
Ann. Inst. H. Poincaré D
Comb. Phys. Interact. 9 (2022), 159–218
DOI 10.4171/AIHPD/117

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Notes on tensor models and tensor field theories

Razvan Gurau

Abstract. Tensor models and tensor field theories admit a 1=N expansion and a melonic large
N limit which is simpler than the planar limit of random matrices and richer than the large N
limit of vector models. They provide examples of analytically tractable but non-trivial strongly
coupled quantum field theories and lead to a new class of conformal field theories. We present
a compact introduction to the topic, covering both some of the classical results in the field, like
the details of the 1=N expansion, as well as recent developments. These notes are loosely bases
on four lectures given at the Journées de physique mathématique Lyon 2019: Random tensors
and SYK models.
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1. Introduction

Quantum field theory (QFT) [109] accurately describes both the fundamental inter-
actions in nature (like the electroweak [40, 95, 104] and strong [37] interactions) and
condensed matter systems (like Ising spins [63] or Fermi liquids [81]). In particu-
lar, it gives one of the most precise predictions in physics: the electron anomalous
magnetic moment up to 10�10 relative error. Perhaps the most important lesson of
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quantum field theory is that physics changes with the energy scale, as captured by the
renormalization group [88, 105, 106].

By and large QFT has two regimes. On the one hand, one has weakly coupled the-
ories, like quantum electrodynamics. As the name suggests, these theories are almost
free and the effect of interactions is well accounted for in perturbation theory. Mak-
ing sense rigorously of the perturbative expansion is quite non-trivial [41]. However,
given the right circumstances, perturbative computations yield very accurate predic-
tions. On the other hand, one has strongly coupled theories, which are famously
difficult to deal with. While successful numerical approaches have been developed,
like lattice quantum chromodynamics, analytical results are much harder to come by.
Two prominent strategies exist to deal with strongly coupled QFTs analytically.

One strategy is to consider theories endowed with constraining symmetries or
integrability properties. For instance, at a fixed point of the renormalization group a
QFT becomes scale invariant and, more often than not, scale invariant theories are
in fact conformally invariant. Conformal invariance is a very strong constraint [28]
which allows one to bootstrap a plethora of results [98].

A second strategy consists in identifying new parameters, not related to the
strength of the interaction, and attempt a perturbative study with respect to them.
An example of this is the so called “large N ” field theory [82]. If the quantum field
itself is a vector (or a matrix or a tensor) in some Hilbert space of dimension N , one
can attempt to study the theory in a 1=N expansion. This is a three step strategy.

• Take N large (infinite). In this limit the theory simplifies. The 1=N expansion is
useful as long as the large N limit is rich enough to be non-trivial, but simple
enough to be more manageable than the original theory.

• Compute the corrections to the large N behavior order by order in 1=N , at all
orders.

• Resum the 1=N series or bound the rest.

This strategy brings mixed results. With the exception of some models in dimen-
sion zero1 [53, 58, 73], step 3 is almost never considered. Step 2 is again considered
mostly in dimension zero [14,17,26,30,42,61,62,93]. Beyond the fact that the second
and third step are seldom manageable, the two classical examples of a vector [12,100]
or a matrix [101] field are somewhat disappointing already at step 1. Vector models

1By dimension we mean the dimension of the space or space-time on which the vector,
matrix or tensor field theory is defined, that is QCD is a theory in 4 dimensions [101]. In matrix
and tensor models [27, 55] there is a second notion of dimension: the Feynman diagrams have
non-trivial topology and encode combinatorial triangulations in various dimensions (two in the
case of QCD). Thus [27] deals with matrix models in 0 dimensions, although they are relevant
for two-dimensional quantum gravity.



Notes on tensor models and tensor field theories 161

are analytically tractable in the largeN limit and have plenty of applications [11,82].2

However, they are limited by the fact that at leading order in 1=N vector models do
not give an anomalous scaling dimension for the field. Consequently, one is stuck
with either numerical studies [49] or almost classical scaling. On the contrary, matrix
models [16,27,101] are too complicated to be resummed in the largeN (planar) limit,
in more than zero dimension.

Tensor models [55, 70] give a new class of large N field theories. They exhibit a
melonic large N limit [13, 55] which is different from both the vector and the matrix
ones. Vector-tensor models and some regimes of matrix models also lead to a melonic
limit [3, 4, 31, 32]. Unsurprisingly, the melonic limit is richer than the large N limit
of vectors. Surprisingly, although as algebraic objects tensors are more complicated
than matrices, the melonic limit is simpler than the planar one.

Tensor models have been extensively studied in zero dimensions (where they were
originally introduced and studied as models of quantum gravity [2, 10, 50, 60, 85, 96,
97]) and in one dimension (e.g., [19, 21, 23, 56, 65, 67, 68, 72, 77, 78, 83, 86, 108])
because they provide an alternative to the Sachdev–Ye–Kitaev model [33, 43, 45, 46,
66, 80, 89, 94] without quenched disorder. Some small N tensor models can also be
solved analytically [67,75,76,83]. Higher-dimensional tensor field theories have been
more recently explored [6, 7, 38, 39, 90, 91]. At large N and in the infrared these
theories typically yield conformal field theories (CFTs) of a new kind which we call
by extension melonic.

Melonic theories are an ideal compromise between solvability and richness: con-
trary to almost all the other examples of strongly interacting theories, they can be
treated analytically. To a large extent, they can be studied disregarding their origin.
This is reflected in the organization of these notes. In Section 2 we present a brief
overview of conformal field theories and the particular features of the melonic ones.
In Section 3 we present several models which become melonic in the large N limit.
Section 4 presents an effective action formalism well adapted to tensor field theories
and finally Section 5 presents in detail the renormalization group flow, fixed points and
infrared melonic CFT in one model. The appendices collect some technical details.

Notation. We work in Euclidean R
d . We sometimes denote integrals over positions

by
R

x �
R

ddx and integrals over momenta by
R

p �
R

ddp

.2�/d
. The Fourier transform

is f .p/ D
R

x e
ipxf .x/ with inverse f .x/ D

R

p e
� ipxf .p/. Repeated indices are

summed.

2They provide for instance explicit CFT duals to Fradkin–Vasiliev higher spin theories [34,
35, 69, 102].
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2. Melonic field theories

Melonic conformal field theories are a new class of analytically accessible CFTs.
We first briefly review CFT in d dimensions and then explain what makes melonic
theories special. The reader can find plenty of references on conformal field theories.
Here we present a brief digest of [79, 99]. We use the notation in [79].3

2.1. A digest of conformal field theories

In Euclidean R
d with line element dx2 D ı�� dx

� dx� conformal transformations
x ! x0.x/ preserve the line element up to a local scale factor dx02 D�.x/2dx2. The
infinitesimal4 conformal transformations x0� D x� C v�, � D 1C � are generated
by

v�.x/D a� C!��x
� C �x� C b�x

2 � 2x�b � x; !�� D �!��; � D � � 2b � x:
(2.1)

The conformal group has
�

dC2
2

�

generators and is locally isomorphic to SO.d C 1;1/.
A general conformal transformation is such that

@x0�

@x�
D �.x/R�� .x/; ı��R

�
� .x/R

�
�.x/ D ı��; �.x/ D

ˇ

ˇ

ˇ

ˇ

@x0�

@x�

ˇ

ˇ

ˇ

ˇ

1
d

; (2.2)

and
.x0
1 � x0

2/
2 D �.x1/�.x2/.x1 � x2/

2:

Conformally invariant cross ratios can be built starting with four positions

.x2ijx
2
kl/=.x

2
ikx

2
jl/;

where xij D xi � xj .
The irreducible representations of SO.d/ are classified by the spin. For bosonic

fields, the representation space of the spin J representation consists in symmetric
traceless tensors with J indices. We denote multi-indices by

N� D �1 : : :�J :

3This section is the author’s synopsis of the four lectures given by V. Rosenhaus at the
Journées de physique mathématique Lyon 2019: Random tensors and SYK models. The author
would like to take this opportunity to thank him for many clarifying discussions on the topic.

4The finite transformations are translations x0� D x� C a�, rotations x0� DR�
� x

� , dilata-
tions x0� D ƒx� and special conformal transformations x0� D .x� C x2b�/=.1C 2b � x C
b2x2/.
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The rotation R�� is represented in the representation J by the tensor product

R
N�
N� D R�1

�1
: : :R�J

�J
:

In a scalar theory, for instance, a spin J composite operator is

Œ.@2/n1@.�1
: : : @�i

��Œ@�iC1
: : : @�J /.@

2/n2�� � traces :

The primary operators O�;J in a conformal field theory (CFT) are vectors in the
spin representation J and change under the conformal transformation in (2.2) as5

O
0 N�
�;J .x

0/ D �.x/��R N�
N� .x/O

N�
�;J .x/; (2.3)

where � and J are the scaling dimension and the spin of the operator and R N�
N� .x/ is

the matrix representing the rotation R�� .x/ in the spin representation J .
The two and three point functions of primary operators are fixed by conformal

invariance [29, 99]. The two point function is non-zero only for operators of the same
dimension and spin:

hO N�
�;J .x1/O�;J I N�.x2/i D

I
�1

.�1
.x12/ : : : I

�J

�J /
.x12/ � traces

jx12j2�
; I�� .x/D ı�� � 2x

�x�

jxj2 I
(2.4)

while the three point function of two spin zero operators �1 and �2 with dimensions
�1 and�2 and a spin J operator O�;J is

h�1.x1/�2.x2/O�;J I N�.x3/i

D C
�1;�2

�;J

Z�1
: : :Z�J

� traces

jx12j�1C�2��CJ jx13j�C�1��2�J jx23j�C�2��1�J ; (2.5a)

Z� D
� .x13/�

jx13j2
� .x23/�

jx23j2
�

; (2.5b)

where C�1;�2

�;J are pure numbers.
The operator product expansion (OPE) in quantum field theory expresses the

product of two operators at nearby points as a sum of local operators. For a scalar
field theory this is written schematically as

�.x1/�.x2/ '
X

C.x212/x
�1

12 : : : x
�J

12 O�1:::�J
.x2/ for x1 � x2.

5In components, the infinitesimal transformation of primary fields is

ıO N̨
�;J D �v�@�O

N̨
�;J � .� � 2b � x/�O N̨

�;J C 1

2

�

!�� � 2.b�x� � b�x�/
�

.s��/
N̨
ŇO

Ň

�;J
;

where s�� denotes the spin matrices in the representation J . The spin matrices are the gen-
erators of the so.d/ Lie algebra Œs�� ; s�� � D ı��s�� � ı��s�� � ı��s�� C ı��s��. In the
vector representation for instance we have .s��/ab D ı�bı�a � ı�bı�a.
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This equality should be interpreted in the weak sense, that is it is valid when inserted
in arbitrary correlations. In a conformal field theory the OPE is strongly constrained
by conformal invariance6 and the sum restricts to primary operators [29, 84]:

�1.x1/�2.x2/ D
X

�;J

C
�1;�2

�;J P
�1;�2I N�
�;J .x12; @x2

/O�;J I N�.x2/; (2.6)

with the OPE coefficients C�1;�2

�;J given by (2.5) and P�1;�2I N�
�;J .x12; @x2

/ some uni-
versal differential operator fixed by conformal invariance which captures the contribu-
tion of the primaryO�;J and all its descendants. For instance, the three point function
of three spin zero operators is at the same time given by (2.5) and by the OPE, hence

1

jx12j�1C�2��jx13j�1C���2 jx23j�2C���1
D P

�1;�2

� .x12; @x2
/

1

jx23j2�
; (2.7)

where we omitted the spin index. The polynomial P�1;�2

� .x12; @x2
/ is obtained by

substituting x13 D x12 C x23 in the left-hand side and Taylor expanding7 in x12.
Arbitrary correlation functions in a conformal field theory can be computed by

applying the OPE iteratively, therefore a CFT is completely specified by the list of
primary operators and OPE coefficients. We will now present a method for computing
the dimensions of (some of) the physical primary operators and (some of) the OPE
coefficients in a CFT.

Our starting point is a four point function. To simplify our life, we consider cor-
relations with four spin zero fields. Applying the OPE twice in the channel .12/.34/
yields

h�1.x1/�2.x2/�3.x3/�4.x4/i D
X

�;J

C
�1;�2

�;J C
�3;�4

�;J G
�i

�;J .xi/; (2.8)

where the universal functions G�i

�;J .xi/, the conformal blocks [25], are known expli-
citly. The four point function can be re expressed in terms of conformal partial waves
[79, 99] as we now explain.

For any primary operator O�;J , we define its shadow zOz�;J to be an operator
with the same spin but with dimension z� D d � �. Let us denote by h: : : ics the
conformal structure of a correlation function, given by (2.4) and (2.5) with the OPE

6As an example, note that any operator in a CFT, primary or not, will change under global
dilatations by a rescaling O 0.ƒx/ D ƒ��OO.x/ which fixes C.x2

12
/ � jx12j�2��C�O �J .

7At first orders we get

P
�1;�2

�
.x12; @x2

/ D jx12j���1��2

�

1C �C�1 ��2

2�
x

�

12
@x

�
2

C � � �
�

:
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coefficients set to 1. The shadow coefficient [79] of three operators SO2O3

O1
is defined

by the equation
Z

ddyh zOz�;J I N�.x1/ zO N�
z�;J .y/i

cshO�;J I N�.y/O2.x2/O3.x3/ics

D S
O2O3

O h zOz�;J I N�.x1/O2.x2/O3.x3/ics; (2.9)

where from now on we assume we deal with real fields (otherwise the spin represent-
ation should be conjugated). We have for instance [79]

S
�1;�2

�;J D �
d
2
�

�

� � d
2

�

�.�C J � 1/�
� z�C�1��2CJ

2

�

�
� z���1C�2CJ

2

�

�.�� 1/�.d ��C J /�
�

�C�1��2CJ
2

�

�
�

���1C�2CJ
2

�
; (2.10a)

S
�1;.�;J /
�2

D �
d
2
�

�

�2 � d
2

�

�
� z�2C�1��CJ

2

�

�
� z�2C���1CJ

2

�

�.d ��2/�
�

�2C�1��CJ
2

�

�
�

�2C���1CJ
2

�
: (2.10b)

Let us define the conformal partial waves:

‰
�i

�;J D
Z

dx0h�1.x1/�2.x2/O N�
�;J .x0/icsh zOz�;J I N�.x0/�3.x3/�4.x4/ics: (2.11)

Using the conformal scaling in the first three point conformal structure, one can show
after some effort [99] that the conformal partial wave is a sum of the conformal block
G
�i

�;J .xi/ and its shadow block G�i

z�;J .xi/:

‰
�i

�;J D
�

�1
2

�J

S
�3;�4

z�;J G
�i

�;J .xi/C
�

�1
2

�J

S
�1;�2

�;J G
�i

z�;J .xi/: (2.12)

A complete set of partial waves ‰�i

�;J is obtained in d > 1 by choosing integer
spin J and the dimensions � D d=2C i r; r � 0 (for d D 1 one needs to add the
discrete set�D 2n;n � 1). These dimensions do not correspond to physical primary
operators. The functions are orthogonal [99]:

.‰
�i

�;J ; ‰
z�i

z�0;J 0
/ D

Z
Q4
iD1 d

dxi

Vol.SO.d C 1; 1//
‰
�i

�;J .xi/‰
z�i

z�0;J 0
.xi/

D 2�n�;J ı.r � r 0/ıJJ 0 ; (2.13a)

n�;J D
S
�3;�4

z�;J S
z�3; z�4

�;J Vol.Sd�2/

Vol.SO.d � 1//

� �.2J C d � 2/�.J C 1/�.J C d � 2/

22JCd�2�
�

J C d
2

�2
; (2.13b)

with � D d=2C i r , z�0 D d=2� i r 0 and r; r 0 > 0.
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Now, let us consider a field theory (not necessarily conformal) for a scalar field �,
such that the one point function is zero. The four point function is a sum of a discon-
nected contribution .12/.34/ and the part connecting .12/ and .34/:

h�.x1/�.x2/�.x3/�.x4/i D h�.x1/�.x2/ih�.x3/�.x4/i
C h�.x1/�.x2/�.x3/�.x4/i12!34: (2.14)

The correlation h: : : i12!34 can be written in term of the irreducible four point ker-
nel (see Section 4 for details). Expressing the self-energy † (that is the one particle
irreducible two point function) in terms of the dressed two point function G, the irre-
ducible four point kernel is the functional derivative of † with respect to G:

K.x1; x2I x3; x4/ D
Z

ddxad
dxbG.x1a/G.x2b/

ı†.x34/

ıG.xab/
; (2.15)

and the four point function connecting .12/ and .34/ is

h�.x1/�.x2/�.x3/�.x4/i12!34

D
Z

ddxad
dxb

� 1

1 �K
�

.x1; x2I xaxb/
�

G.xa3/G.xb4/C .a $ b/
�

: (2.16)

In a CFT in which the field � is a primary operator with dimension �� , as the
partial waves form a basis, equation (2.14) becomes

h�.x1/�.x2/�.x3/�.x4/i

D 1

jx12j2��

1

jx34j2��
C

X

J

d
2

Ci 1
Z

d
2

d�

2� i
�.�; J /‰

��

�;J .xi/; (2.17)

where the field is normalized so that the two point function is exactly the conformal
structure. The disconnected term is the contribution to the OPE of the identity operator
with dimension and spin 0. All the other physical operators and the OPE coeffi-
cients are captured by the density �.�; J /. This density can be computed by expand-
ing (2.16) on partial waves. We first expand the rightmost term in (2.16):

h�.x1/�.x3/ih�.x2/�.x4/i C .1 $ 2/

D F 0.xi/

D
X

J

d
2

Ci 1
Z

d
2

d�

2� i
�0.�; J /‰

��

�;J .xi/; (2.18)
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where �0.�; J / D .F 0; ‰
z��

z�;J /=n�;J . The first term in the scalar product is, substi-
tuting the partial wave (and denoting arguments as indices),

Z

ddxid
dx0

Vol.SO.d C 1; 1//
h�x1

�x3
ih�x2

�x4
ih Q�x1

Q�x2
zO N�

z�;J .x0/i
cshO�;J I N�.x0/ Q�x3

Q�x4
ics

D S
z�� ;.�;J /

z��

S
��;.�;J /

z��

Z

dx1dx2dx0

Vol.SO.d C 1; 1//
h Q�x1

Q�x2
zO N�

z�;J .x0/i
cs

� hO�;J I N�.x0/�x1
�x2

ics; (2.19)

where we computed the integrals over x3 and x4 using (2.9). The remaining integral
is just a pure number [79] which we denote by t0:

t0 D 1

Vol.SO.d � 1//
�

�

d�2
2

�

�.J C d � 2/

2J�.d � 2/�
�

J C d�2
2

� : (2.20)

Taking into account the symmetry properties of the conformal three point function,
we get

�0.�; J / D 1C .�1/J
n�;J

t0S
z��;.�;J /

z��
S
�� ;.�;J /

z��
: (2.21)

Now, due to conformal invariance, the irreducible four point kernel applied on a
three point function must be proportional to the three point function:

Z

dxd3 dx
d
4K.x1; x2I x3; x4/h�.x3/�.x4/O

N�
�;J .x/i

D k.�; J /h�.x1/�.x2/O N�
�;J .x/iI (2.22)

therefore

�.�; J / D 1

1 � k.�; J /�
0.�; J /: (2.23)

Putting everything together, inserting the partial wave in terms of the conformal blocks
and noting that �. z�; J / D �.�; J / we get

h�.x1/�.x2/�.x3/�.x4/i12!34

D
X

J

d
2

Ci 1
Z

d
2

�i 1

d�

2� i

1

1 � k.�; J /
1C .�1/J
n�;J

t0

� S z�� ;.�;J /

z��

S
�� ;.�;J /

z��

�

�1
2

�J

S
����

z�;J G
��

�;J .xi/: (2.24)

In order to find the OPE coefficients and the dimension of the primaries, we close
the integral contour on the right half complex plane. The integral then becomes a sum
over the poles of the integrand. There are many poles: some come from the conformal



R. Gurau 168

block itself, some from the explicit S factors and some from the .1 � k.�; J //�1

factor. It turns out that some of the poles are spurious [99], and only the poles of
1=.1�k.�; J // are physical. We denote by �n the solutions of the equation
k.�;J / D 1. These are the dimensions of the physical primary operators present in
the OPE of �� in (2.6), and

h�.x1/�.x2/�.x3/�.x4/i12!34 D
X

J

X

n

.C
����

�n;J
/2G

��

�n;J
.xi/; (2.25a)

.C
����

�n;J
/2 D � Res

� 1

1 � k.�; J / I�n
�1C .�1/J

n�n;J

t0

� S z�� ;.�n;J /

z��

S
�� ;.�n;J /

z��

�

�1
2

�J

S
����

z�n;J
: (2.25b)

This method for computing the dimensions of the physical primary operators and
the OPE coefficients is completely general. However, it is of limited use in the most
generic case because the four point kernel and consequently k.�;J / are complicated.

2.2. The melonic truncation

We now introduce a class of field theories which we call melonic. In these theories
one is able to close the equation (2.25) and compute k.�; J / analytically.

Let us consider the simple example of a scalar field theory with a q-body inter-
action �q in zero dimensions. The “field” � is just a real variable and the action and
partition function write

S D 1

2
�C�1� C �

qŠ
�q; Z D

Z

Œd��e�S ; (2.26)

where C > 0 is the covariance (propagator) and � the coupling. Of course in this case
one can eliminate the covariance C by a rescaling, but we refrain from doing this.

The partition function and correlations can be evaluated by Taylor expanding in
the coupling and computing the Gaussian integrals.8 This leads to the standard Feyn-
man graph representation. The graphs have vertices with coordination q and, for
correlation functions, external points with coordination 1. The connected two point
function of the model

G D h��ic D 1

Z

Z

Œd��e�S�� �
� 1

Z

Z

Œd��e�S�
�2

; (2.27)

8For �A a vector in some vector space and CAB some non-negative operator, the moments
of the normalized Gaussian measure of covariance C are computed by the Wick theorem:

Z

Œd��e� 1
2 �AC �1

AB �B�A1
: : : �A2p

D
X

pairings …

Y

¹i;j º2…

CAi Aj
; Œd�� � .detC/�1=2

Y

A

d�A:
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is a sum over connect graphs with two external points. It obeys the Schwinger–Dyson
equation (SDE) depicted in Figure 1:

G�1 D C�1 �†; (2.28)

where the self energy † is the sum of amputated, one particle irreducible (1PI) two
point graphs.

G D
1

C 1 †

C C C C CC
D ††† CC

Figure 1. The Schwinger–Dyson equation.

The SDE can be closed by re expressing the self energy back in terms of the two
point function G. Usually this is not very useful as the self energy is a complicated
sum over two particle irreducible graphs (more details on this in Section 4).

G

G

G

† D

Figure 2. The melonic truncation of the self energy.

The melonic truncation is a truncation of the self energy which leads to a non-
trivial but manageable SDE. It consists in restricting the self energy to the melon

graph depicted in Figure 2 which is made of two vertices connected by q � 1 parallel
two point functions.9 In zero dimensions the melonic truncation reads

† D
h �2

.q � 1/Š

i

Gq�1: (2.29)

We put the combinatorial factor in square brackets as it is the only thing which
depends on the details of the model. We call a theory melonic if this truncation holds.

In a zero-dimensional melonic theory, combining (2.28) and (2.29) one can solve
for the two point function

G D C C C
h �2

.q � 1/Š
i

Gq

H) G D
X

n�0

1

qnC 1

�

qnC 1

n

�

�h �2

.q � 1/Š

i

C q
�n

C: (2.30)

9The melonic truncation of the self energy defines melonic two point graphs. Vacuum mel-
onic graphs are obtained by reconnecting the external edges of a (not necessarily one particle
irreducible) two point graph into an edge.
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Now, let us go to higher dimensions. The SDE in a melonic theory in d dimensions
is

.G�1/.x1; x2/ D .C�1/.x1; x2/ �†.x1; x2/; †.x/ D
h �2

.q � 1/Š

i

ŒG.x/�q�1;

(2.31)
where G�1 (and C�1) denotes the operator inverse and we used translation invari-
ance in the second equation. We now attempt to solve for the two point function self
consistently. This is possible if one ignores the free covariance. Taking a conformal
ansatz for the two point function,

G.x1 � x2/ D b
1

jx1 � x2j2��
; (2.32)

and going to momentum space10 the SDE in a melonic theory is solved by

�� D d

q
;

h �2

.q � 1/Š
i

bq D �.��/�.d ���/

�d .�1/�
�

d
2

���
�

�
�

�d
2

C��
� : (2.33)

The attentive reader will note that this solution is only formal: the presence of
an Euler � function with a negative argument stems form the fact that the Fourier
transform of the right-hand side of (2.31) is in fact divergent. We will be treating
this equation rigorously in Section 5. Observe that the melonic truncation already
expresses the self energy in terms of the two point function. The irreducible four
point kernel is then readily obtained:

K.x1; x2I x3; x4/ D
Z

ddxad
dxbG.x1a/G.x2b/

ı†.x34/

ıG.xab/

D .q � 1/
h �2

.q � 1/Š
i

G.x13/G.x24/G.x34/
q�2: (2.34)

In order to close (2.25), we need to determine k.�; J /. The trick is to note that, as
�� D d=q, we have

1

jx34j��.q�2/ h�.x3/�.x4/O
N�
�;J .x0/ics D h Q�.x3/ Q�.x4/O N�

�;J .x0/icsI (2.35)

10Recall the Fourier transform:
Z

x

ei px

x2a
D
�d=2�

�

d
2

� a
�

22a�d�.a/

1

pd�2a
:
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therefore
Z

dx3dx4K.x1; x2I x3x4/h�.x3/�.x4/O N�
�;J .x0/ics

D .q � 1/
h �2

.q � 1/Š

i

bq

�
Z

dx3dx4h�.x1/�.x3/icsh�.x2/�.x4/icsh Q�.x3/ Q�.x4/O N�
�;J .x0/ics:

(2.36)

The integrals can now be computed using the shadow coefficients in (2.9) and we get

k.�; J / D .q � 1/
h �2

.q � 1/Š
i

bqS
z�� ;.�;J /

z��

S
�� ;.�;J /

z��

; (2.37)

which, with the help of (2.10), yields

k.�; J / D .q � 1/
Z

N
; (2.38)

where

Z D �.d ���/�
�d

2
���

�

�
�

�� � d

2
C �C J

2

�

�
�

�� � �� J

2

�

;

N D .�1/�
�

�d
2

C��

�

�.��/�
�

d ��� � �� J

2

�

�
�d

2
��� C �C J

2

�

:

3. The melonic limit as a large N limit

Melonic theories lead to analytically controlled CFTs in the infrared limit. However,
in the previous section the melonic truncation appeared as a trick designed to produce
a solvable model.

The important question then becomes: is there any natural way to obtain a melonic
limit in a field theory? The answer to this question is yes: in the case of tensor field
theories the melonic limit is naturally obtained at large N . In fact, when a random
tensor is present, the large N limit will often be melonic. In particular, as we will see
below, models mixing vectors and tensors also fall in this class.

In this section we present three models which exhibit a melonic large N limit. We
only deal for now with the combinatorial aspects of this limit and, in order to simplify
the discussion, we will present the models in dimension zero. We will go back to field
theories in the next section.

The models we discuss here deal with non-symmetric tensors. It should be men-
tioned that there exist models for symmetric tensors (in rank 3) for which the large
N limit has been proven to be melonic [5, 20, 21, 57, 71]. However, the proofs are
significantly more involved for model with symmetries.
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3.1. The colored tensor model

This model is sometimes called the Gurau–Witten model [50, 60, 108]. It can be for-
mulated for arbitrary rank tensors. For all the ranks it has a large N limit dominated
by melonic graphs [13]. The classification of graphs at any order in 1=N has been
performed [56, 61].

Let us considerDC 1 tensor fields of rankD. We denote the fields by T i
Ai , where

i D 0; : : : ;D is the color of T i and the multi index Ai is Ai D ¹aij j j ¤ iº. All the
indices a go from 1 to N and the tensors have no symmetry property. For example in
rank D D 3 the list of fields is

T 0
a0

1
a0

2
a0

3

� T 0
A0 ; T 1

a1
0
a1

2
a1

3

� T 1
A1 ; T 2

a2
0
a2

1
a2

2

� T 2
A2 ; T 3

a3
0
a3

1
a3

2

� T 3
A3 : (3.1)

Observe that the indices a have two colors. We set ıAiBi D
Q

j¤i ıai
j
bi

j
.

The model has a global symmetry group O.N /D.DC1/=2 consisting in an ortho-
gonal transformationO.ij / DO.j i/ 2 O.N / for each couple of colors .ij /. Under the
action of the symmetry group, both indices aij and aji transform in the fundamental

representation of O.ij /. In detail, the global symmetry acts on T i as

.T 0/i
Bi D

Y

j¤i
O
.ij /

bi
j
ai

j

T i
Ai ; B i D ¹bij jj ¤ iº; Ai D ¹aij jj ¤ iº: (3.2)

For example, in rank 3 we have O.10/ D O.01/ and so on and the fields transform as

.T 0/0
b0

1
b0

2
b0

3

D O
.01/

b0
1
a0

1

O
.02/

b0
2
a0

2

O
.03/

b0
3
a0

3

Ta0
1
a0

2
a0

3
; (3.3a)

.T 0/1
b1

0
b1

2
b1

3

D O
.10/

b1
0
a1

0

O
.12/

b1
2
a1

2

O
.13/

b1
3
a1

3

Ta1
0
a1

2
a1

3
; (3.3b)

etc. The action and partition function of the model are

S D 1

2

X

i

T i
AiC

�1T i
Ai C �

ND.D�1/=4

Y

i<j

ı
ai

j
a

j

i

Y

i

T i
Ai ; Z D

Z

ŒdT �e�S ; (3.4)

where we have included a redundant covariance C for the Gaussian part. Due to the
global symmetry the two point functions of the model are diagonal both in the colors
and in the indices:

hT i
AiT

j

Bj ic D ıij ıAiBiG; G D C C C�@�.N
�D ln Z/: (3.5)

G is obtained by taking a two point function, contracting its external indices respect-
ing the colors and dividing by ND.

The partition function and the correlations can be computed in the Feynman
expansion. The Feynman graphs are D C 1-valent and the edges have a color i D
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0; : : : ; D. One can give a detailed, stranded, representation of the Feynman graphs
adapted to tracking the indices of the tensor. This is represented in Figure 3 forDD 3.
Each tensor is represented as a half edge with D strands, one for each one of its
indices. D C 1 half edges meet at a vertex and for every couple of half edges two
strands (representing the indices aij and aji ) are joined. The edges transmitD strands.

0

Figure 3. The vertex and the propagator of the colored tensor model in rank D D 3.

The vacuum Feynman graphs are edge .D C 1/-colored graphs [50, 60]. A graph
G has

• V.G / vertices of coordinationD C 1;

• DC1
2
V.G / edges colored 0; 1 : : : ;D such that at every vertex we have exactly one

edge of each color;

• F.G / faces, that is bicolored cycles.

The faces track the indices of the tensors: the indices are transmitted along the
edges and turn around vertices, thus an index aij D a

j
i follows the face .ij / and we

get a free sum (hence a factor N ) whenever the face closes. Open graphs arising in
the Feynman expansion of correlations have additional external points corresponding
to the external field insertions and open strands connecting pairs of external indices.

In order to compute G in (3.5), we use a trick (depicted in Figure 4): we contract
the external indices of a two point function respecting the colors and divide by ND.
We denote by G the set of rooted,11 connected edge .D C 1/-colored graphs and we
get

G D 1

ND
ıAiBi hT i

AiT
i
Bi ic

D
X

G 2G

.��/V.G /C DC1
2
V.G /C1N�D� D.D�1/

4
V.G /CF .G /; (3.6)

11A rooted graph is a graph with one edge (the root) marked by an arrow. For colored graphs
we fix the color of the root edge.
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where the root edge represents the external contraction ıAiBi . Remarkably, every
rooted graph with unlabeled vertices has a combinatorial factor 1. Observe that G

contains a graph with no vertices (on the left in Figure 4). It corresponds to the Gaus-
sian pairing of the two external tensors and brings a covariance C .

T T T T

Figure 4. Rooted graphs.

The crucial fact is that the numbers of faces and vertices of a connected graph G

are related [51, 52, 59] by the following relation (see Proposition 3 and Appendix A):

F.G / D D C D.D � 1/

4
V.G / � O!.G /; O!.G / � 0; (3.7)

where the reduced degree O!.G / of a graph G is a non-negative half-integer. The prop-
erties of the degree are discussed in detail in Appendix A. The two point function (and
all the other correlation functions) admits a 1=N expansion indexed by the degree:

G D
X

O!2N=2

N� O!
O!.G /D O!
X

G 2G

.��/V.G /C DC1
2
V.G /C1: (3.8)

At leading order one obtains only the graphs with O!.G /D 0. The graphs of degree
zero are the melonic graphs [13], see Proposition 4, Appendix A. Opening a rooted
melonic vacuum graph at the root one obtains a melonic two point graph and at leading
order:

.GLO/�1 D C�1 �†LO; †LO D �2.GLO/D: (3.9)

3.2. The colored tensor–vector model

This model is the zero-dimensional counterpart of the Sachdev–Ye–Kitaev model [43,
54, 66, 80, 89, 94]. It comes in two flavors, quenched and annealed, which coincide at
the first few orders. Although more involved, the sub leading corrections have been
classified also in this case [36].

The model consists in D vectors  iai
(distinguished by the color i ) coupled by a

random coupling Ta1;:::;aD
. The random coupling is a rank-D tensor with no symmet-

ries distributed on a Gaussian. The action of the model is

S D 1

2

X

i

 iai
C�1 iai

C �Ta1:::aD

Y

i

 iai
: (3.10)
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We set

T � T � Ta1:::aD
Ta1:::aD

and

ŒdT � D
Y

a1:::aD

N .D�1/=2dTa1:::aD
:

One can either take the quenched or the annealed averages over the random couplings.
Consequently, one has the quenched and the annealed free energies, the quenched and
the annealed two point functions, and so on. Denoting Z.T / D

R

Œd � exp¹�Sº we
have

F .q/ D 1

N

Z

ŒdT �e� N D�1

2 T �T ln.Z.T //; (3.11a)

F .a/ D 1

N
ln

�Z

ŒdT �e� N D�1

2
T �TZ.T /

�

; (3.11b)

h iai
 jaj

i.q/c D
Z

ŒdT �e� N D�1

2
T �T 1

Z.T /

Z

Œd �e�S iai
 jaj

; (3.11c)

h iai
 jaj

i.a/c D 1
R

ŒdT �e� N D�1

2 T �TZ.T /

Z

ŒdT �e� N D�1

2
T �T

Z

Œd �e�S iai
 jaj

;

(3.11d)

The two point functions (both the quenched and the annealed one) are again diagonal
in the colors and in the indices:

h iai
 jaj

i.q/;.a/c D ıij ıaiaj
G.q/;.a/: (3.12)

The Feynman graphs are still edge .D C 1/-colored graphs: 0 is the color of the
tensor (disorder) averages and 1; : : : ;D are the colors of the vector contractions. One
can give a stranded represent in which the tensor has D strands and the vectors only
one strand as depicted in Figure 5 on the right.

0

Figure 5. Colored and stranded representation of the vertex of the tensor–vector model in rank
D D 3.
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From the point of view of the index contractions, the edge 0 is very different from
the others: the edges 1; : : : ;D carry an index each, while the edge 0 carriesD indices.
By the same trick as before, the two point functions can be expressed as sums over
rooted (the root has color i ¤ 0) connected edge .D C 1/-colored graphs:

G.q/;.a/ D 1

N
ıaiaj

h iai
 jaj

i.q/;.a/c

D
X

G 2G.q/;.a/

.��/V.G /C D
2
V.G /C1N�1�.D�1/V.G /CP

i F
.0i/.G /; (3.13)

where F .0i/ denotes the number of faces with colors .0i/ of G .
Contrary to the colored tensor model, we now get a free sum (hence a factor N )

only for the faces involving the color 0: it is quite clear in the stranded representation
of Figure 5 that there is no index going from the edge 1 to the edge 2. Therefore,
the faces .12/, which are the bicolored cycles made by edges of colors 1 and 2 do not
contribute to the amplitude. It is convenient to add and subtract the missing faces, .ij /
with i; j ¤ 0. The number of faces which involve the color zero is the total number
of faces minus the number of faces which do not involve the color 0:

X

i

F .0i/.G / D
X

0�i<j�D
F .ij /.G / �

X

1�i<j�D
F .ij /.G /: (3.14)

The only difference between the quenched and annealed models is the class of
graphs over which we sum. In the annealed case we sum over all the (rooted) con-
nected edge .D C 1/-colored graphs G.a/ � G . For the quenched case, we sum only
over the (rooted) connected edge .D C 1/-colored graphs which remain connected
after deleting all the edges of color 0. We denote the set of graphs with this property
by G.q/.

Let G be a connected edge .D C 1/-colored graph, and let us denote by G 0 the
edge D-colored graph obtained from G by deleting the edges of color 0 (which
correspond to the disorder averages). In general, G 0 can be disconnected and we
denote by C.G 0/ � 1 the number of connected components of G 0. As G 0 is an edge
D-colored graph, it has a reduced degree O!.G 0/ and the total number of its faces
is given by (3.7) with D shifted to D � 1. We define the SYK degree of G to be
y�.G / D O!.G / � O!.G 0/. This number is a half-integer which obeys the bounds (see
Proposition 5 in Appendix A)

1

D
O!.G / � �.G / � O!.G /; (3.15)

hence, in particular, it is non-negative. A straightforward computation yields

G.q/;.a/ D
X

G 2G.q/;.a/

.��/V.G /C D
2
V.G /C1N�

�

C.G 0/�1
�

.D�1/��.G /: (3.16)
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For the quenched model, we always have C.G 0/ D 1, but, for the annealed model,
C.G 0/� 1. However, in the largeN limit, both the quenched and the annealed models
are dominated by graphs with C.G 0/ D 1 and �.G / D 0. The quenched and the
annealed models coincide up to the order N�.D�1/. If one uses the replica trick to
compute the quenched averages, the departure between the quenched and the annealed
models signals a replica symmetry breaking.

The SYK degree�.G / is non-negative and is zero for a connected graph G if and
only if G is melonic. If G is melonic, then G 0 is a union of melonic graphs. At leading
order G 0 is furthermore connected, hence it consists in exactly one melonic graph.12

Therefore, at leading order we get

.GLO/�1 D C�1 �†LO; †LO D �2.GLO/D�1: (3.17)

The annealed model (and consequently the quenched model at first orders) can be
simplified by introducing “bilocal” fields integrating over the disorder:

Z

ŒdT �Œd �e�S

D
Z

Œd �e
� 1

2

P

i  
i
ai
C�1 i

ai
C �2

2N D�1

Q

i  
i
ai
 i

ai

�
Z

ŒdGi �Œd†i �e
� 1

2

P

i †
i .NGi � i

ai
 i

ai
/

D
Z

ŒdGi �Œd†i �Œd �e� 1
2

P

i  ai
.C�1�†i / ai

�N. 1
2

P

i G
i†i � �2

2

Q

i G
i /

D
Z

ŒdGi �Œd†i �e�N.˙ 1
2

P

i Tr ln.1�C†i /C 1
2

P

i G
i†i � �2

2

Q

i G
i /; (3.18)

where the � sign is obtained for fermionic vectors (which requires even rank D), the
C sign for bosonic ones, and we took into account that the Gaussian integral over the
vector fields is normalized. The advantage of this representation is thatN is an overall
scaling and the 1=N expansion is a standard saddle point approximation. The saddle
point equations write (using the fact that the saddle is color symmetric)

†� �2GD�1 D 0; G � 1

C�1 �† D 0; (3.19)

which reproduce the SDE in the melonic limit (3.17). The 1=N expansion is obtained
by computing the saddle point corrections. However, we stress that this gives the 1=N
expansion of the annealed model, hence fails to reproduce the one of the quenched
case starting with the order N�.D�1/.

12Observe that in this case one can uniquely reconstruct G starting from G 0.
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3.3. The O.N/3 model

This model is sometimes called Carrozza–Tanasa–Klebanov–Tarnopolsky model [22,
39,72]. As the name suggests, the model is defined only for rank-3 tensors. Its interest
resides in the fact that it includes all the radiative corrections for quartic interactions,
hence a field theory built on it is well adapted to a renormalization group study. At
leading order the model is dominated by a melon-tadpole graphs, a slight generaliza-
tion of melons. The first sub leading orders of this model are understood [8, 22].

The field of the model is a rank-3 non-symmetric tensor �A D �a1a2a3
transform-

ing in the three fundamental representation of O.N /˝ O.N /˝ O.N /, that is under
a change of basis each index turns with its own orthogonal transformation

.�0/b1b2b3
D O

.1/

b1a1
O
.2/

b2a2
O
.3/

b3a3
�a1a2a3

: (3.20)

One can consider the slightly more general case of a O.N1/˝ O.N2/˝ O.N3/ sym-
metry, but we will refrain from doing this here. We denote by capital letters triples
of indices: A D ¹a1; a2; a3º and so on and we define three patters of contraction of
indices among four tensors:

ıtABCD D .ıa1b1
ıc1d1

/.ıa2c2
ıb2d2

/.ıa3d3
ıb3c3

/; (3.21a)

ı
p
ABICD D 1

3

X

j

ıaj cj ıbjdj

�

Y

i¤j
ıaibi

ıcidi

�

; ıdABICD D
Y

i

ıaibi
ıcidi

: (3.21b)

The first pattern ıtABCD is called the tetrahedral pattern, the second one ıpABICD the
pillow and the third one the double trace. The action of the model is

S D 1

2
�AC

�1�A C
� �

4N 3=2
ıtABCD C �p

4N 2
ı
p
ABICD C �d

4N 3

�

�A�B�C�D ; (3.22)

and the two point function is diagonal in the tensor indices h�A�Bi D ıABG.
Again, one can compute the partition function and correlations in a Feynman

expansion. The Feynman graphs of the CTKT model are stranded graph made of
stranded vertices connected by stranded edges, as depicted in Figure 6. The strands
are associated to the indices of the tensors. All the vertices are four valent and the
edges have three strands. The strands have a color and close into the faces of the
graph. The faces correspond, again, to free sums over indices. From left to right in
Figure 6, we represented the tetrahedral, the pillow and the double trace vertex. There
are three kinds of pillow vertices, as a function of the special color which is transmit-
ted from on pair of half edges to the other.

We denote by Vt .G /, Vp.G /, and Vd .G / the numbers of tetrahedral, pillow and
double trace vertices of a CTKT graph G , and F.G / the number of faces of G . The
number of pillow vertices splits as the sum of the numbers of pillow vertices of each
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Figure 6. Vertices and edges of the CTKT model.

kind. The edges are not colored, but the faces are colored with a color 1, 2, or 3. Using
the same trick as before, we can compute the two point function by reconnecting the
external edges and dividing by N 3, obtaining G as a sum over rooted graphs:

G D
X

G 2G

.��/Vt .G /
�

��p
3

�Vp.G /

.��d /Vd .G /

� C 2ŒVt .G /CVp.G /CVd .G /�C1N�3� 3
2
Vt .G /�2Vp.G /�3Vd .G /CF .G /: (3.23)

As in the case of the colored model, the number of faces of a CTKT graph can be
computed in terms of the number of vertices (see Proposition 6 in Appendix A):

F.G / D 3C 3

2
Vt .G /C 2Vp.G /C 3Vd .G / � !.G /; (3.24)

where the CTKT degree !.G / is a non-negative half-integer. The two point function
(and any other correlation) has a 1=N expansion indexed by the CTKT degree:

G D
X

!2N=2

N�!
!.G /D!

X

G 2G

.��/Vt.G /
�

��p
3

�Vp.G /

.��d /Vd .G /C 2ŒVt .G /CVp.G /CVd .G /�C1:

(3.25)
At leading order one obtains only melon-tadpole graphs (see Appendix A for

details). Similarly, to the melonic graphs, the melon tadpole graphs can be seen as
a truncation of the self energy depicted in Figure 7.

G

G

G
G

p d
† D C

Figure 7. The melon-tadpole self energy.

In the melon-tadpole truncation one includes two graphs. The first one is a tadpole
graph whose vertex is either a pillow or the double trace such that the edge closes the



R. Gurau 180

maximal number of faces. The second is a melon with two tetrahedral vertices. At
leading order, we have

.GLO/�1 D C�1 �†LO; †LO D �.�p C �d /G
LO C �2.GLO/3: (3.26)

4. The 2PI formalism

It is often convenient to recast a QFT in terms of an effective action [24,64]. Effective
actions integrate out the quantum fluctuations and the correlation functions are com-
puted by functional derivatives. The most familiar case is the one particle irreducible
(1PI) effective action, but the concept is directly generalized to p particle irreducible
effective actions [64].

Unsurprisingly, in practice the effective actions are very difficult to compute and
one needs to resort to truncations. The situation is greatly simplified in the case of
vector models. The two particle irreducible (2PI) action is particularly well suited for
their study because it can be explicitly computed order by order in the 1=N expan-
sion [11]. It turns out that tensor models are similar [8], and the 2PI action can be
computed explicitly at first orders in 1=N . However, contrary to the vector case, for
tensors the effective action is non-local at leading order which leads to much richer
physics.

4.1. The 2PI effective action

We introduce some more notation, to be used only in this section. We denote function-
als by bold letters and functions by straight letters. We denote the field by �x , where x
denotes the position and any additional indices. Repeated indices are summed/integ-
rated. Bilocal fields are denoted by Gxy , Jxy , and so on. A dot denotes integrals and
index contractions. We will sometimes suppress the indices to simplify the notation.

We consider a scalar theory with action and partition function:

S Œ�� D 1

2
� � C�1 � � C S intŒ��; Z D

Z

Œd��e�S Œ��: (4.1)

The interaction part of the action S intŒ�� can include bivalent vertices. They will
always be treated as a perturbation of the free theory defined by the covariance C .
In addition, we require the one point function of the theory to be zero

h�xi D Z�1
Z

Œd��e�S Œ���x D 0:

This is guaranteed if the action is even S Œ��� D S Œ��, which we will assume from
now on. Note however that for a colored model the one point function is zero in any
rank, even though the action is even only for odd rank.
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In order to define the effective action [8, 9], we start from the generating function
with bilocal source term Jxy:

eW ŒJ � D
Z

Œd��e�S Œ��C 1
2
��J ��: (4.2)

Observe that, even in the presence of the source, the odd point expectations are
zero. The functional W ŒJ � can either be seen as a generating function of connec-
ted moments with a bilocal source, or as the free energy of the theory with shifted
covariance C�1 � J . It includes the ring graph consisting in only an edge closing
onto itself whose amplitude13 is �1

2
Tr lnŒC�1 � J �.

The derivatives of W are14

2
ıW

ıJxy
D h�x�yiJ D h�x�yiJc � Gxy ;

4
ı2W

ıJxyıJab
D h�x�y�a�biJ � h�x�yiJ h�a�biJ

D h�x�y�a�biJc C GxaGyb C GxbGya;

(4.3)

where the upper script J signifies that correlations are computed in the presence of
the bilocal source J . The functional Gxy (which is a functional of the source J ) is the
connected two point function of the theory with source J . Note that the second deriv-
ative of W is exactly the four point function h�x�y�a�biJ.xy/!.ab/

we encountered
in Section 2. Going “on shell” means putting the source J D 0.

We denote by J ŒG� the inverse functional of G ŒJ �, that is the solution of the
equation G ŒJ �DG. The effective action is the Legendre transform of W with respect
to J :

� ŒG� D �W ŒJ �C 1

2
TrŒGJ �; (4.4a)

ı�

ıGxy
D 1

2
Jxy ; (4.4b)

ı2�

ıGabıGxy
D 1

2

ıJ

ıG
D 1

2

�ıG

ıJ

��1

JDJ

D 1

4

� ı2W

ıJxyıJab

��1

JDJ

: (4.4c)

13We normalized the integral to 1 for S int D 0; J D 0; C D 1.
14For symmetric functions the derivative is the symmetric projector

ıJxy

ıJab

D 1

2
.ıxaıyb C ıxbıya/ � �xyIab:
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This Legendre transform can be written as a functional integral for � with inverse
covariance C�1 � J and interaction S intŒ��:

e��ŒG� D e� 1
2

TrŒGJ �

Z

Œd��e� 1
2
��.C�1�J /���S intŒ��; (4.5)

where J ŒG� is fixed by the condition h��iJ

c D G.
We denote by �� 2PIŒG� the generating function of nontrivial 2PI graphs (that

is graphs which do not disconnect when cutting two edges) with propagator G and
vertices in S intŒ��. If S intŒ�� has bivalent vertices, � 2PIŒG� contains the graph formed
by only one edge with propagator G connected on the bivalent vertex. For example,
in zero dimension with S intŒ�� D m2

2
�2 C �

4Š
�4 we have

� 2PIŒG� D m2

2
G C �

4Š
3G2 � 1

2

� �

4Š

�2

4ŠG4 C O.�3/: (4.6)

The associated graphs are depicted in Figure 8. Observe that the mass vertex appears
in only one 2PI graph.

Figure 8. Graphs contributing to the 2PI action at first orders in a �4 theory.

The derivatives of the 2PI generating function are denoted by

†ŒG�xy D �2ı�
2PI

ıGxy
; K ŒG�abIxy D Gaa0Gbb0

ı†xy

ıGa0b0

: (4.7)

Here, † is the self energy (the amputated one particle irreducible two point function)
expressed in terms of the full two point function G. To see this we observe that the
derivative cuts an edge and 2 counts the ways to attach it to the external end points.
The fact that this is nothing but the self energy in which all the propagators are fully
dressed comes from the remark that the configuration depicted on the left in Figure 9
is excluded by the two particle irreducibly condition.

The kernel K is the irreducible four point kernel in the channel .ab/ ! .xy/.
As it comes from a derivative of †, it can not contain two edges which, when cut,
disconnect the kernel into a component having the external points a; b and another
component having the external points x;y (this is depicted in Figure 9 in the middle).
However, the kernel K can be disconnected by cutting two edges in a different chan-
nel.
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Figure 9. Left: a two particle reducible contribution to the self energy. Right: two contributions
to the four point kernel, one which is two particle reducible in the channel .ab/! .cd/ and one
which is not (although it is two particle reducible in a different channel. Solid lines represent
full two point functions G while dashed lines represent amputations.

For any source J , the two point function is determined self consistently by the
Schwinger–Dyson equation:

G�1 D C�1 � J � †ŒG�: (4.8)

This equation fixes the source J ŒG� D C�1 � G�1 � †ŒG� which ensures that the
two point function is exactly G. In particular,

ı�

ıG
D 1

2
J D 1

2
C�1 � 1

2
G�1 � 1

2
†ŒG�; (4.9)

and, recalling that the self energy is the derivative of the 2PI generating function, this
equation can be integrated to obtain15

� ŒG� D 1

2
Tr

�

C�1G
�

� 1

2
TrŒln.G/�C � 2PIŒG�: (4.10)

D

Figure 10. The four point Dyson equation.

The second derivative of � is related to the four point kernel:

ı2�

ıGabıGxy
D 1

2
G�1
aa0G

�1
bb0.� � K /a0b0Ixy : (4.11)

15It is sometimes useful to give a formal functional integral formula for �

e�� ŒG� D e� 1
2

TrŒC �1G�

Z

2PI

Œd��e� 1
2

��G�1��S intŒ��:
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Combining this with (4.4) and (4.3), we find the Dyson equation (see Figure 10) of
the four point function connecting .ab/ to .xy/:

h�x�y�a�biJ

.ab/!.xy/ D
� 1

1 � K

�

abIx0y0
.Gx0xGy0y C Gx0yGy0x/: (4.12)

The correlation functions of the original theory are recovered by taking derivatives
of � and then going on shell, that is setting the two point function to be G0, the
solution of

J ŒG0� D 0 D C�1 � .G0/�1 � †ŒG0�: (4.13)

4.2. The Bethe Salpeter equation

Let O N�Ix be a local operator with some spin:

Œ@�1:::�j1
.�@2/n1�x �Œ@�j1C1:::�j1Cj2

.�@2/n2�x� : : :

Œ@�jq�1C1:::�jr�1Cjr
.�@2/nr�x�: (4.14)

We aim to find a closed equation for h�x1
�x2

O N�Ixic , the three point connected func-
tion. To this end we define the generating function with a source " N�

x for our operator:

eW "ŒJ � D
Z

Œd��e�S Œ��C 1
2
��J ��C" N��O N� ; (4.15)

We assume that the one point expectation h�xi is zero in the presence of the source.
This is always the case if O contains an even number of fields �. Then,

hO N�IxiJ;"c D hO N�IxiJ;" D ıW "

ı"
N�
x

; (4.16a)

h�x1
�x2

O N�IxiJ;"c D h�x1
�x2

O N�IxiJ;" � h�x1
�x2

iJ;"c hO N�IxiJ;"c

D 2
ı2W "

ıJx1x2
ı"

N�
x

: (4.16b)

The physical expectations in the theory are obtained by going on shell J D 0 and
setting the source " D 0. The results of the previous section go through, except that
everything now depends on the source ". We have

2
ıW "

ıJx1x2

D G "ŒJ �x1x2
;

ıG "
x1x2

ı"
N�
x

D h�x1
�x2

O N�IxiJ;"c ; (4.17)

and we denote by J "ŒG� the inverse functional of G "ŒJ � and the Legendre transform
of W "ŒJ � by

� "ŒG� D �W "ŒJ "�C 1

2
TrŒGJ "�; (4.18a)

� "ŒG� D 1

2
Tr

�

C�1G
�

� 1

2
TrŒln.G/�C � 2PI; "ŒG�: (4.18b)
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The functional ��2PI; "ŒG� is now the sum over 2PI graphs (from the point of
view of �) with propagatorG and vertices in S intŒ�� or " �O . With respect to the previ-
ous case, we now have additional vertices with coordination r representing insertions
of the operator O in the graphs. The derivatives of � " can be computed using either
the Legendre transform or the explicit formula relating � " to �2PI; ". In particular,

�2 ı� "

ıGx1x2
ı"

N�
x

D �2 ı

ı"
N�
x

� ı� "

ıGx1x2

�

D �
ıJ "x1x2

ı"
N�
x

ŒG�; (4.19a)

�2 ı� "

ıGx1x2
ı"x

D �2 ı� 2PI; "

ıGx1x2
ı"

N�
x

� h�x1
�x2

O N�IxiJ ";"
2PI : (4.19b)

The last correlation h�x1
�x2

O N�IxiGI"
2PI is represented in Figure 11. It is two particle

irreducible in the channel .��/ ! O , that is by cutting two edges it can not be dis-
connected in a component containing both external points � and a second connected
component containing the operator O .

Figure 11. On the left the correlation function h�x1
�x2

O N�IxiGI"
2PI . On the right a contribution

which is two particle reducible in the channel .��/ ! O . The red dot represents the composite
operator.

On the other, by definition G "ŒJ "ŒG�� D G; therefore

0 D
ıG "

x1x2

ı"
N�
x

ˇ

ˇ

ˇ

JDJ "
C
ıG "

x1x2

Jab

ˇ

ˇ

ˇ

JDJ "

ıJ "
ab

ı"
N�
x

H)
ıJ "
ab

ı"
N�
x

D �2 ı2� "

ıGabıGuv

ıG "
uv

ı"
N�
x

ˇ

ˇ

ˇ

JDJ "
: (4.20)

Putting everything together, we conclude that

h�x1
�x2

O N�IxiJ ";"
2PI D 2

ı2� "

ıGx1x2
ıGuv

ıG "
uv

ı"
N�
x

ˇ

ˇ

ˇ

JDJ "

D G�1
x1a
G�1
x2b
.� � K "/abIuvh�u�vO N�IxiJ ";"

c ; (4.21)

which can be rewritten, taking " D 0, in the form

h�x1
�x2

O N�IxiJ

c D Gx1aGx2bh�a�bO N�IxiJ

2PI C Kx1x2Iabh�a�bO N�IxiJ

c : (4.22)
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This equation should be compared with (2.22):
Z

dxd3 dx
d
4K.x1; x2I x3; x4/h�.x3/�.x4/O

N�
�;J .x/i

D k.�; J /h�.x1/�.x2/O N�
�;J .x/i; (4.23)

together with the condition that the physical primary operators are such that

k.�; J / D 1:

This means that in a CFT the 2PI contribution to the three point function of two �
fields and a primary O N� must be identically zero. The implications of this fact need
to be investigated in depth.

4.3. The 1=N expansion and melonic theories

We consider the generalization of the O.N/3 model to dimension d . We use the
notation of Section 3. The field is a tensor with three indices �A.x/ and the action of
the O.N/3 field theory is

S Œ�� D 1

2

Z

xy

�A.x/.C
�1/.x; y/�A.y/C 1

2
m

Z

x

�A.x/�A.x/

C
Z

x

� �

4N 3=2
ıtABCD C �p

4N 2
ı
p
ABICD C �d

4N 3

�

�A.x/�B.x/�C .x/�D.x/;

(4.24)

where from now on we reinstate the separation between the position arguments and
the tensor indices. We added a mass parameterm and the covariance of the theory, C ,
is kept arbitrary for now.

The source JAB.x; y/ is bilocal both in positions and tensor indices. In order to
determine the scaling in N of a term in the 2PI action, we use the diagonal ansatz
GAB .x; y/ � ıABG.x; y/ because on shell the two point function is indeed diagonal
in the tensor indices. It follows that the scaling in N of the 2PI graphs is just the
standard scaling in N discussed in Section 3. At leading order only melon–tadpole
graphs contribute, and the only 2PI melon–tadpole graphs are those represented in
Figure 8. This is because an insertion of a melon or a tadpole in any of the three
graphs yields a two particle reducible contribution. At leading order in 1=N we get

� 2PIŒG� D m

2
TrŒG�C

Z

x

GAB.x; x/
� �p

4N 2
ı
p
ABICD C �d

4N 3
ıdABICD

�

GCD.x; x/

� 1

2

� �

4N 3=2

�2

4

Z

x;y

ıtA1A2A3A4
ıtB1B2B3B4

Y

i

GAiBi
.x; y/: (4.25)
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The self energy is then

†ŒG�AB .x; y/ D �mıABıxy

�
� �p

N 2
ı
p
ABICD C �d

N 3
ıdABICD

�

ıxyGCD.x; x/

C �2

N 3
ıtAA1A2A3

ıtBB1B2B3

3
Y

iD1
GAiBi

.x; y/; (4.26)

and the irreducible kernel is

KA0B 0ICD.x
0y 0I zt/

D GA0A.x
0; x/GB 0B.y

0; y/

�
h

�
� �p

N 2
ı
p
ABICD C �d

N 3
ıdABICD

�

ıxyıxzıxt

C �2

N 3
ıtAA1A2A3

ıtBB1B2B3

�
3

X

iD1

�1

2
ıxzıyt ıAiC ıBiD C 1

2
ıxtıyzıAiDıBiC

�

Y

j¤i
GCjDj

.x; y/
i

:

(4.27)

5. Renormalization in a tensor field theory

In Sections 2 and 3 we have seen that melonic CFTs can be analytically treated and
that in many models the melonic limit can be recovered as a large N limit. CFTs
should correspond to fixed points of the renormalization group and infrared fixed
points are especially interesting because they describe the low energy behavior of
theories.

The natural question is: are there examples of field theories with infrared attract-
ive fixed points described by melonic CFTs? The answer to this question is yes: many
fermionic models in less than 2 dimensions [6, 67, 68, 83, 91, 108], and some super-
symmetric [90] or bosonic ones [38] in dimension strictly less that 3 do have melonic
infrared fixed points.

However, it turns out that it is not so easy to find models with melonic fixed points
in d D 3 dimensions. In this section we discuss one example which works [9].

From now on, we consider d < 4 dimensions. Although we keep d generic, we are
especially interested in the d D 3 case. Our starting point is the O.N/3 field theory
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described in Section 4, with a suitable covariance:

S Œ�� D 1

2

Z

ddx�A.x/.�@2/��A.x/C 1

2
m

Z

ddx�A.x/�A.x/

C
Z

ddx
� �

4N 3=2
ıtABCD

C �p

4N 2
ı
p
ABICD C �d

4N 3

�

�A.x/�B.x/�C .x/�D.x/; (5.1)

where for now � is not fixed and we take the large N limit.
The first choice that comes to mind [39] is � D 1, that is the tensor generalization

of the standard �44 theory. The quartic couplings are classically marginal in dimension
d D 4, and one can search for Wilson Fisher [105] like fixed point in d D 4 � "

dimensions [39]. At first orders one finds the beta functions (where Qg D g=.4�/2)

ˇ Qg D �" Qg C 2 Qg3; (5.2a)

ˇ Qgp
D �" Qgp C

�

6 Qg2 C 2

3
Qg2p

�

� 2 Qg2 Qgp; (5.2b)

ˇ Qgd
D �" Qgd C

�4

3
Qg2p C 4 Qgp Qgd C 2 Qg2d

�

� 2 Qg2.4 Qgp C 5 Qgd /; (5.2c)

which admit a fixed point

g? D ."=2/1=2; gp;? D ˙3 i."=2/1=2; gd;? D � i.3˙
p
3/."=2/1=2:

The pillow and double trace couplings are purely imaginary at the fixed point. This
in itself is not a problem, but a more careful study reveals other unpleasant features
of the fixed point: searching for the dimensions of the physical primary fields at this
fixed point along the lines of Section 2, one finds a primary with complex dimension
d=2˙ i˛, see [38]. Now, this is problematic.

• In an AdS/CFT picture [48, 107], bulk fields with mass mAdS corresponds to
boundary single trace primaries with dimensions � D d=2 ˙ .d2=4 C m2AdS/

1=2.
Primaries with dimensions d=2˙ i˛ correspond to fields with m2AdS < �d2=4 viol-
ating the Breitenlohner–Freedman bound [15].

• A physical primary with dimension d=2˙ i ˛ represents a pole of the density
�.�; J / located exactly on the original contour of integration of the partial waves
(recall Section 2). The initial expansion of the four point function in terms of partial
waves needs to be revisited in order to deal with this singularity.

• The problematic primary is the mass operator. A dimension of a mass–like
primary operator of the form d=2˙ i˛ has recently been shown in a similar model [65]
to correspond to an instability and signal that the corresponding operator acquires a
non-zero vacuum expectation value.
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• The dimension of the mass is half the one of the double trace invariant [47] which
is d C �, with � the critical exponent of the double trace coupling. The dimension
d=2˙ i ˛ of the mass implies that the double trace coupling has a purely imaginary
critical exponent. The fixed point is a limit cycle, not an infrared fixed point (see
Appendix B).

In 4C " dimensions the problem goes away, but the fixed point turns out to be an
ultraviolet fixed point: the pillow and double trace couplings are relevant at the fixed
point.

In order to find a genuine infrared fixed point described by a melonic CFT, one
needs to take a more drastic approach. According to (2.33), in the melonic limit the
field is expected to acquire the infrared scaling dimension �� D d=q, with q D 4 in
our case. The idea [9] is to modify the ultraviolet scaling of the free part of the action
� in such a way that the UV scaling dimension of the field .d � 2�/=2 equals the IR
one.

From now on, we fix � D d=2 � d=q, which is � D d=4 for q D 4. This means
that the free part of the action has a non-integer power of the momentum. Before
continuing, let us briefly comment on this. Although models with non-integer scaling
have been considered in the literature [1,18] (and more recently in [44] in the context
of the SYK model), they might be somewhat unfamiliar to the reader.

For any � � 1 the free theory,

S0Œ�� D 1

2

Z

ddx�.x/.�@2/��.x/; � � 1; (5.3)

is unitary because it is explicitly Osterwalder Schrader positive. Indeed, the covari-
ance

C.p/ D 1

p2�
D 1

�.�/

1
Z

0

d˛˛��1e�˛p2

; (5.4a)

C.x � y/ D 1

.4�/d=2�.�/

1
Z

0

d˛˛��1�d=2e� .x�y/2

4˛

D
�

�

d
2

� �
�

22��d=2�.�/

1

jx � yjd�2� ; (5.4b)

(where the last equality holds for d � 2� > 0) admits an absolutely convergent Källén–
Lehmann spectral representation as a superposition of massive particles with a con-
tinuous mass spectrum:

1

p2�
D 1

�.�/�.1� �/

1
Z

0

dx
x��

p2 C x
: (5.5)
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The condition � < 1 is crucial for the convergence in 0.
One can also consider interacting theories with � < 1, see [1, 18]. The most well-

known example is the Brydges–Mitter–Scoppola model with d D 3, � D 3=4C " and
��4 interaction. This model has

• the Gaussian fixed point where the quartic coupling is relevant,

• an interacting fixed point g? � " (with g the running dimensionless quartic coup-
ling) where the quartic coupling is irrelevant,

• a renormalization group trajectory connecting the two fixed points.

These statements can are rigorously proven [1, 18]. The infrared fixed point of this
model is the inspiration for using a non-integer scaling in our case.

5.1. Renormalization

Although q is fixed to 4, we will often keep it generic. There are two reasons for
this. First, this makes the comparison with Section 2 easier. Second, it is likely that
some of the results can be generalized for colored models with q body interactions.
As � D d=2� d=q and � < 1, we obtain a bound d < 2q=.q � 2/, that is,

• for q D 4, d < 4 (in particular, this covers a quartic model in d D 3, our main
interest; the case 4 � " can also be recovered);

• for q D 6, d < 3;

• any q in d D 2.

Following Appendix B, we introduce both an ultraviolet cutoff ƒ and an infrared
cutoff k:

Cƒk D 1

p2�
�ƒk .p/ D 1

�.�/

k�2
Z

ƒ�2

d˛˛��1e�˛p2

; (5.6)

that is, we chose a multiplicative cutoff

‚.u/ D �.�/�1
1

Z

u

d˛˛��1e�˛

which is an upper incomplete Euler Gamma function. We aim to compute the wave
function renormalization (and consequently the anomalous field dimension) and the
ˇ functions of the couplings.
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We start from the large N self energy and four point kernel. Using Section 4, on
shell we have GAB .x; y/ D GxyıAB and

†AB.x; y/ D ıAB†xy ; (5.7a)

†xy D �mıxy � .�p C �d /ıxyGxx C �2G3xy ; (5.7b)

KABICD.x
0y 0I zt/ D Gx0xGy0y

h

� �p

N 2
ı
p
ABICDıxyıxzızt � �d

N 3
ıdABICDıxyıxzızt

C �2

N 2
3ı
p
ABICDıxzıytG

2
xy

i

; (5.7c)

where m and � denote the dimensionful mass parameter and four point couplings at
the UV scaleƒ. It is convenient to parametrize the interaction in terms of �1 D �p=3

and �2 D �p C �d and the two mutually orthogonal projectors

P1 D 3
� 1

N 2
ıp � 1

N 3
ıd

�

and P2 D 1

N 3
ıd :

In momentum space, we get

†.p/ D �m � �2
Z

r

G.r/C �2
Z

r1r2

G.r1/G.r2/G.p C r1 C r2/ (5.8a)

Kp1;p2Ir1;r2
D .2�/dı.p1 C p2 � r1 � r2/G.p1/G.p2/

�
��

�2
Z

r

G.r/G.r C p1 � r1/ � �1
�

P1

C
�

3�2
Z

r

G.r/G.r C p1 � r1/ � �2

�

P2

�

: (5.8b)

Note that �1 is essentially the pillow coupling and �2 essentially the double trace one.

The wave function. In momentum space the Schwinger–Dyson equation with cutoffs
becomes

Gk.p/
�1 D p2���1 CmC �2

Z

r

Gk.r/

� �2
Z

r1:::rq�2

Gk.r1/ : : :Gk.rq�2/Gk.p C r1 C � � � C rq/; (5.9)

where in the last term we reintroduced a generic q. It turns out that (after tuning the
bare mass)

Gk.p/ D 1

Zp2�
�ƒk .p/; � D d

2
� d

q
; (5.10)
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with a constantZ (to be determined below) verifies (5.9) up to terms which vanish in
the limit k ! 0. The important point is that the total Z is finite, hence the anomalous
field dimension �? is zero. This is consistent with the fact that � has been chosen such
that the ultraviolet and infrared scaling dimensions of the field coincide.

To check this, let us first consider the local part of the right-hand side of (5.9) (we
need to remember that q D 4 hence � D d=4 for this discussion):

mC �2

Z

r

Gk.r/ � �2
Z

r1r2

Gk.r1/Gk.r2/Gk.r1 C r2/: (5.11)

The first term is
R

r Gk.r/ � kd=2 �ƒd=2, which vanishes in the k ! 0 limit if m D
��2ƒd=2. The second term is similar.

Once the local part of the SDE is subtracted via a Taylor expansion with integral
rest [9], we can take the cutoffs to their limits and, rescaling the ˛ by p2, we obtain

Zp2� Dp2� C p2�
�2

.4�/d
q�2

2 �.�/q�1Zq�1

�
1

Z

0

dt

1
Z

0

d˛

Qq�1
iD1 ˛

�
i

�Pq�1
iD1

Q

j¤i j̨

�d=2C1 e
�t

Qq�1
iD1

˛i
Pq�1

iD1

Q

j ¤i j̨ : (5.12)

Using Appendix C, we see that the total wave function renormalizationZ verifies the
equations

1 D 1

Z
C 1

g2c

� Q�
Zq=2

�2

; (5.13a)

Q� � �

.4�/
d.q�2/

4 �.�/q=2
; (5.13b)

1

g2c
D
�.�/�.1� �/�

�

d
2

� �
�q�1

��
�

d
2

C �
� : (5.13c)

It is instructive to compute the two point function in direct space

G.x12/ D bjx12j�2�� :

Taking the Fourier transform and recalling that �� D d=q, we obtain that b verifies

1 D b
2d�2���d=2�.d

2
���/

�.��/
C �2bq�d

�
�

1 � d
2

C��
�

�
�

d
2

���
�

�

d
2

���
�

�.d ���/�.��/
; (5.14)

which reproduces (2.33) if one neglects the first term on the right-hand side.
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Four point couplings. From now on, we set

Q� � �

.4�/
d.q�2/

4 �.�/q=2
; Q�i � �i

.4�/d=2�.�/2
: (5.15)

The classical scaling dimension of an operator @J�n is J C n�� ; see Appendix B.
In our case,�� D d=q and the only classically marginal operators are J D 0; n D q.
For q D 4 they are the tetrahedron, pillow and double trace.

At leading order in 1=N , the tetrahedral coupling does not receive any radiative
correlation therefore the renormalized tetrahedral coupling is just a rescaling of the
bare one by the wave function constant. Using the tilde couplings, we write

Qg D
Q�

Zq=2
: (5.16)

The renormalized tetrahedral coupling does not run, hence it is just a parameter
which can be adjusted. On the contrary, the pillow and double trace couplings do run.
We denote by Qg1; Qg2 the running dimensionless couplings at scale k (we suppress
the dependence in k in order to simplify the notation). We will still keep q generic
in some formulae, but we will remember that the pillow and double trace couplings
are four point couplings. The Qgi s are the amputated 1PI four point functions at zero
momentum divided by Z2. In terms of the four point kernel (5.8), we get

Qgi D �4Ii

.4�/d=2�.�/2Z2
; ��4I1P1 � �4I2P2 D G�1G�1 K

1 �K
: (5.17)

As P1 and P2 are mutually orthogonal, the two cases i D 1; 2 are identical up to
substituting Q�2 by .q � 1/ Q�2.

Expanding the series in (5.17), we obtain the bare expansion: Qg1 is a sum over
“sausage graphs” depicted in Figure 12. A sausage graph is a sequence of vertical irre-
ducible pieces connected by pairs of horizontal edges. The vertical pieces are either
ladder rungs with two tetrahedral couplings or bare vertices �1.

D C C C

Figure 12. The bare series up to quartic order (the blue vertices represent �1).
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Each graph has a (log divergent) amplitude:

A.G / D
k�2
Z

ƒ�2

�

Y

e2G

d˛e˛
��1
e

� 1
�P

T �G

Q

e…T
˛e

�d=2
; (5.18)

where e 2 G runs over the edges of G and T over the trees in G , see [74, 92]. The
graph consisting in only a bare vertex has amplitude 1. We denote by S the set of
connected sausage graphs with at least two internal vertices, and nt .G / respectively
n1.g/ the numbers of tetrahedral vertices and blue vertices of G . Then,

Qg1. Q�1; Q�/ D
Q�1
Z2

C
X

G 2S

.�1/1Cn1.G /
� Q�
Zq=2

�nt .G /� Q�1
Z2

�n1.G /

A.G /: (5.19)

Observe that this is naturally a series in the renormalized tetrahedral coupling Qg D
Z�q=2 Q�. The bare expansion for g2 is identical up to replacing Q�2 by .q � 1/ Q�2.

The graphs with no internal �1 vertex are special. They might have no external
�1 vertex either (ladders), or one external �1 vertex (caps) or two external �1 vertices
(double caps), as depicted in Figure 13.

Figure 13. Ladders, caps and double caps.

Let us denote by Ur ; Sr ; Tr the amplitude of the ladder, cap respectively double
cap with 2r tetrahedral vertices, and let us define the generating functions:

U. Qg/ D
X

r�1
Qg2rUr ; S. Qg/ D

X

r�1
Qg2rSr ; T . Qg/ D

X

r�0
Qg2rTr ; (5.20)

where, in S. Qg/ and T . Qg/, we have not included any coupling constants for the �1
vertices. The crucial fact is that the amplitude of any sausage factors at the internal �1
vertices, thus

Qg1 D � U. Qg/C
� Q�1
Z2

� Œ1C S. Qg/�2

1C Q�1

Z2T . Qg/
: (5.21)

This gives a particularly simple ˇ function and short computation yields

ˇ Qg1
D k@k Qg1 D ˇ

Qg
0 � 2ˇ Qg

1 Qg1 C ˇ
Qg
2 Qg21; (5.22)
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with the coefficients of the ˇ function given by

ˇ
Qg
0 D �k@kU C 2

U

1C S
k@kS � U 2

.1C S/2
k@kT; (5.23a)

ˇ
Qg
2 D � 1

.1C S/2
k@kT; (5.23b)

ˇ
Qg
1 D � 1

1C S
k@kS C U

.1C S/2
k@kT: (5.23c)

This result is an all order result in the couplings: this is the complete ˇ function
at leading order in 1=N . The important remark is that the ˇ functions are quadratic.
The coefficients ˇ Qg

0;1;2 are series in the tetrahedral coupling Qg. While it is not obvious,
they are finite term by term in the limit k ! 0, see [9].

5.2. Fixed points

Let us recapitulate where we stand. Starting with the UV scaling � D d=2� d=q < 1,
hence field dimension�� D d=q, we obtained the following results.

Wave function. Tuning the renormalized mass to zero and lifting the cutoffs, the
two-point function is

G.p/ D 1

Zp2�
; 1 D 1

Z
C Qg2
g2c
;

1

g2c
D
�.�/�.1� �/�

�

d
2

� �
�q�1

��
�

d
2

C �
� ; (5.24)

that is the anomalous field dimension �? is 0.

Tetrahedral coupling. The tetrahedral coupling has a finite flow, that is the renor-
malized coupling is a rescaling of the bare one Qg D Z�q=2 Q�. In particular, we have

Z D
�

1 � Qg2
g2c

��1
; � D QgZ2: (5.25)

There are two cases, depicted in Figure 14: Q� real and Q� purely imaginary.

• Q� (and Qg) real. Q�. Qg/ is invertible to Qg. Q�/ for any Q� and g < gc .

• Q� (and Qg) imaginary. Q�. Qg/ is invertible to Qg. Q�/ for j�j < 33=22�4gc and jgj <
3�1=2gc (the end point of the blue curve in Figure 14.

Pillow and double-trace couplings. At leading order in 1=N but at all orders in the
couplings, the ˇ functions are

ˇ Qg1
D k@k Qg1 D ˇ

Qg
0 � 2ˇ

Qg
1 Qg1 C ˇ

Qg
2 Qg21; (5.26a)

ˇ Qg2
D k@k Qg2 D ˇ

p
.q�1/ Qg

0 � 2ˇ
p
.q�1/ Qg

1 Qg2 C ˇ
p
q�1 Qg

2 Qg22; (5.26b)
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gc

Figure 14. Bare and renormalized tetrahedral couplings (in blue the purely imaginary case).

where ˇ Qg
0 ; ˇ

Qg
1 and ˇ Qg

2 are power series in Qg2. At first orders they are [9]

ˇ
Qg
0 D

�

2
�

�

d
4

�2

�
�

d
2

�

�

Qg2 C O. Qg4/; ˇ
Qg
1 D O. Qg2/; ˇ

Qg
2 D

�

2
�

�

d
4

�2

�
�

d
2

�

�

C O. Qg2/: (5.27)

It follows that, non-perturbatively, ˇ Qg1
admits two fixed points:

Qg1˙ D
ˇ

Qg
1 ˙

q

.ˇ
Qg
1 /
2 � ˇ Qg

0ˇ
Qg
2

ˇ
Qg
2

D ˙
p

� Qg2 C O. Qg2/; (5.28a)

ˇ0
g1
. Qg1˙/ D ˙2

q

.ˇ
Qg
1 /
2 � ˇ Qg

0ˇ
Qg
2 D ˙

p

� Qg2
�

4
�

�

d
4

�2

�
�

d
2

�

�

C O. Qg3/: (5.28b)

The same holds for Qg2 substituting Qg with
p
q � 1 Qg, consequently we obtain four

lines of fixed points parameterized by the marginal coupling Qg.

Stability. The critical exponents are purely imaginary for Qg real and not too large,
that is the fixed points are limit cycles (see Appendix B) and no trajectory can reach
them.

The situation, depicted in Figure 15, is much more interesting for a purely imagin-
ary tetrahedral coupling Qg D ˙ i j Qgj. In this case, the fixed point values of the pillow
and double trace couplings are real (for Qg not too large) and the critical exponents are
also real. In particular, g1C > 0 and ˇ0

g1
.g1C/ > 0, that is, .g1C; g2C/ is an infrared

attractive fixed point (both the pillow and the double trace couplings are irrelevant).
The tetrahedral invariant does not have any positivity property, but the pillow and

double-trace do. It turns out that at the infrared fixed point .g1C; g2C/, the real part
of the action is bounded from below.

Comparison with � D 1; d D 4 � ". The case Qg real is very similar to the Wilson–
Fisher-like fixed point discussed in (5.2). In d D 4� " the tetrahedral coupling is not
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Figure 15. Flows in the .g1; g2/ plane in the case of imaginary tetrahedral coupling.

marginal (see (5.2)), but has a flow driven by the wave function. The flow has a fixed
point for a real value of the tetrahedral coupling.

The key point is that for � D d=4 the tetrahedral coupling is genuinely marginal
and we are free to chose it purely imaginary. This leads to a stable infrared fixed point.

5.3. The infrared fixed point CFT

The infrared fixed point .g1C; g2C/ should be described by a melonic CFT. We will
therefore attempt to identify the scaling dimensions and OPE coefficients of this CFT
along the lines discussed in Section 2. We consider the four point function

1

N 6
h�A.x1/�A.x2/�B.x3/�B.x4/i

D 1

N 3
h�A.x1/�A.x2/i

1

N 3
h�B.x3/�B.x4/i

C 1

N 6
h�A.x1/�A.x2/�B.x3/�B.x4/i12!34: (5.29)

From (4.12), the second term writes in terms of the four point kernel

1

N 6

Z

y1y2

� 1

1 �K
�

AAIBB
.x1; x2I y1; y2/.Gy1x3

Gy2x4
C Gy1x4

Gy2x3
/; (5.30)

and from (5.8), the four point kernel at leading order in 1=N is K D K1P1 CK2P2

with

P1 D 3
� 1

N 2
ıp � 1

N 3
ıd

�

; P2 D 1

N 3
ıd

and

K1.x1; x2I y1; y2/ D Gx1z1
Gx2z2

Œ�2Gq�2
z1z2

� �1ız1z2
�ız1y1

ız2y2
; (5.31a)

K2.x1; x2I y1; y2/ D Gx1z1
Gx2z2

Œ.q � 1/�2Gq�2
z1z2

� �2ız1z2
�ız1y1

ız2y2
: (5.31b)
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Taking into account that .P1/AAIBB D 0 and .P2/AA;BB D N 3, we obtain that only
the term proportional to P2 contributes

1

N 3

Z

y1y2

� 1

1 �K2

�

.x1; x2I y1; y2/.Gy1x3
Gy2x4

CGy1x4
Gy2x3

/: (5.32)

Recalling that the two point function in direct space is

Gxy D �.��/

2d�2���d=2�
�

d
2

���
�

Z

1

jx � yj2��
; (5.33)

we obtain that the eigenvalues of the kernel k.�; J / (see Section 2) are

k.�; J / D .q � 1/ Qg2 �.��/q�2�
�d
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2
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�� � ��J
2

�

�
�

d ��� � ��J
2

�

�
�

d
2

��� C �CJ
2

� ; (5.34)

with �� D d=q. The dimensions of the primary operators as well as the OPE coeffi-
cients can be computed starting from this formula. This study has been started in [9]
and the dimensions of the spin zero primaries have been analyzed. Surprisingly, for an
imaginary (not too large) tetrahedral coupling one finds only real dimensions, while
for a real tetrahedral coupling one finds complex dimensions of the form d=2C i˛.

An interesting question at this stage is whether this large N CFT is unitary. In
order to answer this question, one needs to check whether the leading order OPE
coefficients are real. Pursuing this line of inquiry is a very interesting direction of
research.

A. The degree

In this appendix we review the degree of edge colored graphs [50, 60] and reproduce
the results cited in the main body of this paper. All these results can be found in the
literature.

We start by recalling some facts about ribbon graphs. They can be defined formally
as combinatorial maps with an additional sign associated to the edges [103] or as
graphs embedded in surfaces. Being embedded they have vertices, edges and two-
dimensional cells which we call faces. A ribbon graph G can always be projected
onto the plane (see Figure 16). The projection of G consists in
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• V.G/ ribbon vertices;

• E.G/ ribbon edges whose sides we call strands. The edges can be straight (par-
allel strands) or twisted (twisted strands) and can cross. There is at most one twist
per edge;

• F.G/ faces, that is closed strands.

The projection onto the plane is not canonical: by flipping the orientation on some of
the vertices, some edges acquire twists and some twists are straightened out.

Figure 16. Examples of ribbon graphs with 4 vertices, 6 edges and, from left to right, 2, 2 and 3
faces. From left to right they are embedded into the torus, the Klein bottle and the real projective
plane RP 2.

The Euler characteristic of a connected ribbon graph G is

V.G/ �E.G/C F.G/ D 2 � k.G/

with k.G/ the non-orientable genus of G. The genus of a disconnected graph is the
sum of the genera of its connected components. A connected ribbon graph with non-
orientable genus k is embedded16 in a surface with non-orientable genus k, that is:

• if k D 0 then the graph is planar and is embedded in the sphere;

• if k is odd then the graph can only be embedded in a non-orientable surface;
ny projection onto the plane will have crossings and twists (see Figure 16, the
rightmost case);

• if k is even and non-zero, then either the graph is

– orientable, that is, embedded in an orientable surface of genus k=2. It can
be projected onto the plane with only crossing, but no twists (see Figure 16
leftmost case);

– non-orientable, that is, embedded in a non-orientable surface of non-orientable
genus k (see Figure 16, the middle case). Any projection onto the plane will
required both crossings and twists.

16To be precise, it is embedded in a surface with non-orientable genus at least k and the
surface is orientable or not depending on whether the graph is orientable or not.
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The edges in a ribbon graph ca be deleted (see Figure 17). The deletion of a ribbon
edge consists in cutting the edge and joining together the strands at each end of the
edge.

Figure 17. Deletion of an edge.

Let us delete iteratively a maximal set of edges in a connected graph such that at
each step the edge we delete separates two different faces. This can not disconnect the
graph. The number of edges deleted is F.G/� 1. The remaining edges connect all the
vertices, hence there are at least V.G/ � 1 of them. It follows that the non-orientable
genus of a connected ribbon graph is a non-negative integer.

Proposition 1. Consider a connected ribbon graph G and denote by G0 the graph

obtained by deleting an edge e. Then,

• eitherG0 consists in two connected componentsG0
1 andG0

2. In this case the genus

is distributed between the connected components: k.G/ D k.G0
1/C k.G0

2/,

• or G0 is connected an in this case the genus can not increase: k.G0/ � k.G/.

Proof. In the first case,E.G0/D E.G/� 1;V .G0/D V.G/, F.G0/D F.G/C 1 and
the vertices, edges and faces are distributed between the connected components ofG0.
Then

4 � k.G0
1/� k.G0

2/ D V.G0/ �E.G0/C F.G0/ D 2C 2 � k.G/:

In the second case,E.G0/DE.G/� 1;V .G0/DV.G/ andF.G0/�F.G/� 1, hence

2 � k.G0/ D V.G0/ �E.G0/C F.G0/ � 2 � k.G/:

Figure 18. A triangle with twisted edges in a ribbon graph.

Proposition 2. A triangle in a ribbon graph is a cycle of exactly three edges. If a

connected ribbon graph G contains a triangle of twisted edges (see Figure 18), then

k.G/ � 1.
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Proof. We delete one by one all the edges incident to the triangle. In the process,
the graph G splits into several connected components G�. Let us denote by G1 the
connected component consisting in the triangle. It has 3 (bivalent) vertices, 3 edges
and only 1 face, hence k.G1/ D 1. Under the deletions, the genus either decreases or
is distributed between connected components, thus

k.G/ �
X

��1
k.G�/ � k.G1/ D 1:

A.1. The degree of edge colored graphs

Edge colored graphs have been extensively discussed in detail in the literature [50,55,
60]. We review here some of their properties.

Definition 1. An edge .DC 1/-colored graph G is a graph withDC 1-valent vertices

and whose edges have a color 0; 1; : : : ;D such that all the edges incident at a vertex

have different colors.

The faces with colors .ij / of G are the alternating cycles formed by edges with

colors i and j . We denote by V.G / the number of vertices and F.G / the number of

faces of G .

Let us consider a connected edge .DC 1/-colored graph G . We can project it onto
the plane by ordering the edges 0; 1; : : : ;D (or any other order) clockwise around the
vertices. There areDŠ cyclic permutations� over the colors .0; : : :D/. We call jackets

of G the ribbon graphs indexed by � obtained by keeping all the vertices and edges of
G but only the faces with colors .�p.0/�pC1.0//. In a ribbon graph representation in
which all the edges turn clockwise (following �) around the vertices, all the edges are
twisted. Each of these ribbon graphs has a non-orientable genus k.�/. The reduced

degree (or simply the degree) of G is the non-negative number

O!.G / D 1

2.D � 1/Š
X

�

k.�/ � 0: (A.1)

The reduced degree of a disconnected graph is the sum of the reduced degrees of its
connected components.

Proposition 3. The total number of faces of a connected edge .DC 1/-colored graph

G is

F.G / D D C D.D � 1/

4
V.G / � O!.G /:

In particular, the reduced degree is a non-negative half-integer.
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Proof. Every face .ij / appears in 2.D� 1/Š cycles: the .ij : : :/ cycles and the .i : : :j /
cycles. Denoting F .ij /.G / the number of faces with colors .ij / of G , we have

V.G / � .D C 1/

2
V.G /C

D
X

pD0
F .�

p.0/�pC1.0//.G / D 2 � k.�/

H) F.G / D D C D.D � 1/
4

V.G / � 1

2.D � 1/Š
X

�

k.�/:

The discussion so far applies for .DC 1/-colored graphs withD � 2. ForD D 2,
the edge colored graphs are trivalent ribbon graph and the degree is just the genus. The
fundamental difference between the D D 2 and D � 3 cases comes from the family
of graphs of degree zero. ForD D 2, they are the (edge 3-colored) planar graphs. For
D � 3 they are melonic graphs.

Definition 2. The ring graph made of an edge of color i closing onto itself and having

D faces (with colors .ij / for j ¤ i ) is melonic.

All melonic graphs are obtained by inserting iteratively two vertices connected

by D parallel edges arbitrarily on the edges of lower order melonic graphs. Melonic

graphs are always connected.

This definition pertains to vacuum graphs. Cutting any edge in a melonic vacuum
graph one obtains a melonic two point graph. Melonic two point graphs are such
that their one particle irreducible components factor into D parallel two point func-
tions [61].

Figure 19. Melonic graphs at first orders

Proposition 4. For D � 3, a connected edge .D C 1/-colored graph G has reduced

degree zero if and only if it is melonic.

Proof. As the insertion of two vertices connected byD parallel edges brings
�

D
2

�

new
faces, it does not change the degree. It follows that melonic graphs have degree zero.

For the converse statement, we proceed by induction on the number of vertices.
The faces are cycles with alternating colors hence have even length. We denote by
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F2p.G / the number of faces of length 2p of G . A vertex contributes
�

DC1
2

�

corners17

to the faces, thus
P

p�0 2pF2p.G / D .DC1/D
2

V.G /. On the other hand,

O!.G / D D C D.D � 1/
4

V.G /C
X

p�1
F2p.G /;

hence,

O!.G / D D C
X

p�1
F2p.G /

�

p
D � 1
D C 1

� 1
�

:

As D � 3, the coefficient of F2p.G / is non-negative for all p � 2. It follows that, if
O!.G / D 0 then F2.G / > 0, that is the graph has at least a face of length exactly 2.

Consider a face of length 2 of G formed by two edges of colors i and j which join
two vertices v andw. If v and w are joined by exactly one edge for all the colors, then
the graph is melonic. Let a color c such that two distinct edges of color c are incident
to v andw. We call them ecv and ecw . We consider the jacket � D .icj : : : /. This jacket
is planar, k.�/ D 0. The two faces on the two sides of ecv have colors .i; c/ and .j; c/
hence are different. Deleting ecv , we obtain a connected ribbon graph J0

� having one
less face than � , and (using Proposition 1) k.J0

�/ D k.�/ D 0. We now delete ecw to
obtain J00

� . This deletion increases the number of faces by 1, F.J00
�/ D F.J0

�/ C 1.
If J00

� were connected, we would have 2 � k.J00
�/ D 4 H) k.J00

�/ D �2 which is
impossible. Hence, the deletion of ecv and ecw disconnects the graph G .

Consider the graph obtained from G by deleting ecv and ecw and reconnecting the
half edges directly in each connected component respecting the colors. It has the same
numbers of edges and vertices as G ,D more faces (all the faces going through ecv and
ecw are split) and two connected components G1 and G2, thus

O!.G1/C O!.G1/ D 2D C D.D � 1/
4

V.G / � .F CD/ D O!.G / D 0;

hence both G1 and G2 have degree zero and strictly fewer vertices than G . Iterating,
we conclude that G contains two vertices connected by D parallel edges.

A.2. The SYK degree

Let D � 3 and denote by G 0 the (possibly disconnected) edge D-colored graph
obtained from a connected edge .D C 1/-colored graph G by erasing the edges of
color 0.18 Being an edge colored graph, G 0 has a reduced degree O!.G 0/ (defined as
in (A.1), but with D shifted to D � 1).

17A corner of a vertex is a couple of half edges ¹i; j º.
18For D D 3, G 0 is a 3-colored graph, hence a trivalent ribbon graph.



R. Gurau 204

Proposition 5. The SYK degree of a connected edge .D C 1/-colored graph G

�.G / D O!.G / � O!.G 0/; (A.2)

is a half-integer which obeys the bounds

1

D
O!.G / � �.G / � O!.G /: (A.3)

The SYK degree is non-negative and it is zero if and only if G is melonic.

Proof. In order to prove the bounds, we observe that G has DŠ jackets and G 0 has
.D � 1/Š jackets. There is a D to one correspondence between the jackets of G and
those of G 0 obtained by erasing the color 0, that is � D .0i : : : j / ! .i : : : j / D �0.
In the associated jacket of G this corresponds to deleting the edges of color 0. Observe
that the graph corresponding to �0 (which is a jacket of G 0) might be disconnected.
The genus can not decrease with the deletions, hence

P

� k.�/ � D
P

�0 k.�0/. We
rewrite the SYK degree as

�.G / D 1

2.D � 1/Š
X

�

k.�/ � 1

2.D � 2/Š

X

�0

k.�0/

D 1

2D.D � 2/Š

h

X

�

k.�/ �D
X

�0

k.�0/
i

C 1

2DŠ

X

�

k.�/:

The last statements follows from the bounds.

If G is a melonic graph, then G 0 is a union of melonic graphs. If G 0 happens to
have only one connected component, then G can be uniquely reconstructed from it:
in the iterative construction of G 0 one ads an edge of color zero between the pair of
vertices inserted at each step.

A.3. The CTKT degree

The graphs of the CTKT model are made of four valent stranded vertices connected by
edges with three strands as depicted in Figure 20. The faces are the closed strands and
have a color. From left to right in Figure 20 the vertices are the tetrahedral, the pillow

and the double trace vertex. There are three kinds of pillow vertices distinguished
by the special color which is transmitted from on pair of half edges to the other. We
denote by Vt .G /, Vp.G /, and Vd .G / the numbers of tetrahedral, pillow and double
trace vertices and F.G / the number of faces of a graph G .

We aim to define jacket ribbon graphs which will allow us to count the faces. We
can not do this naively due to the pillow and double trace vertices. So, we first get
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Figure 20. Vertices and edges of the CTKT model

Figure 21. Resolution of the pillow and double trace vertices in terms of the tetrahedral vertex

rid of them. The pillow and double trace vertices can be resolved in terms of minimal
configurations of the tetrahedral vertex. This is depicted in Figure 21.

For any graph G , we denote by zG the graph obtained by replacing all the pillow
and double trace vertices by their minimal resolutions in terms of tetrahedral vertices.
We call this the refinement of G . The refined graph zG has only tetrahedral vertices and

Vt .zG / D Vt .G /C 2Vp.G /C 4Vd .G /; F.zG / D F.G /C Vp.G /C 3Vd .G /:

The refined graph zG admits three jacket ribbon graph Ji obtained by erasing the
faces of the color i . We denote their non-orientable genera by k.Ji /. We define the
CTKT degree of G (and of its refinement zG ) as

!.G / D 1

2

X

i

k.Ji / � 0: (A.4)

Proposition 6. The number of faces of a CTKT graph is

F.G / D 3C 3

2
Vt .G /C 2Vp.G /C 3Vd .G / � !.G /:

Proof. Counting the faces of the refined graph zG by jacket we find F.Ji/ D 2 �
2V.zG / � k.Ji / hence F.zG / D 3C 3

2
Vt .zG / � !.G /. Expressing everything in terms
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of the numbers of vertices and faces of G we find

F.G / D 3C 3

2
Vt .zG / � Vp.G / � 3Vd .G / � !.G /

D 3C 3

2
Vt .G /C 2Vp.G /C 3Vd .G / � !.G /:

The CTKT degree is a half-integer. The graphs of degree zero are a slight gener-
alization of the melonic graphs.

Definition 3. We call a connected CTKT graph G a melon-tadpole graph if its refine-

ment zG is a melonic graph. Such a graph is obtained by iterated insertions of melons

and tadpoles into melons and tadpoles such that all the tadpoles are based at pil-

low or double trace vertices and all the melons have pairs of tetrahedral vertices. An

example is presented in Figure 22

Figure 22. A melon-tadpole graph.

Proposition 7. A CTKT graph has reduced degree zero if and only if it is a melon-

tadpole graph.

Proof. As !.G / D !.zG /, this comes to proving that zG has zero degree if and only if
it is melonic. The proof follows the one of Proposition 4, but with some twists. The
main difference is that faces can now have odd length.

Assume that the connected graph zG with only tetrahedral vertices has zero degree.
Denoting Fq.zG / the number of faces of length q of zG and counting corners, we have
P

q�1 qFq.zG / D 6V.zG /. On the other hand, !.zG / D 3 C 3
2
V.zG / �

P

q�1 Fq.zG /,
hence we get

!.zG / D 3C
X

q�1

�q

4
� 1

�

Fq.zG /:

As the faces can now have odd length, q D 1; 2, and 3 would have negative coef-
ficients in the above formula. However, we have the following intermediate result.

Lemma 1. If a connected CTKT graph zG with only tetrahedral vertices has reduce

degree zero, then F1.G / D F3.G / D 0.
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Proof. If zG has a face of length 1 then it has a tadpole. We build the graph zG 0 by
replacing the tadpole by an edge. This reduced both the number of edges and faces
by 1, hence !.zG / D !.zG 0/C 1=2 � 1=2.

Now, assume zG has a face of length 3 and no tadpoles. Since zG can not have a
tadpole, then the face of length 3 forms a triangle (it can not be a tadpole at the end
of a dipole). In the jacket not containing the face of length 3 this leads to a triangle of
twisted edges. From Proposition 2, this jacket can not be planar.

Thus, zG must have a face of length 2 and we conclude by the same induction as
in Proposition 4.

B. The renormalization (semi-)group

We briefly review the Wilsonian renormalization group [87] and use this opportunity
to introduce some notation.

The one particle irreducible effective action. The generating functional of connec-
ted moments of a theory with action S Œ�� is

eW ŒJ �7 D
Z

Œd��e�S Œ��CJ ��;

ıW

ıJx
7 D h�xiJ � �xŒJ �;

ı2W

ıJxıJy
D h�x�yiJ

c D Gxy ŒJ �;

where this time we consider a local source Jx . Going on shell means setting J D 0.
We denote by J Œ�� the solution of �ŒJ � D �, that is J Œ�� is the source that ensures
that the expectation of the field is exactly �. The Legendre transform of W is

� Œ�� D � � J � W ŒJ �;

ı�

ı�x
D Jx;

ı2�

ı�xı�x
D G�1Œ��xy D .G ŒJ ��1jJDJ Œ��/xy:

Going on shell means setting � D �0 solution of the equations of motion ı�=ı� D 0.
From now on, we consider that �0 D 0, which can be guaranteed by taking an even
action. The effective action can be written as a functional integral

e��Œ�� D
Z

Œd �e�S Œ�C �CJ Œ��� ; h iJ Œ�� D 0:

In this form, J Œ�� is fixed by the requirement that, for the given background �, the
expectation of  is zero. The above functional integral can be evaluated in a Feynman
expansion:

e��Œ�� D e�S Œ��

Z

d e� 1
2 S 00Œ�� �S 0Œ�� �P

n�3
1
nŠ S .n/Œ�� nCJ Œ�� :
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We have � Œ�� D S Œ��C N�1PI
Œ��, where � N�1PI

Œ�� is the sum over connected vacuum
graphs of  with propagator .S 00Œ��/�1, vertices �S 0Œ�� and �S .n/Œ�� n; n � 3

and a counterterm J Œ�� which ensures that h iJ Œ�� D 0. Observe that the graphs
contributing to N�1PI

Œ�� must have edges (i.e., the bare vertices are excluded).

D 0

Figure 23. The 1PI decomposition of a graph.

These graphs can always be decomposed along one particle irreducibly edges (that
is edges that, when cut, disconnect the graph), as depicted in Figure 23. Every graph is
then a tree with vertices the one particle irreducible kernels. Due to the counterterm,
the amplitude of any tree having a univalent leaf is zero, hence only the trees with
exactly one vertex survive. The tree with one vertex is the sum over all the one particle
irreducible graphs. This can be written formally as

e��Œ�� D
Z

1PI

d e�S Œ�C �:

There is a slight subtlety here, related to the bare vertices. Let us consider an
action consisting in a free part, which is quadratic in the field, and an interaction

S Œ�� D 1

2
� � C�1 � � C S intŒ��:

The interaction S intŒ�� is conditioned to not have a term proportional to the free
part, but it can have other quadratic terms, most notably a mass term. The functional
x�1PI

Œ�� contains only graphs with edges hence it does not contain bare vertices. One
can include them in the “full 1PI action” � 1PIŒ�� D S intŒ��C x�1PI

Œ��. The effective
action writes

� Œ�� D S Œ��C x�1PI
Œ�� D 1

2
� � C�1 � � C � 1PIŒ��:

We define the self energy, that is the amputated one particle irreducible 2 point func-
tion as

†Œ��xy D � ı2� 1PI

ı�xı�y
; G�1Œ��xy D .C�1/xy � †Œ��xy :

The reason to include the bare vertices in the 1PI generating function is that, with
this definition, the self energy includes the mass vertex (and also additional quadratic
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vertices, if they exist). Observe moreover that

e��Œ�� D
Z

1PI

d e�S Œ�C � D e� 1
2
��C�1��

Z

1PI

d e� 1
2
 �C�1� CS intŒ�C �:

Renormalization group flow and fixed points. From now on, we consider the free
part of the action to be

1

2

Z

ddx�.x/.�@2/��.x/; C D 1

.�@2/� :

with � � 1. The scaling dimension of the field �.�x/ D �����.x/ is dictated by
the free part to be�� D .d � 2�/=2. Observe that the dimension of the field is Œ�� D
Œmomentum��� .

We introduce an ultraviolet cutoff ƒ and an infrared one k and we replace C
by Cƒ

k
, the covariance with cutoffs.19 In order to simplify the notation we some-

times suppress the UV cutoff, but one should remember that for now the UV cutoff
is present.20 We parametrize the renormalization group flow by the effective action at
scale k:

e��k Œ�� De� 1
2
��.Ck/

�1��
Z

1PI

Œd �e� 1
2
 �.Ck/

�1� CS intŒ�C �;

�kŒ�� D 1

nŠ

X

n�2

Z

dx1 : : : dxn�
.n/

k
.x1; : : : xn/�.x1/ : : : �.xn/; (B.1)

where �.n�3/
k

is the n-point amputated 1PI correlation and �.2/
k

is the inverse two
point function

�
.2/

k
D .Gk/

�1 D .Ck/
�1 �†k ;

with Gk and †k the two point function and self energy with cutoffs. It follows that
the inverse two point function in momentum space takes the form21

G�1
k .p/ D mk C Zkp

2� C rest;

19A common choice is to use multiplicative momentum cutoffs Cƒ
k
.p/ D C.p/�ƒ

k
.p/,

where �ƒ
k
.p/ D ‚.p2=ƒ2/ �‚.p2=k2/, and ‚.u/ is some approximated step function cut-

ting off u � 1.
20The cutoffs do not spoil the mass dimension of the field. We have

C�1
k .x � y/ D

Z

p

p2�

‚.p2=ƒ2/�‚.p2=k2/
e� i p.x�y/;

hence C�1
��1k

.�.x � y// D ��d�2�C�1
k
.x � y/ and the quadratic part is invariant under

x ! x0 D �x; k ! k0 D ��1k.
21The rest term is p2O.p2=k2/ for � D 1, while for � < 1 it vanishes when lifting the

cutoffs.



R. Gurau 210

wheremk D G�1
k
.0/ is the renormalized mass parameter andZk is the wave function

renormalization. The free part of the effective action � � G�1
k

� � is dimensionless
hence the renormalized field

p
Zk� has dimension22 �� . The anomalous dimension

of the field is

�k D �1
2
k@k lnZk; �k � O.g2/:

It is customary to expand the interaction part of the effective action on a basis of
local operators:23

�kŒ�� D 1

2
� �G�1

k � � C
X

n;J

kd�J�n��Z
n=2

k
g
.nIJ/
k

Z

ddx@J�n.x/;

where @J�n.x/ denotes J derivatives acting on n fields in some order. The explicit
Zk factors in the interaction make g.nIJ/

k
dimensionless. The ˇ functions are the scale

derivatives of the dimensionless couplings:

k@kg
i
k D ˇi .g/; ˇi .g/ D .�i � d/gik CO.g2/;

where i D .n; J / and �i D J C n�� is the classical dimension of @J�n.x/. We
obtain a fixed point .�?; g?/ if

• limk!0mk D 0, which requires to tune the bare mass in terms of the ultraviolet
cutoffƒ;

• limk!0 �k D �? and limk!0 ˇ
i .g?/ D 0.

Taking the ultraviolet cutoff to infinity and tuning the renormalized mass to zero,
the only dimensionful parameter we are left with at the fixed point is k. We have

Zk
k!0� k�2�? and

Gk.x � y/ D k2��

Zk
H.kjx � yj; g?/ k!0� k2��C2�?H.kjx � yj; g?/;

withH some dimensionless function of the dimensionless argument kjx � yj and the
fixed point couplings g?. Taking k ! 0, we get the physical two point function

Gk.x � y/
k!0� c.g?/

jx � yj2.��C�?/
:

22That is, Œ
p
Zk�� D Œmomentum��� and under a rescaling of both the positions and the

infrared cutoff we have
p

Z��1k�.�x/ D ����
p
Zk�.x/.

23This is done by Taylor expanding the fields in (B.1) around a position, say x1:

�.xi / D
X

q�0

1

qŠ

X

N�D�1:::�q

.xi � x1/
N�@ N��.x1/:
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In order to explore the neighborhood of the fixed point, let us denote it by �a and
the eigenvalues of the stability matrix by @ˇi

@gj
.g?/D P�1

ia �aPaj . At linear order in the
perturbation gi D gi I? C hi .k/ around the fixed point, we have

hi .k/ D P�1
ia

� k

k0

��a

Pajhj .k0/;

with k0 the scale of the initial condition. Thus,

• if Re.�a/ > 0, then the eigendirection is irrelevant (the perturbation vanishes for
k ! 0);

• if Re.�a/ < 0, then the eigendirection is relevant (the perturbation grows for
k ! 0);

• if Re.�a/ D 0, then

– if Im.�a/D 0 the eigendirection is marginal and one gets a line of fixed points;

– if Im.�a/ D 0 the eigendirection is a limit cycle; this case is somewhat patho-
logical because not only no trajectory can ever reach the fixed point, but also
the exact value of the coupling at any given scale is strongly dependent on the
initial condition.

The scaling dimensions of the operators are d C �a. In order to reach the fixed
point, one needs to fine tune the relevant couplings (the irrelevant ones flow by them-
selves to the fixed point values). A fixed point is predictive if it has a small number of
relevant directions.

The mass can be separated from the rest of the quadratic terms and treated as an
interaction term. It is always classically relevant:

k@kmk D �2�mk CO.g2/:

C. The wave function integral

Let us compute, for � D d=2 � d=q � 1, the integral

I D
1

Z

0

dt

1
Z

0

d˛

Qq�1
iD1 ˛

�
i

�Pq�1
iD1

Q

j¤i j̨

�d=2C1 e
�t

Qq�1
iD1

˛i
Pq�1

iD1

Q

j ¤i j̨ :

Changing variables to ˇ D ˛�1, rescaling all the ˇs by t and integrating out t yields

I D 1

�

Z

dˇ

Qq�1
iD1 ˇ

d=2���1
i

�Pq�1
iD1 ˇi

�d=2C1 e
� 1

Pq�1
iD1

ˇi :
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Introducing x D P

i ˇi and ˇi D six, the integral becomes

I D1

�

1
Z

0

dxx��2e� 1
x

1
Z

0

ds1

s1
s

d
2

��
1

1�s1
Z

0

ds2

s2
s

d
2

��
2 : : :

1�s1�����sq�3
Z

0

dsq�2s
d
2

���1
q�2 .1� s1 � : : : sq�2/

d
2

���1;

and, using

1�x
Z

0

dssa�1.1 � x � s/b�1 D .1 � x/aCb�1�.a/�.b/

�.aC b/
;

we get

I D �.1� �/
�

�
�

d
2

� �
�q�1

�
��

d
2

� �
�

.q � 1/
� D

�
�

1 � �
�

�
�

d
2

� �
�q�1

��
�

d
2

C �
� :
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