can change the initial condition of a block, it could happen
that the first stretch of the modified block is positive, i.e., 11 > 0.

At this stage, we need to give a mathematical definition of the large stretch
removing procedure. To that aim, for every L € N, we denote by ] : Q54
¥} (QF54) the map that realizes the large stretches removing procedure. At the end
of the present section, we will show that (¥ i) 1>1 is sub-exponential. However, for
the sake of conciseness, the fine details of the proof will be displayed only in the
case for which we do not reapply the large stretch removing procedure to modify
the very last block of each macro-block. The proof in that case is very similar, see
Remark 6.5 below.

—
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6.1.1. Large stretch removing procedure in a single macro-block. We pick
! € NN and an orientation x € {NE, NW, SE, SW}. In the present section, we
define the large stretch removing procedure on those macro-blocks in €27. To that
aim, we define with (6.3)—(6.5) an application Ty p: Q7 QISXL that performs
Procedure (1), i.e., removes the large stretches in a single macro-block. A rigorous
definition of the image set QLXL will be provided in Definition 6.4 below.

Before defining 77 1, let us briefly recall that we can associate with any arbi-
trary macro-block A € €27 an unique block sequence (71, ..., ), with r = r(1).
In particular it holds that A = m; & --- & =, see Section 4.2. Therefore, in
the rest of the section, we identify the macro-block with its block decomposi-
tion, i.e., A = (my,...,7m,;). Foreveryi € {1,...,r}, we let N; = N;(1) be
the number of stretches in the i-th block (thus, cf. Section 4.1, the number of
inter-stretches is V; — 1), and we let (E(i), .- ,65@) be the sequence of stretches
in the i-th block. Since the sequence of stretches identifies the block, with a
slight abuse of notation, we write 7; = (é(i ), e ,65\2). The sequence of blocks
(71, ..., ) can be partitioned into two subsequences 10 = (i)ieq,....rin@N—1)
and1® = (7;);ic(1....ryn2-

At this stage, we are ready to introduce the specific notations for the large
stretches removing procedure. We let k1, k> = ki1(X),k2(A) € {1,...,r} be the
indices of the last block modified by the large stretches removing procedure in
the odd subsequence and in the even subsequence respectively (cf. (1)). Analo-
gously, let ji = ji(A) € {0,..., Ng,} and jo = j2(A) € {0,..., Ni,} be the
index of the last stretch we removed in 7y, and 7z, respectively. By definition of
r.ki,ka, j1, j2, Ny it holds that (note that the A dependency is dropped for sim-

plicity)
641> L4, form € {L.....ky =1} N 2N = 1), n € {L..... Nu}.(63)
0% > LY4 forn e {1,..., j1},

|EJ(']1€331| <L'*%

|€5,m)|>L1/4, forme{l,....,ko =1} N2N, n € {l,..., N}, ©.4)
|Efzk2)|>Ll/4’ forn e {l,..., ja2},

=LY
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We let J; 1.(1) be the sequence of blocks remaining once the large stretch
removing procedure in the macro-block A is complete. To be more specific, the
subsequence of odd blocks (77,7, (4)i)ief1,-- rin2n—1) is defined as

Tk =0, forallk € {1,....k; — 1} N 2N — 1),
TiL (Wi, = €82 e%‘;f), (6.5)
T, Mk = 7, forallk e {k; +1,...,r}N(2IN—-1).

The subsequence of even blocks (77,7.(A)i)ieq1,....ryn2n is defined in the same way.

Remark 6.3. We stress that if we start with a sequence of blocks
A= (my,....,7m,) € QF,
then, in general, it is not true that the sequence

TL) = TrLMrs -+, T, (V)

we defined in (6.5) is still a decomposition of a x-prudent path, i.e., 7 1. (1) may
not belong to QF, for any s < /. For this reason we define here below a new set of
oriented paths, QIS”,‘L, which gathers the images of all paths in Q27 through 77 1 .
Definition 6.4. We say that a block sequence A = (7y,...,7), r € {0,...,L}
belongs to QISXL if and only if

e r < L and there exists k17 € 2IN — 1 and k, € 2NN such that k1,k, <
max{r,#} and ;; = @ fori € {1,....,k; — 2} N 2N — 1 and for
i €{l,...,kp —2} N 2N, whereas r; # @ fori € {ky,...,r} N2IN —1
and fori € {ko,...,r} N2N.

o the x orientation is respected (cf. Section 4.2), e.g., in the case of x = NE,
then, every m; with i € {kq,...,r} N (2IN — 1) is south-north (resp. west-
east) and every 7r; withi € {k»,...,r} N 2IN is west-east (resp. south-north).

e There is no restriction on the orientation and on the length of the first stretch
of m, and 7y, .

e The total length (the sum of the length of every stretches in (7q, ..., 7)) is
smaller than /.
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We conclude this section with the computation of an upper bound on the
cardinality of the ancestors of an arbitrary y € QL"L by T7;7,.. We denote by / the
total length of y. Let A € Q7 be an ancestor of y b_y 77,1 The total length of those
stretches removed from A by TJ; 1, to get y necessarily equals / — /. By definition,
cf. (6.5), the number of empty blocks in y is k/1 = k12_1 (resp. k/2 = k22_2) for the
odd subsequence (resp. for the even subsequence) of blocks. Therefore, since T; 1,
may remove only stretches larger than L'/, the number v of stretches removed
from A to get y satisfies k; + k, +2 < v < (I — h)/L"/*. This suffices to write
the following upper bound

(—h)/LV/*

_ of !l —h v
(T <) 2 ( . )(ka;H). (6.6)

’ 4
v=k +k,+2

The summation in (6.6) runs over v which stands for the number of stretches
removed from A. Let us explain (6.6). Once v is chosen, reconstructing A requires
to choose the length of each removed stretches and these choices are less than the
binomial factor (l ;h) Once, the length of each removed stretch is chosen, one has
to chose their orientations which gives at most 2V choices. Finally, those deleted
stretches have to be distributed among the k, + k, + 2 blocks in y that have to be
completed by other stretches to recover A. This gives rise to the term (k/l +Z; o)
Then, the fact that k' + k,, +2 < (I — h)/L'/* allows us to bound from above the
right hand side in (6.6) by

L1/4

[(T1.2) " ()] < ecolloe)/ (6.7)

for some constant ¢y € (0, 00).

6.1.2. Large stretch removing procedure for a generic prudent path. We are
ready to define the map vy, which defines the large stretch removing procedure
applied to generic prudent path. We recall equation (4.5), which asserts that a path
w € QFSA can be decomposed into m = m(w) € IN macro-blocks (A1, ..., Ap).
Such macro-block decomposition is an element of ®,, ; and each macro-block
belongs to some ;7 (see (4.4)) with #; + --- + 1, = L. Thus, we define /] by
applying, for every i < m, the map T, 1 to A;, i.e.,

Vi (W) = (Toy L (A1), s Topo L (Am))- (6.8)
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The image set of QF* by v/} is therefore

Wa = U Y1 (Om,1)

meN

which is a subset of

U U | @i s x lmm, (6.9)

meN Ly+-+Lm=L (x;)7L €{NE,NW,SE,SW}
Xj—17X;

Let us observe that the union over m is finite, because, by Lemma 4.8, the number
of macro-blocks m is at most ¢L'/2, for some universal constant ¢ € (0, c0).
Moreover, let us observe that (6.9) is not a disjoint union.

The step will be complete once we show that /] is sub-exponential. To that
aim, we need an upper bound on the cardinality of (wg)—l(x) that is uniform
on the choice of A € ] (QPSAY), Thus, we pick A € ¥} (QPSM) and we con-
sider its macro-block decomposition (Aj, ..., A,). Before counting the num-
ber of ancestors of A by ¥}, one should note that A may belong to more than

one set of the form Qélixl X oo X Qé"‘L’x’". However, since m = O(L'/?)
(cf. Lemma 4.8) and since L; + --- + L,, = L, the number of such sets

is bounded from above by an‘g (%), for some ¢ € (0,00). This quantity is
less than c«/Z(C 52) < e2¢VLlog(l) Tt remains to count the number of an-

cestors of A within a given Qzll X +ee X QZ’; . By (6.7) above, this is at most

1/4 e . 3/4
eCoL1og(L)/LY™ o s peolmlog(L)/L ™ \which again is smaller than ec0L™ " log(L)

This suffices to conclude that le is sub exponential.

Remark 6.5. When we prove that /] is sub exponential, we have not taken into
account the fact that the large stretch removing procedure should also be applied
to the very last block of each macro-block. However, this affects only marginally
our computations and does not modify the sub-exponentiality of v/} . To be more
precise, if we also modify the very last block in any macro-block, then to bound
from above the number of ancestors of A by ¥ 1, we consider separately two parts.
In the first part, we apply the large stretches removing procedure to each macro-
block without consider the very last block of any macro-block. This part has been
already considered in the discussion above, which gave rise to (6.6) and (6.7).
Then we consider the large stretches removing procedure apply only to any last
block of any macro-block. It is not difficult to check that (6.6) provides an upper
bound also for this part of the procedure. Therefore, we conclude that also in this
general case (6.7) still holds up to a constant.
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6.2. Step 2. In Step 1 we considered w € QPSA" and we decomposed it into a
sequence of macro-blocks, cf. (4.5), A = (A1,...,An), where m = m(w) <
N. We let (Aq,...,An) = le (w) be the result of the large stretch removing
procedure. Each A; is defined by a sequence (7}, ..., ﬁﬁi) which is not necessary
concatenable, cf. Remark 6.3 and Section 4. In this step we aim at modifying all the
sequences (fr{ e frﬁi), fori = 1,...,m,inorder to recover a concatenable block
sequence. In the sequel this procedure will be referred to as the concatenating
block procedure.

Our procedure wz acts on W, 1, (recall (6.9)). To be more specific, wz takes
as an argument an element

A=Ay Km) € QL x o x @lmom
where m < ¢L'/2, where (L1, ..., L) is a sequence of length such that
Li+--+Lp=L,
v~vhere (x1,...,Xxm) is a sequence of orientations and where we keep in mind that

A is in the image set of le . As aresult, wg provides us with a sequence of macro-
blocks

where, for every i < m, /A\l- € fo with #; the total length of /~\l~.

We describe the procedure on a single modified macro-block A in Section 6.2.1
below. Later on, we generalize the procedure to the whole block-sequence in
Section 6.2.2.

6.2.1. Concatenating block procedure in a single macro-block. We pick i <
! € N and consider A = (71,...,7;) € QISXL such that the total length of A
equals A.

Recall the definition of kl(i) and kz(i) in Definition 6.4. By Remark 6.2 it
turns out that A fails to be concatenable only if |k; — ko] > 3 that is if there
exists an i < r such that 7;, 7,42 # @ and ;417 = @. In such case indeed, if
the last stretch of 7; and the first stretch of 77; 4+, have opposite orientations (see
Figure 8) then 7; and 7; 4, are not concatenable. Making 7; and 77; 4+, concatenable
possibly requires to slightly modify their structure. To be more specific, if the first
stretch of 7; 4, and/or the last stretch of 77; have zero length, then 7;1, and 7;
are always concatenable. In this case we do not need to change their structure
to make them concatenable. Otherwise, if the first stretch of 7;, has non-zero
length, then it is always possible to modify the first step in the first stretch of
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7i+2 to transform it into an inter-stretch, see Figure 8, and after this simple
transformation 7; and 7; 4+, become always concatenable. Thus, in the case where
k1 < k,—3 (the case k, < kj—3 is similar) it suffices to apply the aforementioned
transformation to each blocks 7y, 42, ..., Tx,—1 and to concatenate g, .. ., Tk,—1
into a unique oriented block, say ;. We remove those empty blocks 7; indexed in
{1,...,k1—2}N2IN—1landin{1,..., k» —2} N 2IN to get finally the concatenable
sequence (71, 7k, - .., r). The pathi = DAk, Do BT € Q.

73 3
)
T
. f
X —

l

1D A3 g
X

—

Figure 8. We consider a sequence (7, 72, 73) provided by the large stretch removing
procedure in Step 2. In this case we have that the large stretch removing procedure has
removed the block 77>. We modify the first step of the fist stretch of 773 in order to appear
artificially an inter-stretch. In such a way we can safely concatenate the blocks 7; with 773
in a unique block 71 & 73.

Remark 6.6. It is important to keep in mind that the concatenable sequence
(71, Tkys - - -, ) is not a standard decomposition of a NE-prudent path, cf. Defi-
nition 4.5: in this case we do not have any constriction on the first stretch of 7,
and 7, (if the last block was changed by the large stretches removing procedure)
other than to be smaller than L'/, cf. Remark 6.2. It is necessary to slightly re-
define 7| and 7%, in order to obtain two proper oriented blocks, say 7; and 75.
We also modify 77,_; and 7, in the same way to obtain the oriented blocks 75—
and 75, where s = (k1 + k2)/2 — 2. We observe that we can do this modification
to have that 75 C 7,. In such a way the block sequence (71, ..., 7T5) is a proper
decomposition of a NE-prudent path. We observe that a very crude bound tells
us that the number of ancestors of a block by this last transformation is bounded
above by its total number of stretches, which is smaller than /.



Collapse transition of the interacting prudent walk 421

Remark 6.7. In principle, if the last stretch of 7; and the first stretch of ;45
have both non-zero length and the same orientation, then it would be possible to
concatenate 77; with ;. Anyway, also in this case we modify the 7; 1, structure,
as prescribed by the aforementioned transformation. We do that for computational
convenience, as it will be clear in (6.10) below.

The procedure described above corresponds to the mapping

R QU — 9.
h<l

As we did in Section 6.1.1, we need to conclude this section by computing, for
h <1 < L and x € {NE, NW, SE, SW}, the number of ancestors in QL’CL of
a given y € Qp by R 1. To that aim, we write y := (71,...,75) € Qj and
we consider A = (T1,...,7Ty) € QLXL an ancestor of y by R; ;. For simplicity,
assume also that k; = kl(i) < kg(i) = k, and recall that, by Definition 6.4,
we have necessarily ki, k, < # Thus, we have necessarily that all blocks
(1, 3, ..., Tk, —2) and all blocks (72, 74, ..., Tk,—2) are empty. Moreover, we
explained above that 77; is essentially obtained by modifying the first step of the
first stretch of some oriented blocks in (g, , Tk, +2, - - . Tk,—1). This suffices to
write the following upper bound

[
(R <D 12'k1_k2'(|k1 - k2|), (6.10)

kyka<l/L'4 2

The summation in (6.10) runs over k1, k, which provides the number of empty
blocks at the beginning of the odd and even sequences of blocks in X and, once
k1 and k, are chosen, one can reconstruct (g, , Tk, +2, - - - » Tk,—1) from 7y by
decomposing 777 into (ko — k1)/2 groups of consecutive stretches. This provides
at most (|k1£k2|) choices since the number of stretches in 77, is at most /. Then

we have to take in account the transformation we made on the first step of the
first stretch of some oriented blocks in (7k,, Tk, +2. - - ., Tk,—1). This provide at
most two configuration for each such block and thus the factor 2/¥1 =2/, The factor
[ is due to the fact that we have at most / different way to choose 7,—; and
7k, and 7,1 and 7, cf. Remark 6.6. At this stage, it is sufficient to recall that
ky —ky < 1/L"* to rewrite (6.10) as

13
(R ()| < m2l/L1/4ellog(L)/L1/4 < ec1llog(L)/L1/4’ ©6.11)

for some ¢; € (0, 00).
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6.2.2. Concatenating block procedure for a generic path. We are ready to
define the map 7 on those generic macro-block sequences from W, ;. We
recall Definition 6.9, we pick m < c¢+/L and (L1,...,Ly) € IN™ satisfying
Li+---+ L, = L. Then, we pick

>

= (Kl, . ,/Km) c Qé}im N anL’xm’
and we define y? by applying, for every i < m, the map Ry, 1 to A;, i.e.,

Y2(A) i= Re, (M), ... Ry L (Am)). (6.12)

The image set of W, ;. by ¥7 is therefore denoted by W3 7, and it is a subset of

g g U i x-x o, (6.13)

m<cL1/2 lj4+~+ln<L (x;)"™_, €{NE,NW,SE,SW}

i=1
Xj_1#X;

where the union over m is truncated at ¢L.1/2 thanks to Lemma 4.8.

Remark 6.8. Let us stress the fact that, as explained in Section 6.1.2 above, a given
A € W,.1, may well belong to more than one set of the form Qi‘vﬁ Pxeex Qif(’lhxm .
This may be confusing because the definition of 7 in (6.1 2) seems to depe_nd on
the choice of Ly, ..., L,. However, this is not the case because the applications

;.1 do actually not depend on /.

The step will be complete once we show that 7 is sub-exponential. To that
aim, we need an upper bound on the cardinality of (wi)_1 (/A\) that is uniform on
the choice of A € Y7 (W5 ). Thus, we pick A € Y7 (W>,1) and we consider
its macro-block decomposition (A1, ..., A,,) which belongs to Qfll X +ee X Q;‘;’"
for some /1 + --- + [, < L. Before counting the number of ancestors of A by
¥#, one should note that the ancestors of A may belong to any set of the form
Qi},’f‘ X e -inf"L’xm with Ly+---+L,, < Land L; > [; foreveryi < m. Again,
since m < ¢+/L, the number of such sets is bounded above by (c 5Z) < eeVLlog(L),

It remains to count the number of ancestors of A within a given Qil S X x

Qi”zx” and by (6.11) above, this is at most e€1 L1108/ L% 5y pe1 Lm log(L)/L1/*

which again is smaller than e¢14**108(L)_ This suffices to conclude that 2 is sub
exponential.

Step 3. In this step we consider a macro-block sequence (/A\l, .. ./A\m) € Wi
and we begin by modifying each macro-block A; in order to recover a sequence
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of concatenable macro-blocks with only NE-orientations. Then we concatenate
those modified north-east macro-blocks to recover a two sided path. In the sequel
we refer to such procedures as macro-block concatenating procedure.

This procedure is defined through the function ¥}, which acts on W3 1. (re-
call (6.13)). To be more specific, 1//2 takes as an argument an element

A=(Rr, .. Ap) € Q1 x e x Qpm, (6.14)

By keeping in mind that A is in the image set of ¥ (y/}), in (6.14) m < cL'/? by
Lemma4.8, (/1,...,l,) € NJ is a given integer vector such that [y +---+/,, < L
and (xy, ..., Xp) is a sequence of orientations. As a result, 1//2 provides us with a
north east prudent path of length /; + --- + [,,,, i.e., an element of SZ?IE ety

6.2.3. Giving a macro-block a north-east orientation. In this section we pick
! € NN, x an orientation and we consider A= (71,....7r) € QF a macro-
block such that 7, := (E L i w,) either satisfies the upper exit condition, i.e.,
b+ ezrv, > maxo<j<n,{{] +---+ L]}, or satisfies the lower exit condition,
ie, ] +---+ Ly < mino<i<n,{€] + -+ £]} (we recall Definition 4.3).

Giving a north-east orientation to A and making sure that it will be concaten-
able with other north east macro-blocks requires to perform 3 transformations on
each A. Among those 3 geometric transformations, the first two are simple and the
third is more involved and we will describe it carefully below.

To begin with, we recall Section 4.2 and we observe that any two-sided prudent
path can be mapped onto a north-east prudent path subject to at most two axial
symmetries. Therefore, we map A onto iNE and we note that at most 4 ancestors
can be mapped onto the same north-east macro-block. For simplicity, we keep the
notation Ayg = (71, ..., s) and we note that 7 still satisfies either the upper exit
condition or the lower exit condition. At this stage, we need to make sure that iNE
will be concatenable with other north-east macro-blocks. To that aim, we follow
the procedure described in Step 2, i.e., in case 77 does not start by an inter-stretch
(£} # 0) we modify the first step of its very first stretch, in such a way that this
step becomes an inter-stretch. This amounts to add a zero-length stretch at the
beginning of #; and to reduce the length of £} by one unit. By reasoning as in
Step 2, this second transformation maps at most two macro-blocks onto the same
macro-block.

After these first two transformations, we can not yet claim that A is con-
catenable with any other north-east macro-blocks. The macro-block )AtNE is indeed
concatenable if 7, the last oriented block of )AKNE, satisfies the upper exit condi-
tion, but we have seen that it may well satisfy the lower exit condition. In this
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last case, we need to apply a third transformation to )ALNE to make sure that its
last block satisfies the upper exit condition. For this purpose we recall that 775_;
and 75 are obtained as a slight modification of 7,_; and 7, and 73 C 7, cf.
Section 6.2.1 and Remark 6.6. Moreover, we recall that 77, is the result of the
the large stretch removing procedure applied to 7., thus, the length of the first
stretch of 7, is smaller than L'/4. This ensures that there exists a partially di-
rected path 7 contained in 75_; U 7y and that contains 75 such that its first stretch
is smaller than L!/4, it has the same orientation of 7, and it satisfies the lower
exit condition. For instance in Figure 9 we draw a case where n = 5. To be

more specific, if 75— = ((77',... £} ") and &5 = (€f,...,£} ), then ei-
ther there exists k < NJ7' such that w1 = (€571, ... €51 €f,... . £3), or

7 = fis (and thus |€5| < L'/#). The choice of  could be not unique. To over-
step this problem, among all the possible candidates for 7z, we choose the one
with the minor number of stretches which contains 7. Therefore we replace = by
-7 = (—K,i_l, e —Kf\,s) inside 75—1 U 75. It is easy to check that after this last
transformation, 775 achieves the upper exit condition. However, after this transfor-
mation it could be necessary to slightly redefine 75— and 75 in order to obtain
two proper oriented blocks, say 7}_, and 7, as pictured in Figure 9. A very crude
bound tells us that the number of ancestors of a macro-block by this last transfor-
mation is bounded above by its total number of stretches, which is smaller than /.

The procedure described above corresponds to the application A; taking as
an argument any A e Q7 such that the last block of A satisfies either the upper
exit condition or the lower exit condition and maps it onto some )LNE € Q}“E. We
conclude that, for every y € QJ¥, we have

(A~ (v)] < 8L. (6.15)

6.2.4. Macro-block concatenating procedure. We consider a given A =
(/A\l, ... /A\m) € W3, 1, and we recall (6.14) so that A€ Q;‘l‘ XX Q;‘;’” . At this stage,
it is crucial to understand why, except maybe for j = m, all non empty macro-
blocks A from A have a last oriented block that satisfies either the upper exit con-
dition or the lower exit condition. To this purpose we consider A; = (my,..., 7, j)
the ancestor of /A\‘,- = (71,..., fr;j) by wg 0 le. There are two alternatives at this
stage: either the large stretch removing procedure in Step 1 has completely re-
moved 7, and then fr;j is associated with one of the (%) k<r;—1 which all satisfy
either the upper exit condition or the lower exit condition, or 7y, is associated
with ;. In this last case, we recall that the very last stretch of 7, (which is also
the last stretch of Aj) must cross all the macro-block so that a new macro-block
with a different orientation can start (see Figure 5 or Figure 9). This last condition,
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depending on the orientation of A;, implies that 7,; also satisfies either the upper
exit condition or the lower exit condition and so do fr;j.

We are now ready to define y7. We begin with deleting the empty macro-
blocks in /A\, so that it becomes (/A\il, ) ..,/A\im) € Qz_il‘ X oee X Qz:’, where
(liy, ..., 1;;) is the subsequence of (/1,..../,) containing only its non-zero el-
ements. Then we set

A=Ripo Rig) o= (A (Riy), A (Ry) € ng X +e X Q?; (6.16)

and we let ¢ 2 (/A\) be the two-sided path obtained by concatenating all the macro-
blocks in A, i.e.,

Yi(A) = Ai, @ @ Ay (6.17)

As a result, the image set of W3 1 by wz is denoted by W, 1 and it is a subset of
Un—1 Q.

@

—

(ii) (iii)

Figure 9. A prudent path obtained by the concatenation of two macro-blocks. We zoom in
on the first one, boxed in the rectangle. It has a NE-orientation. In (i) we observe that its last
block does not achieves the upper exit condition, but it satisfies the lower exit condition.
Therefore, in (ii) we apply a spatial symmetry to the last block in such a way that it satisfies
the upper exit condition. This changes the structure of the last two blocks. In (iii) we redefine
the last two blocks.
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The step will be complete once we show that 7 is sub-exponential. To that
aim, we need an upper bound on the cardinality of (;)~!(T") that is uniform on
the choice of ' € Wy 1. Thus, we pick ' € Wy 1, say I’ € QNE withn < L and we
reconstruct an ancestor A of I" by y/3. We must first choose m < ¢L'/? the number
of macro-blocks in /A\, then choose /m the number of non empty blocks in A. Then,
we must choose the indices of those non-empty macro-blocks which gives us
(%) possibilities and their lengths /;,, ..., ;.. Once, the latter is done it remains
to identify the sequence (A, ..., A;) (recall 6.16) an we can apply (6.15) to
conclude that the total number of ancestors is bounded above by

[(FARIEDS > (;) [18%, (6.18)
Jj=1

m<m<cL'/2 lij +++liz=n
and the right hand side in (6.18) is smaller than eC3L'21og L for some 3> 0.

Step 4. In this step we conclude our transformation of the prudent path by
showing how we concatenate all stretches picked off by the large stretch removing
procedure (cf. Step 1) with the rest of the NE-prudent path provided by Steps 1-3.
The result will be a NE-prudent path of length L.

We pick ' € Wy 1, say I' € QX and we denote by Sz.—, the west-east block
of length L —n that maximizes the energy, i.e, Sy _, is made of (L —n)'/? vertical
stretches of alternating signs of length (L —n)!/2 — 1 each. Then, the image of T
by wz is obtained by concatenating Sy, with T, i.e.,

The image set of W4, 1 by Y7, W5 1, is a subset of QY and the number of ancestors
of an element in QYF by ¥} is clearly less than L, which completes the step.

Step 5. We recall that the composition of those maps ¥/, ..., v} is denoted by
M . In this last step we are going to control the energy lost when we apply My to a
given w € QPSA We aim at showing that H () — H (M (w)) = o(L) uniformly
onw € QFAV,

Remark 6.9. We observe that the image of QPS4 by y? o v, that is W3z,
contains families of macro-blocks that are a priori not concatenable. For this
reason, we recall (6.14) and we define the energy of an element

A=A Ap) € Q) X x Q" € W3 g



Collapse transition of the interacting prudent walk 427

as the sum of the energies of its macro-blocks, i.e.,

H(A) =) Hp(Ay). (6.19)

x=1

The sets W4 1. and W5 1, in turn, only contain prudent paths whose energies are
well defined by (2.2).

In part (a) of the proof below we will show that the energy lost when applymg
Y2 oy} toagivenw € QIS is not larger than L + ¢, L3* with ¢; > 0 and L the
total length of those stretches removed by the large stretch removing procedure.
In part (b) we will show that the mapping ¥; induces at most a loss of energy
bounded by ¢, L3/* with ¢, > 0 and finally in part (c) we will observe that the gain
of energy associated with ¥} is L — L'/2, which will be sufficient to conclude.

(a) We pick w € and we denote by A = (A1, ..., Ay) its macro-block
decomposition. We set A = (Al, o Ap) = WL o wL(A) Because of
the definition of H (/A\) in remark 6.9, the interactions between the different
macro-blocks of A do not contribute anymore to the computation of H (A).
The next remark allows us to control the sum of the interactions between
different macro-blocks of A.

PSAW
QL

Remark 6.10. For j € {1,...,m}, we let E{ (resp. Eé) be the first stretch of
the subsequence of odd (resp. even) blocks of A ;. Because of the oriented
structure of any macro-block, for every j = 2,...,m, it turns out that
Aj interacts with Ay @ --- @ A;_; only through ¢, Zé and the number
of self-touching between A; and Ay @ --- @ A;_; is bounded from above
by |K{| + |€£| (see Figure 5).

As a consequence of Remark 6.10, the energy provided by the interactions
between the different macro-blocks of A is bounded above by A; + A, with

m
Ar =3 (01 sy + G 1L <1/ (6.20a)
j=1
m ) .
Ay =" (1] L1y + |e§|11{|%-|>u/4}). (6.20b)

Jj=1
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Then, the energy lost during the transformation of A into A comes on the
one hand from the loss of those interactions between macro-blocks and on
the other hand from the energy lost inside every macro-blocks due to the
large stretch removing procedure. As a consequence, we can write

H (A)— H(A) < Ay + Ay + Y (H(As) — H(Ay)), (6.21)

s=1

where we recall that for every s € {1, ..., m}, we have
As = Repr 0 T L(As)

with #; the total length of Aj.

At this stage, for s € {1,...,m}, we need to bound the energy lost in Ay
due to the large stretch removing procedure. We let L be the total length of
those stretches that have been removed and we claim that

H(As) = H(Ry) < L= 651520174 — 1L e 5 1/ + 2114, (6.22)

To understand (6.22) we must keep in mind that the number of self-touching
between two stretches is bounded above by the length of the smallest stretch
involved. This implies that, in the odd subsequence of blocks of Ay, the
number of self-touching between the first and the second stretch is bounded
by the length of the second one. Therefore, in the odd subsequence of blocks
of A, the number of self-touching that are lost when applying the last stretch
removing procedure is smaller than the sum of all stretches removed in the
odd subsequence of oriented blocks minus the length of the very first stretch
£1, plus the length of the first stretch that has not been removed which, by
definition is smaller than L!/#. Of course, the same is true for the even
subsequence and this explains (6.22).

At this stage, we combine (6.20 — 6.22) and we use the bound m < ¢L'/2
(which implies A; < 2¢L3/#) to conclude that

H(A)—H(A) <> L +4cL**, (6.23)
s=1

(b) Note that some energy may also be lost in every macro-block during the

third transformation described in Section 6.2.3, that is, in the construction
of 7. Recall (6.16) and the fact that the image of A by ¥} is denoted by
A and has a macro-block decomposition denoted by (A;,, ..., A, ). Pick
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s € {1,...,m} and note that after the first two transformations described
in Section 6.2.3, the macro-block /A\l-s has a north-east orientation. In case
the very last macro-block of A i, already satisfies the upper exit condition,
then the third transformation does nothing and /A\,-AY = A;,. In case the
very last macro-block of /A\is satisfies the lower exit condition, we observe
that it means necessarily that the large stretch removing procedure has not
removed completely the very last block of A; . Therefore, we apply the
third transformation that changes the sign of every stretches in the last block
and, if its first stretch is larger than L'/# then the third transformation also
changes the sign of the stretches of A i,_, between its last stretch smaller than
L% and its very last stretch. The existence of such stretch is ensured by the
large stretch removing procedure that we applied to the very last block of
Aj,, as we discussed in. Section 6.2.3. Therefore, by definition, in the third
transformation we have lost at most L!/# contacts and consequently

H(R)— HR) < Y (H(R;) — H(A)) <mLY* < cL¥*. (6.24)

s=1

(c) With the help of (6.21) and (6.24) above we have proven that for every
A € QPSM by letting A be the image of A by ¥3 o 2 oy}, it holds
that

H(A)— H(A) <Y Ly +5¢L%*, (6.25)

s=1
For notational convenience we set
m
L:= Z Ls.
s=1

In Step 4, we have built My (A) by concatenating a square block of length
L with A. The interactions inside the large square block are L — 2L'/? and
therefore

H(Mp(A)) > L—2LY2 + H(A). (6.26)
Finally, (6.25— 6.26) imply that for every L € N and every A € QF54V,
H(A) — HMp(A)) < 2LY? 4 5¢L3* <2LY? 4+ 5¢L%*,  (6.27)

and this completes the proof.
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7. Proof of Theorem 2.3
We pick L € N and we consider 8, the partially directed path that maximizes the
self-touching number. We have already seen in Step 4 of Section 6 that 87, is made
of v/L — 1 vertical stretches of length +/L each and that H(Sz) = L —2+/L. Our

proof goes as follows: for every € € (0, 1/60) we build the set of path G¢ ;. C QI5A"
such that for every L and ¢,

(1) H(w) = H(SL) — 13€L, for every w € S 1,

@) 19l = (5°).

As a consequence

1
FISAW ‘= liminf = 1 ZISAW
(B) := liminf —~log Zg7;

1 L/60\ B
zigg{ngréozlog( L ) +Z(H(SL)—13€L)} (7.1)
> B +supy lim llog L/60Y _ 13B¢
- €>0 —oo L €L ’

and this completes the proof since the supremum of the right hand side in (7.1) is
strictly positive because of our choice of ¢.

It remains to build the sets G ;. First, we partition the collections of VL -1
vertical stretches of 8y into groups of 6 consecutive vertical stretches and then
each group is divided vertically into rectangles of heights 10. This gives us a total
of L /60 rectangular boxes. On the left hand side of Figure 10 two configurations
(denoted by A and B) are drawn and each of them is made of 60 steps. An
important feature of configurations 4 and B is that one can fill every rectangular
box with an A or with a B configuration (see the right hand side of Figure 10)
and still recover a self-avoiding path of size L. The 8; path is obtained by
filling all boxes with configuration B. We also note that filling a box with an 4
configuration provides exactly 13 self-touching less than filling the same box with
a B configuration.

The set G 1, contains all paths obtained by filling the L/60 boxes with €L
blocks of type A and L(61—0 — ¢) blocks of type B. Thus, the cardinality of ¢ r, is
(“ 6/ 20) and the Hamiltonian of every path in Ge ;. is equal to H(81) — 13¢L. This

completes the proof.
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B A B B B A B B

1

{1 A A I B A |

::I B B A B B B B B

] I_I A B B B B B B | A

{1 T N I A A

configuration A  configuration B

B | B B A B | A4 B B

T o

Figure 10. On the left configuration A and B are drawn. The big squared block of size
V'L on the right is subdivided into /60 rectangular boxes, each of them can be filled
with configuration A or B without changing the fact that the resulting path is self-avoiding.
The set G,z contains all path obtained by filling € L boxes with configuration A and the
all the others with configuration B. Note, in the picture you have to run over the path by
starting on the left top, following the direction given by the arrow. This forces to cross any
configuration 4 and B in a unique way, marked by the arrow on the left side of the picture.

8. Free energy: convergence in the right hand side of (2.4)

The goal of this section is to prove the existence of the free energy for the NE-
prudent walk. For this purpose, we aim at using a super-additive argument, cf.
Proposition A.12 in [9]. It turns out that the sequence (Zﬁ? 1 )LeN is not log super-
additive, therefore we introduce a super-additive process, for which the free energy
exists, and we show that it rounds up/down ZF, .

The energy associated with a path is described by an Hamiltonian function
H (w), cf. (2.2). We let Q7>* C QU be the set of the whole NE-prudent paths

for which the upper exit condition is satisfied by all the blocks of the path and we
let Q7%* C Q™" be the set of the NE-prudent paths in Q7" for which the first

*

stretch of the path is equal to 0. We let ZgE’L and ZZEL* be the partition functions
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associated with these sets respectively. In the next lemma we prove that ZNE L is
log super-additive.

Lemma 8.1. The sequence (ZgE’L*) Len is log super-additive. As a consequence,

the free energy FYE-*(B) exists ant it is finite, i.e.,
~ 1
F&*(g) := Lli—>ngo 7 log ZgEz = zup log ZNE* < 00.

Proof. We start by showing the super-additivity. We pick 0 < L’ < L and we
consider two paths w; € Qf* and w, € fng_z, We note that we can safely
concatenate w; with w,, and obtain the path w; @ w,, which is an element of
QQE’*. Moreover, we note that H (w; ®w») > Hp/(w1)+Hr—r/(wz). We conclude

that,

2y = e
| w= wIEBwZ

SNE, *_ SNE,
(wi,w2)e, 7" x Q™

> 3 e PHL @D B 1(02) (8.1)

§NE * QNE *

(wy,wz)e L—L'

~7NE,* —NE, *
_ZB L’Zﬂ L-L"

To prove that the limit is finite, we observe that H (w) < L and thus
SNE,* S NE, *
Zg < PHQT < PRI

This concludes the proof because

limsup log|Q El < 0. O

L—o0
We are going to compare ZEEZ with ZgE’L*, in order to obtain the existence of
the free energy associated with ZNE *. By definition it holds that ZNE r < ZNE *.On

the other hand, we observe that given w € Q%E, if we keep out the ﬁrst stretch of w
(which has 0 length), then we obtain a path w’ € QYE . The map which associates
w with w’ is one to one, because there is only one way to add a stretch of 0 length
to a block. Since H (w) = Hz_;(w’), we conclude that ZNE r o> ZZE T Asa
consequence, we have that

FYE*(8) = Jim logZNE* and F"5*(8) = F'&*(8), forall 8 > 0.
(8.2)
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We are ready to bound from below and from above the function ZgE L bya
suitable function for which the free energy exists. We let

L
. NE, *
OLpi= Y ZgrZEM (8.3)
L'=1
It is a standard fact, cf.[9, Lemma 1.8] that the existence of the free energy of ZgE’Z
and ZP4 implies the existence of the free energy of @, g and

1
lim —log @7 g = max{FP5M(B) FNE*(B)} (8.4)
L—oo L ’

where FIPPSAT(8) is the free energy associated with ZEP]]{SAW (its existence was
proven in [5]).

Proposition 8.2. It holds that
Opp <Zf <’ Py (8.5)

As a consequence we have that the free energy of ZgE 1, exists and it s finite, i.e.,
1
NE . NE
F*(B) := Lhm T logZs~; < oo. (8.6)

Proof. To prove the lower bound in (8.5) we consider the family of disjoints sets
QY7 < QFPSAY with L' € {0,..., L}. Forany (', w”) € Ug<y <y Q7" x QPSAY,
Let w = w’ @ w” be the concatenation of w” with w’. Since

Hy (w) > Hp/(w') + Hp_p/(w")

we have

NE .__ H

NE
weQ

L
=y yemw
L'=0 Q.
w=w/$w//,

7 apn!? NE, * PDSAW
(w',w”)eQ, 7" xQ >

L
>3 Y AHEIHWY)
L'=0 weglE:
w=w'Gw”,
(wﬂw@eQﬁ*xQ?@ﬁ
L
_ NE,* —IPSAW
=) ZyrZE .
L'=1
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The strategy to prove the upper bound in (8.5) is similar to the strategy used
for the proof of Theorem 2.1 in Section 6. To be more precise, we associate with
each w € QJF two paths u’ € Qﬁ* and w’ € QFPSA for some 0 < L' < L,
with L’ = L’(w), through a sub-exponential function (cf. Definition 6.1). We let
(71, ..., ) be the block decomposition of w. We consider the last block 7, of
length L — L', for some L’ < L. We apply the large stretch removing procedure to
iy, i.e., by starting from the first stretch, we pick off all the consecutive stretches
larger than L'/# in the block 7. Let /. be the result of this operation. Let L be the
total length of the stretches that we picked off. We define an oriented block made
of \/f vertical stretches of alternating sings of length \/f — 1. This configuration
maximizes the energy of a block of length L. The orientation of this block is
the same as that of 7,. We concatenate this block with n. and we call w’ the
path obtained at the end of this operation. By construction w’ € QP52 We let
u i=m @ ® w1, so that (u', w’) € Qg}f* x QFPSAY The computations we
did in Steps 1 — 4 in Section 6 ensure that the function which associates w with
(v, w’) is sub-exponential and, by reasoning as in Step 5 of Section 6, it turns out
that H (w)— (Hp (v')+ Hp—r/(w')) < o(L), uniformly on w € Q. This suffices
to conclude the proof. O
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