
Ann. Inst. H. Poincaré D
Comb. Phys. Interact. 9 (2022), 1–45
DOI 10.4171/AIHPD/112

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Gaussianity and typicality in matrix distributional semantics

Sanjaye Ramgoolam, Mehrnoosh Sadrzadeh, and Lewis Sword

Abstract. Constructions in type-driven compositional distributional semantics associate large
collections of matrices of size D to linguistic corpora. We develop the proposal of analysing
the statistical characteristics of this data in the framework of permutation invariant matrix mod-
els. The observables in this framework are permutation invariant polynomial functions of the
matrix entries, which correspond to directed graphs. Using the general 13-parameter permuta-
tion invariant Gaussian matrix models recently solved, we find, using a dataset of matrices
constructed via standard techniques in distributional semantics, that the expectation values of
a large class of cubic and quartic observables show high Gaussianity at levels between 90 to
99 percent. Beyond expectation values, which are averages over words, the dataset allows the
computation of standard deviations for each observable, which can be viewed as a measure of
typicality for each observable. There is a wide range of magnitudes in the measures of typic-
ality. The permutation invariant matrix models, considered as functions of random couplings,
give a very good prediction of the magnitude of the typicality for different observables. We find
evidence that observables with similar matrix model characteristics of Gaussianity and typical-
ity also have high degrees of correlation between the ranked lists of words associated to these
observables.

1. Introduction

A research programme “Linguistic Matrix Theory” of understanding the characterist-
ics of randomness in natural language, specifically in matrix/tensor datasets arising
from type-driven compositional distributional semantics, using the framework of ran-
dom matrix/tensor theories was initiated in [26].

Distributional or vector space models of meaning in natural language semantics
argue that meanings of words are representable by the contexts in which they often
occur. The ideas that have inspired this way of reasoning about meaning go back
to the works of Firth [16] and of Harris [25], the former of which famously said:
“You shall know the meaning of a word by the company it keeps.” These ideas were
implemented via vectors of co-occurrence contexts [41, 44]. Contexts, e.g., words in
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a fixed neighbourhood window of size k, are taken to be the basis of a vector space
whose elements represent meanings of other words. The coefficients of a word vector
w over a basis vector bi is a function of the number of times w occurred in the context
of bi . These co-occurrence frequencies are collected from large corpora of data, such
as crawls of web domains, Google’s news and book archives, and Wikipedia. The
distances between the word vectors represent their semantic similarity/relatedness,
e.g., see [45].

In order to extend the distributional model from words to phrases and sentences,
one has to take into account grammatical structure. Type-logical approaches to gram-
mar, e.g., Combinatory Categorial Grammar [47] and the Lambek Calculus [29], have
been shown to have a straightforward interface to the vector space models of meaning.
The ideas behind these grammatical formalisms are the same, although they follow
different notational conventions and syntactic rules and in this paper we adopt the
terminology of Lambek Calculus. In a type-logical grammar, some words, such as
nouns, have atomic types and others, such as adjectives and verbs, have functional
(or functor) types. If we start with the set ¹n; sº of atomic types, n for the type of a
noun and s for the type of a sentence, then an adjective will have type n ! n: this
type says that an adjective is a function that takes an argument of type noun, modifies
it and returns an adjective noun phrase of type n. For instance, the adjective “red”
takes the noun “cat” as an argument and after modifying it, returns the phrase “red
cat” as an adjective noun phrase. An intransitive verb has type n ! s, i.e., a func-
tion that takes an argument of type noun and returns a sentence. An example here is
the verb “snore”, which takes the noun “cats” as argument and returns the sentence
“cats snore”. A transitive verb has type n ! n ! s; this is a function that takes an
arguments of type noun, returns a verb phrase of type n ! s, which in turn takes an
argument of type noun and returns a sentences. An example is the verb “like”, it takes
the noun “fish” and returns the verb phrase ‘like fish”, which in turn takes the noun
“cats” and returns the sentence “cats like fish”.1

Type-driven distributional models of meaning start from a type-driven analysis
of grammar and assign a compositional vector semantics to natural language con-
structions [9–11, 33]. These models are based on the centreline argument that words
with atomic types should be represented as vectors, but words with functional types
as linear or multilinear maps, equivalently matrices, cubes, or higher order tensors,
depending on the number of arguments they take. If we assign the vector space N

1One can think of a transitive verb as a function of two nouns and thus assign the type
n � n ! s to it. Following Chomsky, however, a sentence must be generated by a noun phrase
followed by a verb phrase and despite the equivalence n ! n ! s � n � n ! s, syntactically
these two types should be distinguished.
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to the type n and the vector space S to the type s, then adjectives, intransitive verbs,
and verb phrases that only have one argument become elements of the tensor spaces
N ˝ N and N ˝ S , respectively. These are represented as matrices. Transitive and
ditransitive verbs have two and three arguments each: they become elements of the
tensor spaces N ˝ N ˝ S and N ˝ N ˝ N ˝ S and are represented as cubes and
hypercubes, respectively. When a word with a functional type composes with a word
with an atomic type, the composition is represented by the application of the corres-
ponding linear/multilinear map with the vector of the atomic word. As an example,
consider the distributional meaning of “red cat”, which becomes the result of the mat-
rix multiplication of the matrix of “red” and vector of “cat”. Denoting the former with
M red

ij 2 N ˝ N and the latter with V cat
j 2 N , we obtain M red

ij � V cat
j as the meaning of

“red cat”. Similarly, denoting the meaning of “snore” by M snore
ij 2 N ˝ S , we obtain

M snore
ij � V cat

j as the meaning of “cats snore”. Similarly, the meaning of “cats like fish”
becomes M like

ijk
� V fish

k
� V cat

j and so on.
The collection of matrices associated to adjectives and intransitive verbs of a cor-

pus have large matrix sizes, ranging from 100 up to 10K, and to 40K, e.g., see the
original work of [4] for the higher dimensions and the sequel work of [32] for the
lower ones. While the AI inspired tasks are focused on extracting linguistic struc-
ture, e.g., word similarity, from these matrices, such a large collection inevitably has
elements of randomness. Any corpus is a finite, even if large, sample selected from
everything written in a language. Even if it is a good approximation to everything
written, the written words in a corpus are influenced by the experience of the authors,
subject for example to a wide range of interactions with the environment and other
humans. We may ask if there are universal patterns in the randomness existing in the
large datasets of matrices encoding the complex natural system that is human lan-
guage. The experience of random matrix theory has indeed shown that the patterns in
the distribution of energy eigenvalues of complex nuclei [14, 50] also occur in a wide
variety of complex systems (see for example [5, 15, 24, 31]).

In the Linguistic Matrix Theory (LMT) programme of [26], one of the first steps
was to identify the appropriate type of symmetry. Here it was useful to consider
the kinds of mathematical expressions which are used in distributional semantics
to extract the meaning encoded in words. For vector, matrix and tensor data in D

dimensions, some of these expressions are invariant under the orthogonal group of
all rotations in D dimensions, but the generic expressions are only invariant under
the smaller symmetry of all permutations of D objects, the symmetric group SD. This
motivated us to consider matrix models with SD symmetry. The polynomial functions
of matrix variables Mij which are SD invariant have an elegant classification in terms
of polynomials labelled by directed graphs. The degree of the polynomial is the num-
ber of edges in the graph: the number of nodes is unconstrained. There are two graphs
at linear order, each associated with a permutation invariant polynomial. A general
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permutation invariant linear function is a sum of these two polynomials with arbitrary
coefficients. We restrict these linear coefficients to be real numbers �1; �2. There are
eleven independent quadratic functions. As a simple toy model we considered three
quadratic polynomials with three associated coefficients ƒ1; ƒ2; ƒ3. We defined a
function S.�1; �2; ƒ1; ƒ2; ƒ3/ and considered a probability distribution defined by
the partition function

Z D
Z

dMe�S.�1;�2;ƒ1;ƒ2;ƒ3/: (1.1)

Given any permutation invariant polynomial, which we will henceforth refer to as
observables and denoted by O.M/, we can calculate a theoretical expectation value

hOiTHEO D 1

Z

Z

dMe�S.�1;�2;ƒ1;ƒ2;ƒ3/
O.M/: (1.2)

The expectation values of the linear and quadratic observables hOi are expressible as
simple functions of the �a; ƒi . In order to match these probability distributions with
experimental data, the experimental expectation values for these five observables were
computed as averages over the words in the dataset

1

Nwords

X

A

O.M A/I (1.3)

A is a label for the words in the dataset and Nwords is the number of words in the
dataset. Equating these to the theoretical expectation values, we determined the �a;ƒi

parameters of the model, for a given dataset.
The theoretical model was also used to calculate the expectation values of a num-

ber of cubic and quadratic observables. These theoretical values, using the input of
�a; ƒi determined as above, give the predictions of the 5-parameter Gaussian model
for these observables. We calculated the ratios of the theoretical to experimental val-
ues, with a ratio close to 1 being good agreement between theory and experiment. The
best ratios were approximately 60%, but for a number of observables the ratios were
very low, the lowest being around 0.6%. We argued that a more complete treatment
with a general Gaussian model that includes all the eleven parameters would likely
give better ratios.

The theoretical model with all eleven quadratic parameters was solved in [40]. It
was useful to employ a representation theoretic approach to the space of quadratic
permutation invariant functions. The eleven parameters were organised according to
four irreducible representations V0;VH ;V2;V3 of SD. ƒV0 is a symmetric 2 � 2 matrix
with three real parameters, ƒVH is a symmetric 3 � 3 real matrix with 6 parameters
and ƒV2 ; ƒV3 are each real numbers. We have an action

S.�a; ƒV0 ; ƒVH ; ƒV2 ; ƒV3/ � S.�a; ƒV / (1.4)
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which defines a probability distribution and associated partition function

Z D
Z

dMe�S.�a ;ƒV /: (1.5)

Convergence of the measure requires that ƒV0 and ƒVH are positive semi-definite
matrices, and ƒV2 � 0; ƒV3 � 0. The first main goal of this paper is to report on
the application of this 13-parameter Gaussian model from [40] to the same dataset
constructed in [26], to test its effectiveness at predicting cubic and quartic expectation
values along the lines of the approach in [26].

It is useful at this point to discuss our investigations of Gaussianity in language in
the broader context of studying statistical aspects of language and of applications of
matrix models in physics. The two central elements of the programme initiated in [26]
are Gaussianity and permutation symmetry. It is worthwhile discussing a potential
objection to Gaussianity in linguistics. Zipf’s Law [30, 54] is the observation that in
corpora of natural language, e.g., collections of written text in a language such as
English, the frequency of a word is inversely proportional to its rank. A power law is
of course nothing like a Gaussian, so a quick argument is that Gaussians are not what
one typically gets in the statistics of linguistic corpora.

Since the 1990’s, starting from the works [7, 13, 23], matrix theories have seen
an explosion of applications in theoretical physics, to match their widespread use in
applied physics along the lines of the original work of Wigner and Dyson. A prom-
inent area of application is gauge-string duality, where quantum field theories with
matrix degrees of freedom in diverse dimensions, have an emergent dual description
in terms of a string theory. The present application of matrix models to language, can
be viewed as the exploration of another instance of emergence from matrix theory. In
the present case, the emergence is that of universal aspects of randomness in natural
language from the mathematics of matrix theory.

One of the lessons from the applications of matrix models in gauge-string dual-
ity and indeed more broadly from applications of quantum field theory, is that the
validity of Gaussianity or approximate Gaussianity often needs to be carefully delin-
eated in a complex system. Following the analogy between integrals and path integrals
describing quantum field theories, field theoretic realizations of Gaussianity or near-
Gaussianity are phenomena described by free quantum field theories where the actions
are quadratic in the field variables, and perturbations of these free theories by small
higher order corrections. Taking the field theory to be the gravitational space-time
field theory in the AdS string background in the context of the AdS/CFT corres-
pondence [34], an important instance of this is the failure of perturbative gravity in
accounting for high energy graviton interactions [1] even at a qualitative level, which
is related to the phenomenon of giant gravitons [35]. In the dual matrix CFT descrip-
tion of this physics, this giant graviton physics appears from the combinatorics of
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large composite operators associated with particular shapes of Young diagrams [12].
The Gaussian regime of perturbative gravitons arises from correlators of low order
gauge invariant polynomials. The lesson is that the phenomena described by matrix
theories are rich and diverse, with Gaussianities emerging from the identification of
the appropriate observables.

The same theme is evident in the applications of quantum field theory to the real
world. In the context of quantum field theories applied to particle physics phenomena,
free-field behaviour (approximate Gaussianity) arises in the high energy (ultra-violet)
regime for theories such as quantum chromodynamics (QCD) while it arises in the
low-energy (infra-red) regime for quantum electrodynamics (see for example text-
books in quantum field theory such as [46]). In cosmology, the detailed study of
the approximate Gaussianity of fluctuations in the cosmic microwave background,
which originate from a very early period in the history of the universe, and bounds on
the non-Gaussianities are used to constrain the space of theoretical models of infla-
tion [38]. In this setting, the fluctuations of the temperature of the CMB in different
directions in the sky are experimentally measurable observables which can be related
to theoretical models of inflation described by a path integral for a scalar field. In
the present context of type-driven compositional distributional semantics, the exper-
imental data consists of matrices constructed from linguistic corpora, which can be
used to compute averages of their polynomial functions. The Gaussian matrix theory
we consider, and potential perturbations thereof one might consider in the future, are
the theoretical analogs of the path integrals for inflation considered in cosmology. This
natural science perspective on distributional semantics based on matrix models offers
an interesting complement to the artificial intelligence perspectives which drive much
research on distributional semantics. Beyond the question of quantifying Gaussianity,
our investigations of linguistic matrix data in this paper are guided by the intriguing
interfaces between the two perspectives of natural science and artificial intelligence.

Going back to the first goal of this paper, we find that low order permutation invari-
ant polynomials, and specifically the 13-parameter Gaussian permutation invariant
matrix models, are indeed the right objects to detect strong evidence of Gaussianity.
While the best theory/expt ratios achieved by the 5-parameter model are near 60%,
the best ratios now are near 99% and indeed for a number of cubic and quartic observ-
ables, these ratios are above 90%. The lowest ratio is 16%, so that the Gaussian model
still predicts the right order of magnitude of the expectation value even in the worst
case. In all the experiments studied, we find that the linear and quadratic expectation
values lead to theoretical parameters �; ƒ consistent with the convergence criteria.

Since the comparison of experiment with theory in the above discussion has only
used, for each observable, the experimental averages of the observables O.M/ over
all the words, it is oblivious to the detailed distribution of the observable over the
set of words used to calculate the average. This distribution has a standard deviation
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.ıO.M//EXPT. As a further test of Gaussianity, we can use the standard deviations
of the linear and quadratic observables from the data, to determine perturbed theoret-
ical parameters � C ı�; ƒ C ıƒ, and then use the theoretical equations to determine
theoretical predictions .ıO.M//THEO for the standard deviations of the higher order
observables. We find that the theory/experiment ratios for the standard deviations
range over 26% to 95%. This looks to be a very good success rate, which we con-
firm by comparing to a simple random walk model for the standard deviations. In our
prediction of the standard deviations, we are using for the same dataset, a range of
possible values of the couplings in the Gaussian matrix model, effectively a Gaus-
sian model with a distribution of couplings. The success of these predictions of the
standard deviations is our second main result.

Our tables of theory/experiment ratios for hO.M/i and ıO.M/ show that some
pairs of observables have distinctly similar characteristics whether we are looking at
expectation values or standard deviations. Each observable can also be used to rank
the words in the dataset, starting from the word with the lowest O.M/ to the one
with the highest. Since ranked lists of words form a standard tool in distributional
semantics, it is natural to ask whether observables which have very similar matrix
model characteristics also produce similar ranked lists. We find evidence for a positive
answer.

The plan of the paper is as follows. Section 2 is a technical introduction describ-
ing the range of experimental data we will be analysing. Section 2.1 gives the system
of equations for the theoretical expectation values of the two linear and eleven quad-
ratic observables as a function of the theoretical parameters �; ƒ. For each experi-
ment, the thirteen experimental expectation values are matched with the theoretical
ones, to determine the appropriate �; ƒ for each experiment. Section 4 gives the
ratios of experimental to theoretical expectation values for cubic and quartic observ-
ables. Section 5 explains the motivations from possible applications in distributional
semantics for our investigations of typicality. It then proceeds to explain the experi-
ment/theory comparisons and presents the results. Section 6 provides evidence show-
ing that observables with similar matrix model characteristics, in terms of expectation
values and dispersions, produce similar ranked lists. The comparison of ranked lists is
done with the Spearman � characteristic as well as two-dimensional rank correlation
plots. We conclude with a discussion of our results and future directions.

Appendix A lists the equations for the expectation values of cubic and quartic
observables in terms of the theoretical parameters �; ƒ. A number of these equations
are reproduced, in one or two instances with typos corrected, from [40] and there are
four new observables which are computed by the same methods explained there.
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2. Experiments and the 13 theoretical parameters

In this paper, we will be using the matrices for adjectives and verbs that were con-
structed for the paper [26]. The detailed algorithm is explained there. The matrices
are of size D � D, where D ranges in steps of 100 from 300 to 2000.

As explained in [26] the counting of linearly independent permutation invariant
polynomials (observables) of a fixed degree is equivalently given by the counting of
directed graphs. The nodes correspond to the indices, the matrix Mij correspond to
an edge going from node i to node j . The graphs corresponding to the 11 quadratic
polynomials are given in [26, Appendix B]. One minor technical point: in this paper,
we find it convenient to associate unrestricted sums to graphs, e.g., for a graph having
two edges from one node to another, we associate

P

i;j M 2
ij , and not

P

i¤j M 2
ij as

in [26].
There are 52 cubic observables/graphs and 296 quartic ones. In [40] the thirteen

parameter model was solved. The computation of expectation values was given for a
selection of four cubic and two quartic observables. In this paper, we have developed
the theoretical formulae for an additional four observables. The graphs corresponding
to the set of ten cubic/quartic observables under consideration in this paper are given
in Appendix C. The theoretical equations for the ten expectation values are given in
Appendix A.

2.1. The system of equations for the 13-dimensional parameters

The strategy for comparison of experiments with data we use here is exactly as in [26],
with the only difference now being that we have the full 13-dimensional parameter
space of permutation invariant Gaussian matrix models.

From [40], the two equations expressing expectation values of linear permutation
invariant functions of M , in terms of the �; ƒ parameters of the Gaussian model:

X

i

hMi i i D Q�1 C
p

.D � 1/ Q�2; (2.1)

X

i;j

hMij i D D Q�1; (2.2)

where

Q�1 D ..ƒV0
/�1/11�1 C ..ƒV0

/�1/12�2;

Q�2 D ..ƒV0
/�1/21�1 C ..ƒV0

/�1/22�2:

The eleven equations [40] expressing expectation values of quadratic permutation
invariant functions of M , in terms of the �; ƒ parameters of the Gaussian model are
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as follows:
X

i;j

hMij Mij i D Q�2
1 C Q�2

2 C .ƒ�1
V0

/11 C .ƒ�1
V0

/22

C .D � 1/.ƒ�1
H /22 C .D � 1/.ƒ�1

H /33

C .D � 1/.ƒ�1
H /11 C D.D � 3/

2
.ƒV2

/�1

C .D � 1/.D � 2/

2
.ƒV3

/�1; (2.3)

X

i;j

hMij Mj i i D .ƒV2
/�1 D.D � 3/

2
� .ƒV3

/�1 .D � 1/.D � 2/

2

C 2.D � 1/.ƒ�1
H /12 C .D � 1/.ƒ�1

H /33

C .ƒ�1
V0

/11 C .ƒ�1
V0

/22 C Q�2
1 C Q�2

2; (2.4)
X

i;j

hMi i Mij i D .ƒ�1
V0

/11 C
p

.D � 1/.ƒ�1
V0

/12

C .D � 1/.ƒ�1
VH

/12 C .D � 1/.ƒ�1
VH

/22

C .D � 1/
p

.D � 2/.ƒ�1
VH

/23 C Q�2
1 C Q�1 Q�2

p

.D � 1/; (2.5)
X

i;j

hMi i Mj i i D .ƒ�1
V0

/11 C
p

.D � 1/.ƒ�1
V0

/12

C .D � 1/.ƒ�1
VH

/11 C .D � 1/.ƒ�1
VH

/12

C .D � 1/
p

.D � 2/.ƒ�1
VH

/13 C Q�2
1 C Q�1 Q�2

p

.D � 1/; (2.6)

X

i;j;k

hMij Miki D D.ƒ�1
V0

/11 C D.D � 1/.ƒ�1
VH

/22 C D Q�2
1; (2.7)

X

i;j;k

hMij Mkj i D D.ƒ�1
V0

/11 C D.D � 1/.ƒ�1
VH

/11 C D Q�2
1; (2.8)

X

i;j;k

hMij Mjki D D.ƒ�1
V0

/11 C D.D � 1/.ƒ�1
VH

/12 C D Q�2
1; (2.9)

X

i;j;k;l

hMij Mkl i D D2.ƒ�1
V0

/11 C D2 Q�2
1; (2.10)

X

i

hM 2
i i i D

.ƒ�1
V0

/11

D
C .D � 1/

D
.ƒ�1

V0
/22 C 2

p

.D � 1/

D
.ƒ�1

V0
/12

C .D � 1/

D
.ƒ�1

VH
/11 C .D � 1/

D
.ƒ�1

VH
/22

C .D � 1/

D
.D � 2/.ƒ�1

VH
/33 C 2

.D � 1/

D
.ƒ�1

VH
/12

C 2
.D � 1/

D

p

.D � 2/.ƒ�1
VH

/13 C 2
.D � 1/

D

p

.D � 2/.ƒ�1
VH

/23

C Q�2
1

D
C 2

Q�1 Q�2

D

p

.D � 1/ C Q�2
2

.D � 1/

D
; (2.11)
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X

i;j

hMi i Mjj i D .ƒ�1
V0

/11 C .D � 1/.ƒ�1
V0

/22 C 2
p

.D � 1/.ƒ�1
V0

/12

C Q�2
1 C 2 Q�1 Q�2

p

.D � 1/ Q�2
2.D � 1/; (2.12)

X

i;j;k

hMi i Mjki D D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

C D Q�2
1 C Q�1 Q�2D

p

.D � 1/: (2.13)

2.2. Parameter values for adjectives at D D 2000

To three significant figures, the parameter values for D D 2000 are given in Table 1.

Parameter Value

Q�1 4:84 � 10�1

Q�2 1:01

.ƒ�1
V0

/11 4:00 � 10�2

.ƒ�1
V0

/12 5:10 � 10�2

.ƒ�1
V0

/22 2:49 � 10�1

.ƒ�1
H

/11 1:45 � 10�2

.ƒ�1
H

/12 1:02 � 10�4

.ƒ�1
H

/13 2:28 � 10�4

.ƒ�1
H

/22 2:91 � 10�4

.ƒ�1
H

/23 1:22 � 10�4

.ƒ�1
H

/33 7:27 � 10�4

.ƒ�1
V2

/ 2:49 � 10�4

.ƒ�1
V3

/ 2:41 � 10�4

Table 1. Parameter values of the Gaussian matrix model for adjectives at D D 2000.

The values of the determinants of the coupling matrices for each irreducible rep-
resentation of SD, calculated by entering the experimental linear and quadratic expect-
ation values into the system of equations in Section 2.1, are (to three significant
figures):

Det.ƒV0
/ D 1:36 � 102; Det.ƒVH

/ D 3:54 � 108;

ƒV2
D 4:02 � 103; ƒV3

D 4:14 � 103:

Since these are all positive, the criteria are satisfied. This is evidence for the Gaussian
ansatz.
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Parameter Value

Q�1 4:29 � 10�1

Q�2 1:06

.ƒ�1
V0

/11 5:52 � 10�2

.ƒ�1
V0

/12 4:68 � 10�2

.ƒ�1
V0

/22 2:86 � 10�1

.ƒ�1
H

/11 1:84 � 10�2

.ƒ�1
H

/12 7:65 � 10�5

.ƒ�1
H

/13 2:85 � 10�4

.ƒ�1
H

/22 2:30 � 10�4

.ƒ�1
H

/23 9:34 � 10�5

.ƒ�1
H

/33 8:62 � 10�4

.ƒ�1
V2

/ 3:08 � 10�4

.ƒ�1
V3

/ 3:00 � 10�4

Table 2. Parameter values of the Gaussian matrix model for verbs at D D 2000.

2.3. Parameter values for verbs at D D 2000

The parameters of the model (to three significant figures) calculated are given in
Table 2. Convergence criteria for verbs are also satisfied:

Det.ƒV0
/ D 73:6; Det.ƒVH

/ D 2:89 � 108;

ƒV2
D 3:25 � 103; ƒV3

D 3:33 � 103:

3. Theory/expt comparisons for expectation values of observables:

evidence for Gaussianity

In this section, we describe the comparisons for expectation values of cubic and
quartic observables. We find significant agreements at very high levels of accuracy, in
the range 90–99% for a number of observables. This is to be compared with the 57%
accuracies that were achieved as the optimum ratios with the 5-parameter model [26].

The lowest theory/expt ratio with the 13-parameter model is at 16%. So, we have
the right order of magnitude even in this worst case.
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Graph Expectation value Theoretical val. Experimental val. Ratio

1
P

i h.Mi i /
3i 1:44 � 10�1 2:52 � 10�1 0.57

2
P

i;j h.Mij /3i 8:43 � 10�1 3.65 0.23

3
P

i;j;khMij MjkMki i 1.68 10.6 0.16

4
P

i;j;khMij Mjj Mjki 53.8 80.1 0.67

5
P

i;j;k;lhMij MkkMl l i 2:94 � 106 3:03 � 106 0.97

6
P

i;j;k;lhMij MjkMl li 4:83 � 104 5:04 � 104 0.96

7
P

i;j;k;l;mhMij MklMmmi 5:93 � 107 6:01 � 107 0.99

8
P

i;j;k;l;m;nhMij MklMmni 1:38 � 109 1:40 � 109 0.98

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 7:83 � 1010 8:14 � 1010 0.96

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 1:86 � 1012 1:96 � 1012 0.95

Table 3. Adjectives at D D 2000:

There are regularities in the nature of high ratio versus low ratio observables, in
terms of simple characteristics of the observable-graph, notably the number of nodes.
The very high Gaussianities, reflected in ratios hO.M/iTHEO=hO.M/iEXPT close to 1

occur for graphs with four or more nodes. The number of nodes corresponds to the
number of indices being summed, hence also to a D-scaling of the number of terms
in the defining sum.

In detail, the results for the Cubic and Quartic ratios for 13 parameter model are
given in Table 3 and Table 4. Table 3 is for the matrices associated with adjectives,
while Table 4 is for verbs.

4. Results as a function of dimension

Upon further testing, the convergence criteria for all dimensions of both verb and
adjective data sets were confirmed to be satisfied. The explicit criteria calculation
values for the dimensions 700 and 1300 are provided in Tables 5–8. The parameters
can also be cast a function of D and plotted to evaluate the dependence. Included here
are example plots for two selected parameters, detailing their value for dimensions
ranging from 300 to 2000 (see Figures 1 and 2).
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We tend to see an onset of simple scaling behaviours at around D D 700, hence
we also present the calculations of the theory/expt ratios for D D 700 (Tables 5 and 7)
and D D 1300 (Table 6 and 8).

Graph Expectation value Theoretical val. Experimental val. Ratio

1
P

i h.Mi i /
3i 1:76 � 10�1 3:22 � 10�1 0.55

2
P

i;j h.Mij /3i 9:36 � 10�1 4.26 0.22

3
P

i;j;khMij MjkMki i 1.62 9.98 0.16

4
P

i;j;khMij Mjj Mjki 51.2 73.7 0.70

5
P

i;j;k;lhMij MkkMl l i 2:87 � 106 2:92 � 106 0.99

6
P

i;j;k;lhMij MjkMl li 4:12 � 104 4:32 � 104 0.95

7
P

i;j;k;l;mhMij MklMmmi 5:32 � 107 5:35 � 107 0.99

8
P

i;j;k;l;m;nhMij MklMmni 1:20 � 109 1:26 � 109 0.95

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 6:97 � 1010 7:27 � 1010 0.96

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 1:66 � 1012 1:85 � 1012 0.90

Table 4. Verbs at D D 2000

Figure 1. Parameter Q�1

D
value vs. dimension D.
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Figure 2. Parameter
.ƒVH

/12

D2 value vs. dimension D.

Graph Expectation value Theoretical val. Experimental val. Ratio

1
P

i h.Mi i /
3i 2.11 3.24 0.65

2
P

i;j h.Mij /3i 5.89 14.7 0.40

3
P

i;j;khMij MjkMki i 7.58 23.3 0.33

4
P

i;j;khMij Mjj Mjki 96.1 1:28 � 102 0.75

5
P

i;j;k;lhMij MkkMl l i 1:90 � 106 1:97 � 106 0.96

6
P

i;j;k;lhMij MjkMl li 2:63 � 104 2:64 � 104 0.998

7
P

i;j;k;l;mhMij MklMmmi 1:24 � 107 1:27 � 107 0.98

8
P

i;j;k;l;m;nhMij MklMmni 9:47 � 107 9:75 � 107 0.97

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 6:74 � 109 7:25 � 109 0.93

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 5:33 � 1010 5:84 � 1010 0.91

Convergence criteria:

Det.ƒV0
/ D 18:0; Det.ƒVH

/ D 1:15 � 106;

ƒV2
D 2:21 � 102; ƒV3

D 2:77 � 102:

Table 5. Adjectives at D D 700.
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Graph Expectation value Theoretical val. Expt. val. Ratio

1
P

i h.Mi i /
3i 4:53 � 10�1 7:39 � 10�1 0.61

2
P

i;j h.Mij /3i 1.89 6.54 0.29

3
P

i;j;khMij MjkMki i 3.25 15.1 0.21

4
P

i;j;khMij Mjj Mjki 72.7 1:03 � 102 0.71

5
P

i;j;k;lhMij MkkMl l i 2:75 � 106 2:86 � 106 0.96

6
P

i;j;k;lhMij MjkMl li 4:27 � 104 4:48 � 104 0.95

7
P

i;j;k;l;mhMij MklMmmi 3:57 � 107 3:65 � 107 0.98

8
P

i;j;k;l;m;nhMij Mkl Mmni 5:30 � 108 5:46 � 108 0.97

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 3:49 � 1010 3:74 � 1010 0.93

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 5:32 � 1011 5:79 � 1011 0.92

Convergence criteria:

Det.ƒV0
/ D 50:7; Det.ƒVH

/ D 3:44; �107

ƒV2
D 1:36 � 103; ƒV3

D 1:40 � 103:

Table 6. Adjectives at D D 1300.

Graph Expectation value Theoretical val. Expt. val. Ratio

1
P

i h.Mi i /
3i 2.52 4.05 0.62

2
P

i;j h.Mij /3i 8.06 18.7 0.43

3
P

i;j;khMij MjkMki i 7.61 16.1 0.47

4
P

i;j;khMij Mjj Mjki 1:12 � 102 1:46 � 102 0.77

5
P

i;j;k;lhMij MkkMl li 2:24 � 106 2:32 � 106 0.97

6
P

i;j;k;lhMij MjkMl l i 2:86 � 104 2:95 � 104 0.97

7
P

i;j;k;l;mhMij MklMmmi 1:59 � 107 1:62 � 107 0.98

8
P

i;j;k;l;m;nhMij MklMmni 1:32 � 108 1:37 � 108 0.97

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 1:00 � 1010 1:07 � 1010 0.94

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 8:65 � 1010 9:30 � 1010 0.93

Convergence criteria:

Det.ƒV0
/ D 11:1; Det.ƒVH

/ D 7:81 � 105;

ƒV2
D 2:00 � 102; ƒV3

D 2:03 � 102:

Table 7. Verbs at D D 700.
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Graph Expectation value Theoretical val. Experimental val. Ratio

1
P

i h.Mi i /
3i 5:48 � 10�1 9:34 � 10�1 0.59

2
P

i;j h.Mij /3i 2.30 7.77 0.30

3
P

i;j;khMij MjkMki i 3.27 14.0 0.23

4
P

i;j;khMij Mjj Mjki 76.2 1:04 � 102 0.73

5
P

i;j;k;lhMij MkkMl l i 2:86 � 106 2:91 � 106 0.98

6
P

i;j;k;lhMij MjkMl li 4:04 � 104 4:24 � 104 0.95

7
P

i;j;k;l;mhMij MklMmmi 3:64 � 107 3:67 � 107 0.99

8
P

i;j;k;l;m;nhMij MklMmni 5:58 � 108 5:77 � 108 0.97

9
P

i1:::i7
hMi1i2Mi3i4Mi5i6Mi7i7i 3:69 � 1010 3:84 � 1010 0.96

10
P

i1:::i8
hMi1i2Mi3i4Mi5i6Mi7i8i 5:93 � 1011 6:43 � 1011 0.92

Convergence criteria:

Det.ƒV0
/ D 28:9; Det.ƒVH

/ D 2:65 � 107;

ƒV2
D 1:08 � 103; ƒV3

D 1:10 � 103:

Table 8. Verbs at D D 1300:

Remark. It is worth mentioning that some of the cubic ratios, which are very low
at D D 2000, improve at D D 700. The construction of vectors for nouns and noun
phrases, which is subsequently used to construct matrices for adjectives and verbs,
relies on identifying sets of target nouns t along with some context words c. There
is a reasonable and well-defined prescription for dealing with the cases where target
is equal to context word [26]. However, these cases are perhaps more subtle. It is
conceivable that the low theory/experiment ratios for higher D might be due to higher
number of c D t cases. This can be investigated by repeating the experiments with
datasets which have filtered out the c D t cases. We hope to return to this investigation
in the future.

5. Typicality

We have found that the postulate of Gaussianity allows the prediction, to a high degree
of accuracy, of expectation values of a large number of cubic and quartic observ-
ables in type-driven compositional distributional semantics. These expectation values
are calculated by taking averages over large numbers of large matrices, one for each
adjective/verb. A more detailed characterisation of the data in type-driven composi-
tional distributional semantics gives, for each observable, a distribution of frequencies
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over a space of possible values of the observable. This can be visualized in terms of a
histogram for each observable. The mean of the distribution is the expectation value
but we may also look at the spread or variance of the observable. We may ask for
example whether these distributions become very narrow in the limit of large D. The
observables are sums of large numbers of matrix elements, these numbers being Dp

for some p, which is a characteristic of each observable. p is in fact the number of
indices in the sums, which is equal to the number of nodes in the graph. For example
for the first graph/observable in the tables of Sections 3 and 4, we have p D 1, while
for the last observable we have p D 8. When we calculate the observables, normal-
ized by Dp , and assume a simplistic model of random walks [51] where each term
in the sum is a step, then we would have standard deviations of order Dp=2. This
simplistic model suggests that the standard deviations of the Dp-normalised observ-
ables would behave like D�p=2 and thus vanish at large d . This can also be argued
as a consequence of the “law of large numbers” [52]. The qualitative expectation of a
vanishing of the standard deviations in the limit of large numbers is indeed consistent
with the standard deviations we find – so in this sense the distributions are consist-
ent with typicality, in other words the distributions become peaked at large D. It is
interesting, however, to ask if we can get a more precise prediction of the standard
deviations observed in the permutation invariant observables using the permutation
invariant Gaussian matrix models. A precise understanding of these standard devi-
ations, or degrees of typicality for each observable, is motivated both by theoretical
physics and the AI goals of distributional semantics.

In many physical systems with large numbers of degrees of freedom, consider-
ations of typicality are of fundamental interest. A common aspect in discussions of
typicality is the statement that a large majority of the members of a large collection
share some specified characteristic [18]. A typicality characteristic of quantum states
of composite systems, made of a physical system of interest with its environment,
is explained as the origin of thermodynamic equilibrium states in quantum statist-
ical thermodynamics [18, 20, 39]. Typicality has also been used in the context of the
AdS/CFT correspondence as a proposal to account for the emergence of gravitational
thermal states such as black holes, or closely related “superstar geometries” [2, 3].

There are also practical motivations from computational linguistics for a system-
atic understanding of the typicality properties of the observables. The construction
of matrices of type-driven distributional semantics, have applications to word and
sentence similarity, disambiguation, and inference tasks [22, 27, 43]. In the similar-
ity tasks, the goal is to decide how similar a pair of language units, such as words,
phrases, sentences, and eventually paragraphs and texts are to each other. Examples
of sentence similarity from the three bands of HIGH, MED, and LOW similarity are
the following pairs:
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(project presented problem, report discussed difficulties): HIGH;
(gentleman closed his eyes, man shot the door): MED;
(project presented problem, gentleman closed his eyes): LOW.

Human judgements for these pairs are collected, often using a crowd sourcing engine
such as the Amazon Turk, and the degree of correlation between these judgements and
the model measurements are computed. The degree of correlation often used is the
Spearman’s �, which is calculated between the two sets of values of average human
judgements per pair of sentences, and the measurement of the model for the same pair,
mainly via computing the cosine of the angle between the vectors of the sentences of
the pair. At the word level, in a type-driven setting one builds matrices for adjectives
and intransitive verbs (and cubes and hyper cubes for transitive and ditransitive verbs)
and computes the degree of correlation between the human annotations and the model
similarity measures, see [32] for an adjective similarity task on the adjective subset of
the MEN word similarity dataset [6, 8] for a verb similarity task on the VerbSim3500
verb similarity task [19]. The inference task is slightly different, in that instead of a
degree of similarity in the unit interval one works with a Boolean value: 1 indicates
that the first sentence entails the second one, as in the pair

(a cat danced, an animal moved)

and 0 says that it does not, as in

(a cat danced, the report presented a problem).

Here, asymmetric measures, such the Kullback-–Leibler divergence, are computed
and compared with the Boolean measures.

An important problem in all of these tasks is to devise ways to efficiently con-
struct the matrices for the large collection of words that have functional types. Recall
that these are the majority of the words of a language, ranging over adjectives, verbs,
adverbs, wh-words, auxiliaries, and many more. The methods of constructing matrices
are computationally expensive: one has to first parse the corpora of data to tag the
words with their grammatical types, aka their part of speech or POS tags. This pro-
cedure will determine which words have atomic types and which ones are functional.
Despite recent advances in parsers via the use of neural network algorithms, these
procedures are still erroneous and given the large quantities of data that are needed to
build the matrix, they will take long periods of time to train. The question is whether
we can supplement existing algorithms for producing the matrices by using univer-
sal statistical characteristics of the existing ones. It is conceivable that the methods
of linguistic matrix theory can be used to aid the construction. Imagine a sample of
adjectives has been constructed. We would then determine the expectation values of
some observables from the data of these matrices. Suppose then that the observable
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in question is a high typicality observable. Then if we wish to construct a new word
matrix, we can devise algorithms which takes this predicted average as an input. This
would require the development of algorithms which construct the matrices, but con-
strain their values for these high typicality observables to be very near the known
averages.

To describe precisely the typicality properties of an observable, we can plot the
histogram for the observable. For a given observable, we consider the range of its
expectation values. We divide the range into a set of small bins, and we draw a his-
togram where the heights of the rectangles in each bin are the numbers of words
(i.e., adjectives or intransitive verbs) having their expectation values for the specified
observable in that bin. These histograms can be constructed for both observables that
parameterise the model, denoted by the superscript p (see Figure 3) and also the
higher order observables, denoted by the superscript h. The histogram for a quadratic
observable is given in Figure 3 and a cubic observable in Figure 4. There is a signi-
ficant diversity in the behaviour of the standard deviations of the ten observables O

.h/

Gi

as a function of D. As observed at the beginning of this section, when these observ-
ables are divided by Dp , we get standard deviations which go to zero as a function
of D in the large D region near 2000. Interestingly, for the three of the observables
O

.h/

G1
; O

.h/

G2
; O

.h/

G3
the dispersions go to zero in this region even before dividing by Dp.

Despite this diversity of behaviours in the standard deviations as a function of D, the
theoretical predictions based on the Gaussian matrix models, work well for the whole
range of observables considered, predicting the correct orders of magnitude for all of
the observables.

Figure 3. Histogram for O
.p/

G13
D

P

i;j;k Mi iMjk : Data collected from the adjective data set,
at dimension D D 2000.
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Figure 4. Histogram for O
.h/

G1
D

P

i M 3
ii

. The majority of word expectation values are closely
clustered around the mean. Data collected from the adjective data set, at dimension D D 2000.

5.1. Theoretical predictions for typicality

The permutation invariant Gaussian matrix model (PIGMM) with fixed �;ƒ, determ-
ined by matching the linear and quadratic experimental averages, gives expectation
values for the higher order polynomial invariants. By considering variations ı�; ıƒ

to fit the experimental expectation values shifted by their standard deviations, we can
calculate the corresponding shifts in the theoretical expectation values. These shifts
can be compared to the standard deviations in the higher order expectation values.
This effectively involves using the PIGMM with a distribution of values of the �

and ƒ parameters, to predict both the expectation values and the dispersions of higher
order observables. It is interesting to note that physical models with random couplings
are widely studied in condensed matter physics (e.g., [17]) and a class of these (SYK
models [28, 42]) have recently attracted interest because of their potential links [53]
to tensor model holography.

We now describe in more detail this prediction of the dispersions of the higher
order observables. We consider the Gaussian model parameterised by the �a para-
meters, for a 2 ¹1; 2º and the eleven parameters organised as matrix elements of
ƒV , for V 2 ¹V0; VH ; V2; V3º. We have an action S.�a; ƒV / which determines the
Gaussian measure. We have experiments parameterised by a binary choice – verbs
or adjectives – and a choice of D. In Section 3, we have used, for each experiment,
two linear experimental expectation values and eleven quadratic expectation values.
We will refer to these thirteen experimental expectation values as hO.p/

G
iEXPT. The

superscript p refers to the fact that these observables are used to parameterize the the-
oretical models. The subscript G refers to the fact that the structure of the polynomial
corresponds to a graph. This experimental input has been used to determine theoret-
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ical parameters �a; ƒV . We have then used these theoretical parameters to determine
theoretical cubic and quartic expectation values hO.h/

G
iTH. The superscript h refers to

observables of higher order than linear or quadratic. We tabulated the ratios

hO.h/

G
iTH

hO.h/

G
iEXPT

(5.1)

for a number of these experiments.
Using the histograms, for each parameterising observable we can determine a

standard deviation

.ıO
.p/

G
/EXPT: (5.2)

We can define positively shifted variables

hO.p/

G
iC D hO.p/

G
i C .ıO

.p/

G
/EXPT: (5.3)

we use the linear system in Section 2.1 to calculate shifted variables

�C
a ; .ƒV /C: (5.4)

These shifted variables are used to calculate theoretical shifted expectation values
hO.h/

G
iC

TH. We can repeat these steps with the negatively shifted expectation values

of O
.p/

G

hO.p/

G
i� D hO.p/

G
i � .ıO

.p/

G
/EXPT: (5.5)

Using the equations in Section 2.1, these lead to

��
a ; .ƒV /�: (5.6)

The positively and negatively shifted parameters define shifted theoretical values
for the higher order observables

hO.h/

G
i˙

THEO (5.7)

using the equations (Appendix A) derived from the matrix model.
Using the positively shifted theoretical parameters, we can define a magnitude of

theoretical shift in the higher order observables

.ıC
O

.h/

G
/THEO D jhO.h/

G
iC

THEO � hO.h/

G
iTHEOj: (5.8)

Similarly, the negatively shifted theoretical parameters define a magnitude of theoret-
ical shift

.ı�
O

.h/

G
/THEO D jhO.h/

G
i�

THEO � hO.h/

G
iTHEOj: (5.9)
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A measure of the theoretically predicted shift in expectation value is taken as the
average

.ıO
.h/

Gi
/THEO D 1

2

�

.ı�
O

.h/

G
/THEO C .ıC

O
.h/

G
/THEO

�

: (5.10)

In these theoretical predictions of the dispersion for the higher order polynomial
invariants , we have taken as experimental input 26 parameters (13 expectation values
and 13 standard deviations for linear and quadratic observables) from the data, which
are being used alongside the equations of the permutation invariant Gaussian matrix
model.

In Section 3 we were using the expectation values for the higher order observ-
ables O

h
G

. A more refined look considers histograms for each observable. The mean
value extracted from the histogram is the expectation value used earlier. The standard
deviation of each histogram determines a .ıO

.h//EXPT. In Tables 9–11, for a number
of the experiments, we tabulate

.ıO
.h/

G
/THEO

.ıO
.h/

G
/EXPT

(5.11)

By means of the above methodology, the standard deviation ratios between theory
and experiment, for the 10 cubic/quartic observables O

.h/

Gi
were calculated and are

provided in Tables 9–11.

Graph O
.h/
Gi

.ıO
.h/
Gi

/THEO .ıO
.h/
Gi

/EXPT Ratio

1
P

i .Mi i /
3 1:92 � 10�1 3:52 � 10�1 0.55

2
P

i;j .Mij /3 9:22 � 10�1 2.70 0.34

3
P

i;j;k Mij MjkMki 1.70 6.48 0.26

4
P

i;j;k Mij Mjj Mjk 53.5 71.8 0.74

5
P

i;j;k;l Mij MkkMl l 3:65 � 106 4:26 � 106 0.86

6
P

i;j;k;l Mij MjkMl l 4:92 � 104 5:15 � 104 0.95

7
P

i;j;k;l;m Mij MklMmm 5:99 � 107 7:02 � 107 0.85

8
P

i;j;k;l;m;n Mij MklMmn 1:46 � 109 1:69 � 109 0.86

9
P

i1:::i7
Mi1i2Mi3i4Mi5i6Mi7i7 8:72 � 1010 1:28 � 1011 0.67

10
P

i1:::i8
Mi1i2Mi3i4Mi5i6Mi7i8 2:31 � 1012 3:28 � 1012 0.70

Table 9. Cubic and quartic standard deviation ratios for 13 parameter model: adjectives at D D
2000.
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Graph O
.h/
Gi

.ıO
.h/
Gi

/THEO .ıO
.h/
Gi

/EXPT Ratio

1
P

i .Mi i /
3 2.96 4.93 0.60

2
P

i;j .Mij /3 7.97 13.5 0.59

3
P

i;j;k Mij MjkMki 7.66 20.5 0.37

4
P

i;j;k Mij Mjj Mjk 1:09 � 102 1:31 � 102 0.84

5
P

i;j;k;l Mij MkkMl l 2:41 � 106 2:94 � 106 0.82

6
P

i;j;k;l Mij MjkMl l 3:04 � 104 3:24 � 104 0.94

7
P

i;j;k;l;m Mij MklMmm 1:35 � 107 1:67 � 107 0.81

8
P

i;j;k;l;m;n Mij MklMmn 1:11 � 108 1:35 � 108 0.82

9
P

i1:::i7
Mi1i2Mi3i4Mi5i6Mi7i7 8:27 � 109 1:38 � 1010 0.60

10
P

i1:::i8
Mi1i2Mi3i4Mi5i6Mi7i8 7:48 � 1010 1:19 � 1011 0.63

Table 10. Cubic and quartic standard deviation ratios for 13 parameter model: adjectives at
D D 700.

Graph O
.h/
Gi

.ıO
.h/
Gi

/THEO .ıO
.h/
Gi

/EXPT Ratio

1
P

i .Mi i /
3 6:13 � 10�1 1.05 0.58

2
P

i;j .Mij /3 2.234 5.25 0.43

3
P

i;j;k Mij MjkMki 3.36 10.2 0.33

4
P

i;j;k Mij Mjj Mjk 76.3 98.9 0.77

5
P

i;j;k;l Mij MkkMl l 3:54 � 106 4:17 � 106 0.85

6
P

i;j;k;l Mij MjkMl l 4:68 � 104 5:07 � 104 0.92

7
P

i;j;k;l;m Mij MklMmm 3:94 � 107 4:68 � 107 0.84

8
P

i;j;k;l;m;n Mij MklMmn 6:2 � 108 7:33 � 108 0.85

9
P

i1:::i7
Mi1i2Mi3i4Mi5i6Mi7i7 4:34 � 1010 6:59 � 1010 0.66

10
P

i1:::i8
Mi1i2Mi3i4Mi5i6Mi7i8 7:35 � 1011 1:09 � 1012 0.67

Table 11. Cubic and quartic standard deviation ratios for 13 parameter model: adjectives at
D D 1300.

For half the observables, the prediction agrees with the data at a level above 70%,
the best ratios between theoretical and experimental standard deviations reaching
95%, while the worst are at 26%. Considering that the best ratios (for expectation
values) obtained with the 5-parameter model were at 57% and the worst at 0:6%,
this can be considered another significant success of the thirteen parameter models.
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Another way to understand the range of ratios is to compare with a simple Gaussian
random walk model. Given that each of the observables involved a sum over a num-
ber of indices ranging from 1 to D, the number of terms in each observable is Dp,
where p ranges from 1 ( for OG1

) to 8 for OG10
. A simple random walk model for the

dispersions in the first table is Dp=2� for some constant � . Fixing � to match exactly
the last dispersion, we find

� D 0:205 (5.12)

and the following list of ratios for �Dp=2=.ıO
h
Gi

/EXPT:

¹26; 151; 2830; 255; 0:19; 15:9; 0:52; 0:97; 0:57; 1º: (5.13)

The comparison of the range 0:19 to 2830. of these ratios to the range 26–95% from
the 13-parameter PIGMM, with random couplings, is another way to see the effect-
iveness of our theoretical framework for predicting the dispersions of the observables.

6. Matrix model characteristics and correlations of word rankings

The inspection of the data on Gaussianity and typicality of the observables allows us
to rank these observables in terms of how alike they are. For example O

.h/

G2
; O

.h/

G3
are

very similar, while O
.h/

G9
; O

.h/

G10
are very similar to each other.

In the course of developing the theory/experiment comparisons for the typicalities
of the observables, we have made use of the histograms for these observables. These
histograms are built by dividing the range of values .O

.h/

G
/EXPT into a number of

bins and depicting in terms of vertical bars the multiplicity of words which have the
evaluation of their .O.h//EXPT in each bin. The dataset for adjectives has a total of 273
adjectives which fall in the various bins.

A refined look at each observable can be used to produce a ranked list of the
adjectives, using the value of the observable as a ranking criterion, for example listing
the adjective with the smallest .O

.h/

G
/EXPT first and the one with the highest .O

.h/

G
/EXPT

last.
Many computational tasks in distributional semantics work with ranked lists of

words and compare their degrees of correlation. The main task here is ranking pairs of
strings of words that are semantically related to each other. For example, SimLex-999
is a dataset that quantifies the degree of similarity or relatedness of 999 pairs of words,
such as (cup, mug) and (cup, coffee). It includes adjectives, nouns and verb pairs. Each
pair is assigned a set of rankings as judged by numerous human annotators and as
predicted by different models. A degree of correlation is computed between rankings
of different annotators and a set of different models. The models that better correlate
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with human annotations are returned as the “better predicting” models. Often, the
human annotators are also correlated with each other in order to find out how much
do they agree with each other and to compute an inter-annotator agreement. These
datasets have often been specialised to only contain specific grammatical structures,
e.g., adjective noun phrases, as in [37], which contains pairs of adjective noun phrases
such as (last number, vast majority) together with gold-standard human similarity
judgements. We also have the sentence similarity datasets mentioned in the previous
section on typicality. Adjective and verb similarity datasets, also mentioned in the
section on typicality, are other examples. A further slightly different task is inspired
by the dataset of [49], which consists of a set of unobserved acceptable phrases such
as “ethical statute” and a set of deviant phrases such as “cultural acne”. The task is
here to measure how well can different models distinguish between these two different
pairs. A future direction of our project is to find out whether our model can predict
and be applicable to any of these tasks.

As a first step in this direction, we investigate whether the patterns observed in
the matrix model characteristics of the different observables are also reflected in the
properties of the ranked list for the observables. If two observables are very similar in
terms of matrix model characteristics, do they produce very similar ranked lists?

We have investigated this question by comparing the Spearman � for the four
observables using the adjectives data set at dimension D D 2000. We find that

¹OG2
; OG3

; OG9
; OG10

º

naturally split into two pairs which have excellent correlation: namely,

¹OG2
; OG3

jOG9
; OG10

º:

The correlation values are displayed in Table 12.

Observables Compared Spearman � p-value

OG9
and OG10

0.97 1:20 � 10�161

OG2
and OG3

0.88 4:57 � 10�91

OG2
and OG9

0.81 8:72 � 10�64

OG3
and OG9

0.80 2:91 � 10�62

OG2
and OG10

0.66 2:11 � 10�35

OG3
and OG10

0.66 3:69 � 10�35

Table 12. Spearman correlation coefficient and associated p-value for pairs of observable lists.
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Another way of comparing two ranked lists L
.1/; L

.2/ is to use two-dimensional
correlation plot. We can write the elements of the first list as L.1/ D ¹L1;L2; : : : ;Lnº.
In the second list L

.2/, suppose L1 appears in position i1, L2 in position i2 etc. We
can plot on the x � y plane, the points .1; i1/; .2; i2/; : : : ; .n; in/.

If the two ranked lists are identical, then these points fall on s straight line of
gradient 1. How close the plots for two lists are to a straight line of gradient 1 can be
used as a visual estimate of their degree of similarity. The correlation plots for the sig-
nificant pairs of lists produced from ¹OG2

; OG3
jOG9

; OG10
º are shown in Figures 5–7

with the remaining plots given in Appendix B.
It is evident again, in agreement with the Spearman analysis, that the most well

correlated pairs are ¹OG2
; OG3

º and ¹OG9
; OG10

º
We conjecture that a systematic study of the degree of similarity between the

matrix model characteristics of observables will show that these are indeed very well
correlated with the lists.

These regularities in the matrix model characteristics and ranked lists associated
with observables are observational properties of the data. Is there a theoretical predic-
tion of this property? Given the usefulness of ranked lists in the tasks of distributional
semantics, are these regularities an avenue towards applications of the matrix model
perspective as a tool in facilitating concrete tasks in computational linguistics?

O
.h/

G2
and O

.h/

G3

Figure 5. Rank correlation plot corresponding to graph 2 and 3 observables.
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O
.h/

G3
and O

.h/

G10

Figure 6. Rank correlation plot corresponding to graph 3 and 10 observables.

O
.h/

G3
and O

.h/

G10

Figure 7. Rank correlation plot corresponding to graph 9 and 10 observables.

7. Summary and outlook

Matrix models have had widespread success in capturing universal characteristics of
randomness in diverse types of complex systems [5, 14, 15, 24, 31, 50]. The program
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of Linguistic Matrix Theory (LMT) [26,40] follows the same philosophy and aims to
characterise universal features of the randomness in the matrices/tensors constructed
in type-driven compositional distributional semantics. Concretely it postulates Gaus-
sianity in the expectation values of permutation invariant polynomial functions of
matrices associated with adjectives, or intransitive verbs. In this paper, we have found
high levels of success in the predictions of Gaussianity for a significant number of
observables. These tests of Gaussianity have been formulated both for the expectation
values of observables, as well as the standard deviations of the observables. Another
strong piece of evidence in favour of the Gaussianity hypothesis is that, in all the
experiments we have done, the theoretical parameters extracted are compatible with
convergent Gaussian measures. These high levels of success show that the Gaussianity
hypothesis is fundamentally sound, and this raises a number of questions for further
investigation.

• For a small number of observables, OG2
; OG3

in Table 12, the theory/experiment
ratios are noticeably smaller than the others. One possibility is that certain justifiable
improvements in the algorithms for constructing the matrices can increase these ratios.
For example, in the present construction of the noun vectors (which are fed into a
linear regression method to produce adjective matrices), it can happen that the list of
nouns has some overlap with the list of context words. When this happens, there is an
issue of how to count the frequency of proximity of a word with itself. The present
algorithm uses a reasonable, but perhaps non-unique, choice for handling these cases.
A modification of the algorithm would exclude these cases from the construction of
word vectors, and investigate the resulting matrices.

• If it turns out that OG2
; OG3

really are less Gaussian than the remaining observ-
ables (as in the Table 12), after any reasonable changes in the construction algorithms
for the matrices, then we may ask how to modify the matrix model so as to increase
the accuracy of prediction for these expectation values. Perturbations of the Gaussian
model by adding these specific observables as perturbations would be a natural guess.

• Can we get comparable or higher levels of success in predicting expectation
values when using different matrix constructions? How universal are the statistical
characteristics we are finding? Different constructions have been used in the compu-
tational side to produce the linguistic matrices, e.g., algorithms such as linear regres-
sion [4], multi-step linear regression [21], and neural networks, e.g., the extensions of
the hierarchical softmax algorithm of the Word2Vec model of [36], developed in [32].
The main ideas behind these constructions is the same: they all explore the original
intuitions of Firth and Harris, that we can use the context of the words and the degrees
of similarities between them to build matrices for words with functional types. As the
methods behind these constructions advance, the matrices become denser and learn to
perform better in tasks that they are trained on.
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• In Section 6 we have investigated rankings of words directly associated with the
observables. The idea of considering rankings was motivated by uses of word and
phrase rankings in AI tasks, as discussed in detail in Section 5. Relating the rankings
of word and phrase similarity tasks to the rankings associated with the observables of
the matrix model (Section 6) is a very interesting avenue for further investigation.

• It will be interesting to compute the matrix model characteristics – the �;ƒ para-
meters, the theory/experiment ratios for higher order observables, and their standard
deviations – for other linguistic corpora, e.g., specialising to particular genres of lit-
erature, different domains (e.g., news articles) and modes (e.g., audio and video) of
content, or using other languages than English. This will be a way to identify which
of the matrix model characteristics are universal and which are corpus-dependent.

The conventional applications of distributional semantics in AI focus on structural
aspects of the data related to the meanings assigned by humans to words. LMT focuses
on the characteristics of the randomness, successfully predicts some of these charac-
teristics to high accuracy, and demonstrate simple patterns in the success rates in terms
of structures of the observables as encoded in graphs. A very interesting conceptual
question is: how do structure and randomness interface in distributional semantics?
The observables and experiments in this paper provide some tools for investigating
this question. Mathematical perspectives on the broad question of interfaces between
structure and randomness are discussed in [48].

Natural language is a very interesting natural and complex system, amenable
through universal perspectives based in matrix theories, to ideas from theoretical
physics. We have so far used ideas from theoretical physics to identify regularities in
the randomness present in language. An interesting question for the future is whether
the characterization of the universality classes of randomness existing in language
holds some lessons for theoretical physics, in its quest to understand the complex
natural system that is the universe.

A. Theoretical equations for cubic and quartic expectation values

We have

X

i

hM 3
i i i D 3

� 1

D
Q�1 C

p

.D � 1/

D
Q�2

�

�
� 1

D
.ƒ�1

V0
/11 C .D � 1/

D
.ƒ�1

V0
/22 C .D � 1/

D
.ƒ�1

H /11

C 2

p

.D � 1/

D
.ƒ�1

V0
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D
.ƒ�1

H /22
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C .D � 1/.D � 2/

D
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B. Additional spearman � plots

The remaining rank correlation plots associated to the Spearman � calculations made
in table 12 are provided below. Collectively, all the plots in Section 6 and Figures 8–10
confirm the conclusion that O

.h/

G9
; O

.h/

G10
have the best pairwise correlation of the asso-

ciated ranked list of words, followed by the pair O
.h/

G2
; O

.h/

G3
. This reflects the similarity

in the matrix model characteristics between these pairs (theory/expt ratios for expect-
ation values and standard deviations) which are visible in Sections 3–5.
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O
.h/

G2
and O

.h/

G10

Figure 8. Rank correlation plot corresponding to graph 2 and 10 observables.

O
.h/

G2
and O

.h/

G9
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Figure 9. Rank correlation plot corresponding to graph 2 and 9 observables.
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O
.h/

G3
and O

.h/

G9

Figure 10. Rank correlation plot corresponding to graph 3 and 9 observables.

C. Graph diagrams for higher order observables

The graphs associated with the 10 permutation invariant observables used to test
Gaussianity are shown in Figure 11.
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Figure 11. The 10 higher order observable graph diagrams labelled with the associated sum.
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D. Derivations of theoretical expectation values for additional graphs

The expectation values for graphs 1, 2, 3, and 8 are derived in the paper [40]. For
graphs 4–10, we present the derivations here, of the formulae stated in Section A.

D.1. Graph 4:
P
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X
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:

We breaking this equation into four separate terms.
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The second term on the right-hand side of the above equation vanishes due to the
various combinations of sums over F functions. Computing the sum in the first then
gives
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Second term. We have
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Third term. We have
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The second term on the right-hand side of the above equation vanishes due to sum-
mation of F functions, and the remaining term simply gives
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Fourth term. We have
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/11.D � 1/ C Q�2.ƒ�1
V0

/11

.D � 1/p
D � 2

C Q�2.ƒ�1
H /12

.D � 1/2

p
D � 2

C Q�1.ƒ�1
VH

/22.D � 1/

C 2 Q�1.ƒ�1
VH

/13.D � 1/
p

D � 2

C . Q�1/3 C . Q�1/2 Q�2

p
D � 1:

D.2. Graph 5:
P

i;j;k;l hMij MkkMl l i

Since we sum over all indices, we can relabel the first and second terms indices, hence

hMij MkkMl l i D hMij MkkiconnhMl l i C hMij Ml l iconnhMkki
C hMkkMl l iconnhMij i C hMkkihMl l ihMij i

D 2hMij MkkiconnhMl l i C hMkkMl l iconnhMij i
C hMkkihMl l ihMij i:

Taking the sum,
X

i;j;k;l

hMij MkkMl l i D
X

i;j;k;l

�

2hMij MkkiconnhMl l i C hMkkMl l iconnhMij i
C hMkkihMl l ihMij i

�

:

First term. We have

2
X

i;j;k

hMij Mkkiconn

X

l

hMl l i D 2
X

i;j;k

hMij Mkkiconn. Q�1 C
p

.D � 1/ Q�2/:
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Using the previously calculated
P

i;j;khMij Mkkiconn value we then get
X

i;j;k;l

2hMij MkkiconnhMl l i
D 2 �

�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

�

�
�

Q�1 C
p

.D � 1/ Q�2

�

:

Second term. We have
X

k;l

hMkkMl l iconn

X

i;j

hMij i

D
�

.ƒ�1
V0

/11 C .D � 1/.ƒ�1
V0

/22 C 2
p

.D � 1/.ƒ�1
V0

/12

�

� D Q�1:

Third term. We have
X

i;j;k;l

hMkkihMl l ihMij i D
X

k

hMkki
X

l

hMl l i
X

i;j

hMij i

D
�

Q�1 C
p

.D � 1/ Q�2

�

�
�

Q�1 C
p

.D � 1/ Q�2

�

� .D Q�1/:

Altogether,
X

i;j;k;l

hMij MkkMl l i D 2
�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

��

Q�1 C
p

.D � 1/ Q�2

�

C D Q�1

�

.ƒ�1
V0

/11 C .D � 1/.ƒ�1
V0

/22 C 2
p

.D � 1/.ƒ�1
V0

/12

C . Q�1 C
p

.D � 1/ Q�2/2
�

:

D.3. Graph 6:
P

i;j;k;l hMij MjkMl l i

We have
X

i;j;k;l

hMij MjkMl l i D
X

i;j;k;l

�

hMij MjkiconnhMl l i C hMij Ml liconnhMjki
C hMjkMl l iconnhMij i C hMij ihMjkihMl l i

�

:

First term. We have
X

i;j;k;l

hMij Mjkiconn

X

l

hMl l i

D
�

D.ƒ�1
V0

/11 C D.D � 1/.ƒ�1
H /12

�

� . Q�1 C
p

.D � 1/ Q�2/:

Second term. We have
X

i;j;k;l

hMij Ml l iconnhMjki

D
X

i;j;k;l

hMij Ml l iconn
� Q�1

D
C Q�2

p

.D � 1/
F.j; k/

�

D Q�1

D

X

i;j;k;l

hMij Ml l iconn C Q�2
p

.D � 1/

X

i;j;k;l

hMij Ml l iconnF.j; k/:
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Here, the first term on the right-hand side is easily calculated and then by using Math-
ematica to calculate the various F function combinations, the second term can be
shown to vanish. Hence, the graph 6 second term is

X

i;j;k;l

hMij Ml l iconnhMjki D Q�1

D
� D �

�

D.ƒ�1
V0

/11 C D
p

D � 1.ƒ�1
V0

/12

�

;

where the single D term comes from the additional summation of index k over the
connected part.

Third term. We have
X

i;j;k;l

hMjkMl l iconnhMij i

D
X

i;j;k;l

hMjkMl l iconn
� Q�1

D
C Q�2

p

.D � 1/
F.i; j /

�

D Q�1

D

X

i;j;k;l

hMjkMl l iconn C Q�2
p

.D � 1/

X

i;j;k;l

hMjkMl l iF.i; j /:

Similarly, to the previous calculation, the second term on the right-hand side vanishes,
and so using the previously identified

P

i;j;k;lhMjkMl l iconn, the third term of graph 6
is given by

X

i;j;k;l

hMjkMl l iconnhMij i D Q�1

D
� D �

�

D.ƒ�1
V0

/11 C D
p

D � 1.ƒ�1
V0

/12

�

:

Fourth term. We have

X

i;j;k

hMij ihMjki
X

l

hMl l i D
h

X

i;j;k

� Q�1

D
C Q�2

p

.D � 1/
F.i; j /

�

�
� Q�1

D
C Q�2

p

.D � 1/
F.j; k/

�i

�

Q�1 C
p

.D � 1/ Q�2

�

D D. Q�1/2
�

Q�1 C
p

.D � 1/ Q�2

�

:

Altogether,
X

i;j;k;l

hMij MjkMl l i
D 3D Q�1.ƒ�1

V0
/11 C D

p

.D � 1/ Q�2.ƒ�1
V0

/11 C D.D � 1/ Q�1.ƒ�1
VH

/12

C D.D � 1/
p

.D � 1/ Q�2.ƒ�1
VH

/12 C 2D
p

.D � 1/ Q�1.ƒ�1
V0

/12

C D Q�3
1 C D

p

.D � 1/ Q�2
1 Q�2:



Gaussianity and typicalityin matrix distributional semantics 39

D.4. Graph 7:
P

i;j;k;l;mhMij Mkl Mmmi

We have
X

i;j;k;l;m

hMij Mkl Mmmi
D

X

i;j;k;l;m

�

hMij Mkl iconnhMmmi C hMij MmmiconnhMkl i
C hMklMmmiconnhMij i C hMkl ihMmmihMij i

�

:

The second and third terms are the same under an exchange of indices such that
X

i;j;k;l;m

hMij Mkl Mmmi

D
X

i;j;k;l;m

�

hMij Mkl iconnhMmmi C 2hMij MmmiconnhMkl i C hMkl ihMmmihMij i
�

D
X

i;j;k;l

hMij Mkl iconn

X

m

hMmmi C 2
X

i;j;m

hMij Mmmiconn

X

k;l

hMkl i

C
X

k;l

hMkl i
X

m

hMmmi
X

i;j

hMij i

D
�

D2.ƒ�1
V0

/11 � . Q�1 C
p

.D � 1/ Q�2/
�

C
�

2 �
�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

�

� D Q�1

�

C
�

.D Q�1/2 �
�

Q�1 C
p

.D � 1/ Q�2

��

:

Altogether,
X

i;j;k;l;m

hMij MklMmmi D D2
�

Q�1 C
p

.D � 1/ Q�2

��

Q�2
1 C .ƒ�1

V0
/11

�

C 2D2 Q�1

�

.ƒ�1
V0

/11 C
p

.D � 1/.ƒ�1
V0

/12

�

:

D.5. Graph 9:
P

i1;i2;i3;i4;i5;i6;i7
hMi1i2

Mi3i4
Mi5i6

Mi7i7
i

For this node, the quartic Wick’s theorem is used:
X

i1;i2;i3;i4;

i5;i6;i7

hMi1i2Mi3i4Mi5i6Mi7i7i D
X

i1;:::;i7

�

hMi1i2Mi3i4iconnhMi5i6Mi7i7iconn

C hMi1i2Mi5i6iconnhMi3i4Mi7i7iconn

C hMi1i2Mi7i7iconnhMi3i4Mi5i6iconn

C hMi1i2Mi3i4iconnhMi5i6ihMi7i7i
C hMi1i2Mi5i6iconnhMi3i4ihMi7i7i
C hMi1i2Mi7i7iconnhMi3i4ihMi5i6i
C hMi3i4Mi5i6iconnhMi1i2ihMi7i7i
C hMi3i4Mi7i7iconnhMi1i2ihMi5i6i
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C hMi5i6Mi7i7iconnhMi1i2ihMi3i4i
C hMi1i2ihMi3i4ihMi5i6ihMi7i7i

�

:

The first three terms are all equivalent and evaluate as
X

i1;:::;i7

hMi1i2Mi3i4iconnhMi5i6Mi7i7iconn

D D2.ƒ�1
V0

/11 �
�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

�

:

For the next six terms, there are 2 sets of 3, identical expressions. The first evaluates
to

X

i1;:::;i7

hMi1i2Mi3i4iconnhMi5i6ihMi7i7i
D

�

D2.ƒ�1
V0

/11

�

� .D Q�1/ �
�

Q�1 C
p

.D � 1/ Q�2

�

:

The second evaluates to
X

i1;:::;i7

hMi1i2Mi7i7iconnhMi3i4ihMi5i6i
D

�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

�

� .D Q�1/ � .D Q�1/:

The final term then evaluates to
X

i1;:::;i7

hMi1i2ihMi3i4ihMi5i6ihMi7i7i D .D Q�1/3 �
�

Q�1 C
p

.D � 1/ Q�2

�

:

Altogether,
X

i1;:::;i7

hMi1i2Mi3i4Mi5i6Mi7i7i
D 3D2.ƒ�1

V0
/11

�

D.ƒ�1
V0

/11 C D
p

.D � 1/.ƒ�1
V0

/12

�

C 3D3 Q�1.ƒ�1
V0

/11

�

Q�1 C
p

.D � 1/ Q�2

�

C 3D3 Q�2
1

�

.ƒ�1
V0

/11 C
p

.D � 1/.ƒ�1
V0

/12

�

C .D Q�1/3
�
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p

.D � 1/ Q�2
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:

D.6. Graph 10:
P

i1;i2;i3;i4;i5;i6;i7;i8
hMi1i2

Mi3i4
Mi5;i6

Mi7i8
i

We have
X

i1;:::;i8

hMi1i2Mi3i4Mi5;i6Mi7i8i

D
X

i1;:::;i8

�

hMi1i2Mi3i4iconnhMi5i6Mi7i8iconn C hMi1i2Mi5i6iconnhMi3i4Mi7i8iconn

C hMi1i2Mi7i8iconnhMi3i4Mi5i6iconn ChMi1i2Mi3i4iconnhMi5i6ihMi7i8i
C hMi1i2Mi5i6iconnhMi3i4ihMi7i8i C hMi1i2Mi7i8iconnhMi3i4ihMi5i6i
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C hMi3i4Mi5i6iconnhMi1i2ihMi7i8i C hMi3i4Mi7i8iconnhMi1i2ihMi5i6i
C hMi5i6Mi7i8iconnhMi1i2ihMi3i4i C hMi1i2ihMi3i4ihMi5i6ihMi7i8i

�

:

The first three terms are equivalent and the following six terms are also equivalent.
So, we have

X

i1;:::;i8

hMi1i2Mi3i4Mi5;i6Mi7i8i

D 3
�

D2.ƒ�1
V0

/11

�2 C 6
�

D2.ƒ�1
V0

/11 � D Q�1 � D Q�1

�

C .D Q�1/4:

Altogether,
X

i1;:::;i8

hMi1i2Mi3i4Mi5;i6Mi7i8i D 3D4
�

.ƒ�1
V0

/11

�2 C 6D4 Q�2
1.ƒ�1

V0
/11 C D4 Q�4

1:
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