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Self-duality of the 6j -symbol

and Fisher zeros for the tetrahedron

Valentin Bonzom and Etera R. Livine

Abstract. The relation between the 2d Ising partition function and spin network evaluations,

reflecting a bulk-boundary duality between the 2d Ising model and 3d quantum gravity, prom-

ises an exchange of results and methods between statistical physics and quantum geometry. We

apply this relation to the case of the tetrahedral graph. First, we find that the high/low tem-

perature duality of the 2d Ising model translates into a new self-duality formula for Wigner’s

6j -symbol from the theory of spin recoupling. Second, we focus on the duality between the

large spin asymptotics of the 6j -symbol and Fisher zeros. Using the Ponzano–Regge formula

for the asymptotics for the 6j -symbol at large spins in terms of the tetrahedron geometry, we

obtain a geometric formula for the zeros of the (inhomogeneous) Ising partition function in

terms of triangle angles and dihedral angles in the tetrahedron. While it is well known that the

2d intrinsic geometry can be used to parametrize the critical point of the Ising model, e.g., on

isoradial graphs, it is the first time to our knowledge that the extrinsic geometry is found to also

be relevant. This outlines a method towards a more general geometric parametrization of the

Fisher zeros for the 2d Ising model on arbitrary graphs.

Introduction

Quantum gravity models, defined as sums over random geometries resulting from glu-

ing elementary blocks of geometry, naturally have a strong interplay with statistical

physics. For instance, 2d quantum gravity can be formulated as a sum over random 2d

triangulations implemented through matrix models (see, e.g., [17, 33]) and such mat-

rix ensembles have revealed themselves to be general templates for large classes of

statistical physics models [44]. Beside the recent extension of this line of research to

quantum gravity in higher dimensions and tensor models [10, 11, 39, 45], the interac-

tion and bond between the fields of quantum gravity and statistical physics have also

been renewed by the study of holographic dualities: the dynamics of observables and

correlations of geometry or quantum geometry within a region of space-time is con-

jectured to be entirely by a theory living on the boundary of that region. The boundary

2020 Mathematics Subject Classification. Primary 82B20; Secondary 83C45, 52-02, 52B10,

82B23.

Keywords. Ising model, Fisher zeros, duality, quantum gravity, 6j -symbol, spin network.

https://creativecommons.org/licenses/by/4.0/


V. Bonzom and E. R. Livine 74

theory is usually thought to be a conformal field theory, or suitable deformation, in a

continuum approach (e.g., in the framework of AdS/CFT correspondence), or defined

as discrete models from condensed matter and statistical physics in a discrete bound-

ary geometry setting (e.g., in quasi-local approaches to gravity/gauge holographic

duality).

Such an example of bulk-boundary duality bridging between quantum gravity and

statistical physics techniques is a duality formula between 3d quantum gravity, defined

by the Ponzano–Regge model as a path integral over discrete geometries [4,26,28,38],

and the (inhomogeneous) 2d Ising model, as shown in [8]. More precisely, it was

shown, either through direct computation or using a graded gauge symmetry, that the

Ponzano–Regge amplitude on a region of space-time with a 3-ball topology is equal

to the squared inverse of the 2d Ising model living on the boundary triangulation, as

illustrated it was "on"in Figure 1.

Figure 1. An example of triangulation of the 2-sphere as the boundary of a 3-ball. The

Ponzano–Regge amplitude associated to a triangulation of the 3-ball does not depend on the

details of the bulk triangulation but only depends on the boundary triangulation and on the

boundary state [4, 26, 28, 38]. The boundary state consists in the assignment of half-integers –

or spins – to each edge of the boundary triangulation indicating their length quantized in Planck

unit. The Ponzano–Regge amplitude is then given by the corresponding spin network evalu-

ation. The generating function of those spin network evaluations has been shown to be related

to the Ising model living on the planar graph dual to the boundary triangulation [8, 24, 43].

This result promises the possibility of using known results and methods already

developed for the Ising model in order to study the phase diagram of the discrete

geometry in 3d quantum gravity and analyze potential phase transitions as sketched

in [8,18]. But it seems plausible to also go the other way round: apply techniques and

results from quantum gravity to revisit the Ising model. Indeed, as hinted by prelimin-

ary results in [8], we could use the saddle point methods developed to investigate the

semi-classical regime of spinfoams [2, 6, 36] and derive the asymptotics of spin net-
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work evaluations [15, 19] to provide a geometrical formula for the zeros of the Ising

model.

The zeros or roots of the Ising partition function as a function of the couplings

were first introduced by Fisher [22], they characterize the partition function in the

complex plane and determine the behavior of the main properties such as correlation

decay (see [35] for recent work on the Fisher zeros). They lead to the critical couplings

in the thermodynamic level and allow to study the response to the Ising model to a

magnetism field [34].

Here we test this method on the tetrahedron graph and study the relation between

the generating function for 6j -symbols, on the quantum gravity side, with the Ising

model on the tetrahedron, on the statistical physics side. On one hand, we strive for

a better understanding of the properties of the 6j -symbols from the well-studied

structures of the Ising model partition function. On the other hand, we hope for an

interpretation of the Ising partition function, correlations and zeros, in terms of 3d

(quantum) geometry.

In particular, we present two original results.

• Introducing the generating function for the 6j -symbols of the recoupling theory

of spins,
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the associated 6j -symbol, and

the combinatorial coefficients �v.a; b; c/ are defined explicitly in Section 3.1, we

translate the high/low temperature duality of the 2d Ising model into a self-duality

formula,
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where we relate the generating function for the tetrahedron T to its dual T � where

opposite edges have been exchanged, .1; 2; 3/ $ .4; 5; 6/, and the variables Ye are

sent to their dual version,
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where the .T .2j C 1; 2k C 1//k2N=2 are figurate numbers for the .2j C 1/-dimen-

sional cross polytopes (reference A142978 on oeis.org). The formula above is rather

similar to the self-duality formula written for the q-deformed 6j -symbols [30], but

the latter involves the (discrete) Fourier transform of the squared 6j -symbol while

the new duality formula applies directly to the 6j -symbol. Not only it encodes the

self-duality of the roots of the generating function of the 6j -symbol (which is the

quantum gravity amplitude associated to a tetrahedron), but this formula also imposes

strong constraints on the properties and behavior of the 6j -symbols, and should for

instance allow for a (re-)derivation of its asymptotics at large spins (given in terms of

the Regge action for the tetrahedron).

• Using the asymptotic formula for the 6j -symbols at large spins, we study the

stationary points of the series defining the generating function ZT Œ¹Yeº�, which gives

us a formula for a real section of the sets of Fisher zeros for the Ising partition function

	T Œ¹Yeº� on the tetrahedron graph T in terms of tetrahedron geometry:

Y c
e D e" �e

2

r

tan
�e

1

2
tan

�e
2

2
; 	T Œ¹Y c

e º� D 0; (5)

where " is an overall sign, �e is the dihedral angle between the two triangles sharing

the edge e and the �e
1;2 are the angles in those two triangles opposite to the edge e.

This reduces to the well-established formula for critical Ising couplings for isoradial

graphs [14], Y c
e D tan �e=2, if we consider a isoradial tetrahedron (the circumscribed

circles of the triangles have all equal radii) and ignore the phase coming from the

dihedral angles. So, the novelty of this formula especially resides in the phase term

and the dihedral angles reflecting the embedding of the 2d graph into the 3d space,

i.e., its extrinsic geometry.

Moreover, we show how the continuation of this formula to complex edge

lengths provides a parametrization of all Fisher zeros, i.e., all complex solutions to

	T Œ¹Y c
e º� D 0. This provides a geometric formula for the critical couplings of the

Ising model.

e

1

e

2e

e

Figure 2. Geometry of a tetrahedron: 2d opposite angles and 3d dihedral angle associated to the

edge e.

http://www.oeis.org/A142978
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We consider the present work as a first check of this method before applying it

to derive a more general geometric formula for the Fisher zeros of the Ising partition

function on arbitrary planar graphs from the asymptotics of spin network evaluations

studied in 3d quantum gravity. We also hope, in the future, to apply the high/low tem-

perature duality of the Ising model to obtain UV/IR duality formulas for the quantum

gravity amplitudes and maybe help better characterize critical regimes of 3d quantum

geometry.

1. Duality between spin networks and 2D Ising

1.1. Spin network evaluation, loop polynomial and Ising partition function

The duality between 3D quantum gravity1 and the 2D Ising model, described in [8],

is expressed as a relation between the 3D quantum gravity partition function on the

3-ball with a non-trivial boundary state on the 2D sphere and the 2D Ising partition

function on the same boundary.

On the one hand, 3D quantum gravity is a topological field theory, whose path

integral is described at the discrete level by the Ponzano–Regge state-sum model. The

Ponzano–Regge model defines amplitudes for the geometry of every 3D triangulation.

Working on the 3-ball with a 2-sphere boundary, the topological invariance of the

Ponzano–Regge model can be used to show that the amplitude does not depend on

the details of the 3D triangulation in the 3-ball’s bulk but does actually depend non-

trivially on the 2D boundary triangulation (see, e.g., [26, 28, 29]). The boundary state

is defined as a spin network and the Ponzano–Regge formula for the 3D quantum

gravity amplitude with boundary is given by what is called the evaluation of the spin

network.

So, let us consider a planar, 3-valent, oriented graph � . We dress each edge e 2 �

with a spin je 2 N

2
, which corresponds to an irreducible unitary representation of the

Lie group SU.2/. Geometrically, the planar 3-valent graph � defines a dual 2D planar

triangulation �� and the spins are interpreted as the edge lengths of �� quantized in

Planck length units, le D je`Planck, as illustrated in Figure 3. To each vertex v 2 � ,

1We are considering 3D Euclidean quantum gravity, meaning that the space-time metric has

a positive signature (C C C) at the classical level. We are not Wick-rotating the path integral

and are considering the quantum mechanical path integral summing over all 3D metrics with

positive signature,
R

d 3dg expŒiSgravŒ3dg��. At the quantum level, the Ponzano–Regge discrete

path integral will nevertheless contain exponentially-suppressed contributions from Lorentzian

metric with non-definite signature (� C C), see [3].
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Figure 3. Connected region of a planar, 3-valent, oriented graph � and its dual triangulation ��

drawn in dotted lines. We choose a Kasteleyn orientation on � , so that there is an odd number

of edges oriented clockwise around each face of the graph. A spin network on � consists in the

assignment of spins je 2 N=2 to each link e of the graph. They are interpreted as the length (in

Planck unit) of the dual edge e� in the dual triangulation ��.

we attach the 3j -symbol, from the spin recoupling theory, between the spins jev
1

, jev
2

,

jev
3

, living on the edges attached to the vertex v. Then the spin network evaluation on

the oriented graph is defined as the contraction of all the 3j -symbols (see [8] for more

details), as illustrated in Figure 4:
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where the sign "v
a, with a D 1; 2; 3, records the orientation of the edge ev

a with respect

to the vertex v, i.e., "v
a D C1 if the edge is incoming (v D t.e/) and "v

a D �1 if the edge

is outgoing (v D s.e/). A detailed discussion of the normalization, sign and orientation

conventions used to relate this spin network evaluation to other standard definitions

(such as Penrose’s integral normalization or the skein-theoretical evaluation or the

unitary evaluation) can be found in [8].

We then define the generating function for these spin network evaluations on the

graph � by introducing edge couplings Ye dual to the spins and summing over the

spins je:

Z� Œ¹Yeº� D
X

¹jeº

s� Œ¹jeº�
Y

v

s

.Jv C 1/Š
Q

e3v.Jv � 2je/Š

Y

e

Y 2je
e ; (7)

where Jv D P

e3v je is the sum of the spins living on the edges adjacent to the ver-

tex v. It is necessarily an integer. This can also be interpreted as the evaluation of

coherent spin network states, defining coherent superpositions of spins on the 2D

boundary [8, 13, 24].
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je
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e
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e

(a) Spin network data along an edge e 2 �: the

spin je 2 N

2
living on the edge, and the two

basis state labels ms
e and mt

e, both bounded in

absolute value by je and respectively living at

the source and target vertex of the edge.

je1

je2
je3

ms
e1

ms
e2 mt

e3

(b) Spin network data around a vertex v 2 �:

the three edges e1;2;3 with their respective

spins je1
, je2

, je3
, and the basis state labels

ms
e1

, ms
e2

, mt
e3

entering the definition of the

3j -symbol corresponding to this vertex in the

spin network evaluation.

Figure 4. The basic building blocks of a spin network evaluation on the edges and vertices on a

graph � .

On the other hand, we consider the 2D Ising model defined on the same graph � ,

with “spins” �v D ˙ living at every vertex v 2 � with nearest neighbor interaction

along the graph � with edge couplings ye. The Ising partition function reads:

	� Œ¹yeº� D
X

�vD˙

e
P

e ye�s.e/�t.e/

D
�

Y

e

cosh ye

�

X

�vD˙

Y

e

.1 C �s.e/�t.e/ tanh ye/: (8)

Since the sum over odd products of the spins �v vanishes, the edge factors �s.e/�t.e/

must necessarily warp around cycles of the graph in order to get products of �2
v and

obtain non-vanishing contributions. This gives the (high temperature) loop expansion

of the Ising model:

	� Œ¹yeº� D 2V
�

Y

e

cosh ye

�

P� Œ¹tanh yeº�; with P� Œ¹Yeº� D
X

G ��

Y

e2G

Ye: (9)

where G runs over all even subgraphs of � , i.e., such that the valency of every vertex

of G is even. Since the original graph � is 3-valent, the valency of vertices of G can

only be 0 or 2, meaning that G is necessarily a union of disjoint loops on � , hence we

call P� the loop polynomial. The Ising partition function is given up to a pre-factor

by an evaluation of the loop polynomial, P� Œ¹tanh yeº�.
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The duality formula between the spin network evaluation and the Ising model,

proven in [24, 43] and by the authors using a graded Lie algebra symmetry [8], is2

Z� Œ¹Yeº� D 1

P� Œ¹Yeº�2 ; Z� Œ¹Yeº�	� Œ¹yeº�2 D 22V
Y

e

cosh2 ye; (10)

with Ye D tanh ye . Since 1= cosh2 y D 1 � tanh2 y D 1 � Y 2, we can rewrite this

duality formula as

Y

e

.1 � Y 2
e /Z� Œ¹Yeº�	� Œ¹yeº�2 D 22V ; (11)

or, in words, the generating function for spin network evaluation –the 3D quantum

gravity amplitude with boundary– is the squared inverse of the 2D Ising model.

1.2. Low/high temperature expansion of the Ising model and duality

A powerful technique to study the 2D Ising model is the duality between the low and

high temperature regimes, which allows a direct derivation for the critical couplings

for regular lattices, see, e.g., [7]. Indeed, while the Ising partition function admits a

loop expansion in the high temperature regime as shown above, it also admits a loop

expansion in the low temperature regime but on the dual graph ��.

Indeed, the low temperature expansion of the Ising partition function is given by

a cluster expansion: we describe each configuration of spins �v by the connected

clusters of positive spins and the connected clusters of negative spins. Each connec-

ted cluster of positive spin is bounded by a loop in the dual graph ��. So, we can

restructure the Ising partition function as a sum over cycles in ��. More precisely, for

a planar embedding of the graph � , we define the dual graph �� by defining a dual

vertex for each face and a dual edge transverse to an edge and thus linking a dual

vertex to a neighboring one, as illustrated in Figure 5. Then we write 	� Œ¹yeº� as a

2As shown in [8], the equality between the spin network generating function and the squared

inverse of the Ising partition function holds if we choose a Kasteleyn orientation for the edges

of the graph � to define the spin network evaluation. Indeed, if we switch the orientation of an

edge e, then the spin network evaluation s� Œ¹jeº� acquires a sign .�1/2je , so that one should

also switch the sign of the edge coupling Ye ! �Ye in the spin network generating function

Z� Œ¹Yeº�.
To fix this sign ambiguity, we choose a Kasteleyn orientation, which defines an orientation of

the edges compatible with the planarity of the graph. Since the graph is assumed to be planar,

we have a (counter clockwise) orientation for every face of the graph � . A Kasteleyn orientation

of the edges is such that each face has an odd number of edges whose orientation does not match

the one of the face.
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sum over loop systems on the dual graph ��. Loops can meet at points, but not cross

each, thus corresponding to an even subgraph of the dual graph ��:

	� Œ¹yeº� D 2
Y

e

eye

X

G ����

Y

e�2G �

e�2ye D 2
Y

e

eye P�� Œ¹Y �
e º� with Y �

e D e�2ye ;

(12)

where the pre-factor 2 comes from a global switch of signs of the spins (i.e., when

loops in dual graph �� define border of clusters of negative spins instead of clusters

of positive spins).

�

�

�

�

�

�

�
�

�
�

(a) Dual of a 3-valent graph. Even though the

original graph � is 3-valent, the dual graph

nodes do not have any particular valency. The

dual graph �� defines in this case a triangula-

tion.

�

�

�

�

�

�

�

�

�

(b) The regular square lattice is self-dual in

the sense that its dual graph is once again a

regular square lattice.

Figure 5. Examples of dual graphs: the initial oriented graph � is drawn in plain lines, while

the dual graph �� is drawn in dotted lines: each dual vertex v� corresponds to a face of the

planar cellular complex defined by � , each dual edge e� corresponds to an edge of the original

graph and links two neighboring faces of � .

The duality mapping D between the edge couplings of the low and high temper-

ature expansions is an involution:

Y D D.Y �/ D .1 � Y �/

.1 C Y �/
; Y � D D.Y / D .1 � Y /

.1 C Y /
: (13)

The fixed points of this map are Yc D �.1 ˙
p

2/. These are the critical couplings

for the 2d homogeneous Ising model on a square lattice (since the square lattice is its

own dual graph).

This translates into the low/high temperature duality for the loop polynomials on

the graph � and its dual ��:

2V
Y

e

cosh yeP� Œ¹tanh yeº� D 2
Y

e

eye P�� Œ¹e�2ye º�; (14)
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2V �E�1
Y

e

.1 C Y �
e /P� Œ¹Yeº� D P�� Œ¹Y �

e º�;

P� Œ¹Yeº� D 21�V
Y

e

.1 C Ye/P�� Œ¹Y �
e º�;

(15)

which holds since .1 C Y �/.1 C Y / D 2 by the duality map. These two formulas are

dual of each other, since .1 � V / plays the role of .V � E � 1/ for the dual graph:

V � � E� � 1 D F � E � 1 D 1 � V;

since we have assumed the planarity of the graphs and the Euler characteristic is fixed

to �Euler D F � E C V D 2.

This promises a totally new and original relation between spin network evalu-

ations on � and spin network evaluations on the dual graph ��, which would be

especially interesting in the context of discretizations of 3D gravity combining both

the triangulation and its topological dual as in [16,20,23]. However this would require

extending the duality formula (10) between the Ponzano–Regge amplitudes and the

2D Ising partition functions to graphs with node valency higher than 3. Although this

should definitely be studied at some point, this is not the purpose of the present work.

Instead we will focus the tetrahedral graph, which is actually self-dual, i.e., the dual

graph is once again a tetrahedral graph. This leads to a self-duality formula for the

6j -symbols and their generating function, as we will see in 3.

2. ‚ graph and dual triangle geometry

In this section, we start with the ‚ graph and its dual three-edge loop (or triangular

graph), as illustrated in Figure 6, to illustrate the duality between spin networks and

the Ising model in a simple case as an appetizer for the more complete case of the

tetrahedral case which we will analyze in Section 3. Here we will see that the spin

network evaluations and the Ising partition function are both encoded in the triangle

geometry.

2.1. Generating function of spin network evaluations on the ‚ graph

We start with the simplest 3-valent graph, the ‚ graph, made of two vertices linked

by three edges as drawn in Figure 6. A spin network is defined in terms of three spins

j1; j2; j3 living respectively on the ‚’s three edges. Then the generating function is
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j1

j3

j2� �

(a) The ‚-graph has two vertices linked by

three edges. A spin network on ‚ is the

assignment of the spin ji to each of the three

edges. The spin network evaluation consists in

considering the two 3j -symbols correspond-

ing to the two vertices and contracting them.

�

� �

j

j

j

(b) The triangle graph � is made of three

bivalent vertices linked by three edges form-

ing a loop. A spin network on � assigns a

spin on each of the three edges. Since the

vertices are bivalent, those spins are necessar-

ily all equal. The spin network evaluation is

then simply the dimension of the correspond-

ing representation, dim j D .2j C 1/.

Figure 6. The ‚-graph and its dual graph, the triangle graph �.

defined as a function of three edges couplings Y1;2;3 weighting each spin:

Z‚ŒY1;2;3� D
X

j1;2;32 N

2

ıj1;j2;j3

.�1/j1Cj2Cj3.j1 C j2 C j3 C 1/Š

.j1 C j2 � j3/Š.j1 C j3 � j2/Š.j2 C j3 � j1/Š

3
Y

iD1

Y
2ji

i :

(16)

The combinatorial factor ıj1;j2;j3
can be defined as a integral over SU.2/ of the

products of the characters3 of the three SU.2/ representations,

ıj1;j2;j3
D

Z

SU.2/

d g�j1
.g/�j2

.g/�j3
.g/; (17)

and gives 1 if the three spins satisfy the triangular inequalities (and parity constraint)

and 0 otherwise.

3The character in the spin j is the function �j of group elements g 2 SU.2/ giving the

trace of the Wigner-matrix representing the group element. It is a central function over SU.2/,

i.e., invariant under conjugation, and depends only on the conjugation class of g labeled by its

rotation angle:

�j .g/ D TrDj .g/; �j .ei��3 / D sin.2j C 1/�

sin �
D U2j .cos �/;

where U2j is the Chebyshev polynomial of the second kind of degree 2j .



V. Bonzom and E. R. Livine 84

We can compute this series directly. To this purpose, we introduce “dual spins” as

in [25]:

k3 D j1 C j2 � j3; k1 D j2 C j3 � j1;

k2 D j3 C j1 � j2; k1 C k2 C k3 D j1 C j2 C j3;
(18)

2j1 D k2 C k3; 2j2 D k1 C k3; 2j3 D k2 C k1; (19)

and re-write the generating function as

Z‚ŒY1;2;3�

D
X

k1;2;32N

.�1/k1Ck2Ck3
.k1 C k2 C k3 C 1/Š

k1Šk2Šk3Š
.Y2Y3/k1.Y1Y3/k2.Y1Y2/k3 : (20)

This is easily resumed and gives, as expected, the loop polynomial of the ‚ graph:

Z‚ŒY1;2;3� D 1

.1 C Y1Y2 C Y2Y3 C Y1Y3/2

D 1

P‚ŒY1; Y2; Y3�2
: (21)

The roots of the loop polynomial, P‚ŒY1;2;3� D 0, gives the zeros of the Ising partition

function, 	‚ŒY1;2;3� D 0, and corresponds to the poles of the spin network generating

function Z‚ŒY1;2;3� ! 1.

2.2. Dual generating function on triangle graph

The graph dual to the ‚ graph is the triangle graph �, as drawn in Figure 6. The

triangle graph is not 3-valent, but the generating function for spin networks can still

be defined and computed with similar formulas. To make sure we work with con-

sistent conventions, it is simpler to start from the loop polynomial on the triangle

graph, P�ŒY �
1;2;3� D 1 C Y �

1 Y �
2 Y �

3 and to work out the corresponding weights for the

generating function of the spin network evaluation by simply expanding the squared

inverse.

Another way to proceed would be to start with a larger 3-valent graph containing

the triangle graph as a subgraph and derive the generating function for spin network

evaluations on � from the loop polynomial on the larger graph by setting the extra

edge couplings to 0. We work this out explicitly, showing how to derive the loop poly-

nomial P� from the loop polynomial PT on the tetrahedron graph T in Section 3.3.

Here, on the graph �, the three spins j1;2;3 on the three edges around the loop

must necessarily be equal, j1 D j2 D j3 D j and we expand the spin network gener-
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ating function as

Z�ŒY �
1;2;3� D 1

P�ŒY �
1;2;3�2

D 1

.1 C Y �
1 Y �

2 Y �
3 /2

D
X

j 2 N

2

.�1/2j .2j C 1/.Y �
1 Y �

2 Y �
3 /2j : (22)

Then the duality formula for the Ising partition functions reads, with Y �
i D D.Yi /:

P‚ŒY1;2;3� D
3P�ŒY �

1;2;3�
Q3

i .1 C Y �
i /

: (23)

This means that there is a one-to-one correspondence in the complex plane between

the roots of the loop polynomial P‚ŒY1;2;3� on the ‚ graph and the loop polynomial

P�ŒY �
1;2;3� on the dual graph.

2.3. Roots from triangle geometry with complex edge lengths

Let us look for the roots of the loop polynomial on the ‚ graph, P‚ŒY1; Y2; Y3�D0,

which are also the Fisher zeros for the Ising partition function and the poles of the

Ponzano–Regge amplitude for that boundary graph. The obvious method is to com-

pute Y3 from Y1 and Y2:

P‚ŒY1; Y2; Y3� D 0 ” Y3 D �1 C Y1Y2

Y1 C Y2

; (24)

as long as Y1 C Y2 ¤ 0. If Y1 C Y2 D 0 vanishes, the variable Y3 is irrelevant and

can take arbitrary complex values while it is enough to have 1 C Y1Y2 D 0, i.e.,

Y1 D ˙1 D �Y2. Not only this method breaks the symmetry between the three edge

variables, but it does not carry any geometrical interpretation.

Here we are interested in providing this equation and its solutions with a geomet-

rical interpretation in terms of triangle geometry. Indeed, the spin network evaluation

sums over configurations of three spins j1;2;3 defining a triangular configuration with

triangular inequalities, jj2 � j3j � j1 � .j2 C j3/ and so on. Furthermore, as was

explained in [8], the generating function for spin network evaluations is a sum over

geometric configurations up to a global scale factor. Thus we expect a geometrical

interpretation in terms of triangles up to global scale. We therefore expect roots of the

loop polynomial P‚ to be parameterized in terms of triangle angles.

2.3.1. Geometric solutions. One can easily find solutions of P‚ŒY1;2;3� D 0, or equi-

valently to P�ŒY �
1;2;3� D 0, using the fact that the angles of a triangle sum to � .

Consider a triangle as drawn in Figure 7.
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l3

l1

l2

�1

�2 �3

Figure 7. Triangle geometry: angles and edge lengths.

Looking for roots of P� with unit norm (i.e., phases), it is straightforward to see

that they are simply given by three angles4 summing to � . A solution is therefore

Y �
a D ei�a H) P�Œei�1 ; ei�2 ; ei�3 � D 1 C ei.�1C�2C�3/ D 0: (25)

We apply the duality map D to find the dual roots, i.e., the roots of P‚:

Ya D D.Y �
a / D 1 � ei�a

1 C ei�a
D �i tan

�a

2
: (26)

Expanding the trigonometric identity cos 1
2
.�1 C �2 C �3/ D 0, it can indeed be dir-

ectly checked that5

P‚

h°

�i tan
�a

2

±

a

i

D 1 � tan
�1

2
tan

�2

2
� tan

�2

2
tan

�3

2
� tan

�3

2
tan

�1

2
D 0: (28)

4We could also use the angles of the contact triangle,

O�a D �b C �c

2
for ¹a; b; cº D ¹1; 2; 3º;

defined by the three points of contact of the triangle’s incircle with its edges. Similarly, the

angles of any special triangle within the original triangle can in fact be used.
5Equivalent to (28), we can use the law of tangents within a triangle, obtained by expanding

sin.�1 C �2 C �3/ D 0,

1

tan �1 tan �2

C 1

tan �2 tan �3

C 1

tan �3 tan �1

D 1:

This leads to roots of P‚, which are again purely imaginary and thus roots of P� which are

phases, as follows:

Ya D i

tan �a

() Y �
a D �e2i�a H) P�ŒY �

1;2;3� D Y �
1 Y �

2 Y �
3 C 1 D 0: (27)

Twice the triangle angles actually correspond to the angles around the center of the circum-

scribed circle.
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Notice that purely imaginary roots of P‚ are equivalent to roots of P� of unit norm

under the action of D ,

Y 2 iR ” jY �j D jD.Y /j D 1; Y D �i

tan
�
2

” Y � D ei� : (29)

The above solutions provide a two-real-parameter family of zeros of the loop poly-

nomials P� and P‚. We will see below that all the roots of P‚ can be parametrized

this way by a continuation of the triangle geometry to the complex plane, i.e., using

complex edge lengths instead of just real ones.

2.3.2. Parametrizing all solutions using complex edge lengths. Here we use a

method that we will use again in the more complicated case of the tetrahedron graph

in Section 4.

First we introduce cycle variables Lab defined by

Lab D YaYb; (30)

for any ¹a;bº � ¹1;2; 3º. It allows to recover Ya as Y 2
a D LabLac=Lbc for ¹a;b; cº D

¹1; 2; 3º (i.e., a; b; c all different from each other). The equation P‚ŒY1;2;3� D 0 then

simply becomes

1 C L12 C L23 C L13 D 0; (31)

which can be solved easily using homogeneous variables ¹Mabº,

Lab D �Mab

M‚

with M‚ D
X

¹a;bº�¹1;2;3º

Mab : (32)

The roots become

Y 2
a D �MabMac

MbcM‚

: (33)

One can then introduce the complex lengths l1; l2; l3 as follows

la D Mab C Mac () Mab D 1

2
.la C lb � lc/: (34)

It is convenient to introduce the complex semi-perimeter s D 1
2
.l1 C l2 C l3/ so that

Ya D i"

s

.s � la/.s � lb/

s.s � lc/
; (35)

with an overall sign " D ˙. This provides a parametrization of the whole set of com-

plex roots of P‚ and, by duality, of P�.
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If we now assume that the edge lengths are real, la 2 R, and satisfy the triangle

inequalities jlb � lc j � la � lb C lc , then one recognizes (35) as the tangent of the

half-angles:

Ya D i"

s

.s � la/.s � lb/

s.s � lc/
D i" tan

�a

2
: (36)

where s is the (real) semi-perimeter of the triangle. Indeed, there are simple, well-

known formula for both the cosine and sine of the angle � from which we find tan�=2,

tan
�a

2
D 1 � cos �a

sin �a

; cos �a D
l2
b

C l2
c � l2

a

2lblc
; sin �a D 2A

lblc
; (37)

where the triangle area A is the real positive root of the Heron formula

A
2 D s.s � l1/.s � l2/.s � l3/

D 1

42
.l1 C l2 C l3/.�l1 C l2 C l3/.l1 � l2 C l3/.l1 C l2 � l3/: (38)

Notice that the freedom in " D ˙1 corresponds to the possibility of taking the positive

or negative root of the Heron formula, thus flipping the sign of sin �a and hence of

tan �a=2.

All the above formula can be directly continued in the complex case. In particular,

the Heron formula has two complex roots A˙ D "
p

s.s � l1/.s � l2/.s � l3/ and one

can extends (37) to complex lengths. It comes that the value of Ya given in (35) really

is a continuation of i tan �a=2.

Applying D , one finds

Y �
a D 1 � i" tan.�a=2/

1 C i" tan.�a=2/
D exp i"�a D

l2
b

C l2
c � l2

a C 4iA˙

2lblc
: (39)

Notice the roots as a function of the three complex edge lengths is invariant under

arbitrary complex rescaling of the complex edge lengths, le ! �le with � 2 C. This

implies that it in fact depends on two complex parameters, i.e., four real parameters

as wanted.

2.4. Cevian parametrization of the loop polynomial’s roots

An alternative way to get all complex roots of P� and P‚ without resorting to com-

plexifying the triangle geometry is to keep a real triangle but add the extra data of a

point in the plane, as explained below.

Coming back to the roots of the polynomial P� in terms of the double triangle

angles or equivalently in terms of the angles around the center of the circumscribed

circle given in (27), we could choose any point O on the plane and use the angles
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between the lines linking O to the three points of the triangle, 2
 D 1AOB , 2˛ D
1BOC , 2ˇ D 1COA, as drawn in Figure 8a. This allows to define more general complex

solutions based on the Cevians going through the point O . Indeed, Ceva theorem6

implies that the product of the ratio of the oriented length of the split segments is

equal to 1:

B yA
yAC

C yB
yBA

A yC
yC B

D 1: (40)

O

A

yA
B

yB

C

yC

2˛

2ˇ2


(a) Considering the triangle .ABC/ and a

point O , the Cevians are the lines linking the

three vertices of the triangle to the point O .

We call yA, yB , yC , their intersection points with

the triangle edges. The length ratios satisfy

the relation B yA
yAC

C yB
yBA

A yC
yC B

D 1.

A

aB

b

C

c

(b) Considering the triangle .ABC/ and an

arbitrary line in the plane, we call a, b, c, their

intersection points of the line with the triangle

edges. Then the oriented length ratios satisfy

the Menelaüs theorem Ba
aC

Cb
bA

Ac
cB

D �1.

Figure 8. Ceva and Menelaüs theorems for ratios in a triangle.

Upon switching signs, this gives real roots of P�, which once combined with the

phases provides a complete parametrization in terms of Cevians of the complex roots

of P�:

Y �
1 D �B yA

yAC
; Y �

2 D �C yB
yBA

; Y �
3 D � A yC

yC B
H) P�ŒY �

1;2;3� D 0; (41)

6Ceva theorem is easily understood in terms of triangle areas, which interprets the length

ratios as ratios of the areas of the three triangles with O as summit. Assuming that O is inside

the triangle so that the signs are all positive for the sake of simplicity, we have

B yA
yAC

D
A

OB yA

A
O yAC

D
A

AB yA

A
A yAC

D AOAB

AOAC

;
B yA
yAC

C yB
yBA

A yC
yCB

D AOAB

AOAC

AOCB

AOBA

AOAC

AOCB

D 1:
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Y �
1 D � e2i˛ B yA

yAC
; Y �

2 D �e2iˇ C yB
yBA

; Y �
3 D �e2i
 A yC

yC B

H) P�ŒY �
1;2;3� D 0: (42)

Indeed, given values Y �
1;2;3 satisfying this ansatz P�ŒY �

1;2;3� D 0, we choose O as the

origin of the plane, define the three Cevians going through O with the correct angles

˛; ˇ; 
 then identify the points A; B; C along those lines in order to realize the values

Y �
1;2;3 through the ansatz above. Moreover, a simple counting checks that this ansatz

depends on four real parameters as needed.

A variation on this ansatz uses a line instead of the point O and is based on

Menelaüs theorem, as illustrated in Figure 8b. Actually, since roots P� simply involve

three angles summing to � and three real numbers whose product gives 1,

P�ŒY �
1;2;3� D 0 () Y �

i D �i e
i�i with

´

�1�2�3 D 1;

�1 C �2 C �3 D �;
(43)

where the �’s are the modulus of the roots and the � ’s their arguments, there are

actually plenty of possible ways to generate such solutions from a triangle geometry.

The important point is that we can not use one triangle to generate both phases and

modulus. Indeed, a triangle .ABC / up to scale is determined by two angles and this

would be enough to generate a two-parameter family of complex roots, such as only

the phase ei�i or simply the signed modulus ��i . So, adding an extra point O apart

from the triangle .ABC / allows to introduce two extra parameters in order to provide

a complete parametrization of the complex roots of P�.

For instance, if we choose as angles � ’s the angles .˛; ˇ; 
/ around O then the

modulus need to depend on a choice of triangle .ABC /, such as the ratio of triangle

areas as in the Cevian ansatz above or the ratio of the triangle edge lengths . b
c
; c

a
; a

b
/

(which are actually the ratio of the sine of the triangle angles and the ratio of the

triangle areas taking as internal summit the center of the incircle of the triangle). On

the other hand, if we choose as angles � ’s the triangle angles .�1; �2; �3/ then the

modulus need to depend explicitly on the choice of the point O , such as the ratio

. OB
OC

; OC
OA

; OA
OB

/ of the distances between O and the points .ABC /.

Then taking the dual of these solutions by D provides a complete parametrization

of the roots of the loop polynomial P‚. In particular, considering the real roots (41)

of P� gives purely real roots of P‚. It would be interesting to investigate if there is a

deeper relation between the Cevian ansatz for real triangles and the complex triangle

ansatz using complex edge lengths derived in the previous section.

We now turn to the main object of interest of the present work, that is the tetra-

hedron graph.
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3. 6j generating function and self-duality

Let us now consider the tetrahedron graph T , with four vertices and six edges labeled

e1; : : : ; e6 as shown in Figure 9a. The spin network evaluation on T depends on six

spins j1;:::;6 living on the edges and consists in the contraction of the four 3j -symbols

corresponding to the graph’s four vertices. This gives Wigner’s 6j -symbol
°

j1 j2 j3

j4 j5 j6

±

.

In this section, we will study the spin network generating function on the tetra-

hedron graph T , i.e., the generating function for 6j -symbols, and we will apply the

low/high temperature duality of the Ising model to relate it to the spin network gener-

ating function on the dual graph T �. The dual graph T � is actually also a tetrahedral

graph, but it inherits a different edge labeling, as illustrated in Figure 9b, since ver-

tices of T become triangles in T � and the other way around. The low/high temperature

duality of the Ising model then leads to a new self-duality formula for the generating

function of the 6j -symbols and thus for the 6j -symbols themselves.

1
2

3

4

5

6

(a) The tetrahedron graph T with labeled

edges used to define the 6j -symbol.

1 2

3

4
5

6

(b) The dual tetrahedron T � can be obtained

mapping vertices of T to triangles of T � and

triangles of T to vertices of T �. This is equi-

valent to switching opposite edges of T , 1 $
4, 2 $ 5, 3 $ 6.

Figure 9. The tetrahedron graph T and its dual tetrahedron graph T �.

3.1. 6j generating function and tetrahedron loop polynomial

The generating functional for the 6j -symbols on the tetrahedron graph T is defined

as

ZT Œ¹Yeº� D
X

¹jeº

Y

v

�v.je/

²

j1 j2 j3

j4 j5 j6

³

Y

e

Y 2je
e ; (44)

where the triangle coefficients �v.a; b; c/ for three spins a; b; c meeting at a vertex v

of T are defined as

�v.a; b; c/ D
s

.a C b C c C 1/Š

.a C b � c/Š.a � b C c/Š.�a C b C c/Š
: (45)
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It was shown to be exactly computable as a rational function, first by Schwinger

[42] and then by Bargmann [1],

ZT Œ¹Yeº� D 1

PT Œ¹Yeº�2 ; PT Œ¹Yeº� D
X

C �T

Y

e2C

Ye; (46)

where C runs through all cycles (or loops) of the tetrahedral graph T . This is the

prototype formula for the more general duality formula (10) by Westbury expressing

the generating function for spin network evaluations on an arbitrary graph in terms of

the corresponding loop polynomial and thereby relating it to the 2D Ising model.

The loop polynomial PT on the tetrahedron graph can be written explicitly:

PT Œ¹Yeº� D 1 C Y1Y2Y6 C Y1Y3Y5 C Y2Y3Y4 C Y4Y5Y6

C Y1Y4Y2Y5 C Y2Y5Y3Y6 C Y1Y4Y3Y6: (47)

There are two types of cycles C : either it is a 3-cycle, i.e., a triangle of T , and there

are four of them, or its is a 4-cycle which runs through all edges but a pair of opposite

ones, and there are three of them. Notice that in the dual graph, the 3-cycles are

mapped to vertices of T �, while each 4-cycle remains the same.

3.2. Scissor symmetry and invariance of the 6j generating function

The 6j -symbol is invariant under the Regge symmetries of the tetrahedron. These

include permutations of the 6 spins j1;2;3;4;5;6 compatible with the combinatorics of

the tetrahedron graph, which thus leave invariant the generating function ZT and the

corresponding loop polynomial PT , but they also contain another type of symmetries,

called scissor symmetries, which are generated by the following transformation:
²

j1 j2 j3

j4 j5 j6

³

D
²

j1
1
2
.�j2 C j3 C j5 C j6/ 1

2
.j2 � j3 C j5 C j6/

j4
1
2
.j2 C j3 � j5 C j6/ 1

2
.j2 C j3 C j5 � j6/

³

: (48)

This translates into an intriguing invariance of the loop polynomial, if we perform an

inversion of the couplings Y2;3;5;6 around the 4-cycle .2356/ by the corresponding

loop monomial Y2Y3Y5Y6:

PT Œ¹Yeº� D PT Œ¹ zYeº�; (49)

with

zY1 D Y1; zY4 D Y4; zY2 D
p

Y2Y3Y5Y6

Y2

;

zY3 D
p

Y2Y3Y5Y6

Y3

; zY5 D
p

Y2Y3Y5Y6

Y5

; zY6 D
p

Y2Y3Y5Y6

Y6

:

(50)

This transformation leads to a permutation of monomials corresponding to the loops

on the tetrahedron graph, due to the identities zY2
zY3 D Y5Y6 and so on for the 6 pairs

of edges around the 4-cycle.
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3.3. 3-1 Pachner move and reduction to the triangle

One can contract the tetrahedron graph to get either the triangle graph � or the ‚

graph. The simpler case is to recover the � graph by erasing the links 1; 2; 3 from the

tetrahedron graph. This is done by setting the corresponding edge couplings to 0:

PT ŒY1;2;3 D 0; Y4; Y5; Y6� D 1 C Y4Y5Y6 D P�ŒY4; Y5; Y6�: (51)

In order to reduce the tetrahedron graph T to the ‚ graph, the procedure is slightly

more complicated and we have to contract the cycle .4;5;6/ to a single point. This is a

3-1 Pachner move, which can be defined on arbitrary 3-valent graphs. Let us consider

an initial graph � , choose a vertex v0 on the graph and blow it up into a little loop

linking the three edges attached to that vertex, as shown in Figure 10. We call the final

graph z� . Then we can relate the two loop polynomials on � and z� .

�

� �
Y6

Y4

Y5

Y1

Y2 Y3

�
zY1

zY2
zY3

Figure 10. The 3$1 Pachner move on a 3-valent graph amounts to blowing up one vertex into

a little triangle, or vice-versa. It is possible to relate the loop polynomials of two graphs related

by such a move.

The loop polynomial Pz� is defined as a sum over loop systems or equivalently

all unions of disjoint cycles on the graph z� . Starting from a loop system on � , we

distinguish loops that avoid the vertex v0. We raise them to two loop systems on z�:

the original one and the original one together with the new loop .456/, with the new

loop contributing a factor Y4Y5Y6 to the polynomial. On the other hand, if a loop

travels through the vertex v0, it follows one of the three paths, .12/, .23/ or .31/.

Once raised to the graph z� , each of these paths can follow two ways around the loop

.456/. For instance, the original path .12/ can become .162/ or .1542/ meaning that

the factor Y1Y2 acquires a factor and becomes Y1Y2.Y6 C Y4Y5/. If we factor the

whole polynomial by an overall .1 C Y4Y5Y6/, we can re-absorb the rescaling for the

three monomials Y1Y2, Y2Y3 and Y3Y1 by a rescaling of the individuals couplings

Y1;2;3:

Pz� ŒY1;2;3;4;5;6; ¹Yeº� D .1 C Y4Y5Y6/P� Œ zY1;2;3; ¹Yeº�; (52)
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where the generic notation Ye stands for the couplings on all the edges e which are

not involved in the 3-1 Pachner move, and with the renormalized couplings defined as

zY1 D Y1

s

.Y5 C Y4Y6/.Y6 C Y4Y5/

.Y4 C Y5Y6/.1 C Y4Y5Y6/
;

zY2 D Y2

s

.Y4 C Y5Y6/.Y6 C Y4Y5/

.Y5 C Y4Y6/.1 C Y4Y5Y6/
;

zY3 D Y3

s

.Y4 C Y5Y6/.Y5 C Y4Y6/

.Y6 C Y4Y5/.1 C Y4Y5Y6/
:

This should be related to the star-triangle relation for the Ising model [7]. The reverse

mapping is simpler. If we set the coupling around the new loop .456/ to 1, the renor-

malization of the couplings disappear and we are left with

P� ŒY1;2;3; ¹Yeº� D 1

2
Pz� ŒY1;2;3; Y4 D Y5 D Y6 D 1; ¹Yeº�: (53)

We apply these formula to � D ‚ and z� D T and get the relations

PT ŒY1;2;3;4;5;6� D .1 C Y4Y5Y6/P‚Œ zY1;2;3�; (54)

2P‚ŒY1;2;3� D 2.1 C Y1Y2 C Y2Y3 C Y1Y3/

D PT ŒY1;2;3; Y4 D Y5 D Y6 D 1�: (55)

Let us point out that the reduction from the tetrahedron graph T to the triangle graph

� involves setting three couplings to 0, while the reduction to the ‚ graph involves

setting three couplings to 1. The fact that � is the dual graph of ‚ is consistent with

the fact that 0 is the dual coupling of 1 by the duality map D .

3.4. Self-duality of the 6j generating function

Let us now turn to the duality map on the tetrahedron graph. The low/high temperature

duality of the Ising model translates as explained previously into a duality identity (15)

relating the loop polynomials on T and T �:

Y

e

.1 C Y �
e /PT Œ¹Yeº� D 8PT � Œ¹Y �

e º�;
Y

e

.1 C Ye/PT � Œ¹Y �
e º� D 8PT Œ¹Yeº�:

(56)
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We can write both the loop polynomial and its dual explicitly:

PT Œ¹Yeº� D 1 C Y1Y2Y6 C Y1Y3Y5 C Y2Y3Y4 C Y4Y5Y6

C Y1Y4Y2Y5 C Y2Y5Y3Y6 C Y1Y4Y3Y6; (57)

PT � Œ¹Y �
e º� D 1 C Y �

4 Y �
5 Y �

3 C Y �
4 Y �

6 Y �
2 C Y �

5 Y �
6 Y �

1 C Y �
1 Y �

2 Y �
3

C Y �
1 Y �

4 Y �
2 Y �

5 C Y �
2 Y �

5 Y �
3 Y �

6 C Y �
1 Y �

4 Y �
3 Y �

6 : (58)

We can check directly the dual relations between these two polynomials when

Y �
e D D.Ye/:

We translate these relations to a identity for the generating function of the 6j -symbols,

since it is given by the squared inverse of the loop polynomial:

ZT Œ¹tanh yeº�
Y

e

1

cosh2 ye

D 8ZT � Œ¹e�2ye º�
Y

e

e�2ye : (59)

which reads explicitly once expanded as series over spins as

X

¹jeº

²

j1 j2 j3

j4 j5 j6

³

Y

v

�v.je/
Y

e

.tanh ye/2je

.cosh ye/2

D 43
X

¹keº

²

k4 k5 k6

k1 k2 k3

³

Y

v�

�v�.ke/
Y

e

e�2.2keC1/ye : (60)

Notice that it is not the same 6j -symbols on the left and right-hand sides, since

although the 6j -symbol is invariant under permutations of its columns, it is not invari-

ant under the switch of its two lines. The duality here exchanges opposite edges of the

tetrahedron, thereby switching the 3-cycles into the dual 3-cycles.

When Ye D tanh ye goes 0 (resp. 1) then Y �
e D e�2ye goes to 1 (resp. 0). This

means that the role of the large (resp. small) spins on the left-hand side is played by

the small (resp. large) spins on the right-hand side: the low/high temperature duality

for the Ising model becomes a UV-IR duality for the spin network geometry.

3.5. Duality transform on the 6j -symbol

We can write both sides of equation (60) as series in Y �
e and translate the equalities

between the coefficients of both sides as a identity of the 6j -symbols. The right-hand

side of (60) is naturally a power series in Y �
e D e�2ye . As for the left-hand side, we
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write
.tanh y/2j

.cosh y/2
D 4Y � .1 � Y �/2j

.1 C Y �/2.j C1/
; (61)

which is known to be the generating function of figurate numbers

�

T .2j C 1; 2k C 1/
�

k2N=2

for the .2j C 1/-dimensional cross polytopes,7

Y � .1 � Y �/2j

.1 C Y �/2.j C1/
D

X

k2N=2

.�1/2kT .2j C 1; 2k C 1/Y �2kC1: (62)

Explicitly, the figurate numbers are expressed as sum over product of binomial coef-

ficients,

T .p; q/ D
p�1
X

nD0

�

n

p � 1

��

p

q C n

�

; (63)

which we plot in Figure 11. These figurate numbers satisfy some interesting properties

such as a symmetry under exchange of the arguments,

pT .p; q/ D qT .q; p/;

and can be repackaged into a 2-variable generating function

X

p;q�1

T .p; q/xpyq D xy

.1 � y/.1 � x � y � xy/
: (64)

Then equating the series in Y � of the two sides of (60) gives

26
X

¹jeº

²

j1 j2 j3

j4 j5 j6

³

Y

v

�v.je/
Y

e

.�1/2keT .2je C 1; 2ke C 1/

D
²

k4 k5 k6

k1 k2 k3

³

Y

v�

�v�.ke/: (65)

This is our expression for the self-duality of the 6j -symbol. For fixed spins k’s, the

sum over the spins j ’s is unbounded, with an oscillating series due to the 6j -symbol.

The more rigorous expression for this duality formula is probably through the re-

summation over the spins k’s as the identity (59) or (60) directly on the generating

function of the 6j -symbol.

The map from the spins je to the spins ke is done independently on each edge

e using the figurate number T .2je C 1; 2ke C 1/ (and the sign .�1/2ke ). Since a

7See A142978 on oeis.org.

http://www.oeis.org/A142978
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(a) Plot of the figurate number T .p; q/ for

q D 11 and p ranging from 1 to 20: the fast

growth turns out to be asymptotically a power

law.
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(b) Plot of the log of the figurate number

ln T .p; q/ for q D 11 and p ranging from 1

to 100: the logarithm growth (versus a linear

growth) is a signature of a power law.
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(c) Plot of the log of the ratio ln T .p; q/= ln p

for q D 11 and p ranging from 20 to 100:

numerical calculations for large p indicate

that the ratio grows slowly towards the limit

value q and always stays below.
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(d) Plot of the log of the figurate number

ln T .p; q/ for p ranging from 1 to 100 and

various values q D .11; 15; 19/ (from bottom

to top): the apparently linear scaling with q is

consistent with the crude estimate in q ln p in

the asymptotic limit.

Figure 11. Plots of the figurate number T .p; q/ and its logarithm, with p; q integers related to

the spins by .p; q/ D .2j C 1; 2k C 1/: we keep q fixed and look at the evolution of T .p; q/

with p running over integer values.
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crude estimate8 of the figurate number T .2j C 1; 2k C 1/ indicates that it grow as

.2j C 1/2kC1, this figurate transform can be considered as a discrete equivalent of

the Mellin transform and it would be interesting to further investigate its mathematical

properties and its potential application to signal analysis.

This is a priori a new relation satisfied by the 6j -symbol describing its behavior

under the exchange of opposite edges of the tetrahedron. It looks in spirit similar to

the duality formulas derived in [30], but those apply to the square of the q-deformed

6j -symbols. It would nevertheless be very interesting to bridge between the two

approaches: check if it is possible to derive a duality relation of the squared 6j -sym-

bols from the identity above and further see if it can be extended to the q-deformed

case by a suitable generalization of the figurate numbers.

8The simplest method to get an estimate of the figurate number T .p; q/ for a priori large

p and q is to start with its definition (63) in terms of binomial coefficients, approximate the

factorials using the Stirling formula, consider the sum as a Riemann series converging to an

integral over t D n
p

running in Œ0; 1� and computing its saddle point approximation at large p.

Keeping q � 1 fixed and defining the ratio

� D q

p
;

this leads to

T .p; q/ �
p�1

e

2�
p

1
Z

0

d t

s

.� C t /.1 � t /

t .� C t � 1/
epˆ�Œt�

with

ˆ�Œt � D .� C t / ln.� C t / � t ln t � .1 � t / ln.1 � t / C .� C t � 1/ ln.� C t � 1/:

The stationary point equation @tˆ D 0 is a quadratic equation in t and the dominant contribution

is its positive root tC for large p, i.e., when � ! 0, which provides an asymptotic power law

approximation for the figurate number:

@t ˆ D 0 () t D t˙ D 1 � � ˙
p

1 C �2

2
;

tC �
�!0C

1 � �

2
;

ˆjtC �
�!0C

�� ln
�

2
;

@2ˆjtC �
�!0C

� 4

�
;

T .p; q/ /
p�1

�2p

q

�q

:
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4. Fisher zeros on the tetrahedron

We call critical couplings9 a set of (a priori complex) couplings ¹Yeº which annihilate

the loop polynomial PT an thus the Ising partition function on the tetrahedron. We

denote them by Y c
1 ; : : : ; Y c

6 and refer to them as the Fisher zeros on the tetrahedron.

An obvious way to find the Fisher zeros consists in expressing one of the couplings

Ye in term of the others, for instance,

Y6 D �1 C Y1Y3Y5 C Y2Y3Y4 C Y1Y2Y4Y5

Y1Y2 C Y4Y5 C Y3.Y1Y4 C Y2Y5/
; (66)

as long as the denominator does not vanish. When the denominator vanishes, the

equation P ŒYe� D 0 simplifies and one can proceed similarly, and so on. This para-

metrization is not really convenient, as it breaks the symmetry between the variables.

A standard method to parametrize algebraic varieties consists in looking at the

intersection of the variety P ŒYe� D 0 with the lines through the origin. One sets Ye D
teY with a global scale factor Y . The equation P ŒYe� D 0 determines Y as a function

of t1; : : : ; t6,

1 C .t1t2t6 C t1t3t5 C t2t3t4 C t4t5t6/Y 3 C .t1t2t4t5 C t1t3t4t6 C t2t3t5t6/Y 4 D 0:

(67)

This gives a symmetric parametrization Ye D teY.t1; : : : ; t6/ of the critical couplings,

which however does not seem to have any relation to geometry.

Here we propose a classification of the Fisher zeros: We show that a subset of

them admits a geometrical description in terms of the tetrahedron geometry embed-

ded in the flat 3D space, while general Fisher zeros are understood as an analytical

continuation of the tetrahedron geometry to complex edge lengths. To this purpose,

9Working on a finite graph as we do in the present work, the Ising partition function is

irremediably finite. Nevertheless, correlations (between spins), once properly normalized with

an inverse factor of the partition function, can nevertheless diverge: when the partition func-

tion 	� Œ¹yeº� vanishes. This does not happen for real couplings ye , since in that case the

Boltzmannn weights of the Ising are real and positive so that the Ising partition function is

necessarily a positive real number. So, the zeros of 	� Œ¹yeº�, called the Fisher zeros, are com-

plex couplings, at which correlations might diverge. By a slight abuse of language, we refer

to them as critical couplings, although they do not any a priori link with a scale invariance or

continuum limit. Nevertheless, we will see later in Section 5 that those critical couplings do cor-

respond to scale invariant saddle points for the geometry of spin network evaluations, so they

might have an interpretation in terms of continuum limit at the end of the day. Finally, when we

take the limit of an infinite regular graph � , we recover the standard notion of critical couplings,

for which the Ising partition function will diverge, signaling a fixed point of the coarse-graining

flow of the model.
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we describe below in Section 4.1 a more convenient “pre-geometric” parametrization

of the Fisher zeros. It generalizes the method used in Section 2.3.2 to find all complex

roots of the polynomials P‚ and P�. Then a real section of those zeros will admit a

parametrization in terms of the triangle and dihedral angles of tetrahedra as explained

later in Section 4.2.

As in the case of P‚, the general formula for the roots of the polynomial, i.e., our

pre-geometric parametrization, is found to be a continuation of the true geometric one

to complex edge lengths.

4.1. Pre-geometrical parametrization

The loop polynomial for the tetrahedron graph T is defined as a sum over all cycles

on the graph:

PT ŒY1;2;3;4;5;6� D
X

C �T

LC ; with LC D
Y

e2C

Ye: (68)

If we focus on the cycle variables LC and single out the trivial cycle L¿ D 1 for

C D ¿, the loop polynomial reads simply PT D 1 C P

C ¤¿
LC and identifying the

roots of PT in terms of the LC ’s becomes straightforward. So, the goal becomes to

express the original edge variables Ye in terms of the cycle variables LC .

More precisely, the tetrahedron has six edges for seven non-trivial cycles. There

are four 3-cycles and three 4-cycles. The 3-cycles correspond to the triangles of the

tetrahedron graph, as one sees in Figure 9a, and form a basis of the space of cycles.

Considering an edge e, let us call t1.e/; t2.e/ the two triangles containing e, and 
.e/

the unique 4-cycle which does not contain e. Then, the relation between these three

cycles allows to recover the edge coupling Ye:

Lt1.e/Lt2.e/ D Y 2
e L
.e/: (69)

For instance, L126L135 D Y 2
1 L2356. This gives Y 2

e in terms of the cycle variables.

Since the tetrahedron has seven non-trivial cycles for only six edges, there is one

more cycle than edges and there must exist a constraint between the cycle variables. It

is quite elementary, the product over the 3-cycles equals the product over the 4-cycles:

L126L135L234L456 D L1245L1346L2356: (70)

As a consequence, we can use the cycle variables LC to trivialize the equation PT D 0,

at the cost of having the constraint (70) instead. So, one solves PT D 0 by expressing

the LC ’s in terms of homogeneous cycle variables MC such that

LC D � MC
P

C 0 MC 0
(71)
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with the constraint

M126M135M234M456 D �
�

X

C

MC

�

M1245M1346M2356:

The critical couplings Y c
e are then obtained from the MC ’s as

.Y c
e /2 D Mt1.e/Mt2.e/

M
.e/

P

C MC

: (72)

This is not yet the pre-geometrical parametrization that we are looking for. We can

go further and simplify the constraint on the homogeneous variables. To this purpose,

we introduce complex length variables l1; : : : ; l6 plus one additional variable n defined

by the following relations:

le D
X

C 3e

MC and n D
X

C

MC : (73)

Each le consists in the sum of two 3-cycles and two 4-cycles, for instance, l1 D
M126 C M135 C M1245 C M1346. The structure of the cycles of the dual tetrahedron

T � comes into play when inverting those relations. If t is 3-cycle, i.e., a triangle of the

tetrahedron T , we call t� the triangle in the dual graph consisting in the three opposite

edges, which are all attached to the vertex v opposite to t . For instance, the triangle

t D .456/ gives the opposite triangle t� D .123/ in the dual tetrahedron. One can then

write the variables Mt for the 3-cycles in terms of the (complex) semi-perimeter st�

around the opposite triangle t�,

Mt D n � st� ; st� D 1

2

X

e2t�

le: (74)

For instance, M456 D n � 1
2
.l1 C l2 C l3/. As for the 4-cycles 
 , we write similarly10

M
 D s
 � n; with s
 D 1

2

X

e2


le: (75)

which gives for instance M1245 D 1
2
.l1 C l2 C l4 C l5/ � n. Since the six complex

lengths together with the variable n form a set of seven variables, the constraint (70)

still applies. It now becomes

.n � s123/.n � s156/.n � s345/.n � s246/ D �n.s1245 � n/.s1346 � n/.s2356 � n/:

(76)

10Notice that instead of labeling st� by the triangle t�, we could have used its dual vertex

v 2 T . It seems however more natural to use t� since this allows to unify the definition of the

variables st� and s
 (recall that 
 is the same 4-cycle in both T and T �) as complex semi-

perimeters of cycles, sC � D 1
2

P

e2C � le, where C � is a cycle in ��.
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While this equation looks like a quartic equation in n, it is immediate to see that the

coefficients of n4 and n3 vanish. It reduces to

an2 C bn C c D 0; (77)

with the coefficients a, b and c given in terms of the complex lengths le:

a D 1

2
.l1l4 C l2l5 C l3l6/; (78a)

b D �1

4
.l1l4 C l2l5 C l3l6/

�

X

e

le

�

� 1

4

X

t�

Y

e2t�

le; (78b)

c D
Y

t�

st� : (78c)

.

Putting everything together, we start with six complex lengths le . The variable n

takes two possible values, determined by the quadratic equation (77) as a function of

the six complex lengths. And we arrive at the pre-geometrical parametrization for the

roots of the loop polynomial PT , i.e., the Fisher zeros on the tetrahedron:

.Y c
e /2 D

.n � st�
1

.e//.n � st�
2

.e//

n.s
.e/ � n/
; (79)

where t�
1 .e/; t�

2 .e/ are the two triangles in the dual tetrahedron T � which do not

contain the edge e (for instance, the edge e D 1 belongs to the two triangles t1 D .126/

and t2 D .135/, which defines the two opposite triangles t�
1 D .345/ and t�

2 D .246/

in the dual tetrahedron), and 
.e/ is the 4-cycle which also avoids e. Let us underline

that in general the variables st� ; s
 and n are all complex numbers.

4.2. Geometrical Fisher zeros

We now show that the restriction of the above ansatz to a specific domain of the

complex lengths leads to solutions of PT D 0 parametrized by the geometry of the

dual tetrahedron T �. We underline that since we are working with the spin network

evaluations on the tetrahedron graph T , it is natural to interpret them in terms of

the geometry of the dual graph T �. Indeed, the 3j -symbol, or intertwiner, living at

a vertex of the original graph T is usually interpreted as a quantum geometry for

the dual triangle in T �. Then the 6j -symbol defined on the tetrahedron graph T is

interpreted in terms of the volume and Regge action for the geometry of the dual

tetrahedron T �.

More precisely, we restrict the complex edge lengths to real positive lengths l1; : : : ;

l6 satisfying the triangle inequalities for the triangles of T �. We further require that
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the discriminant of the quadratic equation (77) is real and negative. This discriminant

reads

b2 � 4ac D � 1

16

�

l2
1 l2

4 .l2
2 C l2

5 C l2
3 C l2

6 � l2
1 � l2

4 /

C l2
2 l2

5 .l2
1 C l2

4 C l2
3 C l2

6 � l2
2 � l2

5 /

C l2
3 l2

6 .l2
1 C l2

4 C l2
2 C l2

5 � l2
3 � l2

6 /

� .l2
1 l2

2 l2
3 C l2

3 l2
4 l2

5 C l2
1 l2

5 l2
6 C l2

2 l2
6 l2

4 /
�

; (80)

where we recognize the squared volume V 2 of the tetrahedron with lengths l1; : : : ; l6,

as given by the Cayley–Menger determinant,

b2 � 4ac D �9V 2: (81)

Requiring that the discriminant be negative amounts to requiring that the squared

volume V 2 be positive. This is actually not automatically ensured by assuming that the

edge lengths satisfy the triangular inequalities. In fact, choosing edge lengths satisfy-

ing the triangular inequalities does not always ensure the existence of a corresponding

tetrahedron in 3d Euclidean space. This is only true when V 2 > 0. When V 2 < 0, it

is actually possible to build a tetrahedron in 3d Lorentzian space from those edge

lengths [3]. This corresponds to the exponentially decreasing branch of the asymptot-

ics of the 6j -symbols. We postpone to future analysis the case V 2 < 0, which could

provide a geometrical interpretation of the Fisher zeros in terms of such Lorentzian

tetrahedra.

As we assume the squared volume V 2 to be positive and thus the discriminant

.b2 � 4ac/ to be negative, the solutions to (77) for the parameter n are

n˙ D �b ˙ 3iV

2a
: (82)

The fact that a;b;V are all real allows for a nice geometrical form of the critical coup-

lings Y c
e . First, let us plug the solution n˙ in the formula for the critical couplings:

�

Y c
e

�2 D
.�b � 2ast�

1
.e/ ˙ 3iV /.�b � 2ast�

2
.e/ ˙ 3iV /

.�b ˙ 3iV /.2as
.e/ C b � 3iV /
: (83)

Here, t�
1 .e/; t�

2 .e/ are the two triangles in the dual tetrahedron T � which do not con-

tain the edge e, so .345/ and .246/ for the edge e D 1. Notice that switching signs

nC $ n� amounts to taking the complex conjugate of the critical couplings Y c
e $ xY c

e .

All the quantities on the right-hand side are explicit functions of the six lengths,

so we can extract the norm and phase of Y c
e . In practice, we start by performing the

explicit calculations for one edge, say e D 1 for simplicity’s sake, then extend the
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result to an arbitrary edge using the symmetries of the tetrahedron. We compute the

norm of Y c
1 :

ˇ

ˇY c
1

ˇ

ˇ

2 D
s

.l1 � l2 C l3/.l1 C l2 � l3/ .l1 � l5 C l6/.l1 C l5 � l6/

.�l1 C l2 C l3/.l1 C l2 C l3/.�l1 C l5 C l6/.l1 C l5 C l6/
:

For any edge e, we call �1.e/ and �2.e/ the two triangles in the dual tetrahedron T �

sharing the edge e, and we denote by i1.e/; j 1.e/ the two other edges in �1.e/, and

similarly i2.e/; j 2.e/ in �2.e/. Then,

j
�

Y c
e

�2j D
s

.le � li1.e/ C lj 1.e//.le C li1.e/ � lj 1.e//

.�le C li1.e/ C lj 1.e//.le C li1.e/ C lj 1.e//

�
s

.le � li2.e/ C lj 2.e//.le C li2.e/ � lj 2.e//

.�le C li2.e/ C lj 2.e//.le C li2.e/ C lj 2.e//

D
s

.s�1.e/ � li1.e//.s�1.e/ � lj 1.e//

s�1.e/.s�1.e/ � le/

s

.s�2.e/ � li2.e//.s�2.e/ � lj 2.e//

s�2.e/.s�2.e/ � le/
;

(84)

with the s�’s still standing for the half-perimeters of the corresponding triangle

(in T �). That can easily be further simplified and expressed in terms of the 2d angles

of the triangles, as we can recognize the same formulas as in Section 2.3.2 for the tan-

gents of the half-angles of �1.e/ and �2.e/. Indeed, in a triangle with edges .ijk/,

the cosine of the angle between the edges i and j is given by

cos �ij D
l2
i C l2

j � l2
k

2li lj
; (85)

or, equivalently,

1 � cos �ij D .�li C lj C lk/.li � lj C lk/

2li lj
;

while the sine of that angle can be recovered by the Heron formula for the triangle

area,

sin �ij D
p

.li C lj C lk/.li C lj � lk/.li � lj C lk/.�li C lj � lk/

2li lj
; (86)

so that we find for the tangent of the half-angle:

tan
�ij

2
D 1 � cos �ij

sin �ij

D
s

.�li C lj C lk/.li � lj C lk/

.li C lj � lk/.li C lj C lk/
D

s

.sijk � li/.sijk � lj /

sijk.sijk � lk/
;

(87)
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where sijk D 1
2
.li C lj C lk/ is the semi-perimeter of the triangle. This shows that the

norm of the critical coupling Y c
e is determined by the two 2d angles opposite to the

edge e in the tetrahedron T �, i.e., the angles ��1.e/ opposite to e in �1.e/ and ��2.e/

opposite to e in �2.e/, as shown in Figure 12,

ˇ

ˇY c
e

ˇ

ˇ

2 D tan
��1.e/

2
tan

��2.e/

2
: (88)

i1.e/

j 1.e/

i2.e/

j 2.e/

��1.e/

��2.e/

�1.e/ �2.e/

e

Figure 12. For an arbitrary edge e in the dual tetrahedron T �, we denote the two triangles

sharing it by �a.e/, its adjacent edges by ia.e/; j a.e/ and opposite angles by ��a.e/ in T �,

for a D 1; 2.

To extract the phase of the critical couplings, we start once again with the edge

e D 1, and evaluate the ratio of its real part to its norm,

<..Y c
1 /2/

jY c
1 j2 D 2l2

1 l2
4 C l2

1 .l2
1 � l2

2 � l2
3 � l2

5 � l2
6 / C .l2

2 � l2
3 /.l2

6 � l2
5 /

16A123A156

: (89)

Here Aijk is the area of the triangle with edges .ijk/ given in terms of the edge lengths

by the Heron formula, as in (38). The right-hand side of (89) is recognized11 as the

cosine of the external dihedral angle �1 hinged at e D 1. In general, we get

<..Y c
e /2/

jY c
e j2 D cos �e: (90)

11To compute the dihedral angle, we can express it in terms of the 2d angles cos �i D
cos �ij cos �ik�cos �jk

sin �ij sin �ik
if the edges i; j; k meet at a vertex of the tetrahedron T �. Then using

the explicit formulas for the 2d angles cos �ee0 and sin �ee0 , one obtains an explicit formula for

cos �i in terms of the edge lengths.
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Moreover, since swapping nC $ n� turns the couplings Y c
e into their complex con-

jugate, we obtain the two possible signs for their imaginary parts,

=..Y c
e /2/

jY c
e j2 D ˙ sin �e: (91)

This gives a fully geometrical expression for the critical couplings parametrized by

the six lengths of an arbitrary Euclidean tetrahedron:

Y c
e D exp

�

"
i

2
�e

�

r

tan
��1.e/

2
tan

��2.e/

2
for all e D 1; : : : ; 6; (92)

with an arbitrary overall sign " D ˙. Since this expression only depends on the angles

of the tetrahedron, these critical couplings only depend on the geometry of the tetra-

hedron up to a global scale factor and thus depend on five real parameters.

Let us start with a couple of technical comments. First, the geometric formula (92)

for the critical couplings describes the restriction of the general formula (79) to real

edge lengths satisfying triangular inequalities and giving a positive squared volume.

In some sense, this defines a 5-dimensional real section of the full 10-dimensional sets

of complex solutions to PT ŒY1;:::;6� D 0. It would be interesting to see if one provides

arbitrary complex solutions with a similar geometric interpretation, similarly to the

Cevian parametrization of the complex critical couplings for the ‚ graph in terms of

triangles and Cevians presented earlier in Section 2.4.

Moreover, the duality map D sends roots of the loop polynomial PT to roots

of its dual PT � . However it is not clear how the pre-geometric parametrization (79)

behaves under this duality map. Moreover, numerical checks show that the duals of

geometric Fisher zeros on T built from (92) are not geometric Fisher zeros on T �:

in some sense, the duality map D send does not “real” Fisher zeros to “real” Fisher

zeros on the dual graph. This effect was already shown on the ‚ graph and its dual

triangular graph. It would nevertheless be interesting to see if it is possible to derive

the pre-geometric parametrization of the dual critical couplings or at least provide the

dual of the geometric critical couplings with their own geometric interpretation.

Now, let us make broader comments.

• Remarkably, the formula for the norm of the critical couplings jY c
e j is known to

be significant for the Ising model on isoradial graphs [14]. In that case the opposite

angles for each edge e are equal ��1.e/ D ��2.e/ � �e and jY c
e j D tan.�e=2/. For

those values of the couplings, Ye D tan.�e=2/, Baxter found that the 2D Ising model

on isoradial graphs becomes critical in the thermodynamical limit. Notice however

that we have derived our formula here only for the tetrahedron graph and can not

consider a thermodynamical limit. Nevertheless, we have already derived the same

formula for the modulus of the critical couplings jY c
e j for an arbitrary graph in terms
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of the tangent of the opposite half-angles in a previous work [8]. In light of the present

work, our new result for the tetrahedron graph hints to a general geometric formula

for the critical couplings of the Ising model in terms of 2D and 3D angles.

• Our result deepens the relevance of geometry for the Ising model. The critical

couplings on isoradial graphs are real and depend solely on the 2D geometry of the

graph. In our case, the phase e˙i�e=2 adds an extra dependence on the extrinsic geo-

metry, i.e., the way the graph is embedded into 3D space. For a finite planar graph,

its embedding into 3D space will necessarily produce non-trivial dihedral angles, so

we expect generically non-trivial phases and complex Fisher zeros. In the thermody-

namic limit, when the graph becomes infinite, it is possible to make it flat and set all

the dihedral angles to 0, thus obtaining real critical couplings. One can nonetheless

choose a non-trivial embeddings into 3D space, even in the thermodynamical limit,

and then obtain complex critical couplings according to the proposed formula above.

This nevertheless requires to generalize the work done here for the tetrahedron

graph to arbitrary graphs. The derivation presented in this section requires a detailed

understanding and knowledge of the combinatorics of the cycles on the tetrahedron

graph and of the tetrahedron geometry. Producing a similar proof for an arbitrary

graph seems quite challenging. In a previous work [8], we proposed an alternative

method exploiting the relation between the Ising partition function and the generating

function for spin network evaluations, as given by (10): one identifies the Ising critical

couplings as the poles of the generating function for spin network evaluations, which

can be extracted through a saddle point analysis. We test this method for the case of

the tetrahedron graph below in Section 5 and show that we recover exactly the same

geometric formula (92) for the critical couplings.

4.3. A numerical check: the equilateral tetrahedron

Let us apply the geometric formula for the Fisher zeros to the simplest case of an

equilateral tetrahedron. This should give the homogeneous Fisher zeros, that is the

roots of the loop polynomial PT ŒY1;:::;6� D 0 when all six edge couplings are equal,

Y1 D � � � D Y6.

The geometry of the equilateral tetrahedron is well known. We need the 2D angles,

within each triangle:

� D �

3
; cos � D 1

2
; sin � D

p
3

2
; tan

�

2
D 1p

3
; (93)

and the 3D (external) dihedral angles:

cos � D �cos � � cos2 �

sin2 �
D �1

3
: (94)
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The 2D and 3D angles are combined to get the modulus and phase of the correspond-

ing geometric roots:

Y˙ D 1p
3

e˙i �
2 D 1

3
.1 ˙ i

p
2/; D.Y˙/ D Y�; P.Y˙/ D 0; (95)

which are complex roots of the homogeneous loop-polynomial

PT ŒY � D 1 C 4Y 3 C 3Y 4 D .Y C 1/2.3Y 2 � 2Y C 1/

when the edge couplings are take all equal Y1 D � � � D Y6 D Y . The other root is

the trivial solution Y 0 D �1 corresponding to the degenerate case when the Ising

couplings ye are sent to �1 thus forcing all the Ising spins to be synchronized.

Let us nevertheless point out that the modulus of the homogeneous tetrahedron

Fisher zeros jY˙j D 1=
p

3 is exactly the critical coupling for the 2D Ising model on

the regular honeycomb lattice. This is understandable since this norm is built from

the 2D geometry of the equilateral triangles. The phases of the critical couplings, here

e˙i �
2 , represent the dihedral angles between those triangles, thus how the lattice is

folded within the 3D space. In a thermodynamical limit where the lattice is embedded

as totally flat in the 3D space, the phase can be trivial and we are left with a real

critical coupling entirely determined by the 2D geometry, so Y c D 1=
p

3 for the

regular honeycomb lattice.

5. Fisher zeros as poles: large spin asymptotics and saddle points

In this section, we show how to recover the geometric critical couplings (92) derived

in the previous section as poles of the generating function for spin network evalu-

ations. This underlines a new method to derive Fisher zeros for the 2D Ising model on

arbitrary graphs.

The dependence of the geometric solutions Y c
e on the extrinsic geometry is natural

from the point of view of spin networks. Indeed, the Hamiltonian constraint (Einstein

equation written in the Hamiltonian formalism) describes how the intrinsic geometry

relates to the extrinsic curvature. In 3D loop quantum gravity and Regge calculus for

flat space-time, it means that all dihedral angles can be calculated from the 2D geo-

metry using the standard formulas of 3D Euclidean (flat) geometry. As well known,

this is reflected at the quantum level in the asymptotics of physical states and trans-

ition amplitudes between spin networks, e.g., [9, 12]. Both for physical states and

transition amplitudes defined by the Ponzano–Regge model, the basic building block

is Wigner’s 6j -symbol, whose asymptotics in the oscillatory regime (V 2 > 0) is given
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by [38]:12

²

j1 j2 j3

j4 j5 j6

³

� 1p
12�V

cos
�

SR.¹jeº/ C �

4

�

with SR.¹jeº/ D
6

X

eD1

�

je C 1

2

�

�e;

SR is the Regge action for the tetrahedron with edge lengths le D .je C 1
2
/ and the �e

are the tetrahedron dihedral angles as functions of the edge lengths.

In the previous sections, we have found the critical couplings Y c
e via a direct

analysis of the equation PT D 0. We propose that the critical couplings Y c
e , especially

the geometric formula, could also be found using spin network evaluations. Actually,

the zeros of the loop polynomial PT correspond to the poles of 1=P 2
T , which is the

generating function of 6j -symbols. Therefore, a saddle point analysis of the summand

of the generating function should reveal the loci of the poles.

Moreover, equation (77) determining the pre-geometric parametrization of Fisher

zeros on the tetrahedron graph turns out to be exactly the saddle point equation for

the asymptotic evaluation of Racah formula for the 6j -symbol, as used in [31] to

re-derive the 6j -asymptotics (96). More details can be found in Appendix A.

So, let us look into the saddle equation for the generating function of the spin

network evaluations on the tetrahedron graph:

1

PT Œ¹Yeº�2 D ZT Œ¹Yeº� D
X

¹jeº

Y

v

�v.je/

²

j1 j2 j3

j4 j5 j6

³

Y

e

Y 2je
e : (96)

We would like to analyze the behavior of this series in the je’s. We assume that we

can work in the large spin asymptotics. Actually, both the asymptotics of the factorials

in the weights �v.je/ and of the 6j -symbols quickly approximate in a pretty correct

and precise fashion their behavior, as soon as the j ’s are larger than 10 (see, e.g., [37]

for a numerical analysis of the precision of the asymptotics of the 6j -symbols).

We start with the factorial weights, which can be approximated using Stirling’s

formula:
Y

v

�v.je/ D
s

Y

v

.Jv C 1/Š
Q

e3v.Jv � 2je/Š
�

je�1

eˆŒ¹jeº�; (97)

with

ˆ D
X

v

h

Jv ln Jv �
X

e3v

.Jv � 2je/ ln.Jv � 2je/
i

:

12The interested reader can also check [41] for a proof based on the recursion relations

satisfied by the 6j -symbol, [40] for a proof based on geometric quantization, [5, 27] for proofs

based on group integrals over the SU.2/ Lie group and [21, 31] for a proof directly from the

combinatorial expression of the 6j -symbols in terms of factorials.
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Then the asymptotics of the 6j -symbols, for a homogeneous large rescaling of the

spins,13 behave as

²

j1 j2 j3

j4 j5 j6

³

� 1
p

12�V Œ¹jeº�
cos

�

SRŒ¹jeº� C �

4

�

; (98)

with

SRŒ¹jeº� D
X

e

�

je C 1

2

�

�eŒ¹je0 º�; (99)

where V Œ¹jeº� and SRŒ¹jeº� are respectively the volume and the Regge action for

the dual tetrahedron T � with edge lengths le D je C 1
2

. The angle �e is the external

dihedral angle hinged at the edge e and is considered as a function of the edge lengths.

For this asymptotics to hold, we have assumed that the squared volume V 2, computed

from the edge lengths (e.g., as given by (80)) is positive. The C1
2

is a next-to-leading

order correction, it crucially improves the numerical fit of both the phase and modulus

of the 6j -symbol asymptotics but we can safely discard it in the present saddle point

analysis at leading order. So, the asymptotics of the 6j -symbol is described in terms

of the geometry of the dual tetrahedron T � with edge lengths given by the spins,

le D je .

If we split the cosine into two complex exponentials labeled by a sign " D ˙,

cos
�

SR C �

4

�

D 1

2

X

"D˙

ei".SRC �
4

/; SR �
X

e

je�e;

we can write the generating function in term of an action:

Y

v

�v.je/

²

j1 j2 j3

j4 j5 j6

³

Y

e

Y 2je
e

�
je�1

1

2
p

12�V Œ¹jeº�
X

"D˙

ei" �
4 e�"Œ¹jeº;¹Yeº�; (100)

�"Œ¹jeº; ¹Yeº� D ˆŒ¹jeº� C
X

e

2je ln jYej C i
X

e

je."�e � 2‚e/; (101)

where we have distinguished the norm from the phase of the edge couplings, Ye D
jYeje�i‚e . The modulus jYej only couples to the measure factor

Q

v �v , while the

phase couples to the Regge action coming from the 6j -symbol.

13We rescale the six spins by the same factor ji D �j o
i

. The homogeneous large spin limit

is keeping the initial spins j o
i

fixed and sending the overall factor � to 1.
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We are interested in the stationary point equation, @je
�" D 0. These saddle points

should control and dominate the series
P

je
exp.�"Œ¹jeº; ¹Yeº�/. The essential prop-

erty of the Regge action is that, although the dihedral angles depend non-trivially on

the edge lengths of the tetrahedron, the Schlaflï identity,
P

e je d �e D 0, ensures that

the derivative of the Regge action SR with respect to an edge length is simply the

corresponding dihedral angle:

@je
SRŒ¹jeº� D @je

h

X

e0

je0�e0

i

D �e: (102)

Now, the saddle point equation, @je
�" D 0, gives two equations respectively for the

real and imaginary parts of the action. Clearly, the imaginary part fixes the dihedral

angles at a stationary point, in terms of the phase of the couplings, ‚e D "�e=2, while

their modulus of the couplings enter the real part of the stationary point equation,

@je
<.�"Œ¹jeº�/ D @je

h

ˆ C
X

e

4je ln jYej
i

D 0; (103)

@je
<.�"Œ¹jeº�/ D 4 ln jYej C

h

ln
Jv1.e/.Jv1.e/ � 2je/

.Jv1.e/ � 2ji1.e//.Jv1.e/ � 2jj 1.e//

i

C
h

ln
Jv2.e/.Jv2.e/ � 2je/

.Jv2.e/ � 2ji2.e//.Jv2.e/ � 2jj 2.e//

i

; (104)

with the following notations, as illustrated in Figure 13: v1.e/ and v2.e/ are the two

vertices e is incident to, i1.e/; j 1.e/ are the two edges meeting e at v1.e/ and simil-

arly for i2.e/; j 2.e/ at v2.e/.

At this point, it is better to think with the dual tetrahedron T � in mind, instead of

the original tetrahedron graph T , since we are dealing with the geometry of this dual

tetrahedron. In this dual context, the two vertices v1.e/ and v2.e/ become the two

triangles �1.e/ and �2.e/ which share the edge e. Since the spins je give the edge

lengths le , the sum Jv of the spins around a vertex v 2 T gives the perimeter of the

triangle in T � dual to v.

Thus a stationary point is given by the spins je being the edge lengths le of a

closed tetrahedron in Euclidean space R3, related to the modulus of the couplings

jYej by

jYej2 D
s

.s�1.e/ � li1.e//.s�1.e/ � lj 1.e//

s�1.e/.s�1.e/ � le/

.s�2.e/ � li2.e//.s�2.e/ � lj 2.e//

s�2.e/.s�2.e/ � le/

D tan
��1.e/

2
tan

��2.e/

2
; (105)
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e

v1.e/
v2.e/

i1.e/

i2.e/

j 1.e/

j 2.e/

(a) For an edge e in the tetrahedron graph T ,

we call va.e/ the two vertices at its extremit-

ies and we write ia.e/, j a.e/ for the four

edges to which it is connected.

i1.e/

j 1.e/

i2.e/

j 2.e/

��1.e/
��2.e/e

�e

(b) An edge e in the tetrahedron graph T

is dual to an edge in the dual tetrahedron

graph T �, which we also call e by a slight

abuse of notations. We call ��a.e/ the tri-

angle angles opposite to the edge e in the two

triangles sharing it and �e the dihedral angle

between the two triangle planes.

Figure 13. Neighborhood of an edge e in the tetrahedron graph T and in the dual tetrahed-

ron T �.

where ��1.e/ and ��2.e/ are the two 2D angles opposite to the edge e in the triangles

�1.e/ and �2.e/. Putting the norm and phase together gives

Ye D ei" �e
2

r

tan
��1.e/

2
tan

��2.e/

2
: (106)

This are exactly the geometric solutions to the loop polynomials PT that we derived

earlier in (92) when considering the restriction of the pre-geometric parametrization

(from complex edge lengths to real edge lengths satisfying the triangular inequalities).

Here we have shown that they can be easily recovered as the saddle points of the

generating function in the asymptotic regime of the 6j -symbol.

In fact, the key property of these saddle points is that they are scale-invariant.

This is a generic property of this coherent spin network superpositions [8, 13]. More

precisely, both the norm and phase of the saddle points Ye are expressed entirely

as functions of the 2D and 3D angles of the tetrahedron, i.e., they are of the type

Ye D Fe.j1; : : : ; j6/ where the Fe’s are invariant under homogeneous re-scalings

of the spins je . This means that we do not simply have saddle points, but saddle

lines. Each saddle line contributes an infinite redundancy in the series in the je’s, thus

signals a pole in the generating function ZT . This shows why when the edge couplings

Ye are such that they allow for saddle points according to the equation above (106),
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then they are a pole of the spin network generating function ZT , thus a zero for the

2D Ising model.

Conclusion

We have applied the exact relation between the 2d Ising partition function and spin

network evaluations [8,24,43], which expressed a duality between the 2d Ising model

and 3d quantum gravity, to the simplest non-trivial case of the tetrahedral graph. In hat

case, spin network evaluations on the tetrahedral graph are given by the 6j -symbols

from the theory of recoupling of spins.

This led us to two original results. On the one hand, we obtained a self-duality

identity satisfied by the generating function of 6j -symbols, which reflects the high/low

temperature duality of the 2d Ising model. On the other hand, the asymptotics of the

6j -symbols for large spins, used in the quantum gravity context to describe the semi-

classical regime of quantum geometry, leads to a geometric formula for the complex

zeros of the 2d (inhomogeneous) Ising partition function on the tetrahedral graph.

This provides an example for a more general method to derive the Fisher zeros

for the 2d Ising model on arbitrary (3-valent) graph using the saddle point approx-

imation for spin network evaluations (used, for instance, to probe the semi-classical

limit of spinfoam path integral models for quantum gravity). The idea is to trade the

zeros of the Ising partition function for the poles of the generating function for spin

network evaluations. Indeed, considering a graph � , the generating function is (up to

a numerical factor) the inverse squared of the Ising partition function:

Z� Œ¹Yeºe2� � / 1

	� Œ¹Yeº�2 ; 	� Œ¹Yeº�2 / 1

Z� Œ¹Yeº� ; (107)

where the Ye’s give the Ising couplings on the graph edges. While the Ising parti-

tion function 	� Œ¹Yeº� is a sum over spin up and spin down �v D ˙, the generating

function Z� Œ¹Yeº� is defined by a series over half-integer spins je 2 N

2
. Studying the

series by asymptotic methods, searching for saddle points, allows to identify the poles

of Z� in the complex space and thus the zeros of 	� . We believe that this should

lead to a general geometric formula for the Fisher zeros in terms of the embedding

of 2d triangulations in the 3d space. It would be interesting to compare this approach

to results obtained for the 2D Ising model on curved manifolds, see, e.g., [32]. This

illustrates a fruitful exchange of techniques between statistical physics and quantum

gravity.
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A. Loop expansion of the 6j generating function and Racah formula

Let us start with the generating function for the 6j -symbols, which is equal to the

inverse squared of the loop polynomial on the tetrahedron graph T , as we explain

earlier in Section 3:

ZT Œ¹Yeº� D
X

¹jeº

Y

v

�v.je/

²

j1 j2 j3

j4 j5 j6

³

Y

e

Y 2je
e D 1

PT Œ¹Yeº�2 ;

with

PT Œ¹Yeº� D 1 C
X

C �T
C ¤¿

Y

e2C

Ye:

We define the cycle variables

LC D
Y

e2C

Ye

as the product of the edge variables along the cycle C in T . If we now expand the

loop polynomial in terms of the cycle variables, the generating function admits an

expansion onto loops,

1

PT ŒYe�2
D

X

¹MC º

.�1/
P

C MC

�

X

C

MC C 1
�

Š
Y

C

L
MC

C

MC Š
; (108)

where we sum over integers MC 2 N, which are interpreted as the occupation num-

bers14 of the corresponding cycles. Using the asymptotics ln MŠ � M ln M C O.M/,

we can approximate the summand as a function of the variables MC when those are

large:
�

X

C

MC C 1
�

Š
Y

C

.�LC /MC

MC Š
�

MC �1
eˆŒ¹MC º� (109)

with

ˆŒ¹MC º� D
X

C

MC ln
��LC

P

C 0 MC 0

MC

�

;

and write the saddle point equations @MC
ˆ D 0 to identify the stationary (and thus

dominant) contributions to the series:

LC D � MC
P

C 0 MC 0
: (110)

14This expansion can be understood as expressing the decomposition of arbitrary spins je as

tensor products of spins 1
2

, thus representing the 6j -symbols as superpositions of products of

elementary loops carrying the minimal spin 1
2

.
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As PT ŒYe� D 1 C P

C LC , this clearly gives all the roots of PT by analytic con-

tinuation to MC 2 C. This is exactly the equation (71) which we derived earlier in

Section 4.1, but we do not get the constraint

M126M135M234M456 D �
�

X

C

MC

�

M1245M1346M2356:

This constraint reflects that we are working with seven cycle variables LC instead of

the six edge variables Ye , so the LC have to satisfy one constraint.

We can avoid adding this constraint by hand by performing the saddle point ana-

lysis directly in terms of the edge variables Ye instead of the LC ’s. In order to express

the series in terms of the Ye’s, we perform the following change of variables in the

sum over ¹MC º, analogous to (73):

je D 1

2

X

C 3e

MC 2 N

2
and n D

X

C

MC : (111)

The reverse relations are easily found. If t is a 3-cycle of T , we call v.t/ the vertex of

T opposite to t , then

Mt D n � Jv.t/ with Jv D
X

e3v

je D
X

e…t

je; (112)

where Jv is the sum of the spins meeting at the vertex v, while if 
 is a 4-cycle:

M
 D J
 � n with J
 D
X

e2


je : (113)

Those variables therefore are the equivalent of the variables s
 and semi-perimeters

st� introduced in Section 4.1, with the identification of twice the spins with the com-

plex lengths 2je $ le . The key property of this change of variables is that

Y

C

L
MC

C D
Y

e

Y 2je
e : (114)

This allows to translate the expansion (108) in powers of LC into powers of Ye:

1

P.Ye/2
D

X

j1;:::;j6

�

X

n

.�1/.n C 1/Š
Q

v2�.n � sv/Š
Q


2�.s
 � n/Š

�

Y

e

Y 2je
e ; (115)

where the sum over n factorizes. We have thus recovered Racah formula for the

6j -symbol,

Y

v

�v.je/

²

j1 j2 j3

j4 j5 j6

³

D
X

n

.�1/.n C 1/Š
Q

v2�.n � sv/Š
Q


2�.s
 � n/Š
: (116)
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This shows that loop polynomial expression for the generating function of the 6j sym-

bols is equivalent to Racah formula for the 6j -symbol, up to the change of variables

described above.

Now, the saddle point equation for this sum over the je’s will provide the expected

constraint on the MC ’s. This reasoning explains why the constraint (77) is exactly the

saddle point equation of Racah sum, as used in [31].
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