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Edge correlation function of the 8-vertex model

when a C c D b C d

Jérôme Casse

Abstract. This paper is devoted to the 8-vertex model and its edge correlation function. In
some particular (integrable) cases, we find a closed form of the edge correlation function
and we deduce also its asymptotics. In addition, we quantify influence of boundary
conditions on this function.

To do this, we introduce a system of particles in interaction related to the 8-vertex
model. This system, studied using various tools from analytic combinatorics, random walks
and conics, permits to compute the correlation function. To study the influence of boundary
conditions, we involve probabilistic cellular automata of order 2.
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1. Introduction

Vertex-models. We start with some formal definitions. Let KN be the graph
whose set of vertices is

VN D ¹.i; j /W �1 � i; j � N C 1º

and set of edges is

EN D¹..i; j /; .i; j C 1//W 0 � i � N; �1 � j � N º
[ ¹..i; j /; .i C 1; j //W �1 � i � N; 0 � j � N º

(see Figure 1). The vertices

V i
N D ¹.i; j /W 0 � i; j � N º

are called internal vertices of KN (it is also the set of vertices adjacent to 4 edges).
The edges

Ee
N D¹..�1; j /; .0; j //W 0 � j � N º [ ¹..N; j /; .N C 1; j //W 0 � j � N º

[ ¹..i; �1/; .i; 0//W 0 � i � N º [ ¹..i; N /; .i; N C 1//W 0 � i � N º

are called external (or boundary) edges (it is also the set of edges whose one end
vertex is in V i

N and the other one in VN nV i
N ). The graph KN have 2N 2C2N edges

that could be classified in two groups: the 4N external edges Ee
N and the 2N 2�2N

internal edges EN nEe
N . Each of the edges could be oriented: either “from bottom

to top” or “from top to bottom” if the edge is vertical, either “from left to right”
or “from right to left” it the edge is horizontal. We call an orientation of KN ,
the graph KN with an orientation for every of its edges. There exists 22N 2C2N

orientations of KN and we denote �N the set of these orientations.
In the following, we call vertices of KN only its internal vertices.
In the 8-vertex model, we consider the subset �8

N � �N of KN ’s orientations
such that, around each vertex of KN , there is an even number (0, 2 or 4) of
incoming edges. Hence, for any vertex .i; j / in a KN ’s orientation O 2 �8

N ,
the .i; j /’s four adjacent oriented edges are oriented like one of the eight local
configurations of Figure 2. For any k 2 ¹1; : : : ; 8º, a vertex is said to be of type k if
its four adjacent edges are in the local configuration k. At each local configuration
k, we associate a local weight wk. Based on local weights .wkW k 2 ¹1; : : : ; 8º/,
we define a global weight (of Boltzmann type) W on �8

N : let O 2 �8
N , the weight

of the orientation O is

W.O/ D
8
Y

kD1

w
nk.O/

k
(1)
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Figure 1. Left: K3. Right: an orientation of K3.

where nk.O/ is the number of vertices of type k in O . From W on �8
N , we define

a probability measure P 8
N on �8

N : for any O 2 �8
N ,

P 8
N .O/ D W.O/

Z8
N

where Z8
N D

X

O 02�8
N

W.O 0/:

The quantity Z8
N is called partition function of the 8-vertex model on KN . Under

the probability P 8
N , the probability to get an orientation O is then proportional to

its weight W.O/.

When w7 D w8 D 0, the 8-vertex model becomes the 6-vertex model. Orien-
tations of the 6-vertex model with a non-zero global weight are KN ’s orientations
whose nodes have two incoming and two outgoing edges. The 6-vertex model
is historically the first vertex-model introduced by Pauling in 1935 [17] to study a
model of ice on plane. Indeed, in the 6-vertex model, nodes represent molecules of
water, and oriented edges, polarities of hydrogen bonds between these molecules.
It is a model of statistical physics widely studied and we recommend [2, Chapter
8], [19], [11] and references therein to the interesting reader.

The 8-vertex model is a generalization of the 6-vertex model introduced by
Sutherland [22] and Fan and Wu [13] in 1970. Its partition function was computed
by Baxter in 1972 using Bethe’s Ansatz methods [1]. One important property of the
8-vertex model in comparison with the 6-vertex model is that it is less dependent
on boundary conditions [6]. It is also related to Ising models as expressed by
Baxter in [2, Section 10.3]. Let us present some results of Baxter on the 8-vertex
model.
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type (1) (2) (3) (4)

configuration

on KN

configuration

on xKN

type (5) (6) (7) (8)

configuration

on KN

configuration

on xKN

Figure 2. The 8 available local configurations around any vertex of an orientation in �8
N

and their corresponding configuration (rotated by an angle � �
4

) in x�8
N

.

Due to symmetries of KN , the numbers of vertices of type 5 and of type 6 in
an admissible configuration differ by less than N (jn5 � n6j � N ), this permits to
chose w5 D w6 D c without loss of generality in asymptotics (in the asymptotic
case, an interesting type k of nodes is one for which we have that nk D ‚.N 2/).
For similar reasons, jn7 � n8j � 2N and, hence, we consider in the following
w7 D w8 D d . We will also suppose that we are in a “zero-field” case (a classical
hypothesis in a first study of a vertex-model), i.e. we suppose w1 D w2 D a and
w3 D w4 D b. In that case, the partition function Z8

N of the 8-vertex model was
studied by Baxter in 1972 [1] and he describes a phase transition behavior related
to the value of .a; b; c; d/ when N ! 1. He proved that the 8-vertex model has
5 different asymptotic behaviors [2, Section 8.10]:

� if a > bCcCd (state I), then it is a ferromagnetic state, in which N 2�o.N 2/

vertices are either of type 1, or of type 2 a.s. when N ! 1;
� if b > aCcCd (state II), then it is a ferromagnetic state, in which N 2�o.N 2/

vertices are either of type 3, or of type 4 a.s. when N ! 1;
� if c > a Cb Cd (state IV), then it is an anti-ferromagnetic state, N 2

2
�o.N 2/

vertices are of type 5 and N 2

2
�o.N 2/ vertices are of type 6 a.s. when N ! 1;
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� if d > a C b C c (state V), then it is an anti-ferromagnetic state, N 2

2
� o.N 2/

vertices are of type 7 and N 2

2
�o.N 2/ vertices are of type 8 a.s. when N ! 1;

� otherwise (i.e. if a; b; c; d < aCbCcCd
2

) (state III), then it is a disordered
state, there are ‚.N 2/ vertices of each type a.s. when N ! 1.

Until now, we consider only the 8-vertex model on KN with free boundary
conditions because external edges Ee

N of KN are not constrained. In some other
cases, edges of Ee

N are constrained and so we do not consider all the orientations
of �8

N but a subset of them. The constraint imposed to the external edges is
called a boundary condition. Some classical examples of boundary conditions
are (see [6]):

� free boundary condition (FBC): no constraint on Ee
N ;

� periodic boundary condition: external edges of a same line or a same column
are oriented in a same direction;

� “wall” boundary condition (see [25]): horizontal external edges are oriented
to the inside of the graph and vertical ones to the outside (see Figure 3);

� special boundary condition (SBC): orientation of external edges is arbitrary
imposed (“‘wall” is an example).

Figure 3. K4 with a “wall” boundary condition.

In this article, main results are about the 8-vertex model on KN with FBC and
the following condition on local weights

a C c D b C d: (2)

Our aim is to compute the law of orientations of two distant edges, that is the
edge correlation function. This computation has been realized for the 6-vertex
model in some particular cases: the free fermion limit case [21] and the a C c D b

case [14] (see also [4] for references on the 6-vertex model with a C c D b).
More generally, correlation functions are important subject in statistical physics,
see [20, Chapter 10] for an overview.
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To obtain these results, we consider the 8-vertex model on the graph xKN . Let
us define it. The set of xKN ’s vertices is

xVN D
°�

� 1

2
C j; �1

2

�

W 0 � j � N
±

[ ¹.j; 0/W 0 � j � N � 1º

[
°� i

2
� 1

2
C j;

i

2
C 1

2

�

W i � 0 � N � 1; 0 � j � N � i
±

and the set of its edges is

xEN D
°��

j � 1

2
; �1

2

�

; .j; 0/
�

;
��

j C 1

2
; �1

2

�

; .j; 0/
�

W 0 � j � N � 1
±

[
°�� i

2
� 1

2
C j;

i

2
C 1

2

�

;
� i

2
C j;

i

2

��

;

�� i

2
C 1

2
C j;

i

2
C 1

2

�

;
� i

2
C j;

i

2

��

W

0 � i � N � 1; 0 � j � N � 1 � i
±

(see Figure 4). As before, we distinguish two types of vertices: internal ver-
tices of degree 4 (called vertices in the following) and the other vertices of de-
gree 1 or 2, and two types of edges: internal edges whose two end vertices are
internal and external edges whose only one end vertex is internal. In addition,
edges are labeled: the edge whose end vertices are ¹.i; t /; .i 0; t 0/º is labeled by
.2 max.i; i 0/; 2 max.t; t 0//. And, as before, we can define the 6- and 8-vertex mod-
els on xKN . Definitions are the same; only local configurations change, they are
rotated of an angle ��

4
(see Figure 2) from the ones in the KN case. Notations are

also the same as in the KN case except that they are overlined.
In the following, orientations of edges are denoted by their vertical orienta-

tions: if the edge .i; t / is oriented like - (if i C t is even) or like % (if i C t is
odd), then edge .i; t / is said to be up-oriented and, if the edge is oriented like &
or ., it is said to be down-oriented. This information is encoded in a state e.i; t /:

e.i; t / D
´

1 if the edge .i; t / is up-oriented;

0 if the edge .i; t / is down-oriented:
(3)

We introduce the following probabilistic boundary condition on the 6- and
8-vertex models on xKN : orientations of edges on the top side

.e.i; 0/W 0 � i � 2N � 1/

are distributed according to a product measure with parameter q, i.e. they are i.i.d.
of common law the Bernoulli law with parameter q (denoted B.q/): for any i ,

P.e.i; 0/ D 1/ D q and P.e.i; 0/ D 0/ D 1 � qI
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Figure 4. The graph xK4. On axes: vertices coordinates. On edges: edges labels. Boundary
conditions: dashed edges are i.i.d. (for the orientation up/bottom) and dotted edges are free.

the other external edges

¹.i; t /W t � i D 1; 1 � t � N º [ ¹.i; t /W t C i D 2N; 1 � t � N º

are free oriented. We call this boundary condition half product measure with pa-
rameter q (denoted HPMBC.q/ in the following). Formally, the 8-vertex model on
xKN with HPMBC.q/ defines a probability measure xP 8;q

N on x�8
N in the following

way: for any O 2 x�8
N ,

xP 8;q
N .O/

D
X

B2¹0;1º2N

2N �1
Y

iD0

qe.i;0/.1 � q/1�e.i;0/

an1Cn2bn3Cn4cn5Cn6d n7Cn8

xZ8;B
N

1.e.i;0/W0�i�2N �1/DB

(4)

where xZ8;B
N is the partition function of the 8-vertex model on xKN with SBC B on

edges ..i; 0/W 0 � i � 2N / and FBC on other edges of xEe
N . Denoting the subset

of x�8
N such that edges ..i; 0/W 0 � i � 2N / are oriented as B by x�8;B

N ,

xZ8;B
N D

X

O 02 x�
8;B
N

an1.O 0/Cn2.O 0/bn3.O 0/Cn4.O 0/cn5.O 0/Cn6.O 0/d n7.O 0/Cn8.O 0/: (5)
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Our aim is to describe properties of the 6- and 8-vertex models on xKN in the
thermodynamic limit (when N ! 1) under the constraint a C c D b C d . A first
remarkable property is that, when aCc D b Cd , the 8-vertex models on xKN with
HPMBC

�
1
2

�

or with FBC are the same.

Proposition 1.1. For any N , if a C c D b C d , then xP 8; 1
2

N D xP 8
N .

We define now the graph xK1 on the half-plane Z � N and a probabilistic
boundary condition on this graph. Later (in Proposition 1.3) this graph and its
boundary condition will appear as the limit of the sequence of graphs . xKN W N �1/

with HPMBC.q/ when N ! 1 (in a sense that we will precise). The set of xK1’s
vertices is

xV1 D
°�

i � 1

2
; t � 1

2

�

; .i; t /W i 2 Z; t 2 N

±

and its set of edges is

xE1 D
°��

i � 1

2
; t � 1

2

�

; .i; t /
�

;
��

i � 1

2
; t C 1

2

�

; .i; t /
�

;

��

i C 1

2
; t � 1

2

�

; .i; t /
�

;
��

i C 1

2
; t C 1

2

�

; .i; t /
�

W i 2 Z; t 2 N

±

(see Figure 5). As before, there are two types of vertices: internal vertices (called
vertices in the following) of degree 4 and the other vertices

®�

i � 1
2
; �1

2

�

W i 2
Z
¯

of degree 2. As for xKN , edges are labeled: edge whose end vertices is
¹.i; t /; .i 0; t 0/º is labeled by .2 max.i; i 0/; 2 max.t; t 0//. Edges ¹.i; 0/W i 2 Zº are
external and others are internal. On this graph, we call product measure boundary
condition with parameter q (PMBC.q/) the probabilistic boundary condition such
that .e.i; 0/W i 2 Z/ are i.i.d. of common law B.q/.

Let x�8
1 be the set of xK1’s orientations such that any vertex of an orientation

O 2 x�8
1 has 0, 2 or 4 incoming edges. We can define a probability measure xP 8

1

on x�8
1 associated to the 8-vertex model on xK1 with PMBC

�
1
2

�

. In the general
case (for any a, b, c and d ), this measure must be seen as limit law of probability

measures xP 8; 1
2

N when N ! 1 in a certain sense. In the case aCc D bCd , there is
a simpler way to prove its existence by considering the law L

�

PM
�

1
2

�

I a
aCc

; b
bCd

�

,
defined in the next paragraph.

The lawL.�I p; r/ on x�1. In [14], Kandel, Domany and Nienhuis defined a law
on x�6

1 (the set of orientations of xK1 with exactly 2 incoming edges around each
vertex) as the law of a Markov chain whose state space is ¹0; 1ºZ. This law is in fact
the limit law of the 6-vertex model on xKN with HPMBC.q/ when N ! 1. Here,
we generalize their idea to define laws L.�I p; r/ on x�8

1, whose one specification
is xP 8

1.
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Figure 5. The graph xK1. On axes: vertices coordinates. On edges: edges labels. Boundary
condition PMBC.q/: vertical orientations of dashed edges .e.i; 0/W i 2 N/ are i.i.d.

Definition 1.2 (law L.�I p; r/). Let � be any probability measure on ¹0; 1ºZ. Let
p; r 2 Œ0; 1�, we define the law L.�I p; r/ on x�8

1 as follows.
� Law of orientations .e.i; 0/W i 2 Z/ of edges on the first line is �.
� For any even t , starting with orientations .e.i; t /W i 2 Z/ on line t , we obtain

orientations .e.i; t C 1/W i 2 Z/ on line t C 1 by the following way: for any
i 2 Z, orientations of pair .e.2i; t C1/; e.2i C1; t C1// depends only on pair
.e.2i; t /; e.2iC1; t// and local transition probabilities are, for any i 2 Z, any
k 2 ¹0; 1º,

P..e.2i; t C 1/; e.2i C 1; t C 1// D .k; k/ j
.e.2i; t /; e.2i C 1; t// D .k; k// D r;

P..e.2i; t C 1/; e.2i C 1; t C 1// D .1 � k; 1 � k/ j
.e.2i; t /; e.2i C 1; t// D .k; k// D 1 � r;

P..e.2i; t C 1/; e.2i C 1; t C 1// D .1 � k; k/ j
.e.2i; t /; e.2i C 1; t// D .k; 1 � k// D p;

P..e.2i; t C 1/; e.2i C 1; t C 1// D .k; 1 � k/ j
.e.2i; t /; e.2i C 1; t// D .k; 1 � k// D 1 � p
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and local transitions from .e.2i; t /; e.2iC1; t// to .e.2i; tC1/; e.2iC1; tC1//

are independent of one another, i.e. for any i1; i2 2 Z such that i1 < i2, for
any .k2i1 ; k2i1C1; : : : ; k2i2 ; k2i2C1/ 2 ¹0; 1º2.i2�i1C1/,

P..e.j; t C 1/ D kj W 2i1 � j � 2i2 C 1/ j .e.i; t /W i 2 Z//

D
i2Y

iDi1

P..e.2i; t C 1/; e.2i C 1; t C 1// D .k2i ; k2iC1/ j
.e.2i; t /; e.2i C 1; t///:

We denote by T0 this operator on M.¹0; 1ºZ/, the set of ¹0; 1ºZ’s probability
measures:

T0.�t / D �tC1: (6)

where, for any t , �t is the law of .e.i; t /W i 2 Z/.
� For any odd t , transition is the same as in the case where t is even with the

difference that we consider pairs of edges of abscissas .2i � 1; 2i/ instead of
pairs of edges of abscissas .2i; 2i C 1/. We denote by T1 this operator.

Local transitions of these two operators are illustrated on Figure 6.
Finally, the law L.�I p; r/ on x�8

1 is the law of .e.i; t /W i 2 Z; t 2 N/.

Initial state
at time t

Final state at
time t C 1

or or
11

0 0

w.p. p w.p. 1 � p w.p. r w.p. 1 � r

Figure 6. Operators T0 and T1. In all case, the left-up arrow is labeled by .i; t/ with i C t

even. Orientation on edge correspond to a choice of k D 0.

In the following, the considered measure � will be the product measure with
parameter 1

2
(denoted PM

�
1
2

�

) and, sometimes, with parameter q 2 Œ0; 1� (denoted
PM.q/). To fix notations, .ei W i 2 Z/ is distributed according to PM.q/, if
.ei W i 2 Z/ are i.i.d. and e0 � B.q/.

If r D 1 and � D PM.q/, we recover the result of [14] on the stochastic 6-vertex
model. For any value of r , we get the following generalization when q D 1

2
:

Proposition 1.3. Let O � L
�

PM
�

1
2

�

I a
aCc

; b
bCd

�

with a C c D b C d . For any

N , the law of oriented edges of O in the subset xKN (Oj xKN
) is distributed as xP 8

N .
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For this reason and the invariance of the 8-vertex model by any horizontal
translation, L

�

PM
�

1
2

�

I a
aCc

; b
bCd

�

could be seen as the limit of xP 8
N , thus it is

denoted by xP 8
1 in the following. Moreover, we obtain that

Proposition 1.4. Let SN D .VN ; EN / be any subset of xK1 isomorphic to KN

rotated by an angle ��
4

(see Figure 7). Let O � xP 8
1 with a C c D b C d , then the

law of OjSN
(O restricted to edges in SN and rotated by an angle �

4
) is P 8

N .

Figure 7. In full line, a subset S2 of xK1 isomorphic to K2.

The reason why we consider only � D PM
�

1
2

�

is due to the fact that PM
�

1
2

�

has remarkable properties according to the Markov chain on EZ with operators T0

and T1 used in Definition 1.2. Indeed, it is an invariant law of this Markov chain.

Proposition 1.5. Let

O � L

�

PM
�1

2

�

I p; r
�

:

Then, for any t ,

.e.i; t /W i 2 Z/ � PM
�1

2

�

:

And, moreover, if .p; r/ 2 .0; 1/2 and p C r ¤ 1, it is the unique invariant law
and the Markov chain is ergodic.
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Proposition 1.6. Let � be any measure on ¹0; 1ºZ and let .p; r/ 2 .0; 1/2. Let

O � L.�I p; r/. Then, by denoting �t the law of .e.i; t /W i 2 Z/,

�t

(l)
�! PM

�1

2

�

as t ! 1:

Proposition 1.5 generalizes the following one (Proposition 1.7) of [14] about
the 6-vertex model when q D 1

2
, that is the only interesting case in the 8-vertex

model.

Proposition 1.7 ([14]). Suppose that a C c D b. Let

O � xP 6;q
1 D L

�

PM .q/ I a

a C c
; 1
�

(limit law of xP 6;q
N when N ! 1). Then, for any t ,

.e.i; t /W i 2 Z/ � PM .q/ :

Propositions 1.5 and 1.7 are easy to prove by coming back to Definition 1.2.
Proposition 1.6 is more complicated and is proved in Section 5 using new results
about probabilistic cellular automata.

Edge correlation function of the 8-vertex model when a C c D b C d and

its special case the 6-vertex model when a C c D b. Let � be any probability
distribution on ¹0; 1ºZ. Let O � L

�

�I a
aCc

; b
bCd

�

. The edge correlation function
is the function C..i; t /I .i 0; t 0// defined by, for any .i; t /; .i 0; t 0/ 2 xE1,

C..i; t /I .i 0; t 0// D Cov.e.i; t /; e.i 0; t 0//
p

Var.e.i; t //
p

Var.e.i 0; t 0//

D EŒe.i; t /e.i 0; t 0/� � EŒe.i; t /�EŒe.i 0; t 0/�
p

Var.e.i; t //
p

Var.e.i 0; t 0//
:

(7)

We can remark that, as e.i; t / 2 ¹0; 1º for any .i; t /, knowing C..i; t /; .i 0; t 0// is
equivalent to knowing the joint law of e.i; t / and e.i 0; t 0/:

Our main objective is to determine xC 8
1 that is the edge correlation function C

of the 8-vertex model when a C c D b C d and with FBC, i.e. when O � xP 8
1.

First of all, xC 8
1 has some invariance properties.

Proposition 1.8. For any .i; t /; .i 0; t 0/ 2 xE1,

xC 8
1..i; t /I .i 0; t 0// D xC 8

1..i 0; t 0/I .i; t //; (8)

xC 8
1..0; t /I .i 0; t 0// D xC 8

1..1; t /I .1 � i 0; t 0//; (9)

xC 8
1..i; t /I .i 0; t 0// D xC 8

1..i C 2; t/I .i 0 C 2; t 0//; (10)

xC 8
1..i; t /I .i 0; t 0// D xC 8

1..i C 1; t C 1/I .i 0 C 1; t 0 C 1//: (11)
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This is a consequence of Proposition 1.5. Proposition 1.8 permits to deter-
mine xC 8

1 for any values .i; t / and .i 0; t 0/ if the set ¹ xC 8
1..0; 0/I .i; t //W .i; t / 2 xE1º

is known. Hence, in the following, we determine and denote xC 8
1.i; t / D

xC 8
1..0; 0/I .i; t //.

For the 6-vertex model under similar conditions, these invariant properties
were already proved in [14]. And, moreover, the edge correlation function of the
6-vertex model under some conditions was evaluated in the same article:

Theorem 1.9 ([14]). For any q 2 .0; 1/, let O 2 x�6
1 distributed according to

xP 6;q
1 (the limit law of xP 6;q

N , laws of the 6-vertex model on xKN with PMBC.q/). If

a C c D b, the edge correlation function C.i; t / is

C.i; 2t/ D

8

ˆ̂

<̂

ˆ̂
ˆ
:

1

22t

0

@

2t � 1

2t � i � �.i/

2

1

A if 2t � i C �.i/;

0 otherwise;

(12)

with

�.i/ D
´

1 if i is odd,

2 if i is even.

Moreover, for any i , when t ! 1,

C.i; 2t/ D ‚.t� 1
2 /: (13)

In their article, they consider two lines by two lines, that’s why the edge
correlation function is the one of C.i; 2t/ instead of C.i; t /.

Just before to state the main theorem of the paper, we introduce some notations
that are used all along the paper:

p D a

a C c
; r D b

b C d
(14)

and

� D 1 � .p C r/ D c � b

a C c
; (15a)

D D r � p D b � a

a C c
; (15b)

P D .2p � 1/.2r � 1/ D .a � c/.b � d/

.a C c/2
: (15c)
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Theorem 1.10. The edge correlation function xC 8
1 of the 8-vertex model on xK1

with FBC and a C c D b C d (i.e. when O � xP 8
1) is

� if i C t is odd,

xC 8
1.i; t /

D .�1/tC1D

t�1�ji j
2X

kD0

.�1/k

0

@

t � 1 � k

k;
t � 1 C i

2
� k;

t � 1 � i

2
� k

1

A�t�1�2kP kI

(16)

� if t is even and i D 0,

xC 8
1.0; t / D

t
2X

kD0

.�1/k

0

@

t � 1 � k

t

2
� k

1

A

0

@

t

2

k

1

A�t�2kP kI (17)

� if i C t is even and i < 0,

xC 8
1.i; t / D

tCi
2

�1
X

kD0

.�1/tCk

0

@

t � 1 � k

t � i

2
� k

1

A

0

@

t C i

2

k

1

A�t�2kP k

C .�1/
t�i

2

0

B
@

t � i

2
� 1

t C i

2
� 1

1

C
A��iP

tCi
2 I

(18)

� if i C t is even and i > 0,

xC 8
1.i; t / D

t�i
2

�1
X

kD0

.�1/tCk

0

@

t � 1 � k

t � i

2
� k

1

A

0

@

t C i

2

k

1

A�t�2kP k

C .�1/
tCi

2

0

B
@

t C i

2
t � i

2

1

C
A�iP

t�i
2 :

(19)

Remark 1.11. There are some particular cases for which xC 8
1 is simpler.

� If (i � 0 and t � i � 1) or (i � �1 and t � �i) (i.e. the edge .i; t / is not in a
kind of cone starting from .0; 0/, see Figure 8), then xC 8

1.i; t / D 0.
� If a D d and b D c (i.e. p D 1 � r , and so � D 0), then

xC 8
1.i; t / D

´

0 if i ¤ 0;

.1 � 2p/t if i D 0:
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� If a D b and c D d (i.e. p D r , and so D D 0), then

xC 8
1.i; t / D

´

0 if i ¤ t;

.2p � 1/t if i D t:

� If a D c (i.e. p D 1
2
, and so P D 0), then

xC 8
1.i; t / D

8

ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
:

�

� 1

2

�t

0

B
@

t � 1

t � i

2

1

C
A .1 � 2r/t if i is even;

�

� 1

2

�t

0

@

t � 1

t � 1 � i

2

1

A .1 � 2r/t if i is odd:

� If b D d (i.e. r D 1
2
, and so P D 0), then

xC 8
1.i; t / D

8

ˆ̂
ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ
:

�

� 1

2

�t

0

B
@

t � 1

t � i

2

1

C
A .1 � 2p/t if i is even;

�
�

� 1

2

�t

0

@

t � 1

t � 1 � i

2

1

A .1 � 2p/t if i is odd:

Moreover, we obtain the asymptotics of xC 8
1.i; t / for any i when t ! 1.

Theorem 1.12. For any i ,

� if a D d and b D c (i.e. p C r D 1), for any t ,

xC 8
1.i; t / D

´

0 if i ¤ 0;

.1 � 2p/t if i D 0:

� otherwise, when t ! 1,

xC 8
1.i; t / D O

��.p; r/t

p
t

�

(20)

with

�.p; r/ D max.j1 � 2pj; j1 � 2r j/ D max.ja � cj; jb � d j/
ja C cj : (21)
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Figure 8. The “influence cone” of edge .0; 0/. In full line: the set of edges for which
xC 8

1.i; t/ ¤ 0 in general. In dashed line: the set of edges for which xC 8
1.i; t/ D 0 when

a C c D b C d .

For d D 0, we find (13), the asymptotic result of [14], that is a square-
root decreasing of the edge correlation function in the 6-vertex model. In the
generic case of the 8-vertex model when a; b; c; d are all different of 0, decreasing
becomes exponential.

In Theorem 1.10 and 1.12, the regime is supposed to be stationary. When the
regime is not stationary, i.e. when we start with any initial law � at time 0, we can
obtain bounds on C..0; 0/I .i; t //.

Proposition 1.13. Let � be any probability measure on ¹0; 1ºZ and let O �
L.�I p; r/. If a C c D b C d , then the edge correlation function C satisfies,

for any i , any t ,

ˇ
ˇ
ˇ
ˇ
ˇ

s

Var.e.i; t //

Var.e.0; 0//
C..0; 0/I .i; t // � xC 8

1.i; t /

ˇ
ˇ
ˇ
ˇ
ˇ

� 2.�.p; r/
t�1�

�
t
2

˘

C �.p; r/

�
t
2

˘

� �.p; r/t�1/

(22)

with �.p; r/ D max.j1 � 2pj; j1 � 2r j/ D max.ja�cj;jb�d j/
jaCcj

.



Edge correlation function of the 8-vertex model when a C c D b C d 573

Content. Section 2 is about links between the 6- and 8-vertex models when
a C c D b C d and laws L.�I p; r/. In particular, we express, in those cases,
partition functions to prove Propositions 1.1, 1.3 and 1.4.

In Section 3, Theorem 1.10, the main theorem of this paper, is proved. First,
in Section 3.1, we establish and prove Proposition 3.1 that relate xC 8

1.i; t / to a
rational fraction. The proof of this proposition is based on a fundamental lemma
(Lemma 3.2) that permits to understand precisely behaviors of correlations in the
8-vertex model when a C c D b C d . Then, in Section 3.2, we extract coefficients
of this rational fraction to end the proof of Theorem 1.10. And, in Section 3.3, we
evaluate the influence of the boundary conditions on the correlation function by
proving Proposition 1.13.

Section 4 contains the asymptotics of xC 8
1.i; t / and Theorem 1.12 is proved.

In Section 4.1, the case r D 0 is done using properties on random walks. Then,
in Section 4.2, the general case is proved using both results of Section 4.1 and
Theorem 1.10.

Section 5 is dedicated to some discussions about links between vertex mod-
els, colorings of the plane and probabilistic cellular automata. In particular, the
aim is to prove that, when a C c D b C d , far away from the boundary the be-
havior of the 8-vertex model is closed to the one of the 8-vertex model with FBC
(Proposition 5.2). For this, in Section 5.1, we introduce the general theory of prob-
abilistic cellular automata and define triangular probabilistic cellular automata
(TPCA, a new type of PCA at the best knowledge of the author). In Section 5.2,
we present a family of TPCA that emulates the 8-vertex model with aCc D bCd .
We prove that PCA of this family are egodic that gives a proof of Proposition 1.6.
In Section 5.3, we goes on the discussion by presenting a family of TPCA that
emulates specifically the 6-vertex model with a C c D b. In Section 5.4, theorems
and properties stated in Section 5.1, 5.2 and 5.3 are proved.

Finally, in Section 6, we conclude this article giving some additional comments
on vertex models.

2. From xKN to xK1: laws L.�I p; r/

The major aim of this section is to prove Propositions 1.1, 1.3 and 1.4. These
propositions are in fact consequences of properties of partition functions of the
8-vertex model with a C c D b C d and FBC on xKN and on KN . To establish
these properties, we need first to observe that the partition function Z8

G of the
8-vertex model with a C c D b C d and FBC of a graph G could be express
according to the one Z8

Gnv
of the graph G without one of its node v.
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Lemma 2.1. For any graph G, finite subgraph of xK1, and any vertex v D .i; j /.

(1) If the edges .2i; 2j / and .2i C 1; 2j / are internal edges and the edges

.2i; 2j C 1/ and .2i C 1; 2j C 1/ are external edges of G, then the partition

function Z8
G of the 8-vertex model on G with FBC and aCc D bCd satisfies

Z8
G D .a C c/Z8

Gnv: (23)

(2) If the edge .2i; 2j / (resp. .2i C 1; 2j /) is internal and the edges .2i C 1; 2j /

(resp. .2i; 2j /), .2i; 2j C 1/ and .2i C 1; 2j C 1/ are external edges of G,

then the partition function Z8
G satisfies

Z8
G D 2.a C c/Z8

Gnv: (24)

Proof. (1) Let us decompose �8
G (resp. �8

Gnv
) the set of 8-vertex model con-

figurations of G (resp. G n v) into four subsets �
8;.e1;e2/
G (resp. �

8;.e1;e2/

Gnv
) with

e1; e2 2 ¹0; 1º where �
8;.e1;e2/
G (resp. �

8;.e1;e2/

Gnv
) is the set of 8-vertex model con-

figurations of G (resp. G n v) such that e.2i; 2j / D e1 and e.2i C 1; 2j / D e2.
Then

Z8
G D

X

O2�8
G

Y

v02VG

wtypeO .v0/

D
X

O2�
8;.0;0/
G

Y

v02VG

wtypeO .v0/ C
X

O2�
8;.0;1/
G

Y

v02VG

wtypeO .v0/

C
X

O2�
8;.1;0/
G

Y

v02VG

wtypeO .v0/ C
X

O2�
8;.1;1/
G

Y

v02VG

wtypeO .v0/

D
X

O2�
8;.0;0/

Gnv

Y

v02VGnv

wtypeO .v0/.b C d/

C
X

O2�
8;.0;1/

Gnv

Y

v02VGnv

wtypeO .v0/ .a C c/

C
X

O2�
8;.1;0/

Gnv

Y

v02VGnv

wtypeO .v0/ .a C c/

C
X

O2�
8;.1;1/

Gnv

Y

v02VGnv

wtypeO .v0/ .b C d/
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(by decomposition according to the possible orientations of edges .2i; 2j C1/ and
.2i C 1; 2j C 1/)

D .a C c/
X

O2�8
Gnv

Y

v2VGnv

wtypeO .v0/

D .a C c/Z8
Gnv:

(2) The proof is similar to the previous one. We treat the case where .2i; 2j / is
the internal edge of v. Let us decompose the set �8

Gnv
into two subsets �

8;0
Gnv

and

�
8;1

Gnv
such that, for any k 2 ¹0; 1º, �

8;k

Gnv
is the set of 8-vertex model configurations

of G n v such that e.2i; 2j / D k. Then, decomposing according to possible
orientations of v,

Z8
G D a

X

O2�
8;0
Gnv

W.O/ C b
X

O2�
8;0
Gnv

W.O/ C c
X

O2�
8;0
Gnv

W.O/ C d
X

O2�
8;0
Gnv

W.O/

C a
X

O2�
8;1

Gnv

W.O/ C b
X

O2�
8;1

Gnv

Y

v02VG

W.O/

C c
X

O2�8;1
Gnv

W.O/ C d
X

O2�8;1
Gnv

Y

v02VG

W.O/

D .a C b C c C d/
� X

O2�8;0
G

W.O/ C
X

O2�8;1
G

W.O/
�

D 2.a C c/Z8
Gnv: �

Now, we can compute the partition function of the 8-vertex model with aCc D
b C d .

2.1. Partition function on xKN

Lemma 2.2. If a C c D b C d , then for any N , the partition function xZ8
N of the

8-vertex model on xKN with FBC is

xZ8
N D 22N .a C c/

N.NC1/
2 : (25)

Proof. First of all, for N D 1, we have that

xZ8
1 D a C a C b C b C c C c C d C d D 22.a C c/: (26)
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Now, let define LN the subgraph of xKN that contains only the internal nodes
¹.i; 0/W 0 � i � N � 1º � xVN and their adjacent edges, labeled ¹.i; t /W 0 �
i � 2N � 1; t 2 ¹0; 1ºº. Because the internal nodes of LN do not share edges,
their local configurations are independent and, thus, the partition function of the
8-vertex model on LN with FBC is

Z8
LN

D . xZ8
1/N D 22N .a C c/N : (27)

Now using point 1 of Lemma 2.1 and induction, we get that

Z xKN
D .a C c/

N.N�1/
2 ZLN

: �

Now, we can prove Proposition 1.1.

Proof of Proposition 1.1. Let O 2 x�8
N . Set

S D an1.O/Cn2.O/bn3.O/Cn4.O/cn5.O/Cn6.O/d n7.O/Cn8.O/:

Then

xP 8
N .O/ D S

22N .a C c/
N.NC1/

2

(28)

and, by (4),

xP 8; 1
2

N .O/ D
X

B2¹0;1º2N

1

22N

S

xZ8;B
N

1.e.i;0/W0�i�2N �1/DB : (29)

But, for any B 2 ¹0; 1º2N , xZ8;B
N D .a C c/

N.NC1/
2 by point 1 of Lemma 2.1,

induction and the following remark: for N D 1,

xZ8;B
1 D

´

.b C d/; if B 2 ¹.0; 0/; .1; 1/º;

.a C c/; if B 2 ¹.0; 1/; .1; 0/º;
D a C c:

Thus,

xP 8; 1
2

N .O/ D 1

22N

S

.a C c/
N.NC1/

2

D xP 8
N .O/: �
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Proposition 1.3 is a direct consequence of Lemma 2.2.

Proof of Proposition 1.3. Let O � L
�

PM
�

1
2

�

I a
aCc

; b
bCd

�

with a C c D b C d .
Then, orientation Oj xKN

is distributed according to the following probability, by
Definition 1.2,

P.Oj xKN
/ D 1

22N

� a

a C c

�n1Cn2
� b

b C d

�n3Cn4
� c

a C c

�n5Cn6
� d

b C d

�n7Cn8

D an1Cn2bn3Cn4cn5Cn6d n7Cn8

22N .a C c/
N.NC1/

2

D xP 8
N .Oj xKN

/: �

2.2. Partition function on KN

Lemma 2.3. If a C c D b C d , then for any N , the partition function Z8
N of the

8-vertex model on KN with FBC is

Z8
N D 22N .a C c/N 2

(30)

Proof. The proof is similar to the one of Lemma 2.2: induction and both points
of Lemma 2.1 permit to complete it. �

Now, we present a useful property of xP 8
1 D L

�

PM
�

1
2

�

I p; r
�

.

Lemma 2.4. Let O � xP 8
1. Let .ti W i 2 Z/ 2 N

Z such that tiC1 � ti 2
¹0; .�1/iC1Cti º. Then .e.i; ti/W i 2 N/ � PM

�
1
2

�

.

Its proof is a corollary of Proposition 3.10, which is presented and proved in
Section 3.3.

Now, with these two lemmas, we can prove Proposition 1.4.

Proof of Proposition 1.4. Let O � xP 8
1 and let SN D .VN ; EN /. Then, there exists

.i0; t0/ 2 Z � N, i0 C t0 even, (.i0; t0/ is the label of the edge isomorphic to the
edge ..�1; 0/; .0; 0// in KN : in Figure 7, .i0; t0/ D .1; 3/) such that

EN D ¹.i 0; t 0/W i0Ct0 � i 0Ct 0 � i0Ct0C2N; i0�t0�2N C1 � i 0�t 0 � i0C1�t0º:
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In particular, .tj D t0 C j W �N C 1 � j � 0/ [ .tj D t0 � j C 1W 1 � j � N /

satisfies condition of Lemma 2.4 and, so, .e.i0 C j; tj /W �N C 1 � j � N / are
i.i.d. and of law B

�
1
2

�

. Hence,

P.OjSN
/ D 1

22N

� a

a C c

�n1Cn2
� b

b C d

�n3Cn4
� c

a C c

�n5Cn6
� d

b C d

�n7Cn8

D an1Cn2bn3Cn4cn5Cn6d n7Cn8

Z8
N

: �

3. Exact computation of the edge correlation function

To prove Theorem 1.10, we need to prove first the following proposition.

Proposition 3.1. The edge correlation function xC 8
1.i; t / (of the 8-vertex model

with FBC and a C c D b C d ) is the coefficient of l t xiCt in the formal series of

the following rational fraction:

1 C l.1 � .p C r/ C x.r � p//

x2l2.2p � 1/.2r � 1/ C l.1 � .p C r//.1 C x2/ C 1
(31)

with p D a
aCc

and r D b
bCd

.

After proving this proposition, we will extract coefficients of (31) to prove
Theorem 1.10.

3.1. Proof of Proposition 3.1. Let O � xP 8
1. We recall that, in Definition 1.2,

there are two operators T0 and T1 that give orientations line by line according to
parity of time.

In the following, we suppose that r � 1�p. The case 1�p � r can be treated
in a similar way with some differences that are commented in Remark 3.5. First,
let us compute xC 8

1.i; t /:

xC 8
1.i; t / D EŒe.0; 0/e.i; t /� � EŒe.0; 0/�EŒe.i; t /�

p

Var.e.i; t //
p

Var.e.0; 0//

D 4
�

P.e.i; t / D 1 and e.0; 0/ D 1/ � 1

4

�

D 2P.e.i; t / D 1 j e.0; 0/ D 1/ � 1

D P.e.i; t / D 1 j e.0; 0/ D 1/ � P.e.i; t / D 0 j e.0; 0/ D 1/:

(32)
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Hence, we need to compute

P.e.i; t / D 1 j e.0; 0/ D 1/ or P.e.i; t / D 0 j e.0; 0/ D 1/:

This is done using Definition 1.2 and the following crucial lemma. In few words,
this lemma tells us that after a transition T0 or T1, orientation e.i; t / of edge
.i; t / influences orientation e.j; t C 1/ of a unique random edge on the line
..j; t C 1/W j 2 Z/.

Lemma 3.2. Let i 2 Z. Let .s.j /W j 2 Z/ be a sequence of random variables

whose values are in ¹0; 1º such that s.i/ is independent of .s.j /W j ¤ i/. For any

u 2 ¹0; 1º, we denote su D Tu.s/, then

� with probability r , su.i/ D s.i/ and .su.j /W j ¤ i/ are independent of s.i/;

� with probability 1 � p � r , su.i C .�1/iCu/ D 1 � s.i/ and .su.j /W j ¤
i C .�1/iCu/ are independent of s.i/;

� with probability p, su.i/ D 1 � s.i/ and .su.j /W j ¤ i/ are independent of

s.i/.

Proof. We establish the proof for u D 0 and i even, the other cases are proved in
similar ways.

By definition of T0,
� if s.i C 1/ D 1 � s.i/, then

– with probability 1 � p, s0.i/ D s.i/ D 1 � s.i C 1/ and s0.i C 1/ D
s.i C 1/ D 1 � s.i/, and

– with probability p, s0.i/ D 1 � s.i/ and s0.i C 1/ D 1 � s.i C 1/; but
� if s.i C 1/ D s.i/, then

– with probability r , s0.i/ D s.i/ and s0.i C 1/ D s.i C 1/, and
– with probability 1 � r , s0.i/ D 1 � s.i/ D 1 � s.i C 1/ and s0.i C 1/ D

1 � s.i C 1/ D 1 � s.i/.

Now, observe, from the fact that r � 1 � p and, by a coupling argument, that
� with probability r , s0.i/ D s.i/ and s0.i/ depends only on s.i/ and not on

s.i C 1/;
� with probability 1 � p � r , s0.i C 1/ D 1 � s.i/ and s0.i C 1/ depends only

on s.i/ and not on s.i C 1/;
� with probability p, s0.i/ D 1 � s.i/ and s0.i/ depends only on s.i/ and not

on s.i C 1/.
Table 1 shows this coupling argument. This coupling will be reused in Section 3.3.

Finally, by definition of T0, .s0.j /W j ¤ i; i C 1/ depend only on .s.j /W j ¤
i; i C 1/ and not on s.i/. That is ending the proof. �
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Table 1. Coupling in the proof of Lemma 3.2. Figures on the fifth and sixth columns
represents the coupling when s.i/ D 1 � s.i C 1/ D 0 in the fifth and when s.i/ D
s.i C1/ D 0 in the sixth. Plain and dashed line represent particles discussed in Section 3.3.

probability s0.i/ s0.i C 1/

r s.i/ s.i C 1/

1�p

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂
1 � p � r 1 � s.i C 1/ 1 � s.i/

9

>>>>>=

>>>>>;

1�r

p 1 � s.i/ 1 � s.i C 1/

Lemma 3.2 is crucial and central. Indeed, it permits itself to understand exact
influences of orientation e.0; 0/ on an orientation O � xP 8

1. This influence could
be rewritten in term of a non-homogeneous random walk.

Definition 3.3. Let p; r 2 Œ0; 1�, i0 2 Z and k0 2 ¹0; 1º. We denote by .Xt W t � 0/

the following stochastic process with value on Z � ¹0; 1º:
� X0 D .i0; k0/ a.s.;
� if Xt D .i; k/, then

XtC1 D

8

ˆ̂
<

ˆ̂
:

.i; k/ w.p. r;

.i C .�1/iCt ; 1 � k/ w.p. 1 � p � r;

.i; 1 � k/ w.p. p:

(33)

This stochastic process is a Markov chain, but not a homogeneous Markov chain
because its transitions depend on time’s parity.

Lemma 3.4. We have

xC 8
1.i; t / D P.Xt D .i; 1/jX0 D .0; 1// � P.Xt D .i; 0/jX0 D .0; 1//: (34)
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Proof. By (32), it is sufficient to prove that if O � xP 8
1, then for, any i 2 Z, any

t 2 N,

P.e.i; t / D 1 j e.0; 0/ D 1/ � P.e.i; t / D 0 j e.0; 0/ D 1/

D P.Xt D .i; 1/ j X0 D .0; 1// � P.Xt D .i; 0/ j X0 D .0; 1//:
(35)

This is done by induction on t . When t D 0, we have that, for any i , for any k,

P.e.i; 0/ D k j e.0; 0/ D 1/ � P.e.i; 0/ D 0 j e.0; 0/ D 1/

D

8

<

:

1 � 0; if i D 0;

1

2
� 1

2
; otherwise,

D P.X0 D .i; 1/jX0 D .0; 1// � P.X0 D .i; 0/jX0 D .0; 1//:

Now, let t 2 N and suppose that (35) holds for any i , then

P.e.i; t C 1/ D 1 j e.0; 0/ D 1/ � P.e.i; t C 1/ D 0 j e.0; 0/ D 1/

D r P.e.i; t / D 1 j e.0; 0/ D 1/ � r P.e.i; t / D 0 j e.0; 0/ D 1/

C .1 � p � r/P.e.i C .�1/iCt ; t / D 0 j e.0; 0/ D 1/

� .1 � p � r/P.e.i C .�1/iCt ; t / D 1 j e.0; 0/ D 1/

C p P.e.i; t / D 0 j e.0; 0/ D 1/

� p P.e.i; t / D 1 j e.0; 0/ D 1/

(by Lemma 3.2)

D r.P.Xt D .i; 1/jX0 D .0; 1// � P.Xt D .i; 0/jX0 D .0; 1///

C .1 � p � r/.P.Xt D .i C .�1/iCt ; 0/jX0 D .0; 1//

� P.Xt D .i C .�1/iCt ; 1/jX0 D .0; 1///

C p.P.Xt D .i; 0/jX0 D .0; 1//

� P.Xt D .i; 1/jX0 D .0; 1///

(by Definition 3.3)

D P.XtC1 D .i; 1/jX0 D .0; 1// � P.XtC1 D .i; 0/jX0 D .0; 1//: �

Hence, computations of probabilities that Xt is in a certain state is equivalent
to compute xC 8

1. To do that, we use generating functions and methods of analytic
combinatorics. For references to these methods, we recommend the book of
Flajolet-Sedgewick [12].
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Let zE be the set of paths that start from .0; 0/ and go to any point .i; t / 2 Z�N

using only three steps .�1; 1/, .0; 1/ or .1; 1/ and such that, if the path is in a node
.i 0; t 0/, then the next allowed steps are ..�1/i 0Ct 0

; 1/ and .0; 1/. In other words, zE
is the set of paths of the graph represented on Figure 9 with starting point .0; 0/.
As the second coordinate of a path w in zE increases, we can mix up the trajectory
of w that is the sequence ..0; 0/; .i1; 1/; : : : ; .it ; t // with its trace that is the set
¹.0; 0/; .i1; 1/; : : : ; .it ; t /º that are both a representation of w.

Figure 9. The directed graph on which zE is supported. In full line, the first possible steps
of paths in zE.

A colored path of zE is a pair .w; s/ where w 2 zE and s is a function from w

to ¹0; 1º (for any u 2 w, s.u/ is called the color of u). We denote by E the set of
colored paths .w D ..0; 0/; .i1; 1/; : : : ; .it�1; t � 1/; .i; t //; s/ of zE that satisfy the
following constraints:

� s..0; 0// D 1 and
� for any 1 � j � t , if jij � ij �1j D 1, then s..ij ; j // D 1 � s..ij �1; j � 1//;

in other words: if the step from .ij �1; j � 1/ to .ij ; j / is diagonal (.�1; 1/ or
.1; 1/), then the color changes.

To be able to count elements of E according to statistics defined later, we decom-
pose E into four subsets that form a partition of E: for any k1; k2 2 ¹0; 1º, Ek1;k2

is the subset of E of colored paths that finish in a node .i; t / such that i C t D k1

mod 2 and s.i; t / D k2.
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In Flajolet-Sedgewick’s symbolism, relations between these sets are

E0;1 D 1 C
E0;0

&
1

C
E1;1

#
1

C
E1;0

#
1

; E0;0 D
E0;1

&
0

C
E1;0

#
0

C
E1;1

#
0

; (36)

E1;1 D
1

.
E1;0

C
E0;1

#
1

C
E0;0

#
1

; E1;0 D
0

.
E1;1

C
E0;0

#
0

C
E0;1

#
0

: (37)

Now, we enumerate these four subsets according to six statistics:
� nv.w/, number of vertical edges (.0; 1/) in colored path .w; s/,
� nd .w/, number of diagonal edges (.�1; 1/ or .1; 1/) in colored path .w; s/,
� t .w/, number of edges in colored path .w; s/,
� i.w/ D i C t where .i; t / is the final node of colored path .w; s/,
� nc.w; s/, number of color changes that occur on a vertical edge in colored

path .w; s/ and
� nk.w; s/, number of no color changes that occur on a vertical edge in colored

path .w; s/.
Some of these statistics are redundant, e.g. nc C nk D nv or nv C nd D t .

To enumerate subsets Ek1;k2
according to these six statistics, we define gener-

ating functions by, for any k1; k2 2 ¹0; 1º,

Fk1;k2
.zv; zd ; l; x; zc; zk/ D

X

.w;s/2Ek1;k2

znv.w/
v z

nd .w/

d
l t.w/xi.w/znc.w;s/

c z
nk.w;s/

k
: (38)

We can remark that if we take zd D .1 � .p C r//, zv D p C r , zk D r
pCr

and
zc D p

pCr
, then, for any k1; k2 2 ¹0; 1º,

Fk1;k2
D
X

t2N;i2ZjiCtDk1 mod 2

P.Xt D .i; k2/jX0 D .0; 1//l txiCt : (39)

Hence, xC 8
1.i; t / is the coefficient of l txiCt in series development of F0;1 �

F0;0 C F1;1 � F1;0 evaluated in zd D .1 � .p C r//, zv D p C r , zk D r
pCr

and
zc D p

pCr
.

To compute these generating functions, we use equations (36) and (37) that are
translated at level of generating functions into

F0;1 D 1 C R F0;0 C K F1;1 C C F1;0;

F0;0 D R F0;1 C K F1;0 C C F1;1;

F1;1 D L F1;0 C K F0;1 C C F0;0;

F1;0 D L F1;1 C K F0;0 C C F0;1:

with R D zd lx2, L D zd l , K D zkzvlx and C D zczvlx.
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This system is solved (by hand or with the help of a formal computation
software as Sage) and its resolution gives

F0;1 D 1 � 2CRK � C 2 � R2 � K2

H
; (40)

F0;0 D C 2R � LR2 C RK2 C 2CK C L

H
; (41)

F1;1 D �K3 C C.R C L/ C K.C 2 C RL C 1/

H
; (42)

F1;0 D �C 3 C K.R C L/ C C.K2 C RL C 1/

H
; (43)

with H D ..C C K/2 � .1 � R/.1 � L//..C � K/2 � .1 C R/.1 C L//. Thus,

F0;1 � F0;0 C F1;1 � F1;0 D C � R � K � 1

.C � K/2 � .1 C R/.1 C L/
(44)

that, evaluated in C D plx, K D rlx, R D .1 � p � r/l and L D .1 � p � r/lx2,
gives the rational fraction (31). That ends the proof of Proposition 3.1 in the case
r � 1 � p.

Remark 3.5. In the case 1 � p � r , Lemma 3.2 is changed by the following
lemma (changes between the two lemmas are boxed).

Lemma 3.6. Let i 2 Z. Let .s.j /W j 2 Z/ a sequence of random variables

whose values are in ¹0; 1º such that s.i/ is independent of .s.j /W j ¤ i/. For

any u 2 ¹0; 1º, we denote su D Tu.s/, then

� with probability 1 � p , su.i/ D s.i/ and .su.j /W j ¤ i/ are independent of

s.i/;

� with probability r C p � 1 , su.i C .�1/iCu/ D s.i/ and .su.j /W j ¤
i C .�1/i / are independent of s.i/;

� with probability 1 � r , su.i/ D 1�s.i/ and .su.j /W j ¤ i/ are independent

of s.i/.

The proof of this lemma is similar to the one of Lemma 3.2. Table 1 becomes
Table 2.

Then, these changes impact proof as follows. First, we need to change Defini-
tion 3.3 of the random walk X on Z � ¹0; 1º accordingly. Then, we enumerate set
E 0 of colored paths .w; s/ that have the following constraint: if jij �ij �1j D 1, then
s.0; 0/ D 1 and s.ij ; j / D s.ij �1; j /. We separate them as before in four subsets



Edge correlation function of the 8-vertex model when a C c D b C d 585

of colored paths whose generating functions F 0 can be computed. We evaluate
F 0

0;1 � F 0
0;0 C F 0

1;1 � F 0
1;0 in zd D .p C r � 1/, zv D 2 � .p C r/, zk D 1�p

2�.pCr/

and zc D 1�r
2�.pCr/

to finally obtain the same rational fraction (31).

Table 2. Coupling in the Lemma 3.6. Figures on the fifth and sixth columns represents the
coupling when s.i/ D 1 � s.i C 1/ D 0 in the fifth and when s.i/ D s.i C 1/ D 0 in the
sixth.

probability s0.i/ s0.i C 1/

1 � p s.i/ s.i C 1/
9

>>>>>=

>>>>>;

r

r C p � 1 s.i C 1/ s.i/

p

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂
1 � r 1 � s.i/ 1 � s.i C 1/

3.2. Proof of Theorem 1.10. To prove Theorem 1.10, we develop in formal series
the rational fraction (31) according to l and x and we extract coefficients of l t xiCt

to get xC 8
1.i; t /. With notations of (15), the rational fraction (31) is

1 C .� C xD/l

1 C �.1 C x2/l C P x2l2
(45)

Let us begin the development of this rational fraction according to l .

Lemma 3.7. Take t � 0. The coefficient of l t in formal series of the rational

fraction (45) is

f .t/ C .� C xD/f .t � 1/ (46)

with, for any t � 0,

f .t/ D

�
t
2

˘

X

kD0

�
t � k

k

�

.�1/t�k�t�2kP kx2k.1 C x2/t�2k and f .�1/ D 0: (47)
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Thus, for any t � 1,

f .t/ C .� C xD/f .t � 1/

D .�1/
t
2 P

t
2 xt1tD0 mod 2

C

�
t�1

2

˘

X

kD0

.�1/tCk

��
t � 1 � k

k � 1

�

�

�
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

�t�1�2kP kx2k.1 C x2/t�1�2k

(48)

with convention that
�

n
�1

�

D 0 for any n 2 N.

Proof. We develop (45) in formal series according to l .

1 C l.� C xD/

x2l2P C l�.1 C x2/ C 1

D .1 C l.� C xD//
� 1
X

iD0

.�x2l2P � l�.1 C x2//i
�

D .1 C l.� C xD//
� 1
X

iD0

.�1/i l i .P x2l C �.1 C x2//i
�

D
�

1 C l.� C xD/
�� 1
X

iD0

.�1/i l i

i
X

kD0

�
i

k

�

.P x2l/k.�.1 C x2//i�k

�

D .1 C l.� C xD//

� 1
X

iD0

i
X

kD0

�
i

k

�

.�1/i�i�kl iCkP kx2k.1 C x2/i�k

�

D .1 C l.� C xD//

� 1
X

tD0

l t

�
t
2

˘

X

kD0

�
t � k

k

�

.�1/t�k�t�2kP kx2k.1 C x2/t�2k

„ ƒ‚ …

f .t/

�

D
1
X

tD0

l t .f .t/ C .� C xD/f .t � 1//: �
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For any t � 0, f .t/ C .� C xD/f .t � 1/ is a polynomial in the variable x.
Now, we extract coefficients of xj for any j � 0.

Lemma 3.8. The coefficient of xj in (48) is

� if j is odd (we denote j 0 D
�

j
2

˘

),

.�1/tC1D

min.j 0;t�1�j 0/
X

kD0

.�1/k

�
t � 1 � k

k; j 0 � k; t � 1 � j 0 � k

�

�t�1�2kP k I (49)

� if j D t is even,

t
2X

kD0

.�1/k

0

@

t � 1 � k

t

2
� k

1

A

0

@

t

2

k

1

A�t�2kP kI (50)

� if j is even (we denote j 0 D j
2
) and j ¤ t ,

min.j 0�1;t�1�j 0/
X

kD0

.�1/tCk

�
t � 1 � k

t � j 0 � k

��
j 0

k

�

�t�2kP k

C 12j 0<t .�1/t�j 0

�
t � 1 � j 0

j 0 � 1

�

�t�2j 0

P j 0

C 12j 0>t .�1/j 0

�
j 0

t � j 0

�

�2j 0�tP t�j 0

:

(51)

Proof. We expand the sum in (48) as a sum of monomials in x.
�

t�1
2

˘

X

kD0

��
t � 1 � k

k � 1

�

� �
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

.�1/tCk�t�1�2kP kx2k.1 C x2/t�1�2k

D

�
t�1

2

˘

X

kD0

��
t � 1 � k

k � 1

�

� �
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

.�1/tCk�t�1�2kP kx2k

� t�1�2k
X

j D0

�
t � 1 � 2k

j

�

x2j
�

D

�
t�1

2

˘

X

kD0

t�1�2k
X

j D0

�
t � 1 � 2k

j

���
t � 1 � k

k � 1

�

� �
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

.�1/tCk�t�1�2kP kx2.kCj /:
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First, we make the change of variable j 0 D k C j ,

�
t�1

2

˘

X

kD0

t�1�k
X

j 0Dk

�
t � 1 � 2k

j 0 � k

���
t � 1 � k

k � 1

�

� �
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

.�1/tCk�t�1�2kP kx2j 0

then, permuting the sums,

t�1
X

j 0D0

x2j 0

min.j 0;t�1�j 0/
X

kD0

�
t � 1 � 2k

j 0 � k

���
t � 1 � k

k � 1

�

� �
�

t � 1 � k

k

�

Dx

C
�

t � k

k

�

�x2

�

.�1/tCk�t�1�2kP k :

The coefficient of x2j 0C1 is then

�D

min.j 0;t�1�j 0/
X

kD0

�
t � 1 � 2k

j 0 � k

��
t � 1 � k

k

�

.�1/tCk�t�1�2kP k

that is (49).

The coefficient of x2j 0

is

min.j 0;t�1�j 0/
X

kD0

�
t � 1 � 2k

j 0 � k

��
t � 1 � k

k � 1

�

.�1/tCk�t�2kP k

C
min.j 0�1;t�j 0/

X

kD0

�
t � 1 � 2k

j 0 � 1 � k

��
t � k

k

�

.�1/tCk�t�2kP k

that is, if 2j 0 D t ,

t
2

�1
X

kD0

.�1/tCk

0

@

0

@

t � 1 � 2k

t

2
� k

1

A

�
t � 1 � k

k � 1

�

C

0

@

t � 1 � 2k

t

2
� 1 � k

1

A

�
t � k

k

�
1

A�t�2kP k

and adding .�1/
t
2 P

t
2 xt 1tD0 mod 2, we get (50).
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And, in the case 2j 0 ¤ t , we obtain,

min.j 0�1;t�1�j 0/
X

kD0

.�1/tCk

��
t � 1 � 2k

j 0 � k

��
t � 1 � k

k � 1

�

C
�

t � 1 � 2k

j 0 � 1 � k

��
t � k

k

��

�t�2kP k

C 1min.j 0;t�j 0/Dj 0.�1/t�j 0

�
t � 1 � j 0

j 0 � 1

�

�t�2j 0

P j 0

C 1min.j 0;t�j 0/Dt�j 0.�1/j 0

�
j 0

t � j 0

�

�2j 0�t P t�j 0

;

equivalent to

min.j 0�1;t�1�j 0/
X

kD0

.�1/tCk

�
t � 1 � k

t � j 0 � k

��
j 0

k

�

�t�2kP k

C 1min.j 0;t�j 0/Dj 0.�1/t�j 0

�
t � 1 � j 0

j 0 � 1

�

�t�2j 0

P j 0

C 1min.j 0;t�j 0/Dt�j 0.�1/j 0

�
j 0

t � j 0

�

�2j 0�t P t�j 0

that is (51).

N B. The fact that
��

t � 1 � 2k

j 0 � k

��
t � 1 � k

k � 1

�

C
�

t � 1 � 2k

j 0 � 1 � k

��
t � k

k

��

D
�

t � 1 � k

t � j 0 � k

��
j 0

k

�

for any t; k; j 0 could be proved using factorial notation of binomials and it is trivial
if k D 0. �

Proof of Theorem 1.10. We recall that xC 8
1.i; t / is the coefficient of xiCt l t in

the rational fraction (31) (see Proposition 3.1). These coefficients are given
by Lemma 3.8. To conclude, we change variables from .j D i C t; t / to
.i D j � t; t /. �

3.3. Particle system and proof of Proposition 1.13. In this section, we suppose
that p C r � 1. The case p C r � 1 could be treated in a similar way as explained
in Remark 3.5.

First, we define a particle system that is related to the 8-vertex model.
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Definition 3.9 (particle system P.�I p; r/). Let � be a probability measure on
¹0; 1ºZ and p; r 2 Œ0; 1�. The law P.�I p; r/ is the following law on the set
.Z � ¹0; 1º/Z�N. At time t D 0, for any i 2 Z, there is exactly one particle
(named) ˛i in position p.˛i ; 0/ D i and in a random state s.˛i ; 0/ 2 ¹0; 1º and
.s.˛i ; 0/W i 2 Z/ � �. Then, from time t to time t C 1, for any i 2 Z such that
i C t is even, particles ˛ and ˇ such that p.˛; t/ D i and p.ˇ; t/ D i C 1 interact
in the following way:

� with probability p, particles do not move and theirs states do not change:

p.˛; t C 1/ D i; s.˛; t C 1/ D s.˛; t /;

p.ˇ; t C 1/ D i C 1; s.ˇ; t C 1/ D s.ˇ; t/I

� with probability 1 � p � r , particles exchange theirs positions and change
their states:

p.˛; t C 1/ D i C 1; s.˛; t C 1/ D 1 � s.˛; t /;

p.ˇ; t C 1/ D i; s.ˇ; t C 1/ D 1 � s.ˇ; t/:

� with probability r , particles do not move and change their states:

p.˛; t C 1/ D i; s.˛; t C 1/ D 1 � s.˛; t /;

p.ˇ; t C 1/ D i C 1; s.ˇ; t C 1/ D 1 � s.ˇ; t/:

To see a representation of these transitions, see fifth and sixth columns on Table 1:
plain line represents the particle ˛ and dashed line the particle ˇ. Moreover, all
these transitions are independent. The law P.�I p; r/ is then the law of the random
variable ..p.˛i ; t /; s.˛i ; t //W i 2 Z; t 2 N/.

By definition, there is exactly one particle ˛ at each time t in position i ; this
particle will be denoted ˛.i; t / (and, simply, ˛i if t D 0).

This particles system is related to the 8-vertex model with a C c D b C d via
the following proposition.

Proposition 3.10. If ..p.˛i ; t /; s.˛i ; t //W i 2 Z; t 2 N/ � P.�I p; r/, then

.s.˛.i; t /; t /W i 2 Z; t 2 N/ � L.�I p; r/.

Proof. This is a consequence of the coupling defined in Lemma 3.2. �

A first consequence of this proposition is the Lemma 2.4.
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Proof of Lemma 2.4. First, we begin by the following remark: if at time t D 0,
¹s.˛i ; 0/W i 2 Zº are independent, then for any i 2 Z, ¹s.˛i ; t /W t 2 Nº is
independent of ¹s. j̨ ; t /W j 2 Z n ¹iº; t 2 Nº (by Lemma 3.2).

Now, take any sequence .ti W i 2 Z/ such that tiC1 � ti 2 ¹0; .�1/iC1Cti º. We
know that the set of allowed positions for the particle ˛.i; ti/ is, if i C ti is even,

¹.j; t /W P.p.˛.i; ti/; t / D j / > 0º
D ¹.j; t /W i � ti � j � t; j C t � i C ti � 1; t < tiº [ ¹.i; ti/º

[ ¹.j; t /W j � t � i � ti ; i C ti C 1 � j C t; ti < tºI

if i C ti is odd,

¹.j; t /W P.p.˛.i; ti/; t / D j / > 0º
D ¹.j; t /W i � ti C 1 � j � t; j C t � i C ti ; t < tiº [ ¹.i; ti/º

[ ¹.j; t /W j � t � i � ti � 1; i C ti � j C t; ti < tº:

that intersects the set ¹.j; tj /W j 2 Zº in only one point that is .i; ti/, see Figure 10.
Hence, particle ˛.i; ti/ cannot be in any position .j; tj / for any j ¤ i and, so, for
any i; j 2 Z, i ¤ j , ˛.i; ti/ ¤ ˛.j; tj /.

To conclude, as we have .s.˛i ; 0/W ˛i 2 Z/ � PM
�

1
2

�

(because O � xP 8
1),

we get that .e.i; ti/ D s.˛.i; ti/; ti/W i 2 Z/ are independent, see above. And, by
Proposition 1.5, for any i 2 Z, P.e.i; ti/ D 0/ D P.e.i; ti/ D 1/ D 1

2
. �

A second consequence of Proposition 3.10 is Proposition 1.13. Before its proof,
we introduce the same particles system as before but with a slight difference on
the transition kernel.

Definition 3.11 (particle system P
0.�I p; r/). Let p; r 2 .0; 1/. Let B D ¹Bi;t W i 2

Z; t 2 Nº be a set of i.i.d. variables of law B
�

1
2

�

, and Z D ¹Zi;t W i 2 Z; t 2 Nº)
be a set of i.i.d. variables of law B.2m/ with m D min.p; r/.

At time t D 0, for any i 2 Z, there is exactly one particle (named) ˛i in position
p.˛i ; 0/ D i and in a random state s.˛i ; 0/ 2 ¹0; 1º and .s.˛i ; 0/W ˛i 2 Z/ � �,
and such that B , Z and .s.˛i ; 0/W i 2 Z/ are mutually independent. Then, from
time t to time t C 1, for any i 2 Z such that i C t is even, particles ˛ and ˇ such
that p.˛; t/ D i and p.ˇ; t/ D i C 1 interact in the following way:

(1) with probability 2m (that is when Zi;t D 1),

p.˛; t C 1/ D i; s.˛; t C 1/ D Bi;t ;

p.ˇ; t C 1/ D i C 1; s.ˇ; t C 1/ D
´

Bi;t if s.˛; t / D s.ˇ; t/;

1 � Bi;t if s.˛; t / D 1 � s.ˇ; t/I
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Figure 10. In double plain-dashed line: the position .i; ti /. In plain line: the set of allowed
positions for the particle ˛.i; ti /. In dashed line: available edges for a set ..j; tj /W j 2 Z/

that respects the condition tiC1 � ti 2 ¹0; .�1/iC1Cti º. There is no common position for
plain and dashed line except in .i; ti /.

(2) with probability p � m (a Zi;t D 0 case),

p.˛; t C 1/ D i; s.˛; t C 1/ D s.˛; t /;

p.ˇ; t C 1/ D i C 1; s.ˇ; t C 1/ D s.ˇ; t/I

(3) with probability 1 � p � r (a Zi;t D 0 case),

p.˛; t C 1/ D i C 1; s.˛; t C 1/ D 1 � s.˛; t /;

p.ˇ; t C 1/ D i; s.ˇ; t C 1/ D 1 � s.ˇ; t/I

(4) with probability r � m (a Zi;t D 0 case),

p.˛; t C 1/ D i; s.˛; t C 1/ D 1 � s.˛; t /;

p.ˇ; t C 1/ D i C 1; s.ˇ; t C 1/ D 1 � s.ˇ; t/:

Moreover, all these transitions are independent. We denote by P
0.�I p; r/ the law

of ..p.˛i ; t /; s.˛i ; t //W i 2 Z; t 2 N/.
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Lemma 3.12. For any �; p; r , P0.�I p; r/ D P.�I p; r/.

Proof. To prove the lemma, we have to show that when we are in Case 1 in
Definition 3.11, we can obtain with probability 1

2
and 1

2
conclusion of Cases 2

and 4. This is the case because Bi;t D
´

s.˛; t / w.p. 1
2
;

1 � s.˛; t / w.p. 1
2
:

�

In the following, for any particle ˛, any t; t1; t2 2 N with t1 < t2, we denote
the event I.˛; t/ D ¹!W Zp.˛i ;t/;t D 1º: “particle ˛ does the transition 1 at time t

(from time t to t C 1)” and we denote I2.˛; t1; t2/ the event: “˛ does the transition
1 at time t1 and t2 with two different neighbor particles (i.e. I.˛; t1/ and I.˛; t2/

and ˛.p.˛; t1/ C .�1/p.˛;t1/Ct1 ; t1/ ¤ ˛.p.˛; t2/ C .�1/p.˛;t2/Ct2 ; t2/)”. Finally,
we denote

I2.˛; t / D
[

.t1;t2/W0�t1<t2<t

I2.˛; t1; t2/;

the event that ˛ does at least once the transition 1 with two different neighbor
particles before time t . Now, the correlation function of the 8-vertex model with
initial law � can be rewritten in this system of particles. First, we need the
following lemma.

Lemma 3.13. Let ..p.˛i ; t /; s.˛i ; t //W i 2 Z; t 2 N/ � P.�I p; r/. Then, for any

i 2 Z, for any t , I2.˛i ; t / is independent of s.˛0; 0/.

Proof. This is induced by the fact that for any i 2 Z, I.˛i ; t / is independent of
s.˛0; 0/, that is true because Z is independent of .s.˛i ; 0/W i 2 Z/. �

Now, we can express the correlation function of the 8-vertex model with any
boundary condition and a C c D b C d .

Lemma 3.14. Let � be any probability measure on ¹0; 1ºZ and let O � L.�I p; r/.

Then the correlation function C satisfies

ˇ
ˇ
ˇ
ˇ
ˇ

s

Var.e.i; t //

Var.e.0; 0//
C..0; 0/I .i; t // � xC 8

1.i; t /

ˇ
ˇ
ˇ
ˇ
ˇ

� 2P.I2.˛.i; t /; t /c/ (52)
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Proof. Let O D .e.i; t /W i 2 Z; t 2 N/ � L.�I p; r/. Then,

Cov.e.0; 0/; e.i; t //

D EŒe.0; 0/e.i; t /� � EŒe.0; 0/�EŒe.i; t /�

D P.e.0; 0/ D 1 D e.i; t // � P.e.0; 0/ D 1/P.e.i; t / D 1/

D P.e.0; 0/ D 1/ŒP.e.i; t / D 1je.0; 0/ D 1/

� P.e.i; t / D 1je.0; 0/ D 1/P.e.0; 0/ D 1/

� P.e.i; t / D 1je.0; 0/ D 0/P.e.0; 0/ D 0/�

D Var.e.0; 0//ŒP.e.i; t / D 1je.0; 0/ D 1/ � P.e.i; t / D 1je.0; 0/ D 0/�

D Var.e.0; 0//ŒP.s.˛.i; t /; t / D 1js.˛0; 0/ D 1/

� P.s.˛.i; t /; t / D 1js.˛0; 0/ D 0/�:

Hence,
s

Var.e.i; t //

Var.e.0; 0//
C..0; 0/I .i; t //

D P.s.˛0; t / D 1 and ˛.i; t / D ˛0js.˛0; 0/ D 1/

�P.s.˛0; t / D 1 and ˛.i; t / D ˛0js.˛0; 0/ D 0/
„ ƒ‚ …

D xC 8
1.i;t/

C P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /js.˛0; 0/ D 1/

� P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /js.˛0; 0/ D 0/

C P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /cjs.˛0; 0/ D 1/

� P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /cjs.˛0; 0/ D 0/:

But,

P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /js.˛0; 0/ D 1/

(because I2.˛.i; t /; t / H) s.˛.i; t /; t / � B
�

1
2

�

)

D 1

2
P.˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /js.˛0; 0/ D 1/

(by Lemma 3.13 and the fact that trajectories of particles are independent of their
initial states)

D 1

2
P.˛.i; t / ¤ ˛0 and I2.˛.i; t /; t //:
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Similarly,

P.s.˛.i; t /; t / D 1 and ˛.i; t / ¤ ˛0 and I2.˛.i; t /; t /js.˛0; 0/ D 0/

D 1

2
P.˛.i; t / ¤ ˛0 and I2.˛.i; t /; t //:

Hence,

ˇ
ˇ
ˇ
ˇ
ˇ

s

Var.e.i; t //

Var.e.0; 0//
C..0; 0/I .i; t // � xC 8

1.i; t /

ˇ
ˇ
ˇ
ˇ
ˇ

� P.I2.˛.i; t /; t /cjs.˛0; 0/ D 1/ C P.I2.˛.i; t /; t /cjs.˛0; 0/ D 0/

(by Lemma 3.13)

D 2P..I2.˛.i; t /; t //c/

D 2P..I2.˛0; t /c/

because event I2.˛i ; t / occurs with the same probability for any particle ˛i . �

Now, to prove Proposition 1.13, we have to find a bound on P.I2.˛0; t /c/.

Lemma 3.15. Let m D min.p; r/.

P.I2.˛0; t /c/ � .1 � m/
t�1�

�
t
2

˘

C .1 � m/

�
t
2

˘

� .1 � m/t�1 (53)

Proof. We denote T1.!/ D inf¹t W ! 2 I.˛0; t /º. By definition of I.˛0; t /, the
law of T1 is the geometric law on ¹1; 2; : : : º whose success probability is 2m, i.e.
P.T1 D k/ D 2m.1�2m/k�1. Now, denote T2.!/ D inf¹t W ! 2 I2.˛0; T1.!/; t /º.
Due to the fact that two particles cannot interact twice during two successive steps
of time,

˙
T2�T1

2

�

� T in law where T is distributed as T1. Hence,

P.I2.˛0; t // � P.T2 � t /

� P.2T C T1 � t /

D

�
t
2

˘

X

t 0D1

P.T D t 0/P.T1 � t � 2t 0/

D

�
t
2

˘

X

t 0D1

2m.1 � 2m/t 0�1.1 � .1 � 2m/t�2t 0

/
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D 2m

�
t
2

˘

X

t 0D1

..1 � 2m/t 0�1 � .1 � 2m/t�t 0�1/

D 2m
�1 � .1 � 2m/

�
t
2

˘

2m
� .1 � 2m/t�1 .1 � 2m/

�
�

t
2

˘

� 1

2m

�

D 1 � .1 � 2m/

�
t
2

˘

C .1 � 2m/t�1 � .1 � 2m/
t�
�

t
2

˘

: �

Now, we can do the proof of Proposition 1.13.

Proof of Proposition 1.13. In the case p C r � 1, by lemmas 3.14 and 3.15,
ˇ
ˇ
ˇ
ˇ
ˇ

s

Var.e.i; t //

Var.e.0; 0//
C..0; 0/; .i; t // � xC 8

1.i; t /

ˇ
ˇ
ˇ
ˇ
ˇ

� 2..1 � 2m/

�
t
2

˘

C .1 � 2m/
t�
�

t
2

˘

�1 � .1 � 2m/t�1/;

(54)

where m D min.p; r/.
In the case p C r � 1, a similar proof permits to find (54) with m D

min.1 � p; 1 � r/.
To conclude, we remark that when p C r � 1, then p � 1� r and r � 1�p, so

min.1�p; 1� r; p; r/ D min.p; r/; and when p C r � 1, min.p; r; 1�p; 1� r/ D
min.1�p; 1�r/. And, finally, we remark that 1�2 min.p; r; 1�p; 1�r/ D �.p; r/.
That is ending the proof. �

4. Asymptotics of xC 8
1

.i; t/: proof of Theorem 1.12

In this section, we suppose that p C r ¤ 1. The case p C r D 1 has been treated
in Remark 1.11. The proof of Theorem 1.12 is done in two steps. In a first step, the
asymptotics is proved when b D 0 (i.e. when r D 0 and 0 � p < 1). And, in a
second step, it is generalized for any .a; b; c; d/ such that a C c D b C d .

4.1. Case r D 0 and 0 � p < 1. In this case, �.p; 0/ D 1, see (21), and, so,
Theorem 1.12 is

Proposition 4.1. If r D 0 and 0 � p < 1, then there exists c > 0 such that, for

any t 2 N, for any i 2 Z

xC 8
1.i; t / � cp

t
:

To prove this proposition, we prove first two lemmas on the asymptotic behav-
ior of random walks.
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Lemma 4.2. Let S D .St W t 2 N/ be a simple random walk on Z, i.e.

� S0 D 0 a.s.,

� .StC1 � St W t 2 N/ are i.i.d.,

� for any t � 0,

P.StC1 � St D 1/ D P.StC1 � St D �1/ D 1

2
:

Then, there exists a constant c > 0 such that for any t 2 N, for any i 2 Z,

P.St D i/ � cp
t
:

Proof. It is a classical result in probability theory. Proofs of generalization of this
lemma exists for sum of i.i.d. random variables, see [18, Chapter 3]. A proof in
that simple case can be obtained by enumeration of binary paths and application
of Stirling’s formula. �

The second lemma generalizes Lemma 4.2 to some processes constructed with
a simple random walk.

Lemma 4.3. Let X D .Xt W t 2 N/ a process with values in Z. If, for any t 2 N,

Xt
dD SNt

C Rt;Nt

such that N D .Nt W t 2 N/ where Nt follows a binomial law with parameters

.t; q/ (q ¤ 0), S D .SuW u 2 N/ is a simple random walk on Z and R D .Rt;uW t 2
N; u 2 N/ is any collection of any random variables on Z and .N; S; R/ are

independent, then, there exists c > 0 such that for any i , for any t ,

P.Xt D i/ � cp
t
:

Proof. Let t 2 N n ¹0º, i 2 Z and � > 0,

P.Xt D i/ D P.SNt
C Rt;Nt

D i/

� P
�

jNt � qt j >
qt

2

�

C max
n2
�

qt
2

; 3qt
2

�
P.Sn C Rt;n D i/

(by Chebyshev’s inequality)

� q.1 � q/t
�qt

2

�2
C max

n2
�

qt
2

; 3qt
2

�
P.Sn D i � Rt;n/
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(by Lemma 4.2)

� 4.1 � q/

qt
C max

n2
�

qt
2

; 3qt
2

�

cp
n

� c1p
t

C c
p

2
p

q

1p
t

D c2p
t
: �

Now, we define a homogeneous Markov chain Y with values on Z.

Definition 4.4. The process Y D .Yt W t 2 N/ have the following properties:
� Y0 D 0 a.s.;
� for any t 2 N,

YtC1 D Yt C

8

ˆ̂
ˆ
<̂

ˆ̂
ˆ
:̂

�1 w.p. p.1 � p/;

0 w.p. p2;

1 w.p. p.1 � p/;

2.�1/Yt w.p. .1 � p/2:

This Markov chain is related to the Markov chain X defined in Definition 3.3.

Proposition 4.5. Let p 2 Œ0; 1/ and r D 0. In that case, the non-homogeneous

Markov chain X (defined in Definition 3.3) satisfies, for any t 2 N,

X2t
dD .Yt ; 1/ and X2tC1

dD
´

.1 C Yt ; 0/ w.p. 1 � p;

.�Yt ; 0/ w.p. p:
(55)

In particular, (34) gives, for any t ,

xC 8
1.i; 2t/ D P.Yt D 0/ (56)

and

xC 8
1.i; 2t C 1/ D �.pP.Yt D 0/ C .1 � p/P.Yt D �1//: (57)

Proof. We suppose that r D 0, we obtain, for any t 2 Z, applying twice (33), that
if Xt D .i; k/, then

XtC2 D

8

ˆ
ˆ̂

<̂

ˆ̂
ˆ
:̂

.i � 1; k/ w.p. p.1 � p/;

.i; k/ w.p. p2;

.i C 1; k/ w.p. p.1 � p/;

.i C 2.�1/iCt ; k/ w.p. .1 � p/2:
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As X0 D .0; 1/, we obtain that, for any t 2 Z, first coordinate of X2t is equal
in distribution to Yt and its second coordinate is 1 a.s. And, as

X1 D
´

.0; 0/ w.p. p;

.1; 0/ w.p. 1 � p;

first coordinate of X2tC1 is equal in distribution to �Yt w.p. p and to 1 C Yt w.p.
1 � p and its second coordinate is 0 a.s. �

Now, we decompose Y so that Y satisfies conditions of Lemma 4.3. We define
first a law on Z.

Definition 4.6. Let p 2 Œ0; 1�, q 2 Œ0; 1�, t 2 N, n 2 N. Let .Lj W 0 � j � n/ be
nC1 i.i.d. random variables distributed according to geometric law on ¹0; 1; 2; : : : º
of success parameter q, i.e., for any j 2 N, for any k 2 N,

P.Lj D k/ D .1 � q/kq:

We denote by Lt;n.q/ the law on N
nC1 of .Lj W 0 � j � n/ conditioned by

Pn
j D0 Lj D t � n. Let .Lj W 0 � j � n/ � Lt;n.q/. For any j , we set Gj to be

a random variable distributed according to binomial law with parameters .Lj ; p/,
and we suppose that .Gj W 0 � j � n/ knowing .Lj W 0 � j � n/ are independent.
We define then by Rt;n.p; q/ the law of

Rt;n D
n
X

j D0

.�1/j Gj :

Now, we can check that Y satisfies conditions of Lemma 4.3.

Lemma 4.7. The process Y , as defined above, satisfies, for any t 2 N, Yt
dD

SNt
C 2Rt;Nt

where

� Nt follows a binomial law with parameters .t; 2p.1 � p//,

� S D .SuW u 2 N/ is a simple random walk on Z,

� R D .Rt;n/ is a collection of (independent) random variables of mono-

dimensional law: for any t , for any n, Rt;n is distributed according to

Rt;n

�
.1�p/2

p2C.1�p/2 ; 2p.1 � p/
�

,

� N , S and R are mutually independent.
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Proof. Let t 2 N and Yt . For any 1 � i � t , we denote �.Yu/ D Yu � Yu�1. We
remark that .�.Yu/W 1 � u � t / is a sequence of independent random variables of
law

�.Yi/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
ˆ̂

:̂

�1 w.p. p.1 � p/;

0 w.p. p2;

1 w.p. p.1 � p/;

�2 w.p. .1 � p/2 if Yi if odd;

2 w.p. .1 � p/2 if Yi is even:

As Y0 D 0, we have Yt D
Pt

iD1 �.Yi /.
First, we study the set

E1 D ¹uW 1 � u � t and j�.Yu/j D 1º:

We denote by .u1; : : : ; uN / the elements of E1 sorted in increasing order. E1 is
the set of instants for which Yti �1 and Yti have different parities. Cardinal N

of E1 follows a binomial law with parameters .t; 2p.1 � p// (indeed, at each
step of times, j�.Yi/j D 1 with probability 2p.1 � p/). The random variable
SN D

PN
iD1 �.Yti / is distributed as a simple random walk finishing at a random

time N .
We insist on the fact that, for any 0 � j � N � 1, every element of

.Yi W uj � i � uj C1 � 1/ (setting u0 D 0) are of the same parity as j , in particular
jYuj C1�1 � Yuj

j is even. Let, for any j � 0, Lj D uj C1 � 1 � uj . By construction
of Y , random variables .Lj W 0 � j � N / follow the law Lt;N .2p.1 � p// (see

Definition 4.6). We denote Gj D jYuj C1�1�Yuj
j

2
. By construction of Y ,

Gj D
LjX

iD1

X
.j /
i

where .X
.j /
i W 1 � i � Lj ; 0 � j � N / are i.i.d. of law: for any i; j ,

P.X
.j /
i D 1/ D 1 � P.X

.j /
i D 0/ D .1 � p/2

p2 C .1 � p/2
:

In other words, Gj follows a binomial law with parameters
�

Lj ; .1�p/2

p2C.1�p/2

�

.
Hence, we effectively obtain that

Yt
dD SN C 2

N
X

j D0

.�1/j Gj

„ ƒ‚ …

Rt;N

where N follows a binomial law with parameters .t; 2p.1 � p//. �
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Proof of Proposition 4.1. Lemmas 4.3 and 4.7 and Proposition 4.5 have for imme-
diate consequence Proposition 4.1. �

4.2. General case: proof of Theorem 1.12. In this section, we prove only
the case i D 0. The cases i ¤ 0 could be proved in a similar way but with
some sections more technical. We denote by H the function defined by, for any
.p; r/ 2 Œ0; 1�2 such that p C r ¤ 1,

H.p; r/ D .1 � 2p/.1 � 2r/

.1 � .p C r//2
(58)

and we let, for any n � 0,

M .0/
n .X/ D

n
X

kD0

.�1/k

�
2n � 1 � k

n � k

��
n

k

�

Xk (59)

and

M .1/
n .X/ D

n
X

kD0

.�1/k

�
2n � k

k; n � k; n � k

�

Xk: (60)

With these notation, when p C r ¤ 1, xC 8
1.0; t / (in Theorem 31) becomes, for

any t ,
� if t is even,

xC 8
1.0; t / D .1 � .p C r//tM

.0/
t
2

.H.p; r//; (61)

� if t is odd,

xC 8
1.0; t / D .r � p/.1 � .p C r//t�1M

.1/
t�1

2

.H.p; r//: (62)

Hence, the asymptotics of xC 8
1.0; t / as t ! 1 is related to those, as n ! 1,

of sequences of polynomials .M
.0/
n .X/W n � 0/ and .M

.1/
n .X/W n � 0/ when

X D H.p; r/. To evaluate those asymptotic behaviors, we let the function m

that is, for any K � 1,

m.K/ D 1

1 C
p

1 � K
: (63)

Lemma 4.8. For any K � 1, when n ! 1,

M .0/
n .K/ D O

�m.K/�2n

p
2n

�

(64)

and

M .1/
n .K/ D O

�m.K/�2n

p
2n

�

: (65)
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Proof. By Proposition 4.1 applied to p D 1 � m.K/ and r D 0 and (61), for any
t D 2n even,

m.K/2nM .0/
n .H.1 � m.K/; 0// D xC 8

1.0; 2n/ D O
� 1p

2n

�

:

As H.1 � m.K/; 0/ D K, multiplying by m.K/�2n,

M .0/
n .K/ D O

�m.K/�2n

p
2n

�

:

We prove asymptotics of M
.1/
n .K/ as n ! 1 with same arguments. �

Proof of Theorem 1.12. Equations (61) and (62) and Lemma 4.8 imply that, for
any t ,

xC 8
1.0; t / D O

� .1 � .p C r//tm.H.p; r//�t

p
t

�

D O
��.p; r/t

p
t

�

; (66)

where �.p; r/ D
ˇ
ˇ 1�.pCr/

m.H.p;r//

ˇ
ˇ. Now, let us compute �.p; r/.

First, we compute m.H.p; r//.

m.H.p; r// D 1

1 C
q

1 � .1�2p/.1�2r/

.1�.pCr//2

D j1 � .p C r/j
j1 � .p C r/j C jp � r j

This last quantity is 1�.pCr/
1�2r

if (1� .p C r/ � 0 and p � r � 0) or .1� .p C r/ � 0

and p � r � 0) (i.e. if .1 � .p C r//.p � r/ D p � p2 � .r � r2/ � 0), and it is
1�.pCr/

1�2p
otherwise. Hence,

m.H.p; r// D

8

ˆ̂
<

ˆ̂
:

1 � .p C r/

1 � 2p
if p.1 � p/ � r.1 � r/;

1 � .p C r/

1 � 2r
if r.1 � r/ � p.1 � p/:

And so,

�.p; r/ D
´

j1 � 2pj if p.1 � p/ � r.1 � r/;

j1 � 2r j if r.1 � r/ � p.1 � p/:

As p C .1 � p/ D 1 D r C .1 � r/, we can use classical results about areas
of rectangles with same perimeter, to conclude that �.p; r/ D max.j1 � 2pj; j1 �
2r j/. �

Remark 4.9. The value of m.K/ has been originally obtained by studying the
conic equation HK D ¹.p; r/W H.p; r/ D Kº that is the union of two lines.
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5. Vertex models and triangular probabilistics cellular automata

The aim of this section is to prove Proposition 1.6 that said, informally, that far
away from the boundary, the 8-vertex model on xK1 with a C c D b C d looks
like one with FBC whatever are the boundary conditions. To prove it, we use a
coding, introduced by Baxter [2], between colorings of the faces of xK1 and the
8-vertex model configurations xK1, see Section 5.2. We prove that in the case
a C c D b C d , the corresponding random coloring is the space-time diagram
of a (new kind of) probabilistic cellular automata (PCA), called triangular PCA
(TPCA). Thanks to that and the fact that this PCA is ergodic, we obtain thus a
proof of Proposition 1.6.

Hence, we give first (in Section 5.1) an overview of the theory of PCA and
some new results on TPCA. Then, in Section 5.2, we focus our attention on the
family of TPCA that are interesting to study the 8-vertex model with aCc D bCd

and we prove Proposition 1.6. Section 5.3 is a short section about links between
TPCA and the 6-vertex model with a C c D b. Finally, Section 5.4 contains some
proofs of propositions and theorems stated in Section 5.1, 5.2 and 5.3.

5.1. Triangular probabilistic cellular automata. We define first probabilistic
cellular automata (PCA) of order 2 whose triangular PCA (TPCA) are special
cases. A PCA A of order 2 is a quintuple .E;L; N1; N2; T / where

� E is a finite set;
� L is a lattice;
� N1 is a neighborhood function of L, i.e. there exists a finite subset I1 of L

such that, for any i 2 L, N1.i/ D .i Cj W j 2 I1/, we denote jN1j the cardinal
of I1 that is the one of N1.i/ for any i 2 L;

� N2 is another neighborhood function of L and
� T is a transition matrix from EjN2j � EjN1j to E, i.e. for any .x; y/ 2

EjN2j � EjN1j, for any z 2 E, T .x; yI z/ � 0, and
P

z02E T .x; yI z0/ D 1.
From this quintuple, we define a Markov chain .St W t � 0/ of order 2 on EL in the
following way: for any subset C � L, for any .zi W i 2 C / 2 EC ,

P..StC2.i/ D zi W i 2 C / j St D .xi W i 2 L/; StC1 D .yi W i 2 L//

D
Y

i2C

T ..xj W j 2 N2.i//; .yj 0W j 0 2 N1.i//I zi/:
(67)

The process StC2 is well defined because its law is defined on a compatible way
on all cylinders of EL. .St .i/W i 2 L; t � 0/ is called space-time diagram of A.

An other way to see PCA of order 2 is to consider them as a deterministic map
from M.EL � EL/ (the set of probability measure on EL � EL) to M.EL � EL/.
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Let A be a PCA .E;L; N1; N2; T /. Let � 2 M.EL � EL/ and .St0 ; St0C1/ � �.
We denote by � the law of .St0C1; St0C2/ where St0C2 is the image of .St0 ; St0C1/

by A. Then, for any subset C 2 L and any .y; z/ 2 EL � EL,

�..yi W i 2 N1.C //; .zi W i 2 C //

D
X

.xi Wi2N2.C//2EN2.C/

�..xi W i 2 N2.C //; .yi 2 N1.C ///

Y

i2C

T ..xj W j 2 N2.i//; .yj W j 2 N1.i//I zi/

where

Nk.C / D
[

i2C

Nk.i/ for any k 2 ¹1; 2º.

We denote by ˆA the function that maps � to � D ˆA.�/. We say that � is an
invariant probability measure of A if � D ˆA.�/.

In the following, we consider only the cases where L D Z, N1.i/ D .i; i C 1/

and N2.i/ D .i C 1/. Such PCA of order 2 are called, in this article, triangular
probabilistic cellular automata (TPCA). The name comes from the fact that their
space-time diagrams are triangular lattices (see Figure 11). To simplify reading,
transitions T ..xiC1/; .yi ; yiC1/I zi/ of TPCA are denoted now T .yi ; xi ; yiC1I zi /.

Before seeing new results on TPCA, we recall some theorems about “classi-
cal” PCA. The “classical” PCA, considered here, are PCA of order 2 for which
N1.i/ D .i; i C 1/ and N2.i/ D ;. We will call them square PCA (SPCA) in the
following because their space-time diagram are homeomorphic to Z

2 (see Fig-
ure 11). To simplify reading, transitions T .;; .xi ; xiC1/I yi/ of SPCA are denoted
in the following T .xi ; xiC1I yi/.

Cellular automata and “classical” PCA have been studied since 1940s. For
more information on PCA, we refer the interested reader to the recent survey
of Mairesse and Marcovici [15]. In the present work, we focus our attention on
results on SPCA whose one of its invariant probability measures is a Markovian
distribution [3, 24, 23, 10, 5, 16, 8, 7]. In particular, we need to recall Theorem 2.6
of [8] that characterizes SPCA whose one of its invariant probability measures is
a .D; U /-HZMC (Horizontal Zigzag Markov Chain).

A law � on EZ � EZ is a .D; U /-HZMC distribution if there exists a pair
.D; U / of stochastic matrices from E to E and a family .�i W i 2 Z/ of probability
measures on E such that, for any k1; k2 2 Z, k1 < k2, for any .xi W k1 � i � k2/,
.yi W k1 � i � k2 � 1/,
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Figure 11. Top: (empty) space-time diagram of a TPCA. Bottom: (empty) space-time
diagram of a SPCA.

�..xi W k1 � i � k2/; .yi W k1 � i � k2 � 1//

D �k1
.xk1

/

k2�1
Y

iDk1

D.xj I yj /U.yj I xj C1/
(68)

and, for any i 2 Z and xiC1 2 E,

�iC1.xiC1/ D
X

xi 2E

�i .xi /
X

yi 2E

D.xi I yi /U.yi I xiC1/: (69)
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In other words, a HZMC distribution is a Markovian distribution on states of two
consecutive lines crossed from bottom to top and left to right (see Figure 12). In
the following, we denote .x; y/ � �.D;U / if .x; y/ is distributed according to a
.D; U /-HZMC distribution.

Figure 12. Representation of a horizontal zigzag Markov chain (HZMC).

Now, we define some quantities needed to state Theorem 2.6 of [8]. Let T

be any stochastic Markov kernel from E2 to E with positive coefficients. Let
� D .�.x/W x 2 E/ be the stochastic (i.e. normalized such that

P

x2E �.x/ D 1)
left eigenvector associated to the eigenvalue 1 of the following stochastic matrix

.T .x; xI y/W x 2 E; y 2 E/

(this eigenvector is unique due to the Perron–Frobenius theorem) and 
 be the
stochastic left eigenvector of the matrix

�

�.y/
T .y; yI 0/

T .y; xI 0/
W x 2 E; y 2 E

�

associated with �, its maximal eigenvalue. In this case, 
 is solution of
X

x2E


.x/

T .y; xI 0/
D �


.y/

T .y; yI 0/�.y/
: (70)

Define further for any � D .�.x/W x 2 E/ 2 M.E/ with full support, the transition
matrices D� and U � from E to E:

D�.xI y/ D
P

x02E �.x0/T .x;x0Iy/
T .x;x0I0/

P

x002E
�.x00/

T .x;x00I0/

and U �.yI x0/ D
�.x0/T .0;x0Iy/

T .0;x0I0/
P

x002E �.x00/T .0;x00Iy/
T .0;x00I0/

:

(71)

Theorem 5.1 (Theorem 2.6 of [8]). Let A be a SPCA with finite alphabet

E D ¹0; : : : ; �º and transition matrix T such that, for any x0; x1; y0 2 E,

T .x0; x1I y0/ > 0. One of the invariant probability measures of A is a HZMC

distribution if and only if T satisfies the two following conditions:
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Condition 1. for any x; x0; y 2 E,

T .x; x0I y/T .x; 0I 0/T .0; x0I 0/T .0; 0I y/

D T .0; 0I 0/T .x; x0I 0/T .0; x0I y/T .x; 0I y/I

Condition 2. the equality D
U 
 D U 
 D
 holds ( for 
 as defined in (70) and

.D
 ; U 
 / in (71)).

In this case, .D
 ; U 
/-HZMC distribution is invariant by A.

We can present, now, two new theorems on PCA that characterize TPCA whose
one of its invariant probability measures is a .D; U /-HZMC. We establish these
characterizations in two particular cases. The first case is when D D U .

Theorem 5.2. Let A be a TPCA on E a finite alphabet of transition matrix

T D .T .y; x; y0I z/W y; x; y0; z 2 E/ with positive rate (i.e. T .y; x; y0I z/ > 0

for any y; x; y0; z 2 E). For any y; y0 2 E, we denote . zT .y; y0I x/W x 2 E/ the

unique left stochastic eigenvector (associated to eigenvalue 1) of the stochastic

matrix .T .y; x; y0I z/W x; z 2 E/. One of the invariant probability measures of A

is a .D; D/-HZMC distribution if and only if the SPCA zA on E with transition

matrix zT D . zT .y; y0I z/W y; y0; z 2 E/ satisfies Condition 1 and Condition 2
of Theorem 5.1 with D
 D U 
 . In this case, .D
 ; D
 /-HZMC distribution is

invariant by A.

The second case is when E is of size 2.

Theorem 5.3. Let A be a TPCA on E D ¹0; 1º of transition matrix T D
.T .y; x; y0I z/W y; x; y0; z 2 E/ with positive rate. For any y; y0 2 E, we de-

note . zT .y; y0I x/W x 2 E/ the left eigenvector (associated to eigenvalue 1) of

.
P

u T .y0; x; yI u/T .y; u; y0I z/W x; z 2 E/. One of the invariant probability mea-

sures of A is a .D; U /-HZMC distribution if and only if zT satisfies Condition 1
and

Condition 3. for the pair .D
 ; U 
 / founded by application of Theorem 5.1 to

SPCA zA on E with transition matrix zT , we have, for any y; y0; z 2 ¹0; 1º,

D
 .yI z/U 
 .zI y0/ D
X

x2¹0;1º

U 
 .yI x/D
 .xI y0/T .y; x; y0I z/:

In this case, .D
 ; U 
 /-HZMC distribution is an invariant probability measure

of A.
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Proofs of these two theorems are done in Section 5.4.2 and 5.4.3. These two
theorems applied to two particular TPCA, A8 and A6 defined in Sections 5.2
and 5.3, give another way to prove Propositions 1.5 and 1.7 (see Section 5.4.4).

5.2. TPCA A8 and 8-vertex models. Now, we consider a family of TPCA
related to the 8-vertex model when a C c D b C d . A8 is a TPCA with alphabet
E D ¹0; 1º and transition matrix T such that, for any k 2 ¹0; 1º,

� T .k; k; kI k/ D T .k; 1 � k; kI 1 � k/ D r ,
� T .k; k; kI 1 � k/ D T .k; 1 � k; k; k/ D 1 � r ,
� T .k; 1 � k; 1 � kI k/ D T .k; k; 1 � kI 1 � k/ D p,
� T .k; 1 � k; 1 � kI 1 � k/ D T .k; k; 1 � kI k/ D 1 � p.
To show their links with vertex models, we define first xK1’s faces and coloring

of xK1. We call internal faces of xK1 any square whose vertices are
®

.i; t /;
�

i �
1
2
; t � 1

2

�

; .i; t � 1/;
�

i C 1
2
; t � 1

2

�¯

for any .i; t / 2 xV1 such that t ¤ 0; such a face
is labeled by .i � t; 2t/. And we call external faces any triangle whose vertices
are

®�

i � 1
2
; �1

2

�

; .i; 0/;
�

i C 1
2
; �1

2

�¯

for any i 2 Z; such a face is labeled by .i; 0/.
Set of (internal and external) faces of xK1 is denoted xF1. A 2-coloring of xK1 is
any function C from xF1 to ¹0; 1º. The set of 2-colorings is denoted C2.

Now we can remark that any realization of the space-time diagram of A8 is
a 2-coloring of xK1 (see Figure 13). Baxter[2, Section 10.2] presents a function,
denoted here ‚8, from C2 to x�8

1. This function is the following: starting with any
C 2 C2, we obtain an orientation O D ‚8.C / 2 x�8

1 by the following rule: take
any edge .i; t / (this edge is adjacent to 2 faces f and f 0), the orientation e.i; t / is

e.i; t / D 1C.f /DC.f 0/: (72)

Conversely, starting with an orientation O 2 xK1, we can obtain two distinct
2-colorings C and C 0 2 C2 (¹C; C 0º D ‚�1

8 .¹Oº/) by this way: first, color any face
f by any color 0 or 1, then color adjacent faces to the previous one respecting (72),
and make it recursively to color any face. Two distinct 2-colorings C and C 0,
obtained from the same orientation O , satisfy the following property: for any face
f , C.f / ¤ C 0.f /. See Figure 13 as an example of ‚8.

First, note that, for any t , knowing Cj.Ft ;FtC1/, the coloring of the set of faces
¹.i; t 0/W i 2 Z; t 0 2 ¹t; t C 1ºº, is enough to know the orientations of .e.i; t /W i 2
Z/ D ‚8.Cj.Ft ;FtC1//. Hence, we can define �t D ‚8.�t /, a law on .e.i; t /W i 2 Z/

according to �t a law on 2 coloring faces of ¹.i; t 0/W i 2 Z; t 0 2 ¹t; t C 1ºº by, for
any n 2 N, for any en D .ei;t W i 2 J�n; nK D Œ�n; n� \ Z/,

�t .en/ D P..e.i; t / D ei;t W i 2 J�n; nK// D
X

C2¹C1;C2ºD‚�1
8

.en/

�t .C / (73)
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Figure 13. One realization of the space time diagram of the TPCA A8 and its associated
8-vertex model configuration.

Now, we can show the reason of our choice for A8.

Lemma 5.4. Let �0 be any probability measure on ¹0; 1ºZ � ¹0; 1ºZ and let

C be the space-time diagram of A8 such that Cj.F0;F1/ � �0, then ‚8.C / �
L.‚8.�0/I p; r/.

Proof. The proof of this lemma is based on the fact that images by ‚8 of initial
laws and transitions of A8 are those that define L.�I p; r/ in Definition 1.2. �

Hence, A8 is related to laws L.�I p; r/ and thus to the 8-vertex model. Now,
the study of invariant Markovian laws of A8 give us a unique element.

Proposition 5.5. For any r 2 .0; 1/ and p 2 .0; 1/. The set of invariant HZMC

of A8 has a unique element that is the .D; U /-HZMC whose kernels D and U are

such that D D U and, for any i; j 2 ¹0; 1º, D.i I j / D 1
2
.

The proof of this proposition is done in Section 5.4.4. Proposition 1.5 is, then,
an immediate consequence of Lemma 5.4 and of this proposition. In addition,

Lemma 5.6. For any r 2 .0; 1/ and p 2 .0; 1/, A8 is ergodic: for any initial law

�0, let C be the space-time diagram of A8 such that Cj.F0;F1/ � �0 and denote �t

the law of Cj.Ft ;FtC1/, then �t ! PM
�

1
2

�

as t ! 1.

The proof of this lemma is done in a more general context in an incoming paper
on triangular probabilistic cellular automata [9, Theorem 8]. The idea of the proof
is close to the one in [24]. This lemma permits to prove Proposition 1.6.
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Proof of Proposition 1.6. Let � be any law on ¹0; 1ºZ. Now, we have the choice
for our initial law �0 on coloring. We choose here the one that is symmetric: for
any n, for any C D .ci W i 2 J�2n � 1; 2nK/ 2 ¹0; 1ºJ�n;nK�J�n�1;nK,

�0.C / D �0..1 � ci W i 2 J�2n � 1; 2nK// D 1

2
�.‚8.C //: (74)

Now, by Lemma 5.6, �t ! PM
�

1
2

�

. Thus, �t D ‚8.�t / ! PM
�

1
2

�

, that is the
law of .e.i; t /W i 2 Z/. �

5.3. TPCA A6 and 6-vertex models. In this section, we show relations between
the 6-vertex model when a C c D b and TPCA A6. A6 is a TPCA with alphabet
E D ¹0; 1; 2º and transition matrix T such that, for any i 2 ¹0; 1; 2º,

� T .i; i C 1; i C 2I i C 1/ D 1,
� T .i; i C 1; i I i C 2/ D p,
� T .i; i C 1; i I i C 1/ D 1 � p

where additions on E are done modulo 3.
Links between A6 and the 6-vertex model are similar to the ones between A8

and the 8-vertex model, instead of that 2-coloring is replaced by proper 3-coloring.
A proper 3-coloring of xK1 is any function C from xF1 to ¹0; 1; 2º such that if two
different faces f; f 0 have a common edge then C.f / ¤ C.f 0/. The set of proper
3-colorings is denoted C3.

We can remark that if we start iterations of A6 with an initial state .S0; S1/

such that, for any i 2 Z, S0.i/ ¤ S1.i/ and S1.i/ ¤ S0.i C 1/ a.s., then the
same condition is satisfied for any t � 0, i.e., for any t 2 N, for any i 2 Z,
St .i/ ¤ StC1.i/ and StC1.i/ ¤ St .i C 1/ a.s. Hence, a space-time diagram
realization of A6 is a proper 3-coloring of xK1. Moreover, there exists a function,
denoted here ‚6, between C3 and x�6

1 [2, Section 8.13]. This function is obtained
as follows. let C 2 C3, take any edge .i; t / of xK1, edge .i; t / is oriented such that
if we look the oriented edge in front of us oriented to the top, then the value of
the right face of the edge is equal (modulo 3) to the value of the left face C1 (see
Figure 14). Conversely, starting with an orientation O 2 x�6

1, we get three distinct
proper 3-colorings ¹C; C 0; C 00º D ‚�1

6 .¹Oº/. These three distinct 3-colorings C ,
C 0 and C 00 satisfy: for any face f 2 xF1, ¹C.f /; C 0.f /; C 00.f /º D ¹0; 1; 2º.

In a similar way that has been done in (73), we can define ‚6 as a function on
measures of ¹0; 1; 2ºZ.

Lemma 5.7. Let � be any measure on ¹0; 1; 2ºZ�¹0; 1; 2ºZ such that if .S0; S1/ �
� then for any i 2 Z, S0.i/ ¤ S1.i/ and S1.i/ ¤ S0.i C 1/ a.s. Let C be the

space-time diagram of A6 such that .S0; S1/ � �, then ‚6.C / � L.‚6.�/I p; 1/.
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Figure 14. The relations observed by ‚6 permitting to go from a proper 3-coloring of xK1

to a configuration of the 6-vertex model. Here, i is any element of ¹0; 1; 2º and the sum
i C 1 is taken modulo 3.

Proof. Images by ‚6 of initial laws and transition of A6 are those that define
L.‚6.�/I p; 1/. �

An interesting property of A6 is described in the following theorem.

Proposition 5.8. For any p 2 Œ0; 1�. The set of invariant HZMC of A6 contains

the set of .D; U /-HZMC whose kernels D and U are such that D D U and, for

any i 2 ¹0; 1; 2º, D.i I i C 1 mod 3/ D q and D.i I i � 1 mod 3/ D 1 � q for any

q 2 Œ0; 1�.

This property associated to Lemma 5.7 permits to get an alternative proof of
Proposition 1.7. The proof of Proposition 5.8 is done in Section 5.4.4.

5.4. Proofs of previous results on TPCA

5.4.1. Preliminary results on TPCA and invariant HZMC distributions. First
of all, we recall necessary and sufficient conditions for a .D; U /-HZMC to be an
invariant probability measure of a SPCA.

Proposition 5.9 (Proposition 1.2 of [8]). Let E be a finite set. Let A be a PCA

with positive rate and transition matrix T and .D; U / be two transition matrices

from E to E. The .D; U /-HZMC distribution is an invariant probability measure

of A if and only if the two following conditions hold:

Condition 4. for any x; x0; y 2 E,

T .x; x0I y/ D D.xI y/U.yI x0/

.DU /.xI x0/
(75)

Condition 5. we have

DU D UD: (76)
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This proposition is weaker than Theorem 5.1 in the sense that Condition 4
and Condition 5 hold both on T and .D; U / and not just only on T . The first
step to prove Theorems 5.2 and 5.3 is to generalize this proposition to TPCA.

Lemma 5.10. Let E be a finite set. Let A be a TPCA of transition matrix T

with positive rate and let D and U be two transition matrices from E to E. The

.D; U /-HZMC distribution is an invariant probability measure of A if and only if

Condition 6. for any y; y0; z 2 E,

D.yI z/U.zI y0/ D
X

x2E

U.yI x/D.xI y0/T .y; x; y0I z/: (77)

Proof. Let A be a TPCA of transition matrix T with positive rate and .D; U / two
transition matrices from E to E.

� Suppose that the .D; U /-HZMC distribution is an invariant probability mea-
sure of A. Suppose that a pair of lines .x0; x1/ � �.D;U /, then .x1; x2/ � �.D;U /

where x2 is the image of .x0; x1/ by A. Now, for any a; c; d 2 E, we com-
pute P.x1.0/ D a; x2.0/ D d; x1.1/ D cjx1.0/ D a/. On one hand, the lines
.x1; x2/ � �.D;U /, so

P.x1.0/ D a; x2.0/ D d; x1.1/ D cjx1.0/ D a/ D D.aI d/U.d I c/ (78)

and, on the other hand, the pair .x0; x1/ � �.D;U / and x2 is their image by A, so

P.x1.0/ D a; x2.0/ D d; x1.1/ D cjx1.0/ D a/

D
X

b2E

P.x1.0/ D a; x0.1/ D b; x2.0/ D d; x1.1/ D cjx1.0/ D a/

D
X

b2E

P.x1.0/ D a; x0.1/ D b; x2.0/ D d jx1.0/ D a/

P.x1.1/ D cjx1.0/ D a; x0.1/ D b; x1.1/ D c/

D
X

b2E

U.aI b/D.bI c/T .a; b; cI d/:

(79)

By (78) and (79), we finally obtain that Condition 6 is necessary.
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� Conversely, suppose that Condition 6 holds, and take a pair of lines .x0; x1/ �
�.D;U / and x2 their image by A. Then, for any k1; k2 2 Z, k1 < k2 for any
.bi W k1 � i � k2/ 2 Ek2�k1C1 and .ci W k1 � i � k2 � 1/ 2 Ek2�k1 ,

P..x1.i/ D bi W k1 � i � k2/; .x2.i/ D ci W k1 � i � k2 � 1//

D
X

ai 2E Wk1�i�k2C1

�k1
.ak1

/

� k2Y

iDk1

D.ai I bi/U.bi I aiC1/

�

� k2�1
Y

iDk1

T .bi ; aiC1; biC1I ci /

�

D
� X

ak1
2E

�k1
.ak1

/D.ak1
I bk1

/
�

k2�1
Y

iDk1

X

aiC12E

U.bi I aiC1/D.aiC1I biC1/T .bi ; aiC1; biC1I ci /

D �k1
.bk1

/

k2�1
Y

iDk1

D.bi I ci/U.ci I biC1/

(80)

Then, the pair .x1; x2/ � �.D;U /. �

Remark 5.11. When the transition matrix has not positive rates, Condition 6
implies always that the .D; U /-HZMC is an invariant probability measure of A,
but converse is not true because Condition 6 can hold on a subset of E, but not E

entirely.

We continue proving Theorems 5.2 and 5.3 by seeing that, in Proposition 5.9,
for any .D; U /-HZMC, there exists a unique SPCA AS that lets the .D; U /-HZMC
invariant, its transition matrix T S is, for any y; y0; z 2 E,

T S .y; y0I z/ D D.yI z/U.zI y0/

.DU /.yI y0/
: (81)

For the same reason, there exists a unique SPCA AR that lets the .U; D/-
HZMC invariant, its transition matrix T R is, for any y; y0; x 2 E,

T R.y; y0I x/ D U.yI x/D.xI y0/

.DU /.yI y0/
: (82)

Then, Condition 6 is equivalent, dividing by .DU /.yI y0/ (not equal to zero in
the positive rates cases), to



614 J. Casse

Condition 7. for any y; y0; z,

T S .y; y0I z/ D
X

x2E

T R.y; y0I x/T .y; x; y0I z/: (83)

Corollary 5.12. Let E be a finite set. Let A be a TPCA of transition matrix T

with positive rates and let D and U be two transition matrices from E to E. The

.D; U /-HZMC is an invariant probability measure of A if and only if Condition 7
is satisfied with T S the transition matrix of the unique SPCA AS that lets the

.D; U /-HZMC invariant and T R the transition matrix of the unique SPCA AR

that lets the .U; D/-HZMC invariant.

The main idea to prove Theorems 5.2 and 5.3 is to find, for a fixed transition
matrix T from E3 to E, all the pair of transition matrices .T S ; T R/ from E2 to E

such that Condition 7 is satisfied, and then verify if .T S ; T R/ satisfies (or not) the
other wanted properties: conservation of a .D; U /-HZMC and of a .U; D/-HZMC
thanks to Theorem 5.1. In the particular cases where D D U or E D ¹0; 1º,
we are able to find a unique possible pair of .T S ; T R/ related to T that can
satisfy Condition 7. All other cases are open problems.

5.4.2. Proof of Theorem 5.2. Let T be a transition matrix from E3 to E of
a TPCA with positive rate. We denote, for any y; y0, . zT .y; y0I x/W x 2 E/, the
unique left eigenvector related to the eigenvalue 1 of .T .y; x; y0I z/W x 2 E; z 2 E/

normalized such that
P

x2E
zT .y; y0I x/ D 1, i.e., for any y; y0,

zT .y; y0I z/ D
X

x2E

zT .y; y0I x/T .y; x; y0I z/ (84)

and zT is a transition matrix from E2 to E, this eigenvector exists due to Perron–
Frobenius theorem. Moreover, we suppose that zT satisfies Condition 1 and Condi-
tion 2 of Theorem 5.1 with D� D U �, i.e. there exists D� such that the .D�; D�/-
HZMC distribution is an invariant probability measure of zA, the SPCA with transi-
tion matrix zT . In this case, we remark that SPCAs that let invariant .D; U /-HZMC
and .U; D/-HZMC are the same, i.e. T R D T S D zT in Corollary 5.12 and so (84)

imply Condition 7. We finish the proof using Corollary 5.12.

Conversely, if the .D; D/-HZMC distribution is an invariant probability mea-
sure of T , by Lemma 5.10, for any y; y0; z 2 E,

D.yI z/D.zI y0/ D
X

x2E

D.yI x/D.xI y0/T .y; x; y0I z/;

i.e. for any y; y0, .D.yI x/D.xI y0/W x 2 E/ is a left eigenvector of .T .y; x; y0I z/W
x 2 E; z 2 E/ associated to the eigenvalue 1. By Perron–Frobenius theorem, the
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eigenspace associated to eigenvalue 1 is of dimension 1. Thus, for any y; y0; x,
D.yI x/D.xI y0/ D �y;y0 zT .y; y0I x/. Moreover, as we want that . zT .y; y0I x/W x 2
E/ is a probability vector, we obtain

zT .y; y0I x/ D D.yI x/D.xI y0/

.DD/.yI y0/
:

Hence, by Proposition 5.10, the .D; D/-HZMC distribution is an invariant prob-
ability measure of SPCA zA of transition matrix zT . And so, by Theorem 5.1,
zA needs to satisfy Condition 1 and Condition 2 with D D U .

5.4.3. Proof of Theorem 5.3. In the case E D ¹0; 1º, we have the following
algebraic property on T S and T R.

Lemma 5.13. Let E D ¹0; 1º and T S and T R be two transition matrices from E2

to E such that the .D; U /-HZMC is an invariant probability measure of AS with

transition matrix T S and the .U; D/-HZMC is an invariant probability measure

of AR with transition matrix T R. Then, for any y; y0; x 2 E,

T S .y; y0I x/ D T R.y0; yI x/: (85)

Proof. As AS lets invariant the .D; U /-HZMC distribution, by Proposition 5.9,
for any y; x; y0, (81) holds and, due to similar reasons, for any y; x; y0, (82) holds
too.

When y D y0 D x, by (81) and (82), T S .y; yI y/ D T R.y; yI y/, and, more-
over, as T S .y; yI :/ and T R.y; yI :/ are probability measures on ¹0; 1º, eq. (85)

holds if y D y0.
Now, we look the more complicated case y D 0 and y0 D 1 (the case

y D 1 and y0 D 0 is similar replacing S by R) and x D 0 (x D 1 will
be then immediate because T S .0; 1I 0/ C T S .0; 1I 1/ D 1 D T R.1; 0I 0/ C
T R.1; 0I 1/). By Proposition 5.9, DU D UD, so .UD/.0I 0/ D .DU /.0I 0/ that
simplifies in U.0I 1/D.1I 0/ D D.0I 1/U.1I 0/, that implies U.0I 1/.UD/.1I 0/ D
U.1I 0/.DU /.0I 1/ and, finally,

T S .0; 1I 0/ D D.0I 0/U.0I 1/

.DU /.0I 1/
D U.1I 0/D.0I 0/

.UD/.1I 0/
D T R.1; 0I 0/: �

Now, we can prove Theorem 5.3.

Proof of Theorem 5.3. � Suppose that one of the invariant probability measures
of TPCA A of transition matrix T with positive rates is a .D; U /-HZMC distri-
bution and denote . zT .y; y0I x/W x 2 E/ the left eigenvector related to the eigen-
value 1 of

�P

k2E T .y0; x; yI k/T .y; k; y0I z/W x 2 E; z 2 E
�

and such that
P

x2E T .y; y0I x/ D 1.
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By Lemma 5.10, Condition 6 holds. As E D ¹0; 1º, by Lemma 5.13, this
condition rewrites: for any y; y0; z,

T S .y; y0I z/ D
X

x2E

T S .y0; yI x/T .y; x; y0I z/: (86)

Applying this equation twice establishes that, for any y; y0; z 2 ¹0; 1º,
X

x2E

T S .y; y0I x/
�X

u2E

T .y0; x; yI u/T .y; u; y0I z/
�

D
X

x2E

T S .y0; yI x/T .y; x; y0I z/ D T S .y; y0I z/:
(87)

In other words, for any y; y0, .T S .y; y0I x/W x 2 E/ is a left eigenvector related
to eigenvalue 1 of

�P

u2E T .y0; x; yI u/T .y; u; y0I z/W x 2 E; z 2 E
�

. So, by
Perron–Frobenius theorem, for any y; x; y0, T S .y; y0I x/ D �y;y0 zT .y; y0I x/ with
�y;y0 D 1 because the sum in x is equal to 1 in both sides. Then, the TPCA zA with
transition matrix zT D T S lets invariant the .D; U /-HZMC distribution. Hence,
by Theorem 5.1 or results of Belyaev [3], zT satisfies

zT .0; 0I 0/zT .0; 0I 1/zT .1; 0I 0/zT .0; 1I 0/ D zT .1; 1I 1/ zT .1; 1I 0/zT .0; 1I 1/zT .1; 0I 1/

(88)

And so Condition 3 holds by Lemma 5.10.
� Conversely, if zT satisfies Condition 1 (i.e. (88) if E D ¹0; 1º), then we apply

Theorem 5.1 to find a pair .D�; U �/ such that the .D�; U �/-HZMC distribution
is an invariant probability measure of zA of transition matrix zT . If, moreover, this
pair .D�; U �/ satisfies Condition 3 then, by Lemma 5.10, the .D�; U �/-HZMC is
an invariant probability measure of A. �

5.4.4. Proofs of Proposition 5.5 and 5.8

Proof of Proposition 5.5. To prove Proposition 5.5, we apply Theorem 5.3 to A8.
First, let us compute matrices

�X

k2E

T .y0; x; yI k/T .y; k; y0I z/W x 2 E; z 2 E
�

for any y; y0. We obtain the following four matrices:

yny0 0 1

0

 

p2 C .1 � p/2 2p.1 � p/

2p.1 � p/ p2 C .1 � p/2

!  

r2 C .1 � r/2 2r.1 � r/

2r.1 � r/ r2 C .1 � r/2

!

1

 

r2 C .1 � r/2 2r.1 � r/

2r.1 � r/ r2 C .1 � r/2

!  

p2 C .1 � p/2 2p.1 � p/

2p.1 � p/ p2 C .1 � p/2

!
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Left eigenvectors related to eigenvalue 1 are all equal for these four matrices
and their common value is . 1

2
1
2 /. So, we know have to study the SPCA whose

transition matrix is, for any y; x; y0 2 ¹0; 1º, T .y; y0I x/ D 1
2
. We observe easily

that this SPCA as for unique invariant HZMC distribution, the .D; U /-HZMC
such that, for any x; y 2 ¹0; 1º, D.xI y/ D U.xI y/ D 1

2
. Then, Condition 3

holds for this pair .D; U /. We deduce, by Theorem 5.3, that A8 lets invariant this
.D; U /-HZMC distribution and, moreover, it is the unique HZMC distribution that
is invariant by A8. �

Proof of Proposition 5.8. To prove Proposition 5.8, we check that Condition 6
holds with T , the transition matrix of A6, and for any .D; U / such that D D U

and, for any i 2 Z=3Z, D.i; i C 1/ D 1 � D.i; i � 1/ D q. And, then, Remark 5.11
concludes the proof. �

6. Conclusion

We have computed the edge correlation function of the 8-vertex model on xK1

with free boundary conditions and a C c D b C d and we have bounded the
influence of being not in a free boundary conditions case.

Moreover, as stated in Proposition 1.4, edge correlation function of Theo-
rem 1.10 is the one of the 8-vertex model on KN with a C c D b C d and free
boundary conditions. If, instead of a rotation of an angle ��

4
to pass from the

8-vertex model on KN to the 8-vertex model on xKN , we have done a rotation by
an angle �

4
, then we would have obtained the correlation function of the 8-vertex

model on KN with a C d D b C c and free boundary conditions.
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