
Ann. Inst. Henri Poincaré Comb. Phys. Interact. 5 (2018), 513–555

DOI 10.4171/AIHPD/61

Rigged configurations and cylindric loop Schur functions

Thomas Lam,1 Pavlo Pylyavskyy,2 and Reiho Sakamoto

Abstract. Rigged configurations are known to provide action-angle variables for remark-

able discrete dynamical systems known as box-ball systems. We conjecture an explicit

piecewise-linear formula to obtain the shapes of a rigged configuration from a tensor prod-

uct of one-row crystals. We introduce cylindric loop Schur functions and show that they

are invariants of the geometric R-matrix. Our piecewise-linear formula is obtained as the

tropicalization of ratios of cylindric loop Schur functions. We prove our conjecture for the

first shape of a rigged configuration, thus giving a piecewise-linear formula for the lengths

of the solitons of a box-ball system.
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1. Introduction

Kashiwara [8] introduced crystal bases as combinatorial analogues for irreducible

representations of quantum groups. In this paper we will be concerned with tensor

products of the Kirillov–Reshetikhin crystals, which we loosely call affine crystals,

associated to a certain class of finite-dimensional representations of the quantum

affine algebra Uq.�sln/.

As a set, an affine crystal B D Br1;s1 ˝ Br2;s2 ˝ � � � ˝ Brm;sm of type �sln
is the direct product of sets of semistandard Young tableaux (with entries in

¹1; 2; : : : ; nº), of rectangular shape ri � si . Affine crystals are equipped with a

remarkable combinatorial R-matrix RWBr;s˝Br 0;s0

! Br 0;s0

˝Br;s that generates

an action of the symmetric group Sm on B .

Rigged configurations are collections

.�; J / D ¹.�.0//; .�.1/; J .1//; .�.2/; J .2//; : : : ; .�.n�1/; J .n�1//º

of partitions �.a/ and integer sequences J .a/ subject to certain conditions (see Sec-

tion 3.2). The rigged configurations were introduced in the papers [11, 13], motivi-

ated by the Bethe ansatz for the isotropic Heisenberg model (see [14] for the pre-

cise relation between them). The rigged configuration bijection ˆWB ! ¹.�; J /º

[16] establishes a bijection between the affine crystal, modulo the combinatorial

R-matrix, and a set of rigged configurations. This bijection is reviewed in Sec-

tion 3.3.1

In recent years, it has been realized that rigged configurations can be thought

of as action-angle coordinates of certain discrete dynamical systems known as

box-ball systems [17] (see [33] for related references). Box-ball systems are sur-

prisingly rich integrable systems defined using elementary rules (see Section 2).

In the language of dynamical systems, finding the rigged configuration is akin to

solving an initial value problem, and the inverse ˆ�1 of the rigged configuration

bijection has been written down explicitly as piecewise-linear functions in the case

B D B1;s1 ˝ B1;s2 ˝ � � � ˝ B1;sm [18, 31] (see [33, Section 5] for an introductory

account). This inverse ˆ�1 is expressed in terms of certain �-functions which

play a similar role in this theory as the classical �-functions play in the traditional

theory of integrable systems.

The present work is concerned with a piecewise-linear description of the map

ˆ, in the special case that B D B1;s1 ˝ B1;s2 ˝ � � � ˝ B1;sm is a product of

one-row crystals. Let p D b1 ˝ � � � ˝ bm 2 B . We let x
.iCj �1/
j stand for the

number of occurrences of the letter i in bmC1�j . The rigged configuration ˆ.p/

1 A Mathematica implementation of the bijection ˆ is available at [35].
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is invariant under the combinatorial R-matrix action on B , and thus we expect each

part �
.a/

k
of each partition (and also every rigging) in ˆ.p/ to be expressed as a

piecewise-linear expression in x
.i/
j invariant under the combinatorial R-matrix.

Since the combinatorial R-matrix generates an action of the symmetric group

Sm, the answer we seek maybe thought of as a tropical analogue of a symmetric

function.

There is a rational-lifting of the entire story, where combinatorial crystals are

replaced by geometric crystals [1], and combinatorial R-matrices by geometric

R-matrices. For example, Yamada [41] considered a geometric analogue of the

piecewise-linear formula [6] of the combinatorial R-matrix for the tensor product

of one row crystals and introduced the elementary loop symmetric functions as

polynomial invariants for the geometric R-matrix. Lam and Pylyavskyy [21] have

studied the ring of polynomial invariants of the geometric R-matrix, called the

ring of loop symmetric functions LSymm. In [22] it was shown that the energy

function of the affine crystal is equal to the tropicalization of a loop Schur function,

the analogue of a Schur function in the ring LSymm. The energy function plays

a crucial role in affine crystal theory, especially in the relation with solvable

lattice models. This project began with the hope that formulae for the rigged

configuration ˆ.p/ could be obtained as tropicalizations of other distinguished

elements in LSymm.

In Theorem 4.4 below, we introduce cylindric loop Schur functions and show

that they are invariants of the geometric R-matrix. These are analogues in the ring

LSymm of the cylindric Schur functions studied by McNamara [24] and Postnikov

[30], in a very different context. Our main conjecture (Conjecture 5.3) states that

each �
.a/

k
, as a function of x

.i/
j , has an expression of the form

�
.a/

k
D trop

�s
.0/

Da.�.a;k�1//

s
.0/

Da.�.a;k//

�
.x

.i/
j /

where s
.0/

Da.�.a;k//
denotes a particular cylindric loop Schur function that we define.

For the precise definitions, see Section 5. We remark that direct computations of

explicit piecewise-linear formulae for ˆ.p/ for certain examples are presented

in [12] (see Remark 5.7).

We prove our main conjecture in the case that a D 1, that is, we are concerned

with the first part of the rigged configuration ˆ.p/. This case is the most important

from the point of view of box-ball systems: the sequence �
.1/
1 ; �

.1/
2 ; �

.1/
3 ; : : : is

exactly the sequence of lengths of the solitons in the corresponding box-ball

system, arranged in increasing order. As a corollary, we obtain an upper bound

for the number of solitons contained in a path (Corollary 6.4). Another interesting
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property of the a D 1 case is that we can write down the polynomials involved in

this case in a very explicit form (Proposition 6.6). Our proof relies heavily on the

results of Lam and Pylyavskyy [22] and Sakamoto [32].

We now discuss possible implications of our Conjecture 5.3. The basic struc-

ture of our proof for the �.1/ case (Theorem 6.1) is as follows. The results

of [32] (see Theorem 3.6) expresses the partition �.1/ in terms of combinatorial

R-matrices and energy functions by using time evolutions of the box-ball systems

(see the diagram (3) and Definition 2.4). We make use of the explicit formula for

the energy [22] (see Theorem 6.9) to obtain Theorem 6.1. Now the results of [32]

implies that the information of �.a/ for a > 1 is essentially connected with more

general crystals Br;s even if we only consider the case p 2
N

i B1;si . Also the

formulation of Conjecture 5.3 is uniform for arbitrary �.a/. On the other hand, a

construction of geometric crystals for the general case
N

i Bri ;si is still an open

problem. Therefore it is tempting to say that our Conjecture 5.3 provides support-

ing evidence that geometric crystals for arbitrary Kirillov–Reshetikhin crystalsN
i Bri ;si should have a beautiful structure. We hope that our result provides a

motivation for their construction.

Note that in [26] Okado has pursued a related idea of defining rigged config-

urations over Q, with the goal of eventually defining them over R. Our formulas

accomplish exactly that for the special case of tensor products of one-row crystals.

This paper is organized as follows. In Section 2, we review necessary back-

ground on the box-ball systems and crystal bases. In Section 3, we review the

theory of rigged configurations and the rigged configuration bijection. In Sec-

tion 4, we review the theory of loop symmetric functions. Then we introduce the

cylindric loop Schur functions and show that they belong to the ring of loop sym-

metric functions. In Section 5, we formulate our conjecture about the shapes �.a/

of the rigged configurations. In Section 6, we provide a proof for the case �.1/ and

discuss related subjects.

A Mathematica implementation of the main constructions in the present paper

is available at [35].

Acknowledgement. We thank Gabe Frieden for pointing out a number of errors

in an earlier version of this article, including an important correction to Conjec-

ture 5.3.
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2. Box-ball systems

2.1. Definition. The content of the present work is deeply interrelated with a

remarkable discrete soliton system called the box-ball system. In the simplest

case, the box-ball system is a dynamical system defined over sequences of positive

integers which we call paths. The following is a typical example of the dynamics:

t D 0:  332   42   4                 

t D 1:     332  42  4                

t D 2:        332 42 4               

t D 3:           33 4242             

t D 4:             33 2 442          

t D 5:               3 32  442       

t D 6:                3  32   442    

t D 7:                 3   32    442 

Here “ ” is a substitute for the letter 1 which we regard as an empty place. The

time evolution proceeds from top to bottom as indicated by the time variable t .

When t D 0, we see three distinctive chunks of lengths 3, 2 and 1. We regard them

as three solitary waves (solitons). For t D 0; 1; 2, these three solitons propagate at

the velocity equal to each length. At t D 3; 4, there are collisions of the solitons,

though we regain lengths 1, 2 and 3 solitons at t D 5; 6; 7. This is a characteristic

feature of ordinary soliton systems.

Let us denote the path at time t by .T 1;1/t .p/ where p is the initial state

(t D 0). In order to prevent the balls moving out of the path, we assume that

the right part of p is a sufficiently long sequence of the letter 1. Then we have

the following interpretation of the time evolution T 1;1 in terms of boxes and

balls [39]. In this picture, we regard paths as arrays of capacity one boxes and

the letters a > 1 as balls that can fill the boxes. Then we introduce the operators

Ka .a > 1/ which act on the paths by the following procedure.

(1) Move the leftmost ball a to the nearest empty place on the right.

(2) Among the untouched balls a, move the leftmost a to the nearest empty place

on the right.

(3) Repeat the procedure until all the balls a are moved exactly once.

Suppose that the maximal number used in the path p is n. Then we define

T 1;1.p/ D K2K3 � � �Kn.p/:

When n D 2, the system reduces to the original Takahashi–Satsuma system [40].
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2.2. Crystals. In order to fully clarify the mathematical structures behind box-

ball systems, Kashiwara’s crystal base theory [8] provides a powerful tool. Let

Br;s be the Kirillov–Reshetikhin crystal of type �sln. Here r 2 I0 where

I0 WD ¹1; 2; : : : ; n� 1º

and s 2 Z>0. As a set, Br;s is comprised of all rectangular semistandard tableaux

of height r and width s, over the letters 1; 2; : : : ; n. On Br;s, we introduce an

algebraic structure by the Kashiwara operators Qei ; Qfi (i D 0; 1; : : : ; n). For the

explicit forms of their actions, we refer to [10] for the i 2 I0 case and to [38] for

the i D 0 case. See [27] for a concise introduction to the subject.

One of the nice properties of crystal bases is that they have a nice tensor

product. As a set, B ˝ B 0 is just the product of B and B 0 and one can define the

crystal structure on them in the following way. For b 2 Br;s, define the functions

"i ; 'i WB 7�! Z by

"i .b/ D max¹m � 0 j Qem
i b ¤ 0º; 'i .b/ D max¹m � 0 j Qf m

i b ¤ 0º:

Then the Kashiwara operators act on B ˝ B 0 according to the following rule:

Qei .b ˝ b0/ D

´
Qeib ˝ b0 if 'i .b/ � "i .b

0/;

b ˝ Qeib
0 if 'i .b/ < "i .b

0/;

Qfi .b ˝ b0/ D

´
Qfib ˝ b0 if 'i .b/ > "i .b

0/;

b ˝ Qfib
0 if 'i .b/ � "i .b

0/:

Note that we use Kashiwara’s original convention [8] for the tensor product.

The tensor product B ˝ B 0 has two additional natural structures called the

combinatorial R-matrix and the energy function [9]. The combinatorial R-matrix

is the unique crystal isomorphism which swaps the two components RWB˝B 0 7�!

B 0 ˝ B . On the other hand, the energy function H WB ˝ B 0 7�! Z is defined by

the following axiom. For an element b ˝ b0 2 B ˝ B 0, suppose that we have

RW b˝b0 7�! Qb0˝ Qb. Under this situation, we have the following four possibilities

for the actions of Kashiwara operators:

(LL) R. Qeib ˝ b0/ D Qei
Qb0 ˝ Qb;

(LR) R. Qeib ˝ b0/ D Qb0 ˝ Qei
Qb;

(RL) R.b ˝ Qeib
0/ D Qei

Qb0 ˝ Qb;

(RR) R.b ˝ Qeib
0/ D Qb0 ˝ Qei

Qb:
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Then the function H is uniquely defined by the following relations

H. Qei.b ˝ b0// D

8
ˆ̂<
ˆ̂:

H.b ˝ b0/C 1 if i D 0 and case (LL) occurs,

H.b ˝ b0/ � 1 if i D 0 and case (RR) occurs,

H.b ˝ b0/ otherwise,

up to some additive constant. As a side remark, the origin of this axiom is the

Yang–Baxter relation for the so-called affine combinatorial R-matrices.

Following [38] (see also [37]) we give an explicit combinatorial description

of combinatorial R-matrices and energy functions. Let Y be a semistandard

tableau and x be some positive integer. We denote by .Y  x/ the Schensted

row insertion. We define the insertion of more general words by .Y  xy/ D

..Y  x/  y/ and so on. Denote the rows of Y by y1; y2; : : : ; yr from

top to bottom. Then the row word row.Y / is defined by concatenating rows:

row.Y / D yryr�1 � � �y1. Finally, let � D .�1; �2; : : :/ and � D .�1; �2; : : :/ be two

partitions. Then the concatenation of � and � is the partition .�1C�1; �2C�2; : : :/.

Theorem 2.1. Let b ˝ b0 2 Br;s ˝ Br 0;s0

. Then the image of the combinatorial

R-matrix

RW b˝ b0 7�! Qb0 ˝ Qb 2 Br 0;s0

˝ Br;s

is uniquely characterized by

.b0  � row.b// D . Qb  � row. Qb0//:

Moreover, the energy function H.b ˝ b0/ is given by the number of nodes of

.b0  � row.b// outside the concatenation of the partitions .sr / and .s0r 0

/.

Example 2.2. Let b˝b0 2 B2;2˝B3;3 and Qb0˝ Qb 2 B3;3˝B2;2 be the following

elements:

b ˝ b0 D 2 2
3 4

˝
1 1 3
2 3 4
4 5 5

; Qb0 ˝ Qb D
1 2 2
3 3 4
4 4 5

˝ 1 3
2 5

:

Then we have RW b ˝ b0 7�! Qb0 ˝ Qb since we have

0
@

1 1 3
2 3 4
4 5 5

 � 3422

1
A D

�
1 3
2 5

 � 445334122

�
D

1 1 2 2 4
2 3 3 3
4 4 5
5

:

In the tableau on the right hand side, we have one node which is outside of the

shape . Therefore we have H.b ˝ b0/ D 1.
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In general, let p 2 B D Br1;s1 ˝ Br2;s2 ˝ � � � ˝ Brm;sm . Suppose that

B 0 is an arbitrary reordering of the rectangles of B . Then we obtain a map

RWp 7�! p0 2 B 0 by successive applications of the local combinatorial R-

matrices.

2.3. Time evolutions. Following the papers [6, 5], we introduce a crystal basis

formulation of box-ball systems. The states of the box-ball system are elements

of tensor products of crystals, which we call paths. Suppose that we are given the

path:

p D b1 ˝ b2 ˝ � � � ˝ bm 2 Br1;s1 ˝ Br2;s2 ˝ � � � ˝ Brm;sm : (1)

In the following, we define the time evolutions T r;s (r 2 I0, s 2 Z>0) of the

box-ball system on p.

The operator T r;s depends on the choice of the highest weight element ur;s 2

Br;s. Here ur;s is given explicitly as follows:

ur;s WD

s‚ …„ ƒ
1 1 1 � � � 1

2 2 2 � � � 2
:::

:::
:::

: : :
:::

r r r � � � r

2 Br;s: (2)

Let us express the isomorphism RW b ˝ b0 7�! Qb0 ˝ Qb by the following vertex

diagram:

✲

❄

b

b0

Qb0

Qb

For the selected values of r and s, we set u.1/ WD ur;s and consider the following

diagram:

✲

❄

u.1/

b1

b0
1

u.2/ ✲

❄

b2

b0
2

u.3/♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ✲

❄

u.m/

bm

b0
m

u.mC1/

(3)
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More precisely, we have RWu.1/˝b1 7�! b0
1˝u.2/, and by using u.2/, we compute

RWu.2/ ˝ b2 7�! b0
2 ˝ u.3/, and continue similarly.

Then, by using the bottom row of (3), we define the time evolutions T r;s of the

box-ball system as

T r;s.p/ WD b0
1 ˝ b0

2 ˝ � � � ˝ b0
m:

Thus we obtain an infinite set of time evolutions T r;s depending on the parameters

r and s. By virtue of the Yang–Baxter relation of the combinatorial R-matrices,

we can show

T r2;s2T r1;s1.p/ D T r1;s1T r2;s2.p/

for arbitrary tensor products p, which implies that the box-ball system is inte-

grable. See [5] for details.

Example 2.3. The example given at the beginning of Section 2 corresponds to the

case p 2 .B1;1/˝30. In this case, we have T 1;3.p/ D T 1;4.p/ D � � � DW T 1;1.p/.

The following quantity was originally introduced in [5].

Definition 2.4. For the path p of (1), we define

Er;s.p/ WD

mX

kD1

H.u.k/ ˝ bk/

where u.1/ D ur;s and the remaining elements u.k/ are defined as in the dia-

gram (3).

3. Rigged configuration bijection

Rigged configurations are combinatorial objects which are in one to one corre-

spondence with elements of the tensor products of crystals. Originally, rigged

configurations were introduced in [11, 13] with a motivated by the Bethe ansatz for

the isotropic Heisenberg model [2]. Although there are serious technical difficul-

ties concerning the Bethe ansatz, recent progress [25, 15] has enabled us to make

the relationship between rigged configurations and solutions to the so-called Bethe

ansatz equations explicit [14] (see [3] for a recent follow-up). Nowadays, rigged

configurations are regarded as a canonical presentation of the affine crystals. For

example, several highly non-trivial involutions of the underlying algebras have

beautiful relationship with rigged configurations [28, 29].
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In Section 3.1, we prepare several basic definitions about the rigged config-

urations which we need in both Sections 3.2 and 3.3. In Section 3.2, we define

rigged configurations and in Section 3.3 we describe the bijection between the

tensor product of crystals and the rigged configurations. Sections 3.2 and 3.3 are

mostly independent with each other.

3.1. Basic definitions. In this paper, we consider rigged configurations corre-

sponding to tensor products of the form
N

i B1;si of type �sln. However, we remark

that rigged configurations have a natural generalization which includes arbitrary

tensor products
N

i Bri ;si [16].

We denote a rigged configuration in our case as follows:

.�; J / D ¹.�.0//; .�.1/; J .1//; .�.2/; J .2//; : : : ; .�.n�1/; J .n�1//º:

Here, for a D 0; 1; : : : ; n � 1, �.a/ D .�
.a/
1 ; �

.a/
2 ; : : :/ are partitions called the

configurations. For each part of the configuration �
.a/
i , we associate an integer

J
.a/
i called the rigging. We call the pair .�

.a/
i ; J

.a/
i / a string. For a 2 I0 and

k 2 Z�0, define the vacancy number as

P
.a/

k
.�/ D Qk.�.a�1// � 2Qk.�.a//CQk.�.aC1//;

Qk.�.a// D
X

i

min.k; �
.a/
i /:

Here we understand that �.n/ D ;.

In the following, we assume that every .�.a/; J .a// contains the string .0; 0/.

Note that we always have P
.a/
0 .�/ D 0.

3.2. Rigged configurations. On the set of all possible .�; J /, we have to impose

several conditions to specify valid rigged configurations. For this purpose we

first explicitly identify the rigged configurations corresponding to highest weight

vectors, and then use the Kashiwara operators introduced by Schilling [36] to

generate the rest of the rigged configurations. In [34, Section 3] it is shown that

these operators satisfy the axioms of crystals directly from their definition and the

definitions of rigged configurations.

If all the strings .�
.a/
i ; J

.a/
i / of .�; J / satisfy the condition

P
.a/

�
.a/

i

.�/ � J
.a/
i � 0;

then .�; J / is the rigged configuration corresponding to a highest weight vector.

For the string .�
.a/
i ; J

.a/
i /, the quantity P

.a/

�
.a/

i

.�/ � J
.a/
i is called the corigging.
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Definition 3.1. Let x` be the smallest rigging of .�.a/; J .a//.

(1) If x` � 0, define Qea.�; J / D 0. Otherwise let ` be the minimal length of

the strings of .�.a/; J .a// with the rigging x`. Then Qea.�; J / is obtained by

replacing one of the strings .`; x`/ by .` � 1; x` C 1/ while changing all the

other riggings to keep the coriggings fixed.

(2) Let ` be the maximal length of the strings of .�.a/; J .a// which have the

rigging x`. Then Qfa.�; J / is obtained by replacing one of the strings .`; x`/

by .`C1; x`�1/ while changing all the other riggings to keep the coriggings

fixed. If the new rigging exceeds the corresponding new vacancy number,

redefine Qfa.�; J / D 0.

The set of all rigged configurations is then obtained by applying Qfa (a 2 I0)

on the highest weight rigged configurations in all possible ways.

Here some remarks are in order. In the theory of rigged configurations,

the ordering of rows of �.a/ is not essential. Thus we can think of a rigged

configuration as a set of strings. Also we remark that the partition �.0/ of .�; J /

specifies the shape of the corresponding tensor product. More precisely, if we

consider
N

i B1;si , then we have �.0/ D .s1; s2; : : : ; sm/.

Example 3.2. Let us consider the following rigged configuration .�; J /:

1

1

1

1

0

0

0

0

0

0

0 0

Here the partitions correspond to �.0/; : : : ; �.3/ from left to right. For �.1/; �.2/

and �.3/, we put the vacancy number (resp. rigging) to left (resp. right) of the

corresponding row of the diagram. Note that .�; J / is highest weight element.
Qf1.�; J / is the following rigged configuration:

1

0

1

1

�1

0

0

0

0

0

0 0

Let us compute Qf2.�; J /. First we obtain the following object:
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1

1

1

1

0

0

�2

0

�1

0

0 0

However .�.2/; J .2// contains the string .3;�1/ and its rigging exceeds the corre-

sponding vacancy number �2. Therefore we have Qf2.�; J / D 0. Finally, Qf3.�; J /

is the following:

1

1

1

1

0

0

1

0

1

0

�1 �1

In the next section, we will define the bijection between rigged configurations

and elements of tensor products of crystals. Under this bijection, .�; J / corre-

sponds to 1 1 1 ˝ 2 2 ˝ 1 3 ˝ 4 ˝ 3 .

3.3. The rigged configuration bijection. One of the most important con-

stituents of the rigged configuration theory is a bijection between tensor products

of crystals and rigged configurations

ˆWB1;s1 ˝ B1;s2 ˝ � � � ˝ B1;sm 7�! ¹.�; J / j �.0/ D .s1; s2; : : : ; sm/º:

We call ˆ the rigged configuration bijection. We remark that our bijection is a

special case of a more general bijection defined for Br1;s1˝Br2;s2˝� � �˝Brm;sm ,

see [16].

In order to define the rigged configuration bijection, we introduce an important

notion about strings. If the string .�
.a/
i ; J

.a/
i / satisfies the condition P

.a/

�
.a/

i

.�/ D

J
.a/
i (i.e., if the corresponding corigging is 0), we say the string is singular. We

remark that we always have the relation P
.a/

�
.a/

i

.�/ � J
.a/
i by construction of the

rigged configuration in Section 3.2.

Suppose that we are given

p D b1 ˝ b2 ˝ � � � ˝ bm 2 B1;s1 ˝ B1;s2 ˝ � � � ˝ B1;sm :

The construction of ˆ.p/ is a recursive procedure which proceeds from left to

right of p. To begin with, we suppose that the empty path corresponds to the empty

rigged configuration. Suppose that we have constructed ˆ.b1 ˝ b2 ˝ � � � ˝ bi�1/
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for some 1 � i � 1 < m. Suppose that the semistandard tableau representation of

bi is

bi D csi
� � � c2 c1 :

Again, the procedure ˆ is recursive starting from the letter c1. Suppose that we

have constructed up to the letter ck�1 and obtained the rigged configuration

ˆ
�
b1 ˝ � � � ˝ bi�1 ˝ ck�1 � � � c2 c1

�

D .�; I / D ¹.�.0//; .�.1/; I .1//; .�.2/; I .2//; : : : ; .�.n�1/; I .n�1//º:

Then the next rigged configuration

.�0; I 0/ WD ˆ
�
b1 ˝ � � � ˝ bi�1 ˝ ck � � � c2 c1

�

is obtained by the following procedure. Recall that we assume that .�.a/; J .a//

(a 2 I0) contains the empty singular string .0; 0/.

Main Algorithm

(1) Look for the largest singular string of .�.ck�1/; I .ck�1//. Let us denote the

length of the string by `.ck�1/.

(2) Recursively, we do the following procedure for a D ck � 1; ck � 2; : : : ; 2.

Suppose that we have determined `.a/. Then we look for the largest singular

string of .�.a�1/; I .a�1// whose length does not exceed `.a/. We denote the

length of the latter string by `.a�1/.

(3) �0 is obtained by adding one box to one of the singular strings of .�.a/; I .a//

with length `.a/, for a 2 I0. For �.0/, we add one box to a length k � 1 row.

(4) I 0 is defined in the following way. If the corresponding row is not changed

from �, we do not modify the rigging. Otherwise we choose the new rigging

so that the new string becomes singular in .�0; I 0/.

If we reverse the above procedure, we obtain the algorithm for the inverse

map ˆ�1 (see, for example, [32, Appendix A] for a description and an example).

A Mathematica implementation of the rigged configuration bijection is available

at the web page [35].

Example 3.3. Let us consider p D 2 ˝ 2 4 ˝ 3 . Then the rigged configuration

bijection proceeds as follows.
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ˆ
�

2
�
D �1 �1

ˆ
�

2 ˝ 4
�
D �1

�1

�1

�1

1 1 �1 �1

ˆ
�

2 ˝ 2 4
�
D �2

�1

�2

�1

1 1 �1 �1

ˆ
�

2 ˝ 2 4 ˝ 3
�
D �2

�2

�2

�2

1 1 �1 �1

Recall that general rigged configurations are defined by applying the Kashi-

wara operators Qfa (a 2 I0) to highest-weight rigged configurations. Concerning

the consistency with the rigged configuration bijection ˆ, we have the following

fundamental property [4, 34].

Theorem 3.4. For a 2 I0, the Kashiwara operators Qea and Qfa commute with the

rigged configuration bijection ˆW Œ Qea; ˆ� D Œ Qfa; ˆ� D 0.

Recall that we identify rigged configurations if the only difference is the

ordering of the rows of �.0/. On the other hand, if we swap positions of rectangles

in a tensor product of crystals, we need to apply the combinatorial R-matrix.

The following result [16] is a very deep and important property of the rigged

configuration bijection ˆ.

Theorem 3.5. Let p 2 Br1;s1 ˝Br2;s2 ˝ � � � ˝Brm;sm and let B 0 be an arbitrary

reordering of rectangles of B . If RWp 7�! p0 2 B 0, we have ˆ.p/ D ˆ.p0/.

We have constructed the rigged configuration bijection in a combinatorial

language. However, an important observation is that the algorithm ˆ itself is an

algebraic object in nature. More precisely, we have the following fundamental

result. Recall that we defined the quantity Er;s in Definition 2.4.

Theorem 3.6 ([32]). Let p 2 Br1;s1˝Br2;s2˝� � �˝Brm;sm and let .�; J / D ˆ.p/.

Then we have

Er;s.p/ D Qs.�
.r//: (4)

Recall that Qs.�.r// is the number of boxes in the first s columns of �.r/.
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This formula plays a crucial role in the present paper. Note that even if we

consider the special case p 2
N

i B1;si (as in the present paper), we still need to

consider the general time evolutions T r;s.

We remark that in [32], it is claimed that the relation (4) recovers the combi-

natorial procedure of ˆ.2 Therefore, not only the configurations �.a/ but also the

procedure ˆ has an algebraic origin. However, in order to determine the riggings

J .a/ from the energy functions, we still need a purely combinatorial procedure.

Thus the origin of the riggings is yet unclear.

4. Loop symmetric functions

For most of the details of this section we refer the reader to [21, 19, 22]. Fol-

lowing [22], we use the font xi to denote variables in the “geometric” or “ratio-

nal” world, distinguishing such variables from the variables xi in the “tropical”

or “combinatorial” world. Also the upper indices such as .k/ in x.k/ are always

taken modulo n. For the correspondence between the following constructions and

the crystal bases, see Section 5.1.

4.1. Birational R-matrices and loop-symmetric functions. The conventions

in this section are identical to those in [22]. For two n-tuples .x.1/; : : : ; x.n// and

.y.1/; : : : ; y.n// of variables and r 2 Z=nZ, denote

�r .x; y/ D

n�1X

sD0

sY

tD1

y
.rCt/

n�1Y

tDsC1

x
.rCt/:

For example, for n D 4, one has

�1.x; y/ D x.2/x.3/x.4/ C y.2/x.3/x.4/ C y.2/y.3/x.4/ C y.2/y.3/y.4/;

�2.x; y/ D x.3/x.4/x.1/ C y.3/x.4/x.1/ C y.3/y.4/x.1/ C y.3/y.4/y.1/;

�3.x; y/ D x.4/x.1/x.2/ C y.4/x.1/x.2/ C y.4/y.1/x.2/ C y.4/y.1/y.2/;

�4.x; y/ D x.1/x.2/x.3/ C y.1/x.2/x.3/ C y.1/y.2/x.3/ C y.1/y.2/y.3/:

2 More precisely, the relation (4) provides information for entire columns of each Br;s and

does not provide the data for each box of the column. However, it is shown that this information

contains enough data to determine the corresponding rigged configuration.
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Now define a rational map

RWQ.x.1/; : : : ; x.n/; y.1/; : : : ; y.n//! Q.x.1/; : : : ; x.n/; y.1/; : : : ; y.n//

by

R.x.i// D y.iC1/ �iC1.x; y/

�i .x; y/
and R.y.i// D x.i�1/ �i�1.x; y/

�i .x; y/
: (5)

We call R the birational R-matrix, or the geometric R-matrix.

If we are given m sets of variables ¹.x
.1/
j ; : : : ; x

.n/
j / j 1 � j � mº, then we

let Rk denote the rational map acting on Q.x
.i/
j /, fixing the sets of variables xj for

j ¤ k; k C 1, and then applying R to the variables xk ; xkC1.

Define the elementary loop symmetric functions e
.r/

k
as follows:

e
.r/

k
.x1; x2; : : : ; xm/ D

X

1�i1<i2<���<ik�m

x
.r/
i1
x

.rC1/
i2

� � �x
.rCk�1/
ik

:

For example, take n D 2 and m D 3. Then

e
.1/
1 D x

.1/
1 C x

.1/
2 C x

.1/
3 ; e

.2/
1 D x

.2/
1 C x

.2/
2 C x

.2/
3 ;

e
.1/
2 D x

.1/
1 x

.2/
2 C x

.1/
2 x

.2/
3 C x

.1/
1 x

.2/
3 ; e

.2/
2 D x

.2/
1 x

.1/
2 C x

.2/
1 x

.1/
3 C x

.2/
2 x

.1/
3 ;

e
.1/
3 D x

.1/
1 x

.2/
2 x

.1/
3 ; e

.2/
3 D x

.2/
1 x

.1/
2 x

.2/
3 :

By convention, e
.r/

k
D 0 for k < 0, and e

.r/
0 D 1. We call the upper index the

color. We denote the subring of ZŒx
.1/
1 ; x

.2/
1 ; : : : ; x

.n/
1 ; x

.1/
2 ; : : : ; x

.n/
m � generated by

the loop elementary symmetric polynomials e
.k/
i by LSymm. We call it the ring

of loop symmetric polynomials in m sets of variables. This ring was introduced

in [21] in the context of the theory of total positivity of loop groups.

Theorem 4.1 ([19, Theorem 4.3], see also [41]).

(1) The rational maps Rj generate a birational action of Sm on Q.x
.i/
j /.

(2) The loop elementary symmetric functions, and thus the ring LSymm they

generate, are invariants of this action.

In fact, in [19, Theorem 4.4] it was announced that all polynomial invariants

of this Sm action lie in LSymm.
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Theorem 4.2 (Lam-Pylyavskyy, unpublished). We have

LSymm ' Q.x
.i/
j /Sm \ QŒx

.i/
j �:

4.2. Loop Schur functions and cylindric loop Schur functions. A square

s D .i; j / in the i-th row (counting from top to bottom) and j -th column (counting

from left to right) has content c.s/ D i � j . Our notion of content is the negative

of the usual one.

Let �=� be a skew shape. A semistandard Young tableau T of shape �=� is

a filling of each square s 2 �=� with an integer T .s/ 2 Z>0 so that the rows are

weakly-increasing and the columns are strictly increasing. For r 2 Z=nZ, the

r-weight xwt.r/.T / of a tableaux T is

xwt.r/.T / D
Y

s2�=�

x
.c.s/Cr/

T .s/
: (6)

We shall draw our shapes and tableaux in English notation. Then the defini-

tion (6) gives the following correspondence:

T .1; 1/ T .1; 2/ T .1; 3/ T .1; 4/ � � �

T .2; 1/ T .2; 2/ T .2; 3/ T .2; 4/ � � �

T .3; 1/ T .3; 2/ T .3; 3/ T .3; 4/ � � �

T .4; 1/ T .4; 2/ T .4; 3/ T .4; 4/ � � �
:::

:::
:::

:::
: : :

7�!

x
.r/

T .1;1/
x

.�1Cr/

T .1;2/
x

.�2Cr/

T .1;3/
x

.�3Cr/

T .1;4/
� � �

x
.1Cr/

T .2;1/
x

.r/

T .2;2/
x

.�1Cr/

T .2;3/
x

.�2Cr/

T .2;4/
� � �

x
.2Cr/

T .3;1/
x

.1Cr/

T .3;2/
x

.r/

T .3;3/
x

.�1Cr/

T .3;4/
� � �

x
.3Cr/

T .4;1/
x

.2Cr/

T .4;2/
x

.1Cr/

T .4;3/
x

.r/

T .4;4/
� � �

:::
:::

:::
:::

: : :

:

(7)
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For example, let n D 3. Then the 1-weight of the following tableau is computed

as

T D

ı ı ı 1 1 1 3

ı 1 2 2 3 4

ı 3 3 4

7�!

ı ı ı x
.1/
1 x

.3/
1 x

.2/
1 x

.1/
3

ı x
.1/
1 x

.3/
2 x

.2/
2 x

.1/
3 x

.3/
4

ı x
.2/
3 x

.1/
3 x

.3/
4

Thus

xwt.1/.T / D .x
.1/
1 /2.x

.1/
3 /3x

.2/
1 x

.2/
2 x

.2/
3 x

.3/
1 x

.3/
2 .x

.3/
4 /2:

We define the loop skew Schur function by

s
.r/

�=�
.x/ D

X

T

x
wt.r/.T /

where the summation is over all semistandard Young tableaux of (skew) shape

�=� using the letters 1; 2; : : : ; m.

Example 4.3. Let n D 3 and m D 3. Then we have

s
.1/
2;1.x1; x2; x3/ D x

.1/
1 x

.3/
1 x

.2/
2 C x

.1/
1 x

.3/
2 x

.2/
2 C x

.1/
1 x

.3/
2 x

.2/
3 C x

.1/
1 x

.3/
3 x

.2/
2

C x
.1/
1 x

.3/
1 x

.2/
3 C x

.1/
2 x

.3/
2 x

.2/
3 C x

.1/
1 x

.3/
3 x

.2/
3 C x

.1/
2 x

.3/
3 x

.2/
3 ;

corresponding to the tableaux

1 1

2

1 2

2

1 2

3

1 3

2

1 1

3

2 2

3

1 3

3

2 3

3

where the upper left corner has content 0, and so gives a 1-weight with color 1.

Setting x
.1/
i D x

.2/
i D x

.3/
i D xi gives the usual Schur polynomial s2;1.x1; x2; x3/.
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In our definition of cylindric loop Schur functions we stay close to [24]. Define

the cylinder Qs to be the following quotient of integer lattice:

Qs D Z2=.n � s; s/Z:

In other words, Qs is the quotient of Z2 by the shift that sends .a; b/ into .aCn�

s; b C s/. The set Qs inherits a natural partial order from that on Z2 given by the

transitive closure of the cover relations .a; b/ < .aC 1; b/ and .a; b/ < .a; b� 1/.

A box in the i-th row and j -th column of the Young diagram has coordinates

.j;�i/.

We define a cylindric skew shape D to be a finite convex subposet of Qs.

We shall also often identify cylindric skew shapes D with infinite skew shapes

periodic under shifts by the vector .n� s; s/. The content of the coordinate .a; b/

in Z2 is given by �a � b. Note that the notion of color is still well-defined on Qs

as a shift by .n � s; s/ preserves the content modulo n.

The notion of semistandard tableau extends in an obvious way to periodic

fillings of cylindric shapes: a semistandard Young tableau of a cylindric skew

shape D is a map T WD ! Z>0 satisfying T .a; b/ � T .a C 1; b/ and T .a; b/ <

T .a; b�1/ whenever the corresponding boxes lie in D. For a cylindric skew shape

D, we define the cylindric loop Schur function by

s
.r/
D .x/ D

X

T

xwt.r/.T /;

where the summation is over all semistandard Young tableaux of cylindric skew

shape D. Note that in this definition we think of D as a finite subset of Qs

(otherwise, the monomial xwt.r/.T / would have infinite degree). By convention,

s
.r/
D .x/ D 1 if D is the empty set.

Theorem 4.4. Let D be a cylindric skew shape. Then the cylindric loop Schur

function s
.r/
D .x1; x2; : : : ; xm/ lies in LSymm.

The proof of Theorem 4.4 is given in Section 4.3.

Let �=� be a skew partition with the longest row �1 D n� s. Define Ds.�=�/

to be the set of squares obtained by periodically propagating �=� via a shift by

.n�s; s/. Note that only for certain �=� is Ds.�=�/ a well-defined cylindric skew

shape; however, every cylindric skew shape D is equal to Ds.�=�/ for some skew

partition �=�. If �1 < n � s, we have s
.r/

Ds.�=�/
D s

.r/

�=�
. Therefore, the cylindric

loop Schur function is a generalization of the loop Schur function.
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Example 4.5. For n D 3, s D 1 and � D .2; 1/, the corresponding cylindric shape

D1.�/ in Q1 is as follows:

� � �

� � �

Here the shift is .n � s; s/ D .2; 1/.

Let m D 3 as in Example 4.3. Then we have

s
.1/

D1.2;1/
.x1; x2; x3/ D x

.1/
1 x

.3/
1 x

.2/
2 C x

.1/
1 x

.3/
2 x

.2/
2 C x

.1/
1 x

.3/
2 x

.2/
3 C

x
.1/
1 x

.3/
1 x

.2/
3 C x

.1/
2 x

.3/
2 x

.2/
3 C x

.1/
1 x

.3/
3 x

.2/
3 C x

.1/
2 x

.3/
3 x

.2/
3 :

For example, the first three tableaux listed in Example 4.3 correspond to the

following cylindric semistandard tableaux:

1 1 � � �

1 1 2

1 1 2
� � � 2

;

1 2 � � �

1 2 2

1 2 2
� � � 2

;

1 2 � � �

1 2 3

1 2 3
� � � 3

:

On the other hand, extending the fourth tableaux from Example 4.3 periodically

we get

1 3 � � �

1 3 2

1 3 2
� � � 2

:

Since this is not a valid cylindrical semistandard tableau, it does not contribute to

s
.1/

D1.2;1/
. We can check that the rest of the tableaux do contribute to s

.1/

D1.2;1/
.

4.3. Proof of Theorem 4.4. Consider a grid network N.n; m/ on a cylinder,

consisting of n directed wires running from one boundary to the other, without

crossing, and m directed wires forming closed loops around the cylinder, crossing

the former n wires right to left. The case of n D 3, m D 2 is shown in Figure 1. We

assign variables x
.j /
i as weights to the crossings of wires (or vertices) as follows.

The i-th of the m closed loops carries all the x
.j /
i , j D 1; : : : ; n. The color j

increases along the n directed wires and decreases along the m directed closed

loops.
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x
.0/
1

x
.2/
1

x
.1/
1

x
.0/
2

x
.2/
2

x
.1/
2

Figure 1. The grid network N.3; 2/ on a cylinder.

The left endpoints of the n horizontal wires are called sources and denoted

0; 1; : : : ; .n � 1/, and the right endpoints are called sinks and denoted 00; 10; : : :,

.n�1/0. We fix the labeling conventions so that the first crossing to the right (resp.

left) of the source (resp. sink) j is labeled x
.j /
1 (resp. x

.j /
m ). We shall consider the

highway paths of [23] that start at sources and end at sinks. There are three allowed

ways for a highway path to pass through a vertex, shown in Figure 2. At each such

x

Figure 2. The three allowed ways for a highway path to pass through a vertex.

crossing a path picks up the weight 1 if it turned, or the weight x of this vertex if it

went through. The weight of a path p is the product of weights it picks up at each

of the vertices it passes through. The weight of a family of paths is the product of

the weights of each path in the family.

Example 4.6. The weight of the middle family of paths in Figure 1 is x
.0/
1 x

.1/
1 x

.2/
2 .

The weight of the right family of paths in Figure 1 is x
.0/
2 x

.1/
1 x

.2/
2 .

We call two highway paths non-crossing if they do not share common edges.

We remark that the definition of highway paths already forbids two such paths

crossing each other at a common vertex. We call a family of paths non-crossing

if any two paths in it are non-crossing.



534 Th. Lam, P. Pylyavskyy, and R. Sakamoto

Let D D Ds.�=�/ be a cylindric skew shape belonging to the cylinder n � s.

Thus the conjugate partitions �0 D .�0
1; �0

2; : : : ; �0
n�s/ and �0 D .�0

1; �0
2; : : : ; �0

n�s/

have n � s parts (some of these parts can be zero). Let r 2 Z=nZ. Define an or-

dered .n� s/-tuple S of the source vertices ¹0; 1; : : : ; n � 1º by

S D .�0
1Cr; �0

2�1Cr; �0
3�2Cr; : : : ; �0

i � .i�1/Cr; : : : ; �0
n�s� .n�s�1/Cr/

where all numbers are taken in Z=nZ. In view of the correspondence (7), the

colors for the weights corresponding to the first boxes of the columns of �=� are

exactly S . The condition that Ds.�=�/ is a valid cylindric skew shape implies

that �0
1 < �0

n�s C s C 1 D �0
n�s � .n � s � 1/ C n, so that the ordered subset

S does not “wrap” completely around the cylinder containing N.n; m/. Thus for

each column (the first column, in the following diagram) of the tableau �=�, we

consider the following type of a correspondence between the weight (7) and a path

on the following part of the grid on a cylinder.

x
.�/
�

x
.�C1/
�

x
.�C2/
�

x
.�C3/
�
♣
♣
♣
♣
♣
♣
♣
♣

7�!

�W ✉ ✲ x
.�/
1

✻

x
.��1/
1

✲

✲

x
.�C1/
2

x
.�/
2

x
.��1/
2

✻

✻

✲

✲

✲

x
.�C2/
3

x
.�C1/
3

x
.�/
3

✻

✻

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

Here we set r D 0 and � WD �0
1. Then the path starts from the bullet point (source)

indicated by �.

Similarly, define an ordered .n � s/-tuple R of the sink vertices ¹00; 10; : : :,

.n � 1/0º by

R D ..�0
1 � 1C r/0; .�0

2 � 2C r/0; .�0
3 � 3C r/0; : : : ;

.�0
i � i C r/0; : : : ; .�0

n�s � .n � s/C r/0/:

For a highway path p in N.n; m/ connecting a source s to a sink r , let `.p/ be

the degree of the weight of p. Equivalently, `.p/ is the number of interior vertices

that p goes through (and does not turn).

Proposition 4.7. There is a weight-preserving bijection between families .p1,

p2; : : : ; pn�s/ of non-crossing paths in N.n; m/, where pi connects Si to Ri and

has weight of degree `.pi / D #¹boxes in i-th column of Dº, and semistandard

Young tableau of the cylindric skew shape Ds.�=�/ with the numbers 1; 2; : : : ; m.
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Proof. Let T WD ! ¹1; 2; : : : ; mº be a cylindric semistandard Young tableau of

shape D. Let Ci be the i-th column of D. Then T .Ci / � ¹1; 2; : : : ; mº. We

construct from T .Ci/ a path pi from Si to Ri , as follows (see also the diagram

just before the proposition). For k D 1; 2; : : : ; m, at the k-th vertical closed loop

Lk in N.n; m/ we either (a) turn left at the first vertex of Lk that we encounter, and

turn right at the next vertex on Lk, or (b) go straight through Lk at the first vertex

of Lk we encounter. We choose option (a) whenever k … T .Ci/ and option (b)

whenever k 2 T .Ci/. This completely determines pi since we know the source

and the sink. Note that we will pick up a weight of x
.‹/

k
if and only if option (b) is

chosen, if and only if k 2 T .Ci /.

Then we can verify that the map T 7! .p1; p2; : : : ; pn�s/ gives the desired

bijection. It is straightforward to check that the semistandard condition on T

corresponds to the non-crossing condition for the paths pi and piC1 for any

1 � i < n�s. For the remaining pair pn�s and p1, recall that the shift .n�s; s/ does

not change the colors of the weights. Then the cylindric semistandard condition

ensures the non-crossing property of the paths pn�s and p1 as in the previous

case. �

Example 4.8. Consider the two families of paths in Figure 1. They correspond

to n D 3; m D 2; s D 1, � D .2; 1/, � D ;, r D 1. In this case S D .1; 0/ and

R D .2; 0/.

The same families arise also for n D 3; m D 2; s D 1, � D .2; 2/, � D .1/,

r D 2. In this case S D .0; 1/ and R D .0; 2/.

Recall that we have the symmetric group Sm acting on Q.x
.j /
i /.

Proposition 4.9. The loop cylindric Schur functions s
.r/
D .x1; x2; : : : ; xm/ lie in the

invariant subring QŒx
.j /
i �Sm .

Theorem 4.4 follows immediately from Proposition 4.9 and Theorem 4.2.

To prove Proposition 4.9, we employ the network machinery of [23]. In

particular, we will combine Lemmas 4.10 and 4.11 below.

Lemma 4.10 ([23, Theorem 6.2]). The Sm-action on the variables ¹x
.j /
i j i D

1; 2; : : : ; m and j 2 Z=nZº can be realized as a sequence of the local moves from

Figures 3 and 4.



536 Th. Lam, P. Pylyavskyy, and R. Sakamoto

x y 0x C y

Figure 3. Crossing merging/unmerging and crossing removal/creation moves.

xy
xCz

x

y

z

yz
xCz

x C z

Figure 4. The Yang-Baxter move.

In other words, by applying a sequence of the moves in Figures 3 and 4, we

can change the grid network N.n; m/ into itself, so that the vertex weights have

been changed by the action of any permutation w 2 Sm (acting via the geometric

R-matrix).

Consider any vertex weighted network N on a surface as in [23], which in

particular includes our grid networks N.n; m/ on a cylinder. For simplicity, we

assume that any highway path p in N is guaranteed to never use a vertex more

than once.

Let S D .S1; S2; : : : ; Sa/ be an ordered tuple of sources on N (lying on the

boundary of the surface) and R D .R1; R2; : : : ; Ra/ be an ordered tuple of sinks

on N of the same cardinality as S . Let MS;R;Œp�.N / denote the weight generating

function of non-crossing path families .p1; p2; : : : ; pa/, where pi goes from Si to

Ri , and has a fixed homotopy class Œpi �. Here Œp� D .Œp1�; Œp2�; : : : ; Œpa�/ is an

ordered tuple of homotopy classes of simple curves which begin and end on the

boundary of the surface.

Lemma 4.11. Suppose N and N 0 are related by one of the local moves depicted

in Figures 3 and 4. Then MS;R;Œp�.N / DMS;R;Œp�.N
0/.

Proof. This is a case-by-case verification for each of the local moves in Figures 3

and 4. The same calculation was carried out in [23, Theorem 3.2] in the case

where a D 1; that is, it was checked that the claim is true when we consider a

single path instead of a family of paths.
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For the moves in Figure 3 the additional check for the case of a family of paths

is trivial: at most two paths in the family can pass through the local picture, and

when two non-crossing paths pass through the local picture they will both pick up

no weight (the non-crossing condition forces the paths to turn at every vertex).

For the Yang-Baxter move in Figure 4, we need to consider the case of two

paths passing through the local picture, and the case of three paths. The latter

case is again trivial because there the paths will pick up no weight. For two paths

we must do a case-by-case check. We show one from the (short) list of needed

calculations, see Figure 5. The equality to verify in this case is

z � 1C x � 1 D .x C z/ � 1: �

Figure 5. Pairs of non-crossing highway paths with a fixed set of sources and sinks.

5. The conjecture

5.1. The tropicalization operation. Let P.x1; x2; : : : ; xr/ be a subtraction-

free rational function with integer coefficients in the variables x1; : : : ; xr . In

other words, we assume that P.x1; x2; : : : ; xr/ can be written as a ratio of

two polynomials with positive integer coefficients. We define the tropicaliza-

tion trop.P /.x1; x2; : : : ; xr/ of P.x1; x2; : : : ; xr/ to be the piecewise-linear func-

tion in the variables x1; x2; : : : ; xr , obtained from P.x1; x2; : : : ; xr/ by changing

C 7! min, � 7! C, and � 7! �. It is not difficult to see that trop.P / is well-

defined: it does not depend on which subtraction-free expression of P is used to

compute it. By convention, the polynomial P D 1 tropicalizes to the function 0.

From now on, we fix positive integers n and m. Our rational functions will be

in the variables ¹.x
.1/
j ; : : : ; x

.n/
j / j 1 � j � mº, and our piecewise-linear functions

will be in the variables ¹.x
.1/
j ; : : : ; x

.n/
j / j 1 � j � mº.
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The variables ¹.x
.1/
j ; : : : ; x

.n/
j / j 1 � j � mº are “coordinates” on the tensor

products of row crystals in Section 2.2, as follows. Suppose that we are given the

element p D b1 ˝ � � � ˝ bm 2 B1;s1 ˝ � � � ˝ B1;sm in a tensor product. Then we

let x
.iCj �1/
j stand for the number of occurrences of the letter i in bmC1�j .

The birational R-matrix of Section 4.1 is a rational transformation all of whose

coordinates are given by subtraction-free rational functions. It therefore makes

sense to ask for the tropicalization of this rational transformation, which will be

a piecewise-linear transformation in the variables ¹.x
.1/
j ; : : : ; x

.n/
j / j 1 � j �

mº. The following well-known result connects the birational R-matrix with the

combinatorial R-matrix defined in Section 2.2.

Theorem 5.1 ([6, 41]). The tropicalization of the birational R-matrix R is exactly

the combinatorial R-matrix R for tensor products of one row crystals.

The energy H.b ˝ b0/ of Theorem 2.1 can also be described in a similar way.

In fact, this result follows quite easily from the description of energy given in

Theorem 2.1.

Proposition 5.2. Let y.iC1/ be the number of occurrences of the letter i in b, and

let x.i/ be the number of occurrences of the letter i in b0. Then H.b ˝ b0/ D

trop.�1/.x; y/.

While we will not explicitly use these results, they do illustrate a general phe-

nomenon: the combinatorial algorithms and quantities in the box-ball system can

be lifted to the geometric/rational world. Furthermore, these lifts are expressed

in terms of loop symmetric functions. Our work presents an extension of this

philosophy to rigged configurations.

5.2. Tropicalization of cylindric loop Schur functions. In this subsection we

present our main conjecture: a loop symmetric function that tropicalizes to the

shapes of the rigged configuration. The positive integers n and m are always fixed.

Let 1 � s � .n � 1/. We define a partition �.s; r/ recursively as follows. Set

�.s; 0/ D .n � s/m to be a rectangle with m rows of length .n � s/. The partition

�.s; r C 1/ is obtained from �.s; r/ by removing the largest ribbon strip R from

�.s; r/ that contains all the boxes in the bottom row of �.s; r/, and such that R has

at most n boxes. Obviously we have �.s; 0/ � �.s; 1/ � � � � , and the sequence of

partitions eventually stabilize at the empty partition.
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For example, suppose n D 6; m D 7, and s D 2. Then the shapes are

It is possible for the ribbon strip R to have less than n boxes. For example,

suppose n D 6; m D 3, and s D 3. Then the shapes are

Recall that Ds.�.s; r// is obtained by propagating �.s; r/ periodically in the

plane by shifting n � s steps to the right and s steps up.

Conjecture 5.3. Let p D b1˝� � �˝bm 2 B1;s1˝� � �˝B1;sm and define x
.iCj �1/
j

to be the number of occurrences of the letter i in bmC1�j . Then for 1 � s � n� 1

and an integer r � 1, we have

trop
�s

.0/

Ds.�.s;r�1//

s
.0/

Ds.�.s;r//

�
.x

.i/
j / D �.s/

r ;

where �
.s/
r is the r-th part in the s-th shape of the rigged configuration ˆ.p/.

Our conjecture completely determines the shapes of the rigged configuration

ˆ.p/, but we have been unable to find a formula for the riggings themselves.

Problem 5.4. Find elements of Frac.LSymm/ that tropicalize to the riggings J .s/

of the rigged configuration ˆ.p/.

Example 5.5. Let n D 3 and m D 3. Then for s D 1, the shapes �.1; 0/; �.1; 1/; : : :

are given by

; ; � � �

The cylindric loop Schur functions are (see Example 4.5)

s
.0/

D1.2;2;2/
D x

.3/
1 x

.2/
1 x

.1/
2 x

.3/
2 x

.2/
3 x

.1/
3 ;

s
.0/

D1.2;1/
D x

.3/
1 x

.2/
1 x

.1/
2 C x

.3/
1 x

.2/
2 x

.1/
2 C x

.3/
1 x

.2/
2 x

.1/
3 C x

.3/
1 x

.2/
1 x

.1/
3

C x
.3/
2 x

.2/
2 x

.1/
3 C x

.3/
1 x

.2/
3 x

.1/
3 C x

.3/
2 x

.2/
3 x

.1/
3 :
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For s D 2, �.2; 0/; �.2; 1/; : : : are given by

; ; � � � :

In this case, we have to consider the shift .n� s; s/ D .1; 2/. Then the polynomial

s
.0/

D2.1;1;1/
consists of only one term:

s
.0/

D2.1;1;1/
D x

.3/
1 x

.1/
2 x

.2/
3 :

Let us use the following coordinates for the tableau representation of the path

p D b1 ˝ b2 ˝ b3,

p D 1x
.3/
3 2x

.1/
3 3x

.2/
3 ˝ 1x

.2/
2 2x

.3/
2 3x

.1/
2 ˝ 1x

.1/
1 2x

.2/
1 3x

.3/
1

DW 1a2b3c ˝ 1d 2e3f ˝ 1g2h3i :

(8)

In these coordinates, we have

trop s
.0/

D1.2;2;2/
D i C hC f C e C c C b;

trop s
.0/

D1.2;1/
D min¹i C hC f; i C d C f; i C d C b; i C hC b;

e C d C b; i C c C b; e C c C bº;

trop s
.0/

D2.1;1;1/
D i C f C c:

Then our formula reads �
.1/
1 D trop s

.0/

D1.2;2;2/
� trop s

.0/

D1.2;1/
, �

.1/
2 D trop s

.0/

D1.2;1/
,

and �
.2/
1 D trop s

.0/

D2.1;1;1/
.

For a numerical comparison, let us consider the following paths:

¹a; b; c; d; e; f; g; h; iº D ¹0; 1; c; 2; 3; 1; 3; 3; 4º

where the notation is as in (8). Then ˆ.p/ takes the following form.

c .�
.1/
1 ; J

.1/
1 / .�

.1/
2 ; J

.1/
2 / .�

.2/
1 ; J

.2/
1 /

0 .8;�5/ .4;�4/ .5;�1/

1 .8;�5/ .5;�4/ .6;�2/

2 .8;�5/ .6;�4/ .7;�3/

3 .9;�5/ .6;�3/ .8;�4/

4 .10;�5/ .6;�2/ .9;�5/

5 .11;�5/ .6;�1/ .10;�6/

6 .12;�5/ .6;�1/ .11;�7/

7 .13;�5/ .6;�1/ .12;�8/



Rigged configurations and cylindric loop Schur functions 541

As another example, let us consider the paths

¹a; b; c; d; e; f; g; h; iº D ¹2; 1; c; 3; 1; 1; 0; 1; 2º:

Then ˆ.p/ takes the following form.

c .�
.1/
1 ; J

.1/
1 / .�

.1/
2 ; J

.1/
2 / .�

.2/
1 ; J

.2/
1 /

0 .4; 1/ .2;�1/ .3;�1/

1 .4; 1/ .3;�1/ .4;�2/

2 .4;�1/ .4;�1/ .5;�3/

3 .5;�1/ .4;�1/ .6;�4/

4 .6;�1/ .4;�1/ .7;�5/

5 .7;�1/ .4;�1/ .8;�6/

6 .8;�1/ .4;�1/ .9;�7/

7 .9;�1/ .4;�1/ .10;�8/

In both cases, we see that the shapes of the configurations coincide with our

expression in terms of the cylindric loop Schur functions.

Example 5.6. Let us consider the case when �.2/ has more than one row. For that

purpose, we take n D 4 and m D 4. For s D 2, the partitions �.2; 0/; �.2; 1/; : : :

are given by

; ; � � � :

In this case, in order to construct D2.�.s; r//, we have to consider the shift

.n � s; s/ D .2; 2/. Then s
.0/

D2.2;2;2;2/
consists of one term:

s
.0/

D2.2;2;2;2/
D x

.4/
1 x

.3/
1 x

.1/
2 x

.4/
2 x

.2/
3 x

.1/
3 x

.3/
4 x

.2/
4 :

Next, we see that the following 14 tableaux contribute to s
.0/

D2.2;1;1/
:

1 1
2
3

1 1
2
4

1 1
3
4

1 2
2
3

1 2
2
4

1 2
3
4

1 3
2
3

1 3
2
4

1 3
3
4

1 4
2
4

1 4
3
4

2 2
3
4

2 3
3
4

2 4
3
4

however the following tableau does not contribute to s
.0/

D2.2;1;1/
:

1 4
2
3
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Therefore we have the following expression:

s
.0/

D2.2;1;1/
D x

.4/
1 x

.3/
1 x

.1/
2 x

.2/
3 C x

.4/
1 x

.3/
1 x

.1/
2 x

.2/
4 C x

.4/
1 x

.3/
1 x

.1/
3 x

.2/
4

C x
.4/
1 x

.3/
2 x

.1/
2 x

.2/
3 C x

.4/
1 x

.3/
2 x

.1/
2 x

.2/
4 C x

.4/
1 x

.3/
2 x

.1/
3 x

.2/
4

C x
.4/
1 x

.3/
3 x

.1/
2 x

.2/
3 C x

.4/
1 x

.3/
3 x

.1/
2 x

.2/
4 C x

.4/
1 x

.3/
3 x

.1/
3 x

.2/
4

C x
.4/
1 x

.3/
4 x

.1/
2 x

.2/
4 C x

.4/
1 x

.3/
4 x

.1/
3 x

.2/
4 C x

.4/
2 x

.3/
2 x

.1/
3 x

.2/
4

C x
.4/
2 x

.3/
3 x

.1/
3 x

.2/
4 C x

.4/
2 x

.3/
4 x

.1/
3 x

.2/
4 :

For the path p D b1 ˝ b2 ˝ b3 ˝ b4, we introduce the following coordinates:

p D 1x
.4/
4 2x

.1/
4 3x

.2/
4 4x

.3/
4 ˝ 1x

.3/
3 2x

.4/
3 3x

.1/
3 4x

.2/
3

˝ 1x
.2/
2 2x

.3/
2 3x

.4/
2 4x

.1/
2 ˝ 1x

.1/
1 2x

.2/
1 3x

.3/
1 4x

.4/
1

D 1a2b3c4d ˝ 1e2f 3g4h ˝ 1i2j 3k4l ˝ 1m2n3o4p :

Then we have

trop s
.0/

D2.2;2;2;2/
D p C oC l C k C hC g C d C c;

trop s
.0/

D2.2;1;1/
D min.p C oC l C h; p C oC l C c; p C oC g C c;

p C j C l C h; pC j C l C c; p C j C g C c;

p C e C l C h; p C e C l C c; p C e C g C c;

p C d C l C c; p C d C g C c; k C j C g C c;

k C e C g C c; k C d C gC c/:

Then our formula reads �
.2/
1 D trop s

.0/

D2.2;2;2;2/
� trop s

.0/

D2.2;1;1/
and �

.2/
2 D

trop s
.0/

D2.2;1;1/
.

For a numerical comparison, let us consider the following paths;

¹a; b; c; d; e; f; g; h; i; j; k; l; m; n; o; pº D ¹3; 2; c; 3; 3; 3; 1; 0; 0; 3; 0; 2; 1; 0; 3; 3º:

Then ˆ.p/ takes the following form.

c .�
.1/

1
; J

.1/

1
/ .�

.1/

2
; J

.1/

2
/ .�

.1/

3
; J

.1/

3
/ .�

.2/

1
; J

.2/

1
/ .�

.2/

2
; J

.2/

2
/ .�

.3/

1
; J

.3/

1
/

0 .8;�2/ .8;�2/ .4;�1/ .8; 4/ .4; 0/ .8;�7/

1 .9;�2/ .8;�1/ .4;�1/ .8; 2/ .5;�1/ .8;�6/

2 .10;�2/ .8; 0/ .4;�1/ .8; 0/ .6;�2/ .8;�5/

3 .11;�2/ .8; 1/ .4;�1/ .8;�2/ .7;�3/ .8;�4/

4 .12;�2/ .8; 2/ .4;�1/ .8;�4/ .8;�4/ .8;�3/

5 .13;�2/ .8; 2/ .4;�1/ .9;�5/ .8;�4/ .8;�3/

6 .14;�2/ .8; 2/ .4;�1/ .10;�6/ .8;�4/ .8;�3/

7 .15;�2/ .8; 2/ .4;�1/ .11;�7/ .8;�4/ .8;�3/
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These results coincide with our formula. The riggings behave in a more compli-

cated way than the shapes of the configurations (some of the successive differences

are equal to 2).

Remark 5.7. Kirillov and Berenstein [12] computed explicit formulae for the

rigged configuration ˆ.p/ for certain classes of paths. Our philosophy in this

paper is to produce formulae that lift to birational R-matrix invariants. As far as

we are aware, this is not the case for the formulae in [12].

6. Formula for the first shape of a rigged configuration

In this section, we prove Conjecture 5.3 for the first shape �.1/ of the rigged con-

figuration. In Section 6.1, we write down the main result following the description

of Conjecture 5.3 and discuss its relation with the box-ball systems. In Section 6.2

we show that related functions have a simplified expression in our case. The proofs

begin in Section 6.3.

6.1. The main theorem and its implications. Let p D b1 ˝ � � � ˝ bm 2

B1;s1 ˝ � � � ˝ B1;sm be as usual, and let x
.iCj �1/
j be the number of occurrences

of the letter i in bmC1�j . Let �.1/ be the first partition in the rigged configuration

ˆ.p/.

Theorem 6.1. The parts of the first shape �.1/ of a rigged configuration is given

by the formula

�.1/
r D trop s

.0/

D1.�.1;r�1//
.x1; x2; : : : ; xm/ � trop s

.0/

D1.�.1;r//
.x1; x2; : : : ; xm/:

The proof is based on the results of [32] and [22].

Before embarking on the proof, let us discuss some implications of our the-

orem. In order to illustrate the relationship between lengths of rows of �.1/ and

lengths of solitary waves of box-ball systems, we consider the following example.

Example 6.2. The example at the beginning of Section 2 corresponds to the

following rigged configurations (` � 3):

ˆ..T 1;`/t .p// D
.130/ 22

24
26

3t
4C 2t

9C t

�1
�1

�1
�2

0 0

Here t D 0; 1; : : : ; 7 corresponds to the time presented on the left of the paths and

.130/ stands for the single column Young diagram of height 30.
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If we compare this with the example at the beginning of Section 2, we obtain

the following interpretation. Each row of �.1/ corresponds to a solitary wave of p

of the same length. Then, roughly speaking, the corresponding rigging specifies

the position of the solitary wave. Thus, if the rigging behaves like � vt , then the

corresponding solitary wave propagates at velocity v if there are no scatterings

with other waves.

The general statement of this phenomenon is the following theorem which is

a consequence of the R-invariance property of ˆ (Theorem 3.5).3

Theorem 6.3 ([17]). Suppose that we put a sufficiently long tensor product of ur;1

on the right of p 2 B1;s1 ˝ B1;s2 ˝ � � � ˝ B1;sm . Suppose that we have

ˆ.p/ D ¹.�.0//; .�.1/; J .1//; : : : ; .�.r/; J .r//; : : : ; .�.n�1/; J .n�1//º:

Then we have

ˆ.T r;s.p// D ¹.�.0//; .�.1/; J .1//; : : : ; .�.r/; yJ .r//; : : : ; .�.n�1/; J .n�1//º;

i.e., the only difference appears at yJ .r/. Here, for the original string .�
.r/
i ; J

.r/
i /,

the new string is .�
.r/
i ; yJ

.r/
i / D .�

.r/
i ; J

.r/
i Cmin.s; �

.r/
i //.

Combining Theorem 6.3 and the results of [31], we deduce the following

interpretation of �.1/ which is the subject of our Theorem 6.1. We keep the

notations and assumptions of Theorem 6.3. For b1 ˝ b2 2 B1;s1 ˝ B1;s2 , define
NH.b1 ˝ b2/ D min.s1; s2/�H.b1˝ b2/. Removing �.0/ and J .1/ from ˆ.p/, we

regard the following rigged configuration

. N�; NJ / D ¹.�.1//; .�.2/; J .2//; .�.3/; J .3//; : : : ; .�.n�1/; J .n�1//º

as a �sln�1 rigged configuration. Let N̂ �1 be the map obtained by adding 1 to all

numbers of all tableaux obtained from ˆ�1. Then we define

N̂ �1. N�; NJ / D Nb1 ˝ � � � ˝ NbM 2 B1;�
.1/
1 ˝ � � � ˝ B1;�

.1/
M .M D length of �.1//:

Here we assume that �
.1/
1 � �

.1/
2 � � � � . In the following description, we will

identify the row
Nbk D c1 c2 � � � cl

3 This result is valid for the general case p 2 Br1;s1 ˝ Br2;s2 ˝ � � � ˝ Brm;sm without any

modification.
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and the solitary wave cl ˝ � � � ˝ c2 ˝ c1 . Then, for a sufficiently large N , the

path .T 1;`/N .p/ contains the solitons Nb1; Nb2; : : : ; NbM from left to right. Moreover,

the length of the spacing between Nbk and NbkC1 is no less than NH. Nbk ˝ NbkC1/.

According to the above observations we see that Theorem 6.1 provides the

lengths of the solitary waves contained in any p which will appear after sufficiently

many applications of time evolutions. As a corollary, we can easily obtain the

upper bound for the number of solitons contained in a path.

Let dxe be the ceiling function which gives the smallest integer not smaller

than x and bxc be the floor function which gives the largest integer not exceeding

x. Recall that the partition �.1; r/ is obtained by removing length � n ribbon

strips r times from the rectangle .n � 1/m (see Section 5.2). It is not hard to see

that in this (s D 1) case all the ribbon strips removed do indeed have length n,

except possibly the last ribbon strip. Thus if the partition �.1; r/ is nonempty then

it has bm� rn=.n� 1/c parts equal to .n� 1/, and a single part equal to n� 1� r 0

where r � r 0 mod .n� 1/ and 1 � r 0 � n � 1.

Corollary 6.4. The number of solitons contained in a length m path of type �sln is

at most �
.n � 1/m

n

�
:

Proof. According to Theorem 6.1, if we have s
.0/

D1.�.1;r//
D 1, then �

.1/
rC1 D 0.

Since �.1; r/ D ; for r > .n� 1/m=n, we obtain the desired expression. �

Finally let us say a few words about the explicit piecewise linear formula for

ˆ�1 obtained in [18, 31]. One of the key steps of the construction is to take the

tropical limit of the so-called tau functions for the KP hierarchy [7] (see [33,

Section 5] for a brief summary of the proof.). In this step, each string .�
.a/
i ; J

.a/
i /

is explicitly connected with a soliton of the ordinary KP hierarchy.

6.2. Simplified expressions. In the current situation, we have the following

realization of the cylindric loop Schur functions s
.0/

D.�.1;r//
. As in [22], we define

the following generating function:

�
.a/

k
.x1; x2; : : : ; xm/ WD

X

�D1�:::�k

x
.a/
1

x
.a�1/
2

: : :x.a�kC1/
k

;
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where the sum is taken over all multisets � � ¹1; 2; : : : ; mº of cardinality k such

that no number occurs more than n� 1 times. Let us denote the tropicalization of

�
.a/

k
by ‚

.a/

k
;

‚
.a/

k
WD trop.�

.a/

k
/ D min

�D1�:::�k

¹x.a/
1
C x.a�1/

2
C � � � C x.a�kC1/

k
º:

Lemma 6.5. We have

s
.0/

D1.�.1;r//
D �

.0/

.n�1/m�rn
:

Proof. The shape D1.�.1; r// is obtained by propagating �.1; r/ by the shift

.n � 1; 1/. Since the vertical shift is by 1, there is a bijection between boxes of

�.1; r/ and boxes in any single row of D1.�.1; r//. For example, if n D 4; m D 4,

and r D 1, we have �.1; 1/ D .3; 3; 2/. The cylindric shape D1.�.1; r// looks like

� � � � � �

In this case �.1; r/ has 8 boxes, and so does each row of D1.�.1; r//.

Let S be the cylindric semistandard tableau with shape D1.�.1; r//. By the

above observation, the weight of S is simply the weight of any single row Z of S .

Since the width of �.1; r/ is .n�1/, the condition that S is semistandard translates

exactly to the condition that no number occurs in the weakly increasing sequence

Z more than n�1 times. But the definition of �
.0/

.n�1/m�rn
is exactly the generating

function of such rows. �

It follows from this and Theorem 4.4 that �
.0/

.n�1/m�rn
lies in LSymm.

Now we see that Theorem 6.1 is equivalent to the following proposition.

Proposition 6.6. Let p 2 B1;s1 ˝ � � � ˝B1;sm . Then the r-th part of �.1/ of ˆ.p/

is

�.1/
r D ‚

.0/

.n�1/m�.r�1/n
.x1; x2; : : : ; xm/ �‚

.0/

.n�1/m�rn
.x1; x2; : : : ; xm/:

Example 6.7. Let n D 2 and m D 4. Then we have

‚
.0/
4 D x

.2/
1 C x

.1/
2 C x

.2/
3 C x

.1/
4 ;

‚
.0/
2 D min.x

.2/
1 C x

.1/
2 ; x

.2/
1 C x

.1/
3 ; x

.2/
1 C x

.1/
4 ; x

.2/
2 C x

.1/
3 ; x

.2/
2 C x

.1/
4 ;

x
.2/
3 C x

.1/
4 /:
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Let the tableau representation of the path p D b1 ˝ b2 ˝ b3 ˝ b4 be

p D 1x
.2/
4 2x

.1/
4 ˝ 1x

.1/
3 2x

.2/
3 ˝ 1x

.2/
2 2x

.1/
2 ˝ 1x

.1/
1 2x

.2/
1

DW 1a2b ˝ 1c2d ˝ 1e2f ˝ 1g2h :

Then we have

‚
.0/
4 D hC f C d C b;

‚
.0/
2 D min.hC f; hC c; hC b; e C c; e C b; d C b/:

According to Proposition 6.6, we have �
.1/
1 D ‚

.0/
4 � ‚

.0/
2 and �

.1/
2 D ‚

.0/
2 .

Furthermore, it also follows that �
.1/
3 D 0. Note that these are also the lengths

of the two solitons in the corresponding box-ball system.

Example 6.8. Let n D 3 and m D 3. Then we have

‚
.0/
6 D x

.3/
1 C x

.2/
1 C x

.1/
2 C x

.3/
2 C x

.2/
3 C x

.1/
3 ;

‚
.0/
3 D min¹x

.3/
1 C x

.2/
1 C x

.1/
2 ; x

.3/
1 C x

.2/
1 C x

.1/
3 ;

x
.3/
1 C x

.2/
2 C x

.1/
2 ; x

.3/
1 C x

.2/
2 C x

.1/
3 ;

x
.3/
1 C x

.2/
3 C x

.1/
3 ; x

.3/
2 C x

.2/
2 C x

.1/
3 ; x

.3/
2 C x

.2/
3 C x

.1/
3 º:

Let the tableau representation of the path p D b1 ˝ b2 ˝ b3 be

p D 1x
.3/
3 2x

.1/
3 3x

.2/
3 ˝ 1x

.2/
2 2x

.3/
2 3x

.1/
2 ˝ 1x

.1/
1 2x

.2/
1 3x

.3/
1

DW 1a2b3c ˝ 1d 2e3f ˝ 1g2h3i :

In this coordinate, we have

‚
.0/
6 D i C hC f C e C c C b;

‚
.0/
3 D min¹i C hC f; i C hC b; i C d C f; i C d C b;

i C c C b; e C d C b; e C c C bº:

Then by Proposition 6.6, we have �
.1/
1 D ‚

.0/
6 � ‚

.0/
3 and �

.1/
2 D ‚

.0/
3 . Compare

with Example 5.5.

6.3. Energy as a tropical polynomial. Recall that in Definition 2.4 we defined

the quantity Er;s.p/ D
Pm

kD1 H.u.k/ ˝ bk/ for p D b1 ˝ b2 ˝ � � � ˝ bm, where

u.1/ WD ur;s. We now define the piecewise-linear function E`.x1; : : : ; xm/ to be

equal to E1;`, expressed in terms of the variables x
.i/
j , as usual. In the following,

we caution the reader that our b1˝b2˝� � �˝bm corresponds to the tensor product

bm ˝ � � � ˝ b2 ˝ b1 in [22].
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Theorem 6.9. We have

E`.x1; : : : ; xm/ D min
0�i�.n�1/m

��
i

n

�
� `C‚

.0/

.n�1/m�i
.x1; : : : ; xm/

�
: (9)

Proof. Lemma 3.1 in [22] gives a rational lifting of the energies E`.x1; : : : ; xm/.

Taking into account the reversal of the tensor product, we have that E`.x1; : : : ; xm/

is the tropicalization of

.n�1/mX

iD0

�
.0/

.n�1/m�i
.x1; x2; : : : ; xm/x

.mCi/
mC1 x

.mCi�1/
mC1 � � �x

.mC2/
mC1 x

.mC1/
mC1

where when we pass to tropicalization, we take

.x
.0/
mC1; x

.1/
mC1; : : : ; x

.n�1/
mC1 / D .0; 0; : : : ; 0; `; 0; : : : ; 0/ with x

.mC1/
mC1 D `:

After tropicalization we get x
.mC1/
mC1 C x

.mC2/
mC1 � � � C x

.mCi/
mC1 D

˙
i
n

�
� `. �

The formula in Theorem 6.9 can be made more efficient by removing some of

the terms in the minimum. Namely, we note that the minimum is achieved when

i is divisible by n.

Corollary 6.10. We have

E`.x1; : : : ; xm/ D min
0�i�

.n�1/m
n

.i � `C‚
.0/

.n�1/m�in
.x1; : : : ; xm//: (10)

Proof. To begin with we claim that if a > a0, we have ‚
.0/

.n�1/m�a0 � ‚
.0/

.n�1/m�a
.

Let k0 D .n � 1/m � a0 and k D .n � 1/m � a. Let x
.0/
1
x

.�1/
2

: : :x
.�k0C1/
k0

be a

term of �
.0/

k0
. By dropping the last .a� a0/ factors we obtain x

.0/
1
x

.�1/
2

: : :x
.�kC1/
k

,

which is easily seen to be one of the monomials occurring in �
.0/

k
. Since after

tropicalization the variables satisfy x
.i/
j � 0, the removed terms contribute non-

negatively. Thus the claim follows.

Thus in the minimum of (9), for each subset of terms involving the same

multiple
˙

i
n

�
� `, we only need to keep one of the terms. Thus we obtain (10). �

6.4. A lemma for convex tropical polynomials. For a sequence

0 D A0; A1; : : : ; An�1; An

of nonnegative integers, define the tropical polynomial

A.x/ WD min.An; x C An�1; :::; .n� 1/x C A1; nx/:
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Lemma 6.11. Suppose 0 D A0; A1; : : : ; An�1; An satisfy the convexity condition

Ai�1 C AiC1 � 2Ai :

Then the differences

�A WD .A.1/ � A.0/; A.2/� A.1/; : : :/

form a partition. Furthermore, this partition is conjugate to the partition

.An � An�1; An�1 � An�2; : : : ; A2 � A1; A1/:

Example 6.12. Consider

A.x/ D min.7; 2C x; 2x/:

Then its values at x D 0; 1; 2; : : : are 0; 2; 4; 5; 6; 7; 7; 7; : : : :, thus we have

�A D .2; 2; 1; 1; 1; 0; 0; : : :/:

The conjugate partition is .5; 2/ D .7 � 2; 2/.

Proof. It is easy to see that the minimum in A.x/ is achieved by the term nx if

and only if A1 � x. This means that the first A1 terms in the sequence �A are

equal to n, while all subsequent ones are smaller than n. Then if we conjugate,

we conclude the smallest part of the conjugate partition is A1. When x > A1, we

have

A.x/ D A1Cmin..An�A1/; xC.An�1�A1/; : : : ; .n�2/xC.A2�A1/; .n�1/x/:

By repeating the same argument we see that the letter .n � 1/ appears A2 � 2A1

times in the sequence �A. Note that by the convexity condition, we have A0CA2 D

A2 � 2A1. Next, when x > A2 � A1, we have

A.x/ D A2Cmin..An�A2/; xC.An�1�A2/; : : : ; .n�3/xC.A3�A2/; .n�2/x/

and conclude that the letter .n�2/ appears A3�A2� .A2�A1/ D A3�2A2CA1

times in the sequence �A. Again we have A3 � 2A2 C A1 � 0 by the convexity

relation. We repeat the same procedure to show the claim. �

6.5. Log-concavity via cell transfer. We argue that the tropicalizations of

�
.0/

.n�1/m�in
satisfy the convexity condition above.
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Lemma 6.13. We have

‚
.0/

.n�1/m�.iC1/n
C‚

.0/

.n�1/m�.i�1/n
� 2‚

.0/

.n�1/m�in
:

Proof. Let N D .n � 1/m � in. Then we will show that the difference

.�
.0/
N /2 � �

.0/
N �n � �

.0/
N Cn

is monomial positive. After tropicalization this means that in 2‚
.0/
N the minimum

is taken over more terms than in ‚
.0/
N �n C‚

.0/
N Cn, and thus the statement follows.

We shall use a variation of the cell transfer argument of [20]. Consider two

terms, one a monomial from �
.0/
N Cn and the other from �

.0/
N �n. We will provide an

injection of such pairs into the set of ordered pairs of monomials in �
.0/
N .

Interpret the two terms as two single-row semistandard tableaux A and B of

lengths N C n and N � n respectively and denote them as

A D .a1; a2; : : : ; aN Cn/ and B D .b1; b2; : : : ; bN �n/;

where ai � aiC1 and bi � biC1 for any i . Each of them does not have any number

occurring more than .n� 1/ times, according to the definition of � .

For n � k � N , define a pair of length N single-row semistandard tableaux

A0

k
and B 0

k
as

A0

k WD .a1; a2; : : : ; ak; bk�nC1; bk�nC2; : : : ; bN �n/;

B 0

k WD .b1; b2; : : : ; bk�n; akC1; akC2; : : : ; aN Cn/:

Define a map .A; B/ 7! .A0; B 0/ D .A0

k0
; B 0

k0
/, where k0 is chosen to be maximal

in ¹0; 1; 2; : : : ; N º, such that A0

k0
and B 0

k0
are single-row semistandard tableaux of

shape N such that no number appears more than .n� 1/ times. We claim that the

parameter k0 always exists, and that .A; B/ 7! .A0; B 0/ is injective.

We can determine the value of k0 recursively. First, set K WD N and consider

A0
K D .a1; a2; : : : ; aN /;

B 0
K D .b1; b2; : : : ; bN �n; aN C1; aN C2; : : : ; aN Cn/:

If this pair of tableaux satisfies the required conditions, then we have k0 D N .

Otherwise, one of the following two possibilities holds.

(1) If bK�n > aKC1, we find the smallest k > 0 such that we have bK�n�k �

aN �kC1. Set K 0 WD K � k. If such a k does not exist, we set K 0 WD 0.
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(2) The value bK�n appears too many times in B 0
K . This can only happen if

bK�n D aKC1. Suppose aK�k < aK�kC1 D aK�kC2 D � � � D aKC1. Then

we set K 0 D K � k � 1. (Note that k always exists in this case, and K 0 � 0.)

If A0
K0 and B 0

K0 satisfy the required conditions, then k0 D K 0 is the required value.

This is always the case if K 0 D 0. Otherwise, we redefine K WD K 0 and apply

either (1) or (2) above.

The inverse map can be constructed in a similar way. Indeed, start with

A D .a1; a2; : : : ; aN / and B D .b1; b2; : : : ; bN /;

and define A0

k
and B 0

k
as follows:

A0

k WD .a1; a2; : : : ; ak; bk�nC1; bk�nC2; : : : ; bN /;

B 0

k WD .b1; b2; : : : ; bk�n; akC1; akC2; : : : ; aN /:

Define a map .A; B/ 7! .A0; B 0/ D .A0

k0
; B 0

k0
/, where k0 is chosen to be maximal

in ¹n; : : : ; N º, such that A0

k0
and B 0

k0
are single-row semistandard tableaux of

shape N such that no number appears more than .n � 1/ times. It is not true

anymore that the parameter k0 always exists. When it does exist however, this map

and the one previously defined are inverses of each other. The proof is similar to

the argument above, stemming from the observation that the value of k that does

not work in one case also cannot work in the other.

The existence of the inverse map proves injectivity. It follows that .�
.0/
N /2 �

�
.0/
N �n � �

.0/
N Cn is monomial positive. �

6.6. Proof of Theorem 6.1. Apply Lemma 6.11 to

A.x/ D min
0�i�

.n�1/m
n

.i � x C‚
.0/

.n�1/m�in
/:

We can do this because of Lemma 6.13. By Corollary 6.10, we conclude that the

partition formed by

‚
.0/

.n�1/m�in
�‚

.0/

.n�1/m�.iC1/n

is conjugate to partition .E1; E2 �E1; : : :/.

Now apply Theorem 3.6 to the quantities E`.x1; : : : ; xm/ WD E1;`.p/. We

deduce that the partition conjugate to .E1; E2�E1; : : :/ is equal to the partition �.1/

of the rigged configuration. Since Proposition 6.6 is equivalent to Theorem 6.1,

the result follows.
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