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Nested Catalan tables and a recurrence relation

in noncommutative quantum field theory

Jins de Jong, Alexander Hock, and Raimar Wulkenhaar

Abstract. Correlation functions in a dynamic quartic matrix model are obtained from the two-

point function through a recurrence relation. This paper gives the explicit solution of the recur-

rence by mapping it bijectively to a two-fold nested combinatorial structure each counted by

Catalan numbers. These “nested Catalan tables” have a description as diagrams of non-crossing

chords and threads.

1. Introduction

The quartic matrix model is defined by the following measure on the space of self-

adjoint N � N -matrices:

d �.ˆ/ D 1

Z
exp

�

� N Tr
�

Eˆ2 C �

4
ˆ4

��

d ˆ; (1)

where E D diag.E0; : : : ; EN �1/ is a positive N � N -matrix, � a scalar and d ˆ the

standard Lebesgue measure. The measure (1) gives rise to moments

ha1b1I : : : I aN bN i WD
Z

d �.ˆ/ˆa1b1
ˆa2b2

� � � ˆaN bN

which decompose as usual into cumulants ha1b1I : : : I aN bN ic .

This matrix model arises from a programme to understand Euclidean quantum

fields on noncommutative spaces [18]. The large-N limit of properly rescaled cumu-

lants ha1b1I : : : I aN bN ic , in a suitable topology, leads to the same challenges as in

familiar quantum field theories concerning renormalisation and existence for � ¤ 0.

It turned out that for the matrix model the challenges are easier to master. Consider

cumulants with pairwise different ai . Then ha1b1I : : : I aN bN ic is only non-vanishing
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if N is even and bi D a�.i/ for some permutation � 2 �N . If c.�/ is the number of

cycles in � , we expand

N
N ha1b�.1/I : : : I aN b�.N /ic DW

1
X

gD0

N
2�2g�c.�/G.g;�/

a1::::aN
: (2)

This paper is part of the programme to construct functions Z.N ; �/, �2.N ; �/ such

that when starting from (1) with

Ek 7! Z.N ; �/
�

Ek C 1

2
�2.N ; �/

�

; � 7! .Z.N ; �//2�;

every limit limN !1 G
.g;�/
a1:::aN

exists in a neighbourhood of � D 0.

The first step consists in understanding the case where � has a single cycle

c.�/ D 1 and in leading order g D 0 of the 1=N -expansion. We relabel the indices to

achieve bi D aiC1 (with b0 � bN ) and write G
.0;�.i/DiC1/
a1:::aN

D G
.0/

b0:::bN �1
. For these

functions the following recurrence relation was proved in [10]:

G
.0/

b0:::bN �1
D ��

N �2
2

X

lD1

G
.0/

b0:::b2l�1
� G

.0/

b2l :::bN �1
� G

.0/

b1:::b2l
� G

.0/

b0b2lC1:::bN �1

.Eb0
� Eb2l

/.Eb1
� EbN �1

/
: (3)

Equation (3) is the counterpart of Tutte equations arising in the enumeration of maps

on surfaces [17] or of loop equations in matrix models [5]. The recurrence relation (3)

is specific to the measure (1); Dyson–Schwinger techniques and U.N / invariance of

the partition function are used to prove it. The planar 2-point function G
.0/

b0b1
satisfies a

closed non-linear equation [9] which was solved in [13] for a limiting case of linearly

spaced Ek D .c0 C kc1/.

In this paper we establish a bijection between the solution of (3) and a combin-

atorial problem for two nested structures each counted by Catalan numbers. We thus

propose to name them “nested Catalan tables.” As by-product we observed that the

same relation (3) appears in the planar sector of the 2-matrix model for mixed correl-

ation functions [6]. The distinction between even b2i and odd b2iC1 matrix indices

in (3) corresponds to the different matrices of the 2-matrix model. This observation

together with a striking rôle of an involution in [13] supported the conjecture that also

the quartic matrix model (1) relates to topological recursion [5,7]. This vision led two

of us (A. Hock and R. Wulkenhaar) together with H. Grosse in [8] to an exact solution

G
.0/

b0b1
of the non-linear equation [9] for arbitrary Ek and � in or near RC. Together

with results of this paper we thus have a complete understanding of the cumulants

G
.0;�.i/DiC1/
a1:::aN

D G
.0/

b0:::bN �1
in leading 1

N
-order. In the meantime a precise relation

between (1) and blobbed topological recursion [1] was established in [2, 3, 11]. This
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means that the quartic matrix model generates the combinatorics of a family of inter-

section numbers of characteristic classes on the moduli space xMg;n of stable complex

curves.

Let us return to the recurrence relation (3) and explain the combinatorial problem.

For this purpose it is safe to consider the ¹Ebj
º as pairwise different formal variables

and to set � D �1. The complete expression for the (N D 2k C 2)-point function

G
.0/

b0b1:::b2kC1
according to (3) yields 2kck terms of the form

˙G
.0/

bpbq
� � � G.0/

br bs

.Ebt
� Ebu

/ � � � .Ebv
� Ebw

/
(4)

with p < q, r < s, t < u and v < w, where ck D 1
kC1

�

2k
k

�

is the k-th Catalan number.

However, some of the terms cancel. In this paper we answer the so far open questions:

Which terms survive the cancellations? Can they be explicitly characterised, without

going into the recursion? The answer will be encoded in nested Catalan tables.

The paper is organised as follows. In Section 2 the symmetries of G
.0/

b0:::bN �1
are

discussed. Afterwards, in Sections 3 and 4 we introduce Catalan tuples, nested Catalan

tables, certain trees and operations on them. The Catalan numbers ck D 1
kC1

�

2k
k

�

will

count various parts of our results and will be related to the number dk D 1
kC1

�

3kC1
k

�

of

nested Catalan tables of length k C 1, see Proposition 4.4. Section 5 is the main part

of this paper. We prove in Theorem 5.5 that nested Catalan tables precisely encode

the surviving terms in the expansion of G
.0/

b0:::bN �1
with specified designated node.

Both the nested Catalan tables and the G
.0/

b0:::bN �1
can be depicted conveniently as

chord diagrams with threads, which will be introduced in Appendix B. Through these

diagrams it will become clear that the recursion relation (3) is related to well-known

combinatorial problems [4, 12].

2. Symmetries

The two-point function is symmetric, G
.0/

bpbq
D G

.0/

bqbp
. Because there is an even num-

ber of antisymmetric factors in the denominator of each term, it follows immediately

that

G
.0/

b0b1:::bN �1
D G

.0/

bN �1:::b1b0
: (5)

Our aim is to prove cyclic invariance G
.0/

b0b1:::bN �1
D G

.0/

b1:::bN �1b0
. We proceed by

induction. Assuming that all n-point functions with n � N � 2 are cyclically invariant,
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it is not difficult to check that

G
.0/

b0b1:::bN �1

D
N �2

2
X

lD1

G
.0/

b0:::b2l�1
� G

.0/

b2l :::bN �1
� G

.0/

b1:::b2l
� G

.0/

b0b2lC1:::bN �1

.Eb0
� Eb2l

/.Eb1
� EbN �1

/

D �
N �2

2
X

lD1

G
.0/

b0bN �1:::b2lC1
� G

.0/

b2l :::b1
� G

.0/

bN �1:::b2l
� G

.0/

b2l�1:::b1b0

.Eb0
� Eb2l

/.Eb1
� EbN �1

/

D
N �2

2
X

kD1

G
.0/

b0bN �1:::bN �2kC1
� G

.0/

bN �2k :::b1
� G

.0/

bN �1:::bN �2k
� G

.0/

b0bN �2k�1 :::b1

.Eb0
� EbN �2k

/.EbN �1
� Eb1

/

D G
.0/

b0bN �1:::b1
D G

.0/

b1:::bN �1b0
: (6)

The transformation 2l D N � 2k and the symmetry (5) are applied here to rewrite the

sum. This shows cyclic invariance.

Although the N -point functions are invariant under a cyclic permutation of its

indices, the preferred expansion into surving terms (4) will depend on the choice of a

designated node b0, the root. Our preferred expansion will have a clear combinatorial

significance, but it cannot be unique because of

1

Ebp
�Ebq

� 1

Ebq
�Ebr

C 1

Ebr
�Ebp

� 1

Ebp
�Ebq

C 1

Ebq
�Ebr

� 1

Ebr
�Ebp

D 0: (7)

These identities must be employed several times to establish cyclic invariance of our

preferred expansion.

3. Catalan tuples

Definition 3.1 (Catalan tuple). A Catalan tuple Qe D .e0; : : : ; ek/ of length k 2 N0 is

a tuple of integers ej � 0 for j D 0; : : : ; k, such that

k
X

j D0

ej D k and

l
X

j D0

ej > l for l D 0; : : : ; k � 1: (8)

The set of Catalan tuples of length j Qej WD k is denoted by Ck .

For Qe D .e0; : : : ; ek/ it follows immediately that, for all k � 0, ek D 0 and that,

for all k > 0, e0 > 0.

Example 3.2. We have C0 D ¹.0/º, C1 D ¹.1; 0/º and C2 D ¹.2; 0; 0/; .1; 1; 0/º. All

Catalan tuples of length 3 are given in the first column of Table 1.
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Remark 3.3. Catalan tuples can be used to establish bijections with several structures

counted by Catalan numbers. In Definitions 3.6 and 3.7 we provide two bijections to

planted plane trees. Here we give the bijection to Dyck paths on a k � k lattice which

do not go below the diagonal. Given a Catalan tuple Qe D .e0; : : : ; ek/ with k � 1.

Start at the bottom left corner, go e0 steps north followed by one step east, then go e1

steps north followed by one step east, . . ., finally go ek�1 steps north followed by one

step east, and stop at the top right corner. The first condition in (8) prevents the path

from going below the diagonal, the last condition guarantees that the path ends at the

top right corner. The last row of Table 1 gives the Dyck paths for the Catalan tuples

of length 3.

We define two particular compositions of Catalan tuples. Appendix A provides a

few examples.

Definition 3.4 (ı-composition). The composition ıW Ck � Cl ! CkClC1 is given by

.e0; : : : ; ek/ ı .f0; : : : ; fl / WD .e0 C 1; e1; : : : ; ek�1; ek; f0; f1; : : : ; fl /:

No information is lost in this composition, i.e., it is possible to uniquely retrieve

both terms. In particular, ı cannot be associative or commutative. Consider for a

Catalan tuple Qe D .e0; : : : ; ek/ partial sums pl W Ck ! ¹0; : : : ; kº and maps �aW Ck !
¹0; : : : ; kº defined by

pl . Qe/ WD �l C
l

X

j D0

ej ; for l D 0; : : : ; k � 1; (9)

�a. Qe/ WD min¹l j pl . Qe/ D aº:

Then

Qe D .e0; : : : ; ek/ D .e0 � 1; e1; : : : ; e�1.Qe// ı .e�1.Qe/C1; : : : ; ek/: (10)

Because �1. Qe/ exists for any Qe 2 Ck with k � 1, every Catalan tuple has unique ı-

factors. Only these two Catalan tuples, composed by ı, yield .e0; : : : ; ek/. This implies

that the number ck of Catalan tuples in Ck satisfies Segner’s recurrence relation

ck D
k�1
X

mD0

cmck�1�m

together with c0 D 1, which is solved by the Catalan numbers ck D 1
kC1

�

2k
k

�

.

In Remark A.3 we formulate the ı-decomposition in terms of Dyck paths.

The other composition of Catalan tuples is a variant of the ı-product.

Definition 3.5 (�-composition). The composition �W Ck � Cl ! CkClC1 is given by

.e0; : : : ; ek/ � .f0; : : : ; fl / D .e0 C 1; f0; : : : ; fl ; e1; : : : ; ek/:
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As in the case of the composition ı, Definition 3.4, no information is lost in the

product �. It is reverted by

Qe D .e0; : : : ; ek/ D .e0 � 1; e1C�e0�1.Qe/; : : : ; ek/ � .e1; : : : ; e�e0�1.Qe//: (11)

Because �e0�1. Qe/ exists for any Qe 2 Ck with k � 1 (also for e0 D 1, where one has

�e0�1. Qe/ D k), every Catalan tuple has a unique pair of �-factors. In Remark A.4 we

formulate the �-decomposition in terms of Dyck paths.

Out of these Catalan tuples we will construct three sorts of trees: pocket tree, direct

tree, opposite tree. They are all planted plane trees, which means they are embedded

into the plane and planted into a monovalent phantom root which connects to a unique

vertex that we consider as the (real) root. We adopt the convention that the phantom

root is not shown; its implicit presence manifests in a different counting of the valen-

cies of the real root. Pocket tree and direct tree are the same, but their rôle will be

different. Their drawing algorithms are given by the next definitions.

Definition 3.6 (direct tree, pocket tree). For a Catalan tuple .e0; : : : ; ek/ 2 Ck , draw

k C 1 vertices on a line. Starting at the root l D 0:

• unless l D 0, connect this vertex to the last vertex (m < l) with an open half-edge;

• if el > 0: el half-edges must be attached to vertex l ;

• move to the next vertex.

For direct trees, vertices will be called nodes and edges will be called threads; they

are oriented from left to right. For pocket trees, vertices are called pockets.

Definition 3.7 (opposite tree). For a Catalan tuple .e0; : : : ; ek/ 2 Ck , draw k C 1

vertices on a line. Starting at the root l D 0:

• if el > 0: el half-edges must be attached to vertex l ;

• if el D 0:

– connect vertex l to the last vertex (m < l) with an open half-edge;

– if vertex l is now not connected to the last vertex (n � m < l) with an open

half-edge, repeat this until it is;

• move to the next vertex.

For opposite trees, vertices will be called nodes and edges will be called threads; they

are oriented from left to right.

Examples of these trees can be seen in Figure 1 and Table 1. It will be explained

in Section 5 how these trees relate to the recurrence relation (3) and how to label the

nodes. The pocket trees will often be represented with a top-down orientation, instead

of a left-right one.
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DT:

OT:

• • • • • • • • • • • • • • •
✞ ☎
✓ ✏
✤ ✜

✞ ☎✞ ☎
✓ ✏
✤ ✜

✬ ✩

✞ ☎✞ ☎
✓ ✏

✤ ✜
✬ ✩
✬ ✩

• • • • • • • • • • • • • • •
✞ ☎
✓ ✏

✬ ✩
✬ ✩
✬ ✩
✬ ✩

✬ ✩

✞ ☎
✓ ✏
✤ ✜

✬ ✩
✤ ✜

✞ ☎
✓ ✏

Figure 1. Direct tree (upper) and the opposite tree (lower) for the Catalan tuple

.6; 0; 0; 1; 3; 0; 0; 0; 2; 2; 0; 0; 0; 0; 0/ D .5; 0; 0; 1; 3; 0; 0; 0; 2; 2; 0; 0; 0; 0/ ı .0/ D

.5; 0; 1; 3; 0; 0; 0; 2; 2; 0; 0; 0; 0; 0/ � .0/.

Catalan tuple pocket tree direct tree opposite tree Dyck path

(3,0,0,0)
•

• • •
�� ❅❅ • • • •

☛✟
✛✘
✬ ✩

• • • •
☛✟
✛✘
✬ ✩

(2,1,0,0)
•

• •

•

�� ❅❅
• • • •
☛✟☛✟
✛ ✘

• • • •

✛✘
☛✟

✬ ✩

(2,0,1,0)
•

• •

•

�� ❅❅
• • • •
☛✟☛✟
✛✘

• • • •
☛✟☛✟
✛ ✘

(1,2,0,0) •

•

•

•
�� ❅❅ • • • •

☛✟☛✟
✛✘

• • • •

✛✘
☛✟

✬ ✩

(1,1,1,0)

•

•

•

•

• • • •
☛✟☛✟☛✟

• • • •

✬ ✩
✛✘

☛✟

Table 1. Catalan tuples, their corresponding planted plane trees and Dyck paths for k D 3. The

phantom roots of the planted plane trees are not shown. The real root is on top for the pocket

tree and on the left for direct and opposite trees.
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4. Nested Catalan tables

A nested Catalan table is a “Catalan tuple of Catalan tuples”:

Definition 4.1 (nested Catalan table). A nested Catalan table of length k is a tuple

Tk D hQe.0/; Qe.1/; : : : ; Qe.k/i

of Catalan tuples Qe.j /, such that .1 C jQe.0/j; j Qe.1/j; : : : ; j Qe.k/j/, the length tuple of Tk ,

is itself a Catalan tuple of length k. We let Tk be the set of all nested Catalan tables of

length k. The constituent Qe.j / in a nested Catalan table is called the j -th pocket.

We will show in Section 5 that a nested Catalan table contains all information

about individual terms in the expansion (4) of the N -point function G
.0/

b0:::bN �1
. Nested

Catalan tables have a graphical presentation as diagrams of non-crossing chords with

threads which we introduce in Appendix B.

Recall the composition ı from Definition 3.4 and the fact that any Catalan tuple

of length � 1 has a unique pair of ı-factors. We extend ı as follows to nested Catalan

tables:

Definition 4.2 (˙-operation). The operation ˙W Tk � Tl ! TkCl is given by

h Qe.0/; : : : ; Qe.k/i˙h Qf .0/; : : : ; Qf .l/i WD hQe.0/ ı Qf .0/; Qe.1/; : : : ; Qe.k/; Qf .1/; : : : ; Qf .l/i:

Now, suppose the nested Catalan table on the right-hand side is given. If the 0th

pocket has length � 1, then it uniquely factors into Qe.0/ ı Qf .0/. Consider

Ok D �
1Cj Qf .0/j

�

.1 C jQe.0/ ı Qf .0/j; j Qe.1/j; : : : ; j Qe.k/j; j Qf .1/j; : : : ; j Qf .l/j/
�

: (12)

By construction, Ok D k so that ˙ can be uniquely reverted. Note also that nested

Catalan tables h.0/; Qe1; : : : ; Qeki do not have a ˙-decomposition.

The composition � of Catalan tuples is extended as follows to nested Catalan

tables:

Definition 4.3 (�-operation). The operation �W Tk � Tl ! TkCl is given by

h Qe.0/; : : : ; Qe.k/i�h Qf .0/; : : : ; Qf .l/i WD hQe.0/; Qe.1/ � Qf .0/; Qf .1/; : : : ; Qf .l/; Qe.2/; : : : ; Qe.k/i:

If the 1st pocket has length � 1, it uniquely factors as Qe.1/ � Qf .0/, and we extract

Ol WD �jQe.0/jCjQe.1/ jC1

�

.1 C jQe.0/j; j Qe.1/ � Qf .0/j; j Qf .1/j; : : : ; j Qf .l/j; j Qe.2/j; : : : ; j Qe.k/j/
�

:

(13)

By construction Ol D l , and � is uniquely reverted.

We let �k D ¹hQe0; .0/; Qe2; : : : ; Qeki 2 Tkº be the subset of length-k nested Catalan

tables having .0/ as their 1st pocket. The nested Catalan tables S 2 �k are precisely
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those which do not have a �-decomposition. The distinction between �l and its com-

plement in Tl is the key to determine the number of nested Catalan tables:

Proposition 4.4. The set TkC1 of nested Catalan tables and its subset �kC1 with 1st

pocket .0/ have cardinalities

dk WD jTkC1j D 1

k C 1

�

3k C 1

k

�

and hk WD j�kC1j D 1

2k C 1

�

3k

k

�

: (14)

Proof. Let

D.x/ WD
1

X

kD1

xk
X

T 2Tk

T and H .x/ WD
1

X

kD1

xk
X

S2�k

S

be the generating function of the set of all nested Catalan tables and of those having

.0/ as their 1st pocket, respectively. Then

D.x/ D D.x/�D.x/ C H .x/ (15)

because precisely the complements Tk n �k have a unique �-decomposition. With

the exception of h.0/; .0/i 2 �1 D T1, all S D hQe0; .0/; Qe2; : : : ; Qeki 2 �k with k � 2

have j Qe0j � 1. Therefore, they have a unique ˙-decomposition, where the left factor

necessarily belongs to �l for some l :

H .x/ D H .x/˙D.x/ C xh.0/; .0/i: (16)

Introducing the generating functions

D.x/ D
1

X

kD0

xkC1dk and H.x/ D
1

X

kD0

xkC1hk

of the cardinalities dk D jTkC1j and hk D j�kC1j, equations (15) and (16) project to

quadratic relations

D.x/ D D.x/ � D.x/ C H.x/ and H.x/ D H.x/ � D.x/ C x: (17)

Multiplying the first equation by H.x/ and the second one by D.x/ gives x � D.x/ D
H 2.x/, which separates (17) into cubic relations

D.x/.1 � D.x//2 D x and
H.x/p

x

�

1 �
�H.x/p

x

�2�

D
p

x: (18)
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The assertion (14) follows from the Lagrange inversion formula.1 To obtain the first

equation (14) one sets f .x/ D x.1 � x/2 and �.x/ D 1
.1�x/2 to get

dk D 1

k C 1
Œxk�

1

.1 � x/2kC2
:

To obtain the second equation (14) one sets
p

x D y, f .y/ D y.1 � y2/ and �.y/ D
1

1�y2 to get hk D 1
2kC1

Œy2k� 1

.1�y2/2kC1 D 1
2kC1

Œxk� 1

.1�x/2kC1 .

Remark 4.5. More information about the integer sequences dk (A006013) and hk

(A001764) can be found via [16] and [15], respectively. Equations (18) are higher-

order variants of the equation C.x/.1 � C.x// D x for the generating function C.x/ D
P1

nD0 cnxnC1 of Catalan numbers.

Corollary 4.6. The number dk of nested Catalan tables satisfies

dk D
X

.e0;:::;ekC1/2CkC1

ce0�1ce1
� � � cek

cekC1
: (19)

Proof. There are cjQe0j � � � cjQekC1 j nested Catalan tables h Qe0; : : : ; QekC1i of the same

length tuple .j Qe0j C 1; j Qe1j; : : : ; j QekC1j/ 2 CkC1. Set e0 D jQe0j C 1 and ej D jQej j for

j D 1; : : : ; k C 1.

5. The bijection between nested Catalan tables and contributions

to G
.0/

b0:::bN �1

This section is the main part of this paper. We will omit in the sequel the superscript

G
.0/

b1b2
D Gb1b2

. We remark that the graphical presentation given in Appendix B was

very helpful to identify this bijection.

Definition 5.1. To a nested Catalan table TkC1 D hQe.0/; Qe.1/; : : : ; Qe.kC1/i 2 TkC1 with

N=2 D k C 1 we associate a monomial ŒT �b0;:::;bN �1
in Gbl bm

and 1
Ebl0 �Ebm0

as

follows.

(1) Build the pocket tree for the length tuple .1 C jQe.0/j; j Qe.1/j; : : : ; j Qe.kC1/j/ 2
CkC1. It has k C 1 edges and every edge has two sides. Starting from the root and

1Lagrange inversion formula. Let f; g 2 xCŒŒx�� be formal power series inverse to each

other, g.f .x// D x. Then their coefficients are related by Œxn�g.x/ D 1
n

Œx�1� 1
.f .x//n . In par-

ticular, for f .x/ D x
�.x/

one has Œxn�g.x/ D 1
n

Œxn�1�.�.x//n.
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turning counterclockwise, label the edge sides in consecutive order2 from b0 to bN �1.

An edge labelled blbm encodes a factor Gbl bm
in G

.0/

b0:::bN �1
.

(2) Label the k C 2 vertices of the pocket tree by P0; : : : ; PkC1 in consecutive

order2 when turning counterclockwise around the tree. Let v.Pm/ be the valency of

vertex Pm (number of edges attached to Pm) and Lm be the distance between Pm and

the root P0 (number of edges in shortest path between Pm and P0).

(3) For every vertex Pm that is not a leaf, read off the 2v.Pm/ side labels of edges

connected to Pm. Draw two rows of v.Pm/ nodes each. Label the nodes of the first

row by the even edge side labels in natural order, i.e., starting at the edge closest to the

root and proceed in the counterclockwise direction. Label the nodes of the other row

by the odd edge side labels using the same edge order. Take the m-th Catalan tuple

Qe.m/ of the nested Catalan table. If Lm is even, draw the direct (resp. opposite) tree

encoded by Qe.m/ between the row of even (resp. odd) nodes. If Lm is odd, draw the

opposite (resp. direct) tree encoded by Qe.m/ between the row of even (resp. odd) nodes.

Encode a thread from bl to bm in the direct or opposite tree by a factor 1
Ebl

�Ebm
.

Remark 5.2. In proofs below we sometimes have to insist that one side label of a

pocket edge is a particular bk , whereas the label of the other side does not matter. Is

such a situation we will label the other side by b Nk . Note that if bk is even (resp. odd),

then b Nk is odd (resp. even).

Remark 5.3. For the purpose of this article it is sufficient to mention that an explicit

construction for the level function LmW CkC1 ! ¹0; : : : ; kº exists.

Example 5.4. Let T D h.2; 0; 0/; .1; 1; 0/; .0/; .0/; .0/; .1; 0/; .0/i 2 T6. Its length

tuple is .3; 2; 0; 0; 0; 1; 0/ 2 C6, which defines the pocket tree:

①
P0

① ① ①P1

P4

P5

① ① ①P2 P3 P6

�
�

�
�

�
�

��

b0

b1

b2

b5

❅
❅
❅
❅
❅
❅
❅❅

b8

b11

b9

b10

b6 b7

❅
❅
❅
❅

b3

b4

The edge side labels encode

Gb0b5
Gb1b2

Gb3b4
Gb6b7

Gb8b11
Gb9b10

:

2This is the same order as in [14, Figure 5.14].
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For vertex P0, at even distance, we draw direct and opposite tree encoded in Qe.0/ D
.2; 0; 0/:

• • •
b0 b6 b8

☛ ✟
✛ ✘

• • •
b5 b7 b11

☛ ✟
✛ ✘

For vertex P1, at odd distance, we draw opposite and direct tree encoded in Qe.1/ D
.1; 1; 0/:

• • •
b0 b2 b4

☛ ✟
✛ ✘

• • •
b5 b1 b3

☛ ✟☛ ✟

For vertex P5, at odd distance, we draw opposite and direct tree encoded in Qe.5/ D
.1; 0/:

• •
b8 b10

☛ ✟
• •

b11 b9

☛ ✟

They give rise to a factor

1

.Eb0
� Eb6

/.Eb0
� Eb8

/.Eb0
� Eb4

/.Eb2
� Eb4

/.Eb8
� Eb10

/

� 1

.Eb5
� Eb7

/.Eb5
� Eb11

/.Eb5
� Eb1

/.Eb1
� Eb3

/.Eb11
� Eb9

/
:

Later in Figure 4 we give a diagrammatic representation of this nested Catalan table.

The following theorem shows that the nested Catalan tables correspond bijectively

to the terms in the expansion of the recurrence relation (3).

Theorem 5.5. The recurrence (3) of N -point functions in the quartic matrix model (1)

has the explicit solution

G
.0/

b0:::bN �1
D

X

T 2TkC1

ŒT �b0:::bN �1
;

where the sum is over all nested Catalan tables of length N=2 D k C 1 and the

monomials ŒT �b0:::bN �1
are described in Definition 5.1.

Proof. We proceed by induction in N . For N D 2 the only term in the 2-point function

corresponds to the nested Catalan table h.0/; .0/i 2 T1. Its associated length tuple

.1; 0/ encodes the pocket tree
✈

✈

b0 b1
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whose single edge corresponds to a factor Gb0b1
. The Catalan tuples of both pockets

have length 0, so that there is no denominator.

For any contribution to G
.0/

b0:::bN �1
with N � 4, encoded by a length-N=2 nested

Catalan table TN=2, it must be shown that TN=2 splits in one or two ways into smaller

nested Catalan tables whose corresponding monomials produce TN=2 via (3). There

are three cases to consider.

Case I: TkC1 D h.0/; Qe.1/; : : : ; Qe.kC1/i 2 TkC1 with N=2 D k C 1. It follows from

Definition 4.3 that there are uniquely defined nested Catalan tables Tl D h Qf; Qe.2/; : : : ;

Qe.lC1/i 2 Tl and Tk�lC1 D h.0/; Qe; Qe.lC2/; : : : ; Qe.kC1/i 2 Tk�lC1 with Qe.1/ D Qe � Qf and

consequently Tk�lC1�Tl D TkC1. The length l D Ol is obtained via (13). Recall that

TkC1 cannot be obtained by the ˙-composition because the zeroth pocket has length

j.0/j D 0. By induction, Tl encodes a unique contribution ŒTl �b1:::b2l
to G

.0/

b1:::b2l
, and

Tk�lC1 encodes a unique contribution ŒTk�lC1�b0b2lC1:::bN �1
to G

.0/

b0b2lC1:::bN �1
. We

have to show that

�
ŒTl �b1:::b2l

ŒTk�lC1�b0b2lC1:::bN �1

.Eb0
� Eb2l

/.Eb1
� EbN �1

/

agrees with ŒTkC1�b0:::bN �1
encoded by TkC1. A detail of the pocket tree of TkC1

sketching P0; P1 and their attached edges is

✈P0✘✘✘✘✘✘✈P1

✑
✑

✑✑

✂
✂
✂
✂

❆
❆
❆
❆
❆

❍❍❍❍❍

b0
bN �1

b1

bN1

bN �2

b
N �2

b2l

b2lC1
b

2lC1

b
2l

(20)

Only the gluing of the direct and opposite tree encoded by Qe D .e0; : : : ; ep/ with the

direct and opposite tree encoded by Qf D .f0; : : : ; fq/ via a thread from b0 to b2l

and a thread from bN �1 to b1 remains to be shown; edge sides encoding G
.0/

bkbl
and

all other pockets are automatic. A symbolic notation is used now to sketch the trees.

Horizontal dots are used to indicate a general direct tree and horizontal dots with

vertical dots above them indicate an opposite tree. Unspecified threads are indicated

by dotted half-edges. The four trees mentioned above are depicted as

OTQe D
• • . . .

:::
•

b0 b
2lC1

bN �2

DTQe D
• • . . . •

bN �1 b2lC1 b
N �2

DT Qf
D

• . . . •
b1 b

2l

OT Qf
D

• . . .
:::

•
bN1

b2l
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Here Qe describes P1, at odd distance, so that even-labelled nodes are connected by the

opposite tree. Every edge in the pocket tree has two sides labelled br and bs , where

the convention of Remark 5.2 is used when the other side label does not matter.

The first edge in the pocket tree has side labels b0bN �1 and descends from the

root pocket. The following edge is b2lC1b2lC1 where 2l C 2 � 2l C 1 � N � 2 is an

even number. The final edge is bN �2bN �2 where 2l C 1 � N � 2 � N � 3 is an odd

number.

Next, Qf encodes P0 in the pocket tree belonging to ŒTl �b1:::b2l
. It lies at even

distance, but, because the labels at G
.0/

b1:::b2l
start with an odd one, the odd nodes of

Qf are connected by the direct tree and the even nodes by the opposite tree. Again,

2 � N1 � 2l denotes an even number and 1 � 2l � 2l � 1 an odd number. When

pasting Qf into Qe, the first edge remains b0bN �1, which descends from the root. Then

all edges from Qf follow and, finally, the remaining edges of Qe. Thus, before taking the

denominators into account, the four trees are arranged as

OTQe [ OT Qf
:

•
b0

• . . .
:::

• •
bN1 b2l

• . . .
:::

b
2lC1

•
bN �2

DTQe [ DT Qf
:

•
bN �1

•
b1

. . . • • •
b2lC1b

2l
b

N �2

(21)

The denominator of 1
.Eb0

�Eb2l
/.EbN �1

�Eb1
/

(with rearranged sign) corresponds to a

thread between the nodes b0 and b2l and one between the nodes bN �1 and b1:

OT
Qe� Qf

:
•

b0

• . . .
:::

•

•

bN1
b2l

• . . .
:::

b
2lC1

•
bN �2

DT
Qe� Qf

:
•

bN �1

•
b1

. . . • • •
b2lC1b

2l
b

N �2

(22)

The result is precisely described by Qe � Qf D .e0 C 1; f0; : : : ; fq; e1; : : : ; ep/ with

Definitions 3.6 and 3.7. Indeed, the increased zeroth entry corresponds to one addi-

tional half-thread attached to the first node bN �1 and one additional half-thread to

b0. For the direct tree the rules imply that the next node, b1, is connected to bN �1.

This is the new thread from the denominators. The next operations are done within
Qf , labelled b1; : : : ; b2l , without any change. Arriving at its final node b2l all half-

threads of Qf are connected. The next node, labelled b2lC1, connects to the previous
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open half-thread, which is the very first node bN �1. These and all the following con-

nections arise within Qe and remain unchanged. Similarly, in the opposite tree, we first

open e0 C 1 half-threads at the zeroth node b0. Since f0 > 0, we subsequently open

f0 half-threads at the first node b N1. The next operations remain unchanged, until we

arrive at the final node b2l of Qf . It corresponds to fq D 0, so that we connect it

to all previous open half-threads, first within Qf . However, because e0 C 1 > 0, it is

connected by an additional thread to b0 and encodes the denominator of 1
Eb0

�Eb2l

.

This consumes the additional half-thread attached to b0. All further connections are

the same as within Qe. In conclusion, we obtain precisely the nested Catalan table

TkC1 D h.0/; Qe.1/; : : : ; Qe.N=2/i we started with.

Case II: TkC1 D h Qe.0/; .0/; Qe.2/; : : : ; Qe.kC1/i 2 TkC1 and N=2 D k C 1. There are

uniquely defined nested Catalan tables Tl D hQe; .0/; Qe.2/; : : : ; Qe.l/i 2 Tl and Tk�lC1 D
h Qf; Qe.lC1/; : : : ; Qe.kC1/i 2 Tk�lC1 with Qe.0/ D Qe ı Qf and, consequently, Tl ˙Tk�lC1 D
TkC1. The length l D Ok is obtained via (12). Recall that TkC1 cannot be obtained

by the �-composition, because the 1st entry has length j.0/j D 0. By the induction

hypothesis, Tl encodes a unique contribution ŒTl �b0:::b2l�1
to G

.0/

b0:::b2l�1
and Tk�lC1

encodes a unique contribution ŒTk�lC1�b2l :::bN �1
to G

.0/

b2l :::bN �1
. It remains to be

shown that
ŒTl �b0:::b2l�1

ŒTk�lC1�b2l :::bN �1

.Eb0
� Eb2l

/.Eb1
� EbN �1

/

agrees with ŒTkC1�b0:::bN �1
encoded by TkC1. A detail of the pocket tree of TkC1

sketching P0; P1 and their attached edges is

✈P0✘✘✘✘✘✘ �
�

�
�

❊
❊
❊
❊❊

❩
❩
❩
❩❩

❤❤❤❤❤❤❤❤✈P1

b0

b1 b2

bN2

b
2l�1

b2l�1

b2l b
2l

b
N �1

bN �1

(23)

As in Case I, only the gluing of the direct and opposite tree encoded by Qe D .e0; : : : ; ep/

with the direct and opposite tree encoded by Qf D .f0; : : : ; fq/ via a thread from b0 to

b2l and a thread from b1 to bN �1 must be demonstrated. Everything else is automatic.

These trees are

OTQe D
• • . . .

:::
•

b1 bN2 b2l�1

DTQe D
• • . . . •

b0 b2 b
2l�1

DT Qf
D

• . . . •
b2l b

N �1

OT Qf
D

• . . .
:::

•
b

2l
bN �1

(24)
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The notation is the same as in Case I. The 1st pocket P1, described by the Catalan

tuple .0/, is only 1-valent so that the first edge is labelled b0b1. The direct trees in (24)

are put next to each other and a thread between b0 and b2l is drawn for the denomin-

ator of 1
Eb0

�Eb2l

. Similarly, the opposite trees in (24) are put next to each other and a

thread between b1 and bN �1 is drawn for the denominator of 1
Eb1

�EbN �1

:

OT
Qeı Qf

D
• • . . .

:::
•

b1 bN2
b2l�1

• . . .
:::

•
b

2l
bN �1

✬ ✩

DT
Qeı Qf

D
• • . . . •

b0 b2 b
2l�1

• . . . •
b2l b

N �1
✬ ✩

The result are precisely the direct and opposite trees of the composition

Qe ı Qf D .e0 C 1; e1; : : : ; ep ; f0; : : : ; fq/:

The increase e0 ! e0 C 1 opens an additional half-thread at b0 and an additional

half-thread at b1. In the direct tree, this new half-thread is not used by e1; : : : ; ep .

Only when we are moving to f0, labelled b2l , we have to connect it with the last

open half-thread, i.e., with b0. After that the remaining operations are unchanged

compared with Qf . In the opposite tree, the additional half-thread at b1 is not used in

e1; : : : ; ep . Because f0, labelled b2l , opens enough half-threads, it is not consumed

by f0; : : : ; fq�1 either. Then, the last node fq , labelled bN �1, successively connects

to all nodes with open half-threads, including b1. In conclusion, we obtain precisely

the nested Catalan table TkC1 D hQe.0/; .0/; Qe.2/; : : : ; Qe.N=2/i we started with.

Case III: we consider a general TkC1 D h Qe.0/; Qe.1/; Qe.2/; : : : ; Qe.kC1/i 2 TkC1 with

k C 1 D N=2, j Qe.0/j � 1 and j Qe.1/j � 1. There are uniquely defined nested Catalan

tables

Tl D hQe; Qe.1/; Qe.2/; : : : ; Qe.l/i 2 Tl

and

Tk�lC1 D h Qf; Qe.lC1/; : : : ; Qe.kC1/i 2 Tk�lC1

with Qe.0/ D Qe ı Qf and consequently

Tl ˙Tk�lC1 D TkC1:

Moreover, there exist uniquely defined nested Catalan tables

Tl 0 D h Qf 0; Qe.2/; : : : ; Qe.l 0C1/i 2 Tl 0
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and

Tk�l 0C1 D hQe.0/; Qe0; Qe.l 0C2/; : : : ; Qe.kC1/i 2 Tk�l 0C1

such that Qe.1/ D Qe0 � Qf 0 and consequently

Tk�l 0C1�Tl 0 D TkC1:

We necessarily have l 0 � k � 1 and l � 2, because l 0 D k corresponds to Case I and

l D 1 to Case II. By the induction hypothesis, these nested Catalan subtables encode

unique contributions ŒTl �b0:::b2l�1
to G

.0/

b0:::b2l�1
, ŒTk�lC1�b2l :::bN �1

to G
.0/

b2l :::bN �1
,

ŒTl 0 �b1:::b2l0 to G
.0/

b1:::b2l0
and ŒTk�l 0C1�b0b2l0C1:::bN �1

to G
.0/

b0b2l0C1:::bN �1
. We have to

show that

ŒTl �b0:::b2l�1
ŒTN=2�l �b2l :::bN �1

.Eb0
� Eb2l

/.Eb1
� EbN �1

/
�

ŒTl 0 �b1:::b2l0 ŒTN=2�l 0 �b0b2l0C1:::bN �1

.Eb0
� Eb2l0 /.Eb1

� EbN �1
/

(25)

agrees with ŒTkC1�b0:::;bN �1
.

In the pocket tree of TkC1 there must be an edge with side labels b0bh, where

3 � h � N � 3 and h is odd. Here is a detail of the pocket tree of TkC1 showing

P0; P1:

①P0
✘✘✘✘✘✘✘✘✘✘✘

�
�

�
��

❊
❊
❊
❊
❊❊

❩
❩
❩
❩

❩❩

❤❤❤❤❤❤❤❤❤
①P1

✑
✑

✑
✑✑

✂
✂
✂
✂✂

❆
❆
❆
❆
❆
❆

❍❍❍❍❍❍

b0

bh

b1

bN1

bh�1

b
h�1

bhC1

b
hC1

b
2l�1

b2l�1

b2l b
2l

b
N �1

bN �1

b2l0

b2l0C1
b

2l0C1

b
2l0

(26)

The direct and opposite trees for Qe; Qf and Qe.1/ can be sketched as

OTQe [ OT Qf
D

• • . . .
::: •

bh b
hC1

b2l�1

• . . .
::: •

b
2l

bN �1

• . . . •
b2l b

N �1

DTQe [ DT Qf
D

• • . . . •
b0 bhC1 b

2l�1

OTQe.1/ D
• • . . .

:::
•

b0 bN1 bh�1

DTQe.1/ D
• • . . . •

bh b1 b
h�1

(27)

The denominators of 1
.Eb0

�Eb2l
/.Eb1

�EbN �1
/

in (25) add threads from b0 to b2l and

from b1 to bN �1. The first one connects the direct trees for Qe [ Qf to the direct tree

encoded by Qe.0/ D Qe ı Qf . The second thread does not give a valid composition of the

opposite trees for Qe [ Qf .
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This is a problem. The solution is to split this contribution. Half of the contri-

bution is sacrificed to bring the other half in the desired form. Afterwards, the same

procedure is repeated for the other term in (25) with a minus-sign. The remainders are

the same and cancel each other, whereas the other halves add up to yield the sought

for monomial.

Returning to trees, we note that in the direct tree for the pocket Qe.1/ there is always

a thread from bh to b1, encoding a factor 1
Ebh

�Eb1

. With the factor 1
Eb1

�EbN �1

it

fulfils

1

Ebh
�Eb1

� 1

Eb1
�EbN �1

D 1

Ebh
�Eb1

� 1

Ebh
�EbN �1

C 1

Ebh
�EbN �1

� 1

Eb1
�EbN �1

:

(28)

The first term on the right-hand side of (28) leaves the direct tree DTQe.1/ as it is and

connects the parts of OTQe [ OT Qf
via the thread from bh to bN �1 to form OTQe.0/ ,

where Qe.0/ D Qe ı Qf .

The final term in (28) also unites OTQe [ OT Qf
and forms OTQe.0/ , but it removes in

DTQe.1/ the thread between bh and b1. It follows from Qe.1/ D Qe0 � Qf 0 that this tree falls

apart into the subtrees DTQe0 , containing bh, and DT Qf 0 , which contains b1. These are

multiplied by a factor 1
Eb1

�EbN �1

. The second term in (25) will remove them.

Indeed, direct and opposite trees for Qe.0/; Qe0 and Qf 0 can be sketched as

OTQe.0/ D
• • . . .

:::
•

bh b
hC1

bN �1

DTQe.0/ D
• • . . . •
b0 bhC1 b

N �1

OTQe0 [ OT Qf 0 D
• • . . .

::: • • •. . .
:::

b0 bN1 b2l0 b
2l0C1

bh�1

✬ ✩

DTQe0 [ DT Qf 0 D
• • . . . • • •

bh b1 b
2l

b2l0C1 b
h�1

✬ ✩

(29)

The direct tree DTQe.0/ remains intact and the thread from b0 to b2l 0 encoded in the

factor 1
.Eb0

�Eb2l0 /
in (25) connects the opposite trees for Qe0 [ Qf 0 to form the opposite

tree for Qe.1/ D Qe0 � Qf 0. The direct trees DTQe0 [ DT Qf 0 remain disconnected and are

multiplied by 1
.Eb1

�EbN �1
/

from (25). With the minus-sign from (25) they cancel the

final term in (28). The other trees combined yield precisely the direct and opposite

trees for both Qe.0/ and Qe.1/, so that the single nested Catalan table we started with is

retrieved.

This completes the proof. Bijectivity between nested Catalan tables and contrib-

uting terms to .N 0<N /-point functions is essential: Assuming the above construction

in Cases I–III missed nested Catalan subtables Tl ; TN=2�l , then their composition

Tl ˙TN=2�l would be a new nested Catalan table of length N=2. However, all nested

Catalan tables of length N=2 are considered. Similarly, for Tl 0 �TN=2�l 0 .
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This theorem shows that there is a one-to-one correspondence between nested

Catalan tables and the diagrams/terms in G
.0/

b0:::bN �1
with designated node b0. The

choice of designated node does not influence G
.0/

b0:::bN �1
, but it does alter its expan-

sion.

A. Examples

Example A.1. We have .1; 0/ D .0/ ı .0/, .2; 0; 0/ D .1; 0/ ı .0/, .1; 1; 0/ D .0/ ı
.1; 0/ and .3; 1; 0; 0; 2; 0; 0/ D .2; 1; 0; 0/ ı .2; 0; 0/.

Example A.2. We have .1; 0/ D .0/ � .0/, .2; 0; 0/ D .1; 0/ � .0/, .1; 1; 0/ D .0/ �
.1; 0/ and .3; 1; 0; 0; 2; 0; 0/ D .2; 0; 2; 0; 0/ � .1; 0/.

Remark A.3. We formulate the ı-decomposition in terms of Dyck paths.

(1) Remove the lowest row of the lattice.

(2) Draw the north-east diagonal from the new bottom-left corner. Let F be the

first step east which goes below the north-east diagonal.

(3) Remove the column containing F .

(4) The left ı-factor is the Dyck path in the lattice obtained by retaining only the

rows and columns shared by the part of the north-east diagonal left of F .

(5) The right ı-factor is the Dyck path in the lattice obtained by deleting (in addi-

tion to steps 1. and 3.) all rows and columns shared by the part of the north-east

diagonal left of F .

If the resulting lattice in one of the factors is empty this corresponds to the Catalan

tuple .0/ of length 0. For example, the decomposition .3;1;0;0;2;0;0/ D .2;1;0;0/ ı
.2; 0; 0/ visualises as

D

..
..

..
..

..
..

..
.

ı

..
..

..
..

..
..

..
.

The row and column removed in steps 1. and 3. are shown in darker gray. The north-

east diagonal is dotted.

Remark A.4. We formulate the �-decomposition in terms of Dyck paths.

(1) Remove the lowest row of the lattice.
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(2) Draw the north-east diagonal from the end point of the very first step east. Let

F be the first step east which goes below this north-east diagonal.

(3) Remove the column containing F .

(4) The left �-factor is the Dyck path in the lattice obtained by deleting (in addi-

tion to steps 1. and 3.) all rows and columns shared by the part of the north-east

diagonal left of F .

(5) The right �-factor is the Dyck path in the lattice obtained by retaining only

the rows and columns shared by the part of the north-east diagonal left of F .

If the resulting lattice in one of the factors is empty this corresponds to the Catalan

tuple .0/ of length 0. For example, the decomposition

.3; 1; 0; 0; 2; 0; 0/ D .2; 0; 2; 0; 0/ � .1; 0/

visualises as

D ..
..

.
� ..

..
.

The row and column removed in steps 1. and 3. are shown in darker gray. The north-

east diagonal is dotted.

Example A.5. We have

T1 D ¹h.0/; .0/iº;
T2 D ¹h.1; 0/; .0/; .0/i; h.0/; .1; 0/; .0/iº;
T3 D ¹h.2; 0; 0/; .0/; .0/; .0/i; h.1; 1; 0/; .0/; .0/; .0/i; h.1; 0/; .1; 0/; .0/; .0/i;

h.1; 0/; .0/; .1; 0/; .0/i; h.0/; .2; 0; 0/; .0/; .0/i; h.0/; .1; 1; 0/; .0/; .0/i;
h.0/; .1; 0/; .1; 0/; .0/iº:

Later in Figures 2 and 3 we give a diagrammatic representation of the nested Catalan

tables in T2 and T3, respectively.

Example A.6. We have h.2; 0; 0/; .0/; .0/; .0/i D h.1; 0/; .0/; .0/i˙h.0/; .0/i and

h.1; 1; 0/; .0/; .0/; .0/i D h.0/; .0/i˙h.1; 0/; .0/; .0/i. In Example 5.4 and Figure 4

we considered the nested Catalan table h.2; 0; 0/; .1; 1; 0/; .0/; .0/; .0/; .1; 0/; .0/i D
h.1; 0/; .1; 1; 0/; .0/; .0/; .0/i˙h.0/; .1; 0/; .0/i. Another example will be given in

Example B.2.
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Example A.7. We have h.0/; .2; 0; 0/; .0/; .0/i D h.0/; .1; 0/; .0/i�h.0/; .0/i and

h.0/; .1; 1; 0/; .0/; .0/i D h.0/; .0/i�h.1; 0/; .0/; .0/i. In Example 5.4 and Figure 4

we considered the nested Catalan table h.2; 0; 0/; .1; 1; 0/; .0/; .0/; .0/; .1; 0/; .0/i D
h.2; 0; 0/; .0/; .0/; .1; 0/; .0/i�h.1; 0/; .0/; .0/i. Another example will be given in

Example B.3.

B. Chord diagrams with threads

For uncovering the combinatorial structure of (3) it was extremely helpful for us to

have a graphical presentation as diagrams of chords and threads. To every term of the

expansion (4) of an N -point function we associate a diagram as follows:

Definition B.1 (diagrammatic presentation). Draw N nodes on a circle, label them

from b0 to bN �1. Draw a (grey solid) chord between br ; bs for every factor Gbr bs

in (4) and a (short-dashed for t; u even, long-dashed for t; u odd) thread between

bt ; bu for every factor 1
Ebt

�Ebu
. The convention t < u is chosen so that the diagrams

come with a sign.

It was already known in [10] that the chords do not cross each other (using cyclic

invariance (6)) and that the threads do not cross the chords (using (7)). But the com-

binatorial structure was not understood in [10] and no algorithm for a canonical set of

chord diagrams could be given. The present paper repairs this omission.

The N=2 D k C 1 chords in such a diagram divide the circle into k C 2 pockets.

The pocket which contain the arc segment between the designated nodes b0 and bN �1

is by definition the root pocket P0. Moving in the counter-clockwise direction, every

time a new pocket is entered it is given the next number as index, as in Definition 5.1.

The tree of these k C 2 pockets, connecting vertices if the pockets border each other,

is the pocket tree. A pocket is called even (resp. odd) if its index is even (resp. odd).

Inside every even pocket, the short-dashed threads (between even nodes) form the

direct tree, the long-dashed threads (between odd nodes) form the opposite tree. Inside

every odd pocket, the short-dashed threads (between even nodes) form the opposite

tree, the long-dashed threads (between odd nodes) form the direct tree.

The sign � of the diagram is given by

�.T / D .�1/
PkC1

j D1
e

.j /
0 ; (30)

where e
.j /
0 is the first entry of the Catalan tuple corresponding to a pocket Pj . Indeed,

for every pocket that is not a leaf or the root pocket, the chain of odd nodes starts with

the highest index, which implies that every thread emanating from this node contrib-

utes a factor .�1/ to the monomial (4) compared with the lexicographic order chosen
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there. In words: count for all pockets other than the root pocket the total number K of

threads which go from the smallest node into the pocket. The sign is even (resp. odd)

if K is even (resp. odd).

Figure 2 and 3 show nested Catalan tables and chord diagrams of the 4-point func-

tion and 6-point function, respectively. Figure 4 shows the chord diagram discussed

in Example 5.4.

h.1;0/;.0/;.0/i h.0/;.1;0/;.0/i

Figure 2. The two chord diagrams and nested Catalan tables of G.0/

b0b1b2b3
.

Now, that a visual way to study the recursion relation (3) has been introduced, it

is much easier to demonstrate the concepts introduced in Sections 3 and 4.

Example B.2. The operation ˙ is best demonstrated by an example:

h.1; 0/; .0/; .0/i ḣ.0/; .1; 0/; .0/i D h.2; 0; 0/; .0/; .0/; .1; 0/; .0/i:

The corresponding chord diagrams are

b2

b3

b4

b5

b6

b1 b7

D˙b1 b2b3 b5 b6b7

b0b0 b4

The diagrammatic recipe is to cut both diagrams on the right side of the designated

node and paste the second into the first, where the counter-clockwise order of the

nodes must be preserved. Then both designated nodes (here b0; b4) are connected by

a short-dashed thread and nodes b1 and b7 D bN �1 by a long-dashed thread.

To ˙-decompose the nested Catalan table h.2; 0; 0/; .0/; .0/; .1; 0/; .0/i, we first

ı-factorise the zeroth pocket .2; 0; 0/ via (10). Here �1

�

.2; 0; 0/
�

D 1 and, hence,
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h.2;0;0/;.0/;.0/;.0/i h.1;1;0/;.0/;.0/;.0/i

h.1;0/;.1;0/;.0/;.0/i h.1;0/;.0/;.1;0/;.0/i

h.0/;.2;0;0/;.0/;.0/i h.0/;.1;1;0/;.0/;.0/i h.0/;.1;0/;.1;0/;.0/i

Figure 3. The seven chord diagrams and nested Catalan tables of G.0/

b0b1b2b3b4b5
.

h.2; 0; 0/; .1; 1; 0/; .0/; .0/; .0/; .1; 0/; .0/i

Figure 4. A chord diagram and nested Catalan table contributing to a planar 12-point func-

tion G
.0/

b0:::b11
. Pocket tree and all non-trivial direct and opposite trees have been given in

Example 5.4.
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.2; 0; 0/ D .1; 0/ ı .0/. Next, we evaluate the number Ok defined in (12). We have

1 C j Qf .0/j D 1 and �1

�

.3; 0; 0; 1; 0/
�

D 2. Consequently, we get from Definition 4.2

h.2; 0; 0/; .0/; .0/; .1; 0/; .0/i D h.1; 0/; .0/; .0/i˙h.0/; .1; 0/; .0/i:

Example B.3. We employ the same example (with diagrams switched) to demon-

strate the operation � . In terms of nested Catalan tables this becomes

h.0/; .1; 0/; .0/i�h.1; 0/; .0/; .0/i D h.0/; .2; 1; 0; 0/; .0/; .0/; .0/i;

for which the chord diagrams are

D

b0 b0b1

b3 b4b6

b1 b7

b2 b2b4b5 b6b7

b3 b5

The diagrammatic recipe is to cut the first diagram on the left side of the designated

node and the second diagram on the right side. Then paste the second into the first,

where the counter-clockwise order of the nodes must be preserved. The threads in

the second diagram switch long/short doing so. Then, the designated node of the first

diagram is connected to the last node of the second by a short-dashed thread, the des-

ignated node of the second diagram is connected to the last node of the first diagram

by a long-dashed thread.

Conversely, to �-decompose the nested Catalan table h.0/; .2;1;0;0/; .0/; .0/; .0/i,
we first �-factorise the first pocket e.1/ D .2; 1; 0; 0/ via (11). We have e

.1/
0 � 1 D 1,

hence consider �1

�

.2; 1; 0; 0/
�

D 2 and conclude .2; 1; 0; 0/ D .1; 0/ � .1; 0/. Next, we

evaluate the number Ol in (13). With j Qe.0/j C j Qe.1/j C 1 D 0 C 1 C 1 D 2 the decom-

position follows from �2

�

.1; 3; 0; 0; 0/
�

D 2 and yields

h.0/; .2; 1; 0; 0/; .0/; .0/; .0/i D h.0/; .1; 0/; .0/i�h.1; 0/; .0/; .0/i:
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