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Triply mixed coverings of arbitrary base curves:

quasimodularity, quantum curves

and a mysterious topological recursion
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Abstract. Simple Hurwitz numbers are classical invariants in enumerative geometry count-

ing branched morphisms between Riemann surfaces with fixed ramification data. In recent

years, several modifications of this notion for genus 0 base curves have appeared in the liter-

ature. Among them are so-called monotone Hurwitz numbers, which are related to the Harish-

Chandra–Itzykson–Zuber integral in random matrix theory and strictly monotone Hurwitz num-

bers which enumerate certain Grothendieck dessins d’enfants. We generalise the notion of

Hurwitz numbers to interpolations between simple, monotone and strictly monotone Hurwitz

numbers for arbitrary genera and any number of arbitrary but fixed ramification profiles. This

yields generalisations of several results known for Hurwitz numbers. When the target surface

is of genus one, we show that the generating series of these interpolated Hurwitz numbers

are quasimodular forms. In the case that all ramification is simple, we refine this result by

writing this series as a sum of quasimodular forms corresponding to tropical covers weighted

by Gromov–Witten invariants. Moreover, we derive a quantum curve for monotone and Gro-

thendieck dessins d’enfants Hurwitz numbers for arbitrary genera and one arbitrary but fixed

ramification profile. Thus, we obtain spectral curves via the semi-classical limit as input data

for the Chekhov–Eynard–Orantin (CEO) topological recursion. Astonishingly, we find that the

CEO topological recursion for the genus 1 spectral curve of the strictly monotone Hurwitz

numbers computes the monotone Hurwitz numbers in genus 0. Thus, we give a new proof that

monotone Hurwitz numbers satisfy CEO topological recursion. This points to an unknown rela-

tion between those enumerative invariants. Finally, specializing to target surface P1, we find

recursions for monotone and Grothendieck dessins d’enfants double Hurwitz numbers, which

enables the computation of the respective Hurwitz numbers for any genera with one arbitrary

but fixed ramification profile.
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1. Introduction

Hurwitz numbers are enumerations of branched morphisms between Riemann sur-

faces with fixed ramification data. They were first introduced by Adolf Hurwitz in the

late 19th century [26] as coverings of the Riemann sphere. As observed by Hurwitz

himself, these enumerations are closely related to the combinatorics of the symmetric

group [27]. In particular, this yields an elegant interpretation of Hurwitz numbers in

terms of factorisations in the symmetric group. In the last two decades Hurwitz num-

bers have branched out into several areas of mathematics, such as algebraic geometry,

Gromov–Witten theory, algebraic topology, representation theory of the symmetric

group, operator theory, integrable systems, random matrix models, tropical geometry

and many more.

Several specifications of Hurwitz numbers with respect to the genera of the

involved Riemann surfaces and the ramification profiles of the morphisms have proved

to be of particular interest. A common theme is to allow a finite number of arbitrary

but fixed ramification profiles and a simple ramification profile everywhere else. Hur-

witz numbers obtained by such specifications are called simple Hurwitz numbers.

Among the most important ones are single and double Hurwitz numbers.

Moreover, there are variants of Hurwitz numbers obtained by counting factorisa-

tions in the symmetric group as above, but with additional conditions. So, far, these

have been studied for target surfaces of genus 0. Two of the most important cases

are monotone and strictly monotone Hurwitz numbers, the latter of which are also

called Grothendieck dessins d’enfants Hurwitz numbers [11, 13, 21–24, 32]. Mono-

tone Hurwitz numbers appear as coefficients in the expansion of the HCIZ integral in

random matrix theory [21], while strictly monotone Hurwitz numbers are equivalent

to counting certain Grothendieck dessins d’enfants [1, 32].
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In [24] a combinatorial interpolation between simple, monotone and strictly mono-

tone Hurwitz numbers was introduced for genus 0 target surfaces and two arbitrary but

fixed ramification profiles. This interpolation is called triply mixed Hurwitz numbers.

In this work, we generalise the notion of triply mixed Hurwitz numbers to arbitrary

genera and any number of arbitrary but fixed ramification profiles. We study these

objects from several perspectives. This yields generalisations of various results known

for simple Hurwitz numbers, which in particular specialise to the extremal cases of

monotone and Grothendieck dessins d’enfant Hurwitz numbers.

1.1. Previous results

We summarize some of the previous results on several kinds of Hurwitz numbers,

which motivated our work.

Quasimodularity. Hurwitz numbers with a target surface of genus 1 can be expressed

in terms of so-called shifted symmetric polynomials (see Section 2.4.2). The Bloch–

Okounkov theorem [4], initially proved in the special cases corresponding to Hurwitz

numbers for which all ramification are simple [9, 29], implies that certain generating

series associated to shifted symmetric polynomials are quasimodular. This implies

that the generating series of (connected) Hurwitz numbers with a target surface of

genus 1 are quasimodular, as noted in [17]. From the discussion at the end of [22, Sec-

tion 3], it follows that monotone Hurwitz numbers are shifted symmetric polynomials

as well.

Refined quasimodularity and tropical covers. A common theme in tropical geo-

metry is to express geometric enumerative problems in terms of weighted graphs.

In [3, 5, 6], Hurwitz numbers with only simple ramification were related to so-called

tropical covers, i.e., piecewise linear maps between metric graphs. In particular, Hur-

witz numbers were expressed as a finite sum of tropical covers. This led to the conjec-

ture (which was proved in [19]), that each generating series obtained by considering

all covers with source curves of a fixed combinatorial type are quasimodular as well.

This refines the aforementioned result of [9, 29]. A tropical interpretation of mono-

tone and strictly monotone double Hurwitz numbers for genus 0 target surfaces was

first found in [11, 23] by equipping the involved tropical covers with an additional

colouring and labeling. Motivated by this work, Lewanski and the first author derived

a different interpretation of monotone and strictly monotone double Hurwitz numbers

for genus 0 target surfaces, which is more natural in the sense that it does not require

additional colouring and labeling. The involved covers are now weighted by 1-point

relative Gromov–Witten invariants.
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Topological recursion and quantum curves. In recent years, one of the most fruitful

interactions with Hurwitz theory has been from the viewpoint of Chekhov–Eynard–

Orantin (CEO) topological recursion (see [18]). CEO topological recursion associ-

ates to a spectral curve a family of differentials, which satisfies a certain recursion.

Remarkably enough, for many enumerative invariants one can find spectral curves,

such that the associated differentials encode these invariants as coefficients in local

expansions. One says that such an enumerative problem satisfies CEO topological

recursion. It turns out that certain kinds of Hurwitz numbers satisfy CEO topological

recursion [10–12, 15, 16, 18, 30, 35]. A direct consequence of CEO topological recur-

sion is an interpretation of the enumerative problem in terms of intersection products

on the moduli space of stable curves with marked points xMg;n.

One approach to CEO topological recursion which has been very successful is

in terms of so-called quantum curves. Given an enumerative problem, an associated

quantum curves is a certain partial differential equation, which is satisfied by a gener-

ating series of the initial enumeration. This quantum curve is often time an indication

for the shape of the spectral curve for which one then runs CEO topological recursion.

1.2. Results of this paper

First of all, we define our new enumerative object, i.e., triply mixed Hurwitz numbers

for target surfaces of higher genera. We then study several specifications of these

numbers from various perspectives.

Quasimodularity. When the target surface is of genus 1, we express triply mixed

Hurwitz numbers in terms of shifted symmetric functions. This allows to prove that

the generating series of triply mixed Hurwitz numbers are quasimodular forms of

mixed weight. Our results are summarised in Theorem 4.4.

Refined Quasimodularity. We use the aforementioned result of Lewanski and the

first author and derive an expression of monotone and Grothendieck dessins d’enfants

Hurwitz numbers for genus 1 target surfaces and only simple ramification in terms

of tropical covers. This enables us to prove that fixing the combinatorial type of

the source curve of the tropical covers yields a quasimodular form. This refines the

quasimodularity result for triply mixed Hurwitz numbers analogously to the simple

case. The tropical correspondence theorem is stated in Theorem 5.3 and the refined

quasimodularity statement in Theorem 5.11.

Quantum curves. Motivated by work of Liu, Mulase, and Sorkin [33], we derive a

quantum curve for monotone and Grothendieck dessins d’enfants Hurwitz numbers

for arbitrary genera and one arbitrary but fixed ramification profile. The result for the

monotone enumerations can be found in Theorem 6.4.
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A mysterious topological recursion. We consider the quantum curve for Grothen-

dieck dessins d’enfants Hurwitz numbers for genus 1 base curves. This quantum curve

yields a spectral curve via its semi-classical limit. We use this spectral curve as input

data for the CEO topological recursion. Astonishingly, we prove in Section 7 that

the expansion of the resulting differentials yield the monotone Hurwitz numbers for

genus 0 base curves, however for a different normalisation and different spectral curve

than the one in [10]. This points towards an unknown relation between the strictly

monotone numbers in genus 1 and the monotone ones in genus 0.

Further recursive procedures. We prove recursions for refinements of monotone

and Grothendieck dessins d’enfants double Hurwitz numbers for the target surface P 1,

which yields the Hurwitz numbers for any genera with one arbitrary but fixed ramific-

ation profile. This generalises the recursion for monotone orbifold Hurwitz numbers

in [11]. The explicit recursions can be found in Theorem 8.4.

Structure of the paper. In Section 2, we recall the relevant notions needed for our

discussion. Triply mixed Hurwitz numbers are introduced in Section 3. Quasimodu-

larity of these Hurwitz numbers is shown in Section 4 and refined quasimodularity

is discussed in Section 5. In Section 6 we derive quantum curves for both mono-

tone and Grothendieck dessins d’enfants Hurwitz numbers. In Section 7, we discuss

the special case of the quantum curve for Grothendieck dessins d’enfants Hurwitz

numbers with elliptic base curve and prove that CEO topological recursion for the

semi-classical limit of this quantum curve computes monotone Hurwitz numbers with

rational base curve. Finally, we derive the recursions for refinements of monotone

Grothendieck dessins d’enfants double Hurwitz numbers in Section 8. We collected

several examples of quasimodular generating series of triply mixed Hurwitz numbers

in Appendix A.

2. Preliminaries

2.1. Hurwitz numbers

In this section, we recall some of the basic notions of Hurwitz theory. We begin by

defining classical Hurwitz numbers in the most general sense. We also review some

of the specifications and variations on the definition of Hurwitz numbers relevant for

this paper.

2.1.1. Classical Hurwitz numbers. Let � be a composition, i.e., a finite sequence

of strictly positive integers. Denote by j�j the integer where � is a composition of and

let `.�/ be the number of parts of �. Write p.�/ for the ordered composition (parti-
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tion) corresponding to �. Given a permutation � 2 Sd , denote by c.�/ the partition

which corresponds to the cycle type of � .

Definition 2.1. Let g0; g � 0 be non-negative integers, d a positive integer and � D
.�1; : : : ; �n/ a tuple of compositions of d . In case

2g0 � 2 D d � .2g � 2/C
n

X

j D1

�

j�j j � `.�j /
�

;

we call .�1; : : : ; �n; ˛1; ˇ1; : : : ; ˛g ; ˇg/ a factorization of type .g; g0; d; �/ if the

following conditions are satisfied:

(1) �i ; ˛i ; ˇi 2 Sd ,

(2) �1 � � � �n D Œ˛1; ˇ1� � � � Œ˛g ; ˇg �,

(3) c.�i/ D p.�i /.

If additionally we have

(4) h�1; : : : ; �n; ˛1; ˇ1; : : : ; ˛g ; ˇgi acts transitively on the set ¹1; 2; : : : ; dº
we call the factorization connected. Denote by F �.g; g0; d; �/ and F .g; g0; d; �/ the

sets of factorizations respectively connected factorizations of type .g; g0; d; �/. The

Hurwitz numbers and connected Hurwitz numbers are defined by

h
�;g
g 0 .�

1; : : : ; �n/ D 1

dŠ
jF �.g; g0; d; �/j;

respectively

h
g
g 0.�

1; : : : ; �n/ D 1

dŠ
jF .g; g0; d; �/j:

Remark 2.2. Historically, Hurwitz numbers were first defined as an enumerative

problem counting ramified morphisms between Riemann surfaces: for a fixed compact

Riemann surface S of genus g, Hurwitz numbers count holomorphic maps �WS 0! S

(up to isomorphism), where S 0 is a compact Riemann surface of genus g0, such that

• � has ramification profile �1; : : : ; �n over n arbitrary, but fixed points on S ;

• each map is weighted by 1
j Aut.�/j

.

The connection to our definition, which is due to Hurwitz, is made by considering the

monodromy representations for the holomorphic maps involved (see [26, 27]).

Sometimes, we count Hurwitz numbers with labels in order to distinguish cycles

of the same length. The following definition makes this more precise. We note that

geometrically, this corresponds to labelling the preimages of all branch points.

Definition 2.3. A labeled factorization is a factorization as defined by Definition 2.1

together with a labelling:
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(5) the disjoint cycles of �i for all i are labeled with labels 1; : : : ; `.�i / such that

a cycle of �i with label j has length .�i /j .

We use an arrow to indicate that we are considering labeled factorizations and Hurwitz

numbers, just as we are using a dot to denote non-necessarily connected factorizations

and Hurwitz numbers.

Remark 2.4. The labeled Hurwitz numbers equal the ordinary Hurwitz numbers up

to a constant:
Eh�;g

g 0 .�
1; : : : ; �n/ D Aut� � h�;g

g 0 .�
1; : : : ; �n/

with Aut� D Q1
mD1

Qn
iD1 rm.�

i/Š and rm.�
i/ denotes the number of parts equal

to m in the partition �i .

2.1.2. Special instances of Hurwitz numbers. There are several special cases and

variations of the above general definition of classical Hurwitz numbers. A general

theme is to allow a few complicated partitions and force almost all partitions to be

simple, i.e., equal to the partition .2; 1; : : : ; 1/ (which corresponds to the conjugacy

class of transpositions). In the focus of this paper are the following two special cases

of Hurwitz numbers.

Definition 2.5. Let T WD .2; 1; : : : ; 1/ be the simple partition of size d . In the same

setting as in Definition 2.1, we consider two cases.

(a) If �2; : : : ; �n D T , we call the resulting Hurwitz number single base g Hur-

witz number and denote it by

H
�;g
g 0 .�

1
1; : : : ; �

1
`.�1/

/ WD h�;g
g 0 .�

1; T; : : : ; T /:

Note that the number r of simple partitions is then given by

r D 2g0 � 2C `.�1/ � d.2g � 1/:

(b) If g D 0 and �3; : : : ;�n D T , we call the resulting number a double Hurwitz

number and denote it by

h�
g 0.�

1; �2/ WD h�;0
g 0 .�

1; �2; T; : : : ; T /:

Note that the number r of simple partitions is then given by

r D 2g � 2C `.�1/C `.�2/:

2.1.3. Monotone and strictly monotone Hurwitz numbers. Two variants of Hur-

witz numbers are particularly relevant for this work: monotone and strictly monotone

Hurwitz numbers. In the following, we define those numbers.
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Definition 2.6. Let � D .�1; : : : ; �kC2/ be a tuple of compositions of d . We call

a (connected/labeled) factorization of type .0; g0; d; �/, where �3 D � � � D �kC2 D
.2; 1; : : : ; 1/ a (connected/labeled) monotone factorization of type .g0; �1; �2/ if it

satisfies the following additional property:

(6) the transpositions �i D .si ti / with si < ti satisfy

ti � tiC1 for i D 3; : : : ; k C 1.

We then define the monotone Hurwitz number h�
�;g 0.�

1; �2/ as the product of 1
dŠ

and the number of monotone factorisations of type .g0; �1; �2/ and similarly define

connected/labeled monotone double Hurwitz numbers. We define strictly monotone

double Hurwitz numbers, also called Grothendieck dessins d’enfant Hurwitz numbers,

by changing the monotonicity condition to a strict one:

(60) the transpositions �i D .si ti / with si < ti satisfy

ti < tiC1 for i D 3; : : : ; k C 1.

We denote the strictly monotone double Hurwitz number by h�
<;g 0.�

1; �2/.

We note that Definition 3.1 generalizes (strictly) monotone Hurwitz numbers to

target surfaces of higher genera. Further, we note that strictly monotone Hurwitz num-

bers are also called Grothendieck dessins d’enfants Hurwitz numbers, as they are

equivalent to an enumeration of Grothendieck dessins d’enfants as proved in [1, Sec-

tion 4.3.2].

2.2. Quantum curves

In [33], the connected single base g Hurwitz numbers were studied with a view

towards topological recursion. The main results are summarized in Theorem 2.7.

Denote by ZC the set of positive integers and an element � 2 Zn
C by

� D .�1; : : : ; �n/:

Define the discrete Laplace transform of the single base g Hurwitz numbers by

F
g
g 0.x1; : : : ; xn/ D

X

�2Z
n
C

EHg
g 0.�1; : : : ; �n/

n
Y

iD1

e�wi �i .xi D e�wi /;

which is usually referred to as the free energy. We further define the so-called partition

function by

Zg.x; „/ D exp
�

1
X

g 0D1

1
X

nD1

1

nŠ
„2g 0�2CnF

g
g 0.x; : : : ; x/

�

:



Triply mixed coverings of arbitrary base curves 247

Theorem 2.7 ([33, Theorem 1.1]). The free energies F
g
g 0.x1; : : : ; xn/, for 2g � 2C

`.�/ > 0, satisfy a cut-and-join type partial differential equation.

The single base g Hurwitz partition function satisfies a quantum curve-like infinite

order differential equation

„x d
dx

h

1 � „1��xe„x d
dx

� d

dx
x

�1��i

Zg.x; „/ D 0;

where � D 2 � 2g (which is the Euler characteristic of the base curve of the Hurwitz

problem). If we introduce

y D „x d
dx

and regard it as a commuting variable, then the total symbol of the above operator

produces the following equation

x D y��1e�y ;

which is commonly referred to as a Lambert curve.

Remark 2.8. A cut-and-join type partial differential equation is a certain kind of

partial differential equation, which reflects the combinatorics of multiplying elements

in the symmetric group. In the case of simple Hurwitz numbers, these combinatorics

entail the fact that left-multiplication by a transposition either joins two cycles to one

or cuts a single cycle into two.

2.3. Stirling numbers

We now define Stirling numbers of the first and second kind.

Definition 2.9. For n; k 2 N, we define Stirling numbers of the first kind by the

recurrence relation
�

nC 1
k

�

D n
�

n

k

�

C
�

n

k � 1

�

for k > 0

and
�

0

0

�

D 1 and

�

n

0

�

D
�

0

n

�

D 0 for n > 0;

and Stirling numbers of the second kind by the recurrence relation

²

nC 1
k

³

D k
²

n

k

³

C
²

n

k � 1

³

for k > 0

and
²

0

0

³

D 1 and

²

n

0

³

D
²

0

n

³

D 0 for n > 0:
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Remark 2.10. Recall the generating functions of Stirling numbers

n
X

kD0

�

n

k

�

zn�k

nŠ
D

n�1
Y

rD1

.1 � rz/ and

1
X

nDk

²

n

k

³

xn�k D
k

Y

rD1

1

1 � rx : (2.1)

2.4. Shifted symmetric functions and quasimodular forms

2.4.1. Central characters. Let Zn be the center of the group algebra CŒSn� of the

symmetric group. Given a partition �, denote by j�j the integer where � is a partition

of and by C� the sum of all elements in Sj�j of cycle type �. Let .��; V�/ be the

irreducible representation of Sj�j corresponding to �. Note that a basis of Zn is given

by C� for all partitions � of n. Every element z 2 Zn defines by Schur’s lemma a

constant, called the central character!�.z/, by which ��.z/ acts on V�. For example,

the central character of the conjugacy class sums C� is given by

f�.�/ WD !�.C�/ D jC� j
��.�/

dim�
; (2.2)

where (by abuse of notation) jC� j denotes the size of the conjugacy class of elements

of cycle type � in Sj�j, �
� denotes the character of �� and dim� the dimension of ��.

We extend equation (2.2) to the case when j�j ¤ j�j by

f�.�/ WD
�j�j
j�j

�

jC� j
��.�/

dim�
:

Observe that if � is a partition without parts equal to 1 the quantity
�

j�j
j�j

�

jC� j equals

the size of the conjugacy class of cycle type � in Sj�j instead of in Sj�j. For a tuple of

partitions�D .�1; : : : ;�n/ let f� D
Qn

iD1 f�i . Hurwitz numbers can be expressed in

terms of central characters, for example classical Hurwitz numbers of torus coverings

satisfy

h
�;1
g 0 .�/ D

X

j�jDd

f�.�/: (2.3)

with d – as in the definition of Hurwitz numbers – implicitly given by the size of

the partitions where � consists of. In Proposition 4.1 we generalise this expression to

triply mixed Hurwitz numbers.

Let „d D .J1; J2; : : : ; Jd ; 0; 0; : : :/ be the sequence of Jucys–Murphy elements

given by Jk D
Pk�1

iD1 .ik/. Although the Jucys–Murphy elements do not belong to Zn,

symmetric polynomials in „d are elements of Zn. More precisely, every element

of Zn can be written as a symmetric polynomial in „d , see [28,34]. Remarkably, the

central character of a symmetric polynomial f evaluated at „d simply equals

!�.f .„d // D f .cont�/;

where cont� denotes the sequence of all contents of �.
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The commutator sum K DP

˛;ˇ2Sd
Œˇ; ˛� also is an element of Zn. Its central

character equals

!�.K/ D
� dŠ

dim�

�2

:

2.4.2. Central characters as shifted symmetric polynomials. Central characters

of z 2 Zn are examples of shifted symmetric polynomials, introduced by Okounkov

and Olshanski [37]. A rational polynomial in m variables x1; : : : ; xm is called shifted

symmetric if it is invariant under the action of all � 2 Sm given by xi 7! x�.i/ C i �
�.i/ (or, more symmetrically, xi � i 7! x�.i/ � �.i/). Denote byƒ�.m/ the space of

shifted symmetric polynomials in m variables, which is filtered by the degree of the

polynomials. We have forgetful mapsƒ�.m/!ƒ�.m� 1/ given by xm 7! 0, so that

we can define the space of shifted symmetric polynomialsƒ� as

lim �
m

ƒ�.m/

in the category of filtered algebras. As !�.z/ is a shifted symmetric polynomial, it

can be expressed as a symmetric polynomial in �1 � 1; �2 � 2; : : : : For example,

f. /.�/ D 1;

f.1/ D j�j D
1

X

iD1

..�i � i /C i /;

f.2/.�/ D
1

2

1
X

iD1

��

�i � i C
1

2

�2

�
�

� i C 1

2

�2�

:

More precisely, considered as a vector space, the algebra of shifted symmetric func-

tions ƒ� has a basis f� where � ranges over all partitions.

2.4.3. The Bloch–Okounkov theorem. A distinguished generating set for ƒ� is

given by the renormalized shifted symmetric power sums

Q0.�/ D 1;

Qk.�/ D ck C
1

.k � 1/Š
1

X

iD1

��

�i � i C
1

2

�k�1

�
�

�i C 1

2

�k�1�

; k � 1;

with ck defined by

1

&.z/
WD 1

2 sinh.z=2/
DW

1
X

kD1

ckz
k�1: (2.4)

Define a weight grading on ƒ� by assigning to Qk weight k.
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This weight grading corresponds to the weight of quasimodular forms under the

Bloch–Okounkov theorem, as follows. The graded algebra of quasimodular forms

(for SL2.Z/) is given by zM D QŒP;Q; R�, where P D �24G2, Q D 240G4, R D
�504G6 are Ramanujan’s notation for the Eisenstein series

Gk.�/ D �
Bk

2k
C

1
X

rD1

1
X

mD1

mk�1qmr .Bk D kth Bernoulli number and q D e2�i� /

of weight k. Given a function f on partitions, introduce the q-bracket of f , given by

hf iq D
P

�2P f .�/q
j�j

P

�2P q
j�j

2 CŒŒq��:

The denominator
P

�2P q
j�j equals q1=24�.�/�1 with �.�/ the Dedekind eta function.

Then, by the celebrated Bloch–Okounkov theorem the q-bracket hf iq of a shifted

symmetric polynomial f is the q-expansion of a quasimodular form [4, Theorem 0.5].

Moreover, if f has weight k as defined above, then hf iq is quasimodular of the same

weight k.

2.4.4. Weights of central characters. We give the (mixed) weight of the central

characters defined in Section 2.4.1 in terms of the weight grading on ƒ�. Define

completion coefficients qk;� with k � 2 and � a partition by

Qk D
X

�

qk;�f� :

The Gromov–Witten/Hurwitz correspondence provides the following formula for

these coefficients:

Proposition 2.11 ([36, Proposition 3.2]). The completion coefficients qk;� satisfy

1
X

kD1

qkC1;�z
k D 1

j�jŠ .e
z=2 � e�z=2/j�j�1

`.�/
Y

iD1

.e�i z=2 � e��i z=2/:

In particular, qk;� D 0 if j�j C `.�/ > k. Correspondingly, the function f� is of

(mixed) weight at most j�j C `.�/, which was proved in [31, Theorem 5].

For the weights of symmetric polynomials evaluated at the contents of a partition

we have the following result. Let hn and en be the complete homogeneous symmetric

polynomial respectively elementary symmetric polynomial of degree n.

Proposition 2.12. Let d � 1. The top-weight part of hd .cont�/ and ed .cont�/ is

given by 1

2d�1Q3.�/
d .
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Proof. Let

.x/k D x.x � 1/ � � � .x � k C 1/:
Then, for the symmetric polynomial

N
pk.x1; : : : ; xn/ WD

n
X

iD1

.xi/k

it is known that [31, Theorem 4]

k
N
pk�1.cont�/ D

1
X

iD1

.�i � i C 1/k � .�i C 1/k .k � 1/ (2.5)

where the right-hand side is a shifted symmetric polynomial of mixed degree� kC 1.

Given a symmetric polynomial g of degree d and with constant term equal to

zero, one can write g as a polynomial in the
N
pk for k � 1. Assign to

N
pk weight k C 2

in accordance with equation (2.5), i.e.,
N
pk.cont�/ is a shifted symmetric polynomial

of mixed weight k C 2. Observe that the monomial
N
pd

1 is the unique monomial of

degree d and weight at least (precisely) 3d . Hence, the central character !�.f .„d //

of g is a shifted symmetric function of weight at most 3d with top-degree part up

to a multiplicative constant equal to Q3.�/
d . Specializing g to hd and ed the result

follows by observing that in this case the coefficient of
N
pd

1 equals 1

2d�1 .

2.5. Gromov–Witten invariants with target P
1

In this section, we introduce the basic notions of Gromov–Witten theory needed for

this work. For a more concise introduction in the context of tropical geometry, see

e.g., [7]. For a more general introduction to the topic, we recommend [40].

We denote by xMg;n.P
1; d/ the moduli space of stable maps with nmarked points,

which is a Deligne–Mumford stack of virtual dimension 2g � 2 C 2d C n. It con-

sists of tuples .X; x1; : : : ; xn; f /, such that X is a connected, projective curve of

genus g with at worst nodal singularities, x1; : : : ; xn are non-singular points on X

and f WX ! P 1 is a function with f�.ŒX�/ D dŒP 1�. Moreover, f may only have a

finite automorphism group (respecting markings and singularities). In order to define

enumerative invariants, we introduce

• The i -th evaluation morphism is the map evi W xMg;n.P
1; d/! P 1 by mapping the

tuple .X; x1; : : : ; xn; f / to xi .

• The i -th cotangent line bundle Li ! xMg;n.P
1; d/ is obtained by identifying the

fiber of each point with the cotangent space T�
xi
.X/. The first Chern class of i -th

cotangent line bundle is called a  -class, which we denote by  i D c1.Li/.

This yields the following definition.
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Definition 2.13. Fix g; n; d and let k1; : : : ; kn be non-negative integers, such that

k1 C � � � C kn D 2gC 2d � 2:

Then, the stationary Gromov–Witten invariant is defined by

h�k1
.pt/ � � � �kn

.pt/iP1

g;n D
Z

Œ xMg;n.P1/�vir

Y

ev�
i .pt/ 

ki

i ;

where pt denotes a point on P 1.

Remark 2.14. Analogously, we can define Gromov–Witten invariants for more gen-

eral target curves Y

h�k1
.pt/ � � � �kn

.pt/iYg;n:

The following identity, which should be compared with equation (2.3) in the previous

discussion on shifted symmetric functions, was proved in [36] for elliptic curves E:

h�k1
.pt/ � � � �kn

.pt/iE;d
g;n D

X

j�jDd

n
Y

iD1

Qki C2.�/:

Similarly, we consider the moduli space of relative stable maps xMg;n.P
1; �;�; d/

relative to two partitions �; � of d and define the relative Gromov–Witten invariants

by

h� j �k1
.pt/ � � � �kn

.pt/ j �iP1

g;n D
Z

Œ xMg;n.P1;�;�;d/�vir

Y

ev�
i .pt/ 

ki

i :

We note that in the following, we add subscripts “ı” and “�”, which correspond

to connected or not necessarily connected (for simplicity also called disconnected

Gromov–Witten invariants), which in turn correspond to considering connected or

disconnected stable maps.

2.6. Tropical covers and monotone/Grothendieck dessins d’enfants Hurwitz

numbers

A detailed introduction to tropical covers can be found in [2]. We note that all graphs

considered may contain half-edges.

Definition 2.15. An abstract tropical curve is a connected metric graph � , together

with a function associating a genus g.v/ to each vertex v. Let V.�/ be the set of its

vertices. LetE.�/ be the set of its internal edges, which we require to be bounded and

let E 0.�/ its set of all edges, respectively. The set of half-edges, which we call ends is
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thereforeE 0.�/ nE.�/, and all ends are considered to have infinite length. The genus

of an abstract tropical curve � is g.�/ WD h1.�/CP

v2V.�/ g.v/, where h1.�/ is the

first Betti number of the underlying graph. An isomorphism of a tropical curve is an

automorphism of the underlying graph that respects edges’ lengths and vertices’ gen-

era. The combinatorial type of a tropical curve is the graph obtained by disregarding

its metric structure.

Remark 2.16. An important tropical curve for this work is defined as R with finitely

many decorated points. These points are the vertices, the intervals between the vertices

(and from the extremal vertices to ˙1) are the edges and the length of the edges is

the lengths of the intervals. For any choice of points, we denote the resulting abstract

tropical curve by P 1
trop to highlight it as an analogue of the tropical projective line.

We now define tropical covers. For an illustration, see, e.g., [7, Figure 1].

Definition 2.17. A tropical cover is a surjective harmonic map �W�1 ! �2 between

abstract tropical curves as in [2, Section 2], i.e., it satisfies the following conditions.

(i) �.V.�1// � V.�2/.

(ii) ��1.E 0.�2// � E 0.�1/.

(iii) For each edge e 2E 0.�i /, denote by l.e/ its length. Interpreting e 2E 0.�1/,

�.e/ 2 E 0.�2/ as intervals Œ0; l.e/� and Œ0; l.�.e//�, we require � restricted

to e to be a linear map of slope !e 2 Z�0, that is �W Œ0; l.e/�! Œ0; l.�.e//�

is given by �.t/D !e � t . We call !e the weight of e. If �.e/ is a vertex, we

have !e D 0.

(iv) For a vertex v 2 �1, let v0 D �.v/. We choose an edge e0 adjacent to v0. We

define the local degree at v as

dv D
X

e2�1

�.e/De0

!e:

We require dv to be independent of the choice of edge e0 adjacent to v0. We

call this fact the balancing or harmonicity condition.

We furthermore introduce the following notions.

(i) The degree of a tropical cover � is the sum over all local degrees of preim-

ages of any point in �2. Due to the harmonicity condition, this number is

independent of the point in �2.

(ii) For any end e 2 �2, we define �e as the partition of weights of the ends

of �1 mapping to e. We call �e the ramification profile above e.
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We call two tropical covers�W�1!�2 and � 0W� 0
1!�2 isomorphic if there exists

an isomorphism of graph f W�1 ! � 0
1 respecting labels and weights, such that � D

� 0 ı f . We denote the automorphism group of a tropical cover � by Aut.�/.

Theorem 2.18 ([25]). Let g be a non-negative integer, and�;� partitions of the same

size d > 0. We have

h�;�
gI�;� D

X

�`b

X

�2�.P1
trop;gI�;�;�/

1

jAut.�/j
1

`.�/Š

Y

v2V.�/

mv

Y

e2E.�/

!e;

h<;�
gI�;� D

X

�`b

X

�2�.P1
trop;gI�;�;�/

1

jAut.�/j
1

`.�/Š

Y

v2V.�/

.�1/1Cval.v/mv

Y

e2E.�/

!e

where �.P 1
trop; gI�; �; �/ is the set of tropical covers

�W� �! P 1
trop D R

with b D 2g � 2C `.�/C `.�/ points p1; : : : ; pb fixed on the codomain P 1
trop, such

that the following conditions are satisfied.

(i) The unbounded left (resp. right) pointing ends of � have weights given by

the partition � (resp. �).

(ii) The graph � has l WD `.�/ vertices. Let V.�/D ¹v1; : : : ; vlº be the set of its

vertices. Then �.vi /D pi . Moreover, letwi D val.vi / be the corresponding

valences (degrees).

(iii) We assign an integer g.vi/ as the genus to vi and the following condition

holds true:

h1.�/C
l

X

iD1

g.vi/ D g:

(iv) We have �i D val.vi/C 2g.vi/� 2.

(v) For each vertex vi , let x
C (resp. x

�) be the tuple of weights of those edges

adjacent to vi , which map to the right-hand (resp. left-hand) of pi . The

multiplicity mvi
of vi is defined to be

mvi
D.�i � 1/ŠjAut.xC/jjAut.x�/j

X

gi
1

Cgi
2

Dg.vi /

h�2gi
2

�2.pt/iP1;ı

gi
2

hxC; �2gi
1
�2C`.xC/C`.x�/.pt/;x�iP1;ı

gi
1

:

Remark 2.19. The involved Gromov–Witten invariants can be computed using the

functions &.z/ D 2 sinh.z=2/ D ez=2 � e�z=2 and �.z/ D &.z/
z

.
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• Recall the definition of the constants ci determined by &.z/ in (2.4). It is well

known that

h�2l�2.pt/iP ;ı
l;1 D c2l :

• It was proved in [36] that

hxC; �2g�2C`.xC/C`.x�/.pt/;x�iP1;ı
g

D 1

jAut.xC/jjAut.x�/j Œz
2g �

Q

x
C

i

�.xC
i z/

Q

x
�
i

�.x�
i z/

�.z/
:

3. Triply mixed Hurwitz numbers

We now introduce triply mixed Hurwitz numbers by the conditions (1)–(3) of the

definition of Hurwitz numbers, together with a refined version of both conditions (6)

and (60) of (strictly) monotone Hurwitz numbers.

Call two compositions/partitions � and �0 equivalent when they only differ by

1-entries. Further, for a fixed positive integer d , a fixed partition � and � 2 Sd

write C.�/ D � if the cycle type of � is equivalent to �.

Definition 3.1. Let g0; g � 0 be non-negative integers, d a positive integer and � D
.�1; : : : ; �n/ a tuple of ordered partitions (not necessarily of the same integers). Fur-

thermore, let

b D b.g; g0; �/ D 2g0 � 2 � d � .2g � 2/C
X

i

�

`.�i/ � j�i j
�

: (3.1)

For non-negative integers k; l;m, such that k C l Cm D b; we define a triply mixed

factorisation of type

.g; d; �; k; l; m/

to be tuple

.�1; : : : ; �n; �1; : : : ; �b; ˛1; ˇ1; : : : ; ˛g ; ˇg/;

such that

(1) �i ; �i ; ˛i ; ˇi 2 Sd ,

(2) �1 � � � �n�1 � � � �b D Œ˛1; ˇ1� � � � Œ˛g ; ˇg �,

(3) C.�i/ D �i and the �j are transpositions,

(6) for �i D .si ti / with si < ti , we have

• ti � tiC1 for i D k C 1; : : : ; k C l � 1,

• ti < tiC1 for i D k C l C 1; : : : ; k C l Cm � 1.
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If in addition, we have

(4) h�1; : : : ; �n; �1; : : : ; �b; ˛; ˇi acts transitively on ¹1; : : : ; dº,
we call the factorisation connected. We denote by M �.g; d; �; k; l; m/ the set of

triply mixed factorisations of type .g; d; �; k; l; m/ and by M ı.g; d; �; k; l; m/ the

set of connected triply mixed factorisations of type .g; d; �; k; l; m/. Then we define

the triply mixed Hurwitz number and the connected triply mixed Hurwitz numbers

respectively by

H
g;d I�

g 0Ik;l;m
.�/ D 1

dŠ
jM �.g; d; �; k; l; m/j;

and

H
g;d

g 0Ik;l;m
.�/ D 1

dŠ
jM ı.g; d; �; k; l; m/j:

Remark 3.2. Triply mixed Hurwitz numbers are interpolations between classical,

monotone and strictly monotone Hurwitz numbers. Namely, taking l D m D 0 yields

classical Hurwitz numbers, k D m D 0 yields monotone Hurwitz numbers and k D
l D 0 yields strictly monotone Hurwitz numbers.

As mentioned before, we study several specifications of triply mixed Hurwitz

numbers, for example only in Section 4 we allow k; l and m to be arbitrary. In

the rest of the work we specialise to (strictly) monotone Hurwitz numbers by let-

ting k DmD 0 and k D l D 0 respectively. For convenience, we introduce additional

notation distinguishing those cases.

(a) In Section 4, we study triply mixed Hurwitz numbers for target surfaces of

genus 1. We abbreviateH
1;d

g 0Ik;l;m
.�/ by Hd

g 0Ik;l;m
.�/.

(b) In Section 5, we study triply mixed Hurwitz numbers with target surfaces of

genus 1 with � D . / in the following cases:

• in the monotone case we denoteHd
�;g D Hd

gI0;b.g;�/;0
.�/;

• in the strictly monotone case we denote

Hd
<;g D Hd

gI0;0;b.g;�/.�/:

(c) In Section 6, we study two cases of triply mixed Hurwitz numbers for target

surfaces of arbitrary genus and � D ..�1; : : : ; �n//, i.e., one arbitrary, but

fixed ramification profile:

• in the monotone case we denote

EHgI�
�;g 0.�1; : : : ; �n/ D EHg;d I�

g 0I0;b.g;�/;0
.�/I

• In the strictly monotone case we denote

EHgI�
<;g 0.�1; : : : ; �n/ D EHg;d I�

g 0I0;0;b.g;�/
.�/:
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(d) In Section 8, we again study two cases of triply mixed Hurwitz numbers

for target surfaces of genus 0 and � D .�1; �2/, i.e., two arbitrary but fixed

ramification profiles for two cases:

• in the monotone case we denote

h�
g .�

1; �2/ D H 0;d

gI0;b.g;�/;0
.�/I

• in the strictly monotone case we denote

h<
g .�

1; �2/ D H 0;d I�
gI0;0;b.g;�/

.�/:

4. Quasimodularity of triply mixed Hurwitz numbers

Fix g0 � 2. The generating series

X

d�1

H
d I�

g 0Ik;0;0
.�/qd

of ordinary Hurwitz numbers with g D 1 is known to be a quasimodular form (recall

q D e2�i� ). This was observed by Dijkgraaf in the simplest case (� D . /), rigor-

ously proved by Kaneko and Zagier and follows in full generality from the Bloch–

Okounkov theorem as noted by Eskin and Okounkov [9, 17, 29]. In this section we

extend this result to the generating series of triply mixed Hurwitz numbers with gD 1.

We begin by expressing triply mixed Hurwitz numbers in terms of shifted symmetric

functions.

Let hn and en be the complete homogeneous symmetric polynomial respectively

elementary symmetric polynomial of degree n.

Proposition 4.1. Let g; g0 � 0, let � be a tuple of partitions and take k; l; m � 0
with k C l Cm D b, where b D b.g; g0; �/ is given by equation (3.1). Then,

H
g;d I�

g 0Ik;l;m
.�/ D

X

�`d

�dim�

dŠ

�2�2g

f�.�/f.2/.�/
khl .cont�/em.cont�/; (4.1)

where the sum is over all partitions of size d .

Proof. First, we rewrite the triply mixed Hurwitz number in terms of the center of the

group algebra Zd , see Section 2.4.1 for the notation in this proof. Observe that

hk.„d / D
X

2�t1�����tk�d
si <ti

.s1t1/ � � � .sktk/
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and

ek.„d / D
X

2�t1<���<tk�d
si <ti

.s1t1/ � � � .sktk/:

Hence,

H
d I�

g 0Ik;l;m
.�/ D 1

dŠ
ŒCe�K

gC�1 � � �C�nC k
.2/hl .„d /em.„d /:

Observe that ��.C� /D ��.e/!�.C� / for all � 2 Sd . Hence, the Schur orthogonality

relation can be written in the unusual form
P

� �
�.e/2!�.C� / D ıe� jSd j. We find

H
d I�

g 0Ik;l;m
.�/ D

X

�`d

�dim�

dŠ

�2

!�
�

K
gC�1 � � �C�nC k

.2/hl .„d /em.„d /
�

D
X

�`d

�dim�

dŠ

�2�2g

f�.�/f.2/.�/
khl .cont�/em.cont�/:

Definition 4.2. Let t� D
Q

i;j ti;�i
j

be a formal variable. Define the Hurwitz potential

by

H
� D

X

H
d I�
g 0Ik;l;m

.�/t�
uk

kŠ
vlwmqd ;

where the sum is over all k; l;m;d;� for whichH
d I�

g 0Ik;l;m
.�/ is defined. Analogously

define the connected Hurwitz potential H.

Remark 4.3. By a standard argument the Hurwitz potential and the connected Hur-

witz potential are related by

exp H D 1CH
�:

Theorem 4.4. Let g0 � 2. Then

1
X

dD1

Hd
g 0Ik;l;m.�/q

d (4.2)

is a quasimodular form of mixed weight� 6g0 � 6CP

i .4`.�
i/� 2j�i j/. Moreover,

for fixed b D k C l Cm the top weight parts of

2lCmCıl;0Cım;0�2

1
X

dD1

H
d I

g 0Ik;l;m
.�/qd

ranging over all k; l;m � 0 are equal.

Proof. Observe that f�.�/f.2/.�/
khl .cont�/em.cont�/ is a shifted symmetric poly-

nomial of mixed weight at most
X

i

.j�i j C `.�i//C 3.k C l Cm/
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by the results in Section 2.4.4. By equation (3.1) this weight equals

6g0 � 6C
X

i

�

4`.�i/ � 2j�i j
�

: (4.3)

Observe that evaluating f�, hl .cont/ or em.cont/ at the empty partition yields 0

unless � is empty respectively l D 0 ormD 0. In other words, using equation (4.1) to

define Hurwitz numbers for d D 0, one obtainsH 0
g 0Ik;l;m

.�/ D 1 if � D . / and k D
l D m D 0 and 0 else. Hence, Proposition 4.1 and Remark 4.3 imply that

H D log
�

q1=24�.�/�1
X

hf�f
k

.2/hl .cont/em.cont/iqt�
uk

kŠ
vlwm

�

:

By the Bloch–Okounkov theorem,

hf�f
k

.2/hl.cont/em.cont/iq

is a quasimodular form of weight at most given by Equation (4.3). Taking a formal

Taylor expansion, quasimodularity of the generating series in equation (4.2) follows.

The second part of the statement follows directly from Proposition 2.12.

Remark 4.5. In case g0 D 1 the series in equation (4.2) equals � log.q�1=24�.�//:

This is not a quasimodular form, but it is a primitive of a quasimodular form. Namely,

its derivative equals up to a constant the Eisenstein series of weight 2.

5. Refined quasimodularity and tropical covers

We continue the study of the series

H�;g D
X

Hd
�;gq

d and H<;g D
X

Hd
<;gq

d

by expressing them as a finite sum of quasimodular forms, with each summand cor-

responding to a combinatorial type of the source curve of tropical covers.

5.1. Tropical monotone and Grothendieck dessins d’enfants elliptic covers

In this section we express the numbers Hd
�;g.�/ and Hd

<;g.�/ in terms of tropical

covers of the tropical elliptic curve Etrop, which is a circle with a point p0. As for the

tropical projective line, we may add additional 2-valent vertices to Etrop.

Definition 5.1. We fix g� 0, an orientation onEtrop and pointsp1; : : : ;p2g�2 ofEtrop,

such that p0; p1; : : : ; p2g�2 is ordered according to the orientation. Let �W� ! Etrop

be a tropical cover of genus g and degree d , such that ��1.p0/ does not contain
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any vertices and where � has at most 2g � 2 vertices v1; : : : ; vn, n � 2g � 2. We

require vi 2 ��1.pi / for i 2 Œn�. We set �i D val.vi/C 2g.vi/� 2 and obtain a com-

position �.�/ D .�1; : : : ; �n/. If j�j D 2g � 2, we call � a monotone elliptic tropical

cover of type .g; d/ and denote by �.Etrop; g; d/ the set of all monotone elliptic trop-

ical covers of type .g; d/.

We further associate two multiplicities to each cover � 2 �.Etrop; g; d/, one cor-

responding to the monotone case and one to the strictly monotone case:

mult�.�/ D
1

jAut.�/j
1

`.�.�//Š

Y

v2V.�/

mv

Y

e2E.�/

!e ;

mult<.�/ D
1

jAut.�/j
1

`.�.�//Š

Y

v2V.�/

.�1/1Cval.v/mv

Y

e2E.�/

!e;

where for each vertex vi , let x
C (resp. x

�) be the right-hand (resp. left-hand) side

weights with respect to the orientation on Etrop. The multiplicity mvi
of vi is defined

to be

mvi
D.�i � 1/ŠjAut.xC/jjAut.x�/j

X

gi
1

Cgi
2

Dg.vi /

h�2gi
2

�2.!/i
P1;ı

gi
2

hxC; �2gi
1

�2C`.xC/C`.x�/.!/;x
�iP1;ı

gi
1

:

Remark 5.2. We note that the multiplicity of the vertex is defined in a similar manner

as in Theorem 2.18. This is due to our construction below, which glues tropical covers

of P 1
trop to tropical covers of Etrop.

This yields the following correspondence theorem, which we prove (below) in

Section 5.2.

Theorem 5.3. Fix g � 0 and d > 0. Then, we have the following identities:

Hd
�;g D

X

�2�.EtropIg;d/

mult�.�/; Hd
<;g D

X

�2�.EtropIg;d/

mult<.�/:

5.2. Proof of Theorem 5.3

In this section we prove Theorem 5.3. We only work out the details for the monotone

case as the strictly monotone case is completely parallel. Before starting with the

proof, we make the following remark.

Remark 5.4. A similar statement was proved in [5, Theorem 2.13]. More precisely,

a correspondence theorem expressing simple covers of elliptic curves (i.e., no (strict)

monotonicity conditions and only simple ramification) in terms of tropical covers. We
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point out that while the idea of our proof of Theorem 5.3 is similar to the idea of the

proof of [5, Theorem 2.13], the proof itself is still very different in nature. This is due

to an important technical subtlety: in [5], it was possible to construct a tropical elliptic

cover directly from a factorisation in the symmetric group and vice versa; in our set-

ting, this is no longer possible due to the nature of Theorem 2.18 as it is derived using

the bosonic Fock space. However, we will show that the relation between factorisa-

tions and tropical covers is still close enough to derive our correspondence theorem

in Theorem 5.3.

First, we recall the definition of Hd
�;g . We count tuples of certain permutations

.�1; : : : ; �2g�2; ˛; ˇ/;

such that

�2g�2 � � � �1 D ˛ˇ˛�1ˇ�1:

However, this is equivalent to

�2g�2 � � � �1ˇ D ˛ˇ˛�1:

Thus, letting �1 D ˇ and �2 D ˛ˇ˛�1, we see that Hd
�;g is equal to 1

dŠ
times the

number of tuples .�1; �1; : : : ; �2g�2; �2; ˛/, such that

(1) �1; �2; ˛; �i 2 Sd ,

(2) C.�i/ D .2; 1; : : : ; 1/, C.�1/ D C.�2/,

(3) �2g�2 � � � �1�1 D �2,

(4) ˛�1˛
�1 D �2 (we note that thus C.�1/ D C.�2/),

(5) �i satisfy the monotonicity condition,

(6) the group h�1; �1; : : : ; �2g�2; �2; ˛i acts transitively on ¹1; : : : ; dº.
Observe that we count tuples very similar to the monotone double Hurwitz numbers

framework for � D �. We note that in the above description the group h�1; �1; : : : ;

�2g�2;�2i, i.e., without the generator˛, might have several orbits acting on ¹1; : : : ;dº.
By capturing this data, we can make the full transition to monotone double Hurwitz

numbers. We now make this more precise.

For a monotone base 0 factorisation .�1; �1; : : : ; �b; �2/, we consider the orbits

of the action of the group h�1; �1; : : : ; �b; �2i on ¹1; : : : ; dº. The orbits then natur-

ally yield connected monotone base 0 factorisations .�
.i/
1 ; �i.1/; : : : ; �i.lk/; �

.i/
2 / of

type .gi ; �
i
1; �

i
2/ for i D 1; : : : ; n (for some arbitrary n), where �

.i/
j have pairwise

disjoint orbits with
Q

�
.i/
j D �j for j D 1; 2, such that

(i)
S

�i
1 D

S

�i
2 D C.�1/ D C.�2/;

(ii) the sets ¹i.1/; : : : ; i.lk/º are pairwise disjoint and
S¹i.1/; : : : ; i.lk/º D Œb�;

(iii)
P

gi D g C n � 1.
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We call these condition (i)–(iii) the orbit conditions. Now, fix an unordered tupleƒD
..gi ; �

i
1; �

i
2// satisfying these conditions (i) and (iii). We then define hg .�;ƒ/ to be 1

dŠ

times the number of monotone base 0 factorisations whose orbits yield the data ƒ.

Our strategy now is as follows. To each monotone base 0 factorisation .�1; �1; : : : ;

�b; �2/, we want to associate ˛ 2 Sd , such that ˛�1˛
�1 D �2 and enumerate those ˛.

This number only depends on the data ƒ and is actually encoded in the tropical pic-

tures.

Cutting elliptic covers. We fix a monotone elliptic tropical cover �W � ! Etrop of

type .g; d/. We consider ��1.p0/ and collect the weights in the preimage of p0 in

the partition �.

We cut the elliptic curveEtrop at p0 open and cut the source curve in the preimage.

This way, we obtain a tropical cover� 0W� 0!P 1
trop in �.P 1

trop;gI�;�;�.�// for some

non-negative integer g, which we call the cut-cover associated to � . This cover may

be disconnected. The connected components yield tropical covers in �.P 1
trop; gi I�i ;

�j ; �i /, such that

(i)
S

�i D
S

�j D �;

(ii)
S

�i D �;

(iii) the genera satisfy
P

gi D g C n � 1.

We call these conditions the component conditions. Observe that the component con-

ditions (i) and (iii) coincide with orbit conditions (i) and (iii) above for monotone

factorisations.

We now fix an unordered tupleƒD ..gi ;�i ;�
i // satisfying conditions (i) and (iii)

and denote by�.P 1
trop;gI�;�;�Iƒ/ the set of all tropical covers in �.P 1;gI�;�;�/,

such that their connected components yield the data ƒ.

By the inclusion-exclusion principle, we obtain the following lemma, which states

that the data of connected components of monotone factorisations are captured by

connected components in the tropical covers of Theorem 2.18:

Lemma 5.5. Let g be a non-negative integer, b D 2g � 2C 2`.�/, and� a partition

of some positive integer. Further fix an unordered tuple ƒ D ..gi ; �
i
1; �

i
2// satisfying

the component conditions (i) and (iii). Then we obtain

hg.�;ƒ/ D
X

�`b

X

�2�.P1
trop;gI�;�;�Iƒ/

mult.�/:

Regluing elliptic covers. The role of monotone elliptic covers is essentially to encode

ways to find permutations ˛ for monotone base 0 factorisations, which enrich them to

be a factorisation contributing to Hd
�;g . We now make this more precise.

Let .�1; �1; : : : ; �b; �2/ be a monotone base 0 factorisation of type .g; �; �/. We

fix a permutation ˛, such that ˛�1˛
�1 D �2. We observe that conjugation by ˛ maps
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the cycles of �1 bijectively to the cycles of �2. In other words, when we choose a

labelling of the cycles of �1 and �2 by 1; : : : ; `.�/, then ˛ induces a bijection

I˛ W ¹1; : : : ; `.�/º ! ¹1; : : : ; `.�/º;

such that for j 2 ¹1; : : : ; `.�/º the length of the cycle of �1 labeled j coincides with

the length of cycle of �2 labeled I˛.j /. This corresponds to a gluing process in the

tropical setting.

Let � 0W � 0 ! P 1
trop in �.P 1; gI�; �; �/ for some � ` b. We label the left ends

of � 0 by 1; : : : ; `.�/ and the right ends of � 0 as well. We fix a bijection

I W ¹1; : : : ; `.�/º ! ¹1; : : : ; `.�/º;

such that the weight of the left weight labeled j is the same as the weight of right

end labeled I.j /. We now glue the ends of P 1
trop together to obtain Etrop, where p0 is

gluing point. We also glue the source curve � 0 according to I , i.e., we glue the left

end labeled j to the right end labeled I.j /. This way, we obtain a monotone elliptic

tropical cover of type .g0; d/ for g0 D bC2
2

.

Definition 5.6. Let �W � ! Etrop a monotone elliptic tropical cover of type .g; d/

and � 0W� 0 ! P 1
trop be the associated cut-cover, where � 0 2 �.P 1; g0I�; �; �Iƒ/ for

some g0 and � ` b. We fix a monotone base 0 factorisation .�1; �1; : : : ; �b; �2/ of

type .g;�;�/. We label the left ends of � 0 by �1 and the right ends by �2. We denote

by n�;�0 the number of ˛ 2 Sd , where ˛�1˛
�1 D �2 and such that the associated

gluing of � 0 induced by ˛ yields � .

This situation was analysed in [5].

Proposition 5.7 ([5]). For an elliptic cover � with tuple � D .m1; : : : ; mr/ over the

base point p0 and its cut-cover � 0, we have

n�;�0 D jAut.� 0/j
jAut.�/j m1 � � �mr :

Moreover, we have the following lemma. Recall that a monotone elliptic tropical

cover is always a connected cover by definition.

Lemma 5.8. Let � be a monotone elliptic tropical cover and � 0 be the associated cut-

cover. Furthermore, let .�1; �1; : : : ; �b ; �2/ be a monotone factorisation, whose orbits

yield the same dataƒ as the cut-cover � 0. Let ˛ be a permutation as in Definition 5.6,

then

h�1; �1; : : : ; �b; �2; ˛i

is a transitive subgroup of Sd .
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Proof. This follows immediately from the fact that � is a connected cover and ˛ joins

the connected components.

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. In the beginning of this section, we have seen that, for fixed g;d

and b D 2g � 2, we have Hd
�;g is equal to 1

dŠ
times .�1; �1; : : : ; �b; �2; ˛/, such that

.�1; �1; : : : ; �b;�2/ is a monotone factorisation, ˛�1˛
�1D �2 and h�1; �1; : : : ; �b;�2;˛i

is a transitive subgroup of Sd . We associated to each monotone factorisation � D
.�1; �1; : : : ; �b;�2/ the number n.�/ of permutations ˛, such that .�1; �1; : : : ; �b;�2;˛/

contributes to Hd
�;g . Thus, we obtain

Hd
�;g D

1

dŠ

X

n.�/;

where we sum over all monotone factorisations with b transpositions in Sd . We have

also seen that several monotone factorisations yield the same number n.�/, i.e., those

satisfying the same orbit conditions ƒ. We thus denote by n.ƒ/ the number n.�/

for all monotone factorisations whose orbits yield the data ƒ. We now group those

together, i.e., we obtain

Hd
�;g D

X

hg 0.�;ƒ/ � n.ƒ/;

where we sum over all non-negative integer g0 � g, partitions � of d and tuples ƒ

satisfying the orbit conditions (i) and (iii). We now analyse each summand

hg 0.�;ƒ/ � n.ƒ/:

In fact, we want to prove that

hg 0.�;ƒ/ � n.ƒ/ D
X

�`b

X

�0

X

�

mult.� 0/ � n�;�0 ;

where the second summand is over all cover � 0 2 �.P 1
trop; g

0I �; �; �Iƒ/ and the

second summand over all monotone elliptic tropical covers � , such that � 0 is their

cut-cover.

By Lemma 5.5,

hg.�;ƒ/ � n.ƒ/ D
X

�`b

X

�02�.P1
trop;gI�;�;�Iƒ/

mult.� 0/ � n.ƒ/

D
X

�`b

X

�02�.P1
trop;gI�;�;�Iƒ/

.mult.� 0/ � n.ƒ//:
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We now observe that each ˛, which contributes to n.ƒ/ for a given monotone fac-

torisation, whose orbits yield ƒ contributes to a gluing of � 0 to an monotone elliptic

tropical cover. Thus, we have by Lemma 5.8

n.ƒ/ D
X

�

n�;�0 ;

where we sum over all monotone elliptic tropical covers � whose cut-cover is � 0.

Thus, by Proposition 5.7 we have

hg .�;ƒ/ � n.ƒ/ D
X

�`b

X

�02�.P1
trop;gI�;�;�Iƒ/

�

mult.� 0/ �
X

�

n�;�0

�

D
X

�`b

X

�02�.P1
trop;gI�;�;�Iƒ/

X

�

mult.� 0/ � n�;�0 ;

as desired. We further see that

mult.� 0/ � n�;�0 D 1

jAut.� 0/j
1

`.�/Š

Y

v2V.�/

mv

Y

e2E.�/

!e �
`.�/
Y

iD1

�i �
jAut.� 0/j
jAut.�/j

D mult.�/

and obtain

Hd
�;g D

X

ƒ

hg 0.�Iƒ/ � n.ƒ/ D
X

ƒ

X

�`b

X

�0

X

�

mult.� 0/ � n�;�0

D
X

ƒ

X

�`b

X

�0

X

�

mult.�/:

As � 0 andƒ are determined by � , we can omit those summands and just sum over all

monotone elliptic tropical covers � . This yields

Hd
�;g D

X

�`b

X

�

mult.�/;

where we sum over all monotone elliptic tropical covers � of type .g; d/ as desired.

5.3. Refined quasimodularity

Definition 5.9. We fix a combinatorial type G of a tropical curve � with

n WD jV.�/j � 2g.�/� 2:
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Moreover, we fix an orientation on Etrop and a linear ordering � on the vertices

of G. We denote by vi the i -th vertex according to �. We further choose points

p1; : : : ; p2g�2 on Etrop, such that they are linearly ordered along the orientation we

chose on Etrop. We further fix a series of integers
S
g0 D .g1; : : : ; gn/.

We denote by �.G; �I g;
S
g0/ the set of all covers � 2 �.Etrop; g; d/ for some

d 2 N, such that

(1) for �W� ! Etrop the combinatorial type of � is G;

(2) �.vi/ D pi ;

(3) g.vi/ D gi .

Moreover, we associate two generating series to each combinatorial type G:

I
G;�
�;

S
g 0 WD

X

�2�.G;�Ig;
S
g 0/

mult�.�/q
deg.�/;

I
G;�
<;

S
g 0 WD

X

�2�.G;�Ig;
S
g 0/

mult<.�/q
deg.�/:

Remark 5.10. We observe that by the correspondence theorem

H�;g D
X

.G;�;
S
g 0/

I
G;�
�;

S
g 0 and H�;g D

X

.G;�;
N
g/

I
G;�
<;

S
g 0 ; (5.1)

where we sum over all combinatorial typesG on at most n� 2g� 2 vertices, orders�

on G and tuples
S
g0 D .g1; : : : ; gn/.

Theorem 5.11. For g0 � 2, the series I
G;�
�;

S
g 0 and I

G;�
<;

S
g 0 are quasimodular forms of

mixed weight less or equal 2.
Pn

iD1 gi C jE.G/j/.

Proof. This follows from [19, Theorem 6.1 and Corollary 8.4], where it is proved that

the generating series associated to a tropical cover with target curve of fixed com-

binatorial type, order and fixed ramification profile is a quasimodular form whenever

the multiplicity of the cover is a polynomial in the edge weights. The only thing to

check in our case is that the local vertex multiplicities are polynomial, which is true

as proved in [19, Theorem 4.1].

Combining equation (5.1) and Theorem 5.11, we obtain the following corollary

(which is a special case of Theorem 4.4):

Corollary 5.12. The generating series

X

d�1

Hd
�;gq

d and
X

d�1

Hd
<;gq

d

are quasimodular forms of mixed weight � 6g � 6.
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Proof. The only thing left to prove is the weight part of the corollary. In order to

see this, we consider 2.
Pn

iD1 gi C jE.G/j/ and observe 2jE.G/j DPn
iD1 val.vi /;

where we sum over all vertices of G. Moreover, by definition, we have val.vi/ D
�i � 2gi C 2. We obtain

2
�

n
X

iD1

gi C jE.G/j
�

D 2
n

X

iD1

gi C
n

X

iD1

.�i � 2gi C 2/

D
n

X

iD1

�i C 2n

D 2g � 2C 2n � 2g � 2C 2.2g � 2/ D 6g � 6;

where we used
Pn

iD1 �i D 2g � 2 and n � 2g � 2. This yields the weight as desired.

6. Quantum curve for (strictly) monotone base g Hurwitz numbers

Motivated by the successful study of base g Hurwitz numbers in [33] and monotone

Hurwitz numbers [21] with a view towards topological recursion, we connect these

ideas by enumerating base g Hurwitz numbers with monotonicity conditions. In par-

ticular, this section is devoted to deriving a quantum curve for this new enumerative

problem.

Recall the connected labeled monotone base g Hurwitz numbers EHg
�;g 0.�1; : : : ;

�n/ from Section 2.1.

Definition 6.1. We define

F
g
�;g 0.x1; : : : ; xn/ D

X

�2Z
n
C

EHg
�;g 0.�1; : : : ; �n/x

�1

1 : : : x�n
n ;

and analogously we define the generating series for the strictly monotone case

F
g
<;g 0.x1; : : : ; xn/:

Definition 6.2. We define the partition function of the base g monotone Hurwitz

numbers, as the formal series in variables x; „, given by

Z
g
� D Zg

�.x; „/ D exp
h

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ
F

�;g
g 0 .x; x; : : : ; x/

i

D exp
h

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ

X

�2Z
n
C

EHg
g 0.�1; : : : ; �n/x

j�j
i

;
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and analogously the partition functionZ
g
<DZg

<.x;„/ of the base g strictly monotone

Hurwitz numbers.

Proposition 6.3. For the partition functions for the monotone and strictly monotone

case, we have

Z
g
� D 1C

1
X

dD1

1
X

bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

D 1C
1

X

dD1

.dŠ/1��xd„d.1��/

d�1
Y

j D1

1

1 � j„

and

Z
g
< D 1C

1
X

dD1

d�1
X

bD0

�

d

d � b

�

.dŠ/1��xd„bCd.1��/

D 1C
1

X

dD1

.dŠ/1��xd„1��

d�1
Y

j D1

.1� j„/;

where � D 2 � 2g and the equalities are understood in the sense of formal power

series.

Proof. Since

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ
F

g
�;g 0.x; x; : : : ; x/

D
1

X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ

X

�2Z
n
C

EHg
�;g 0.�1; : : : ; �n/x

j�j

counts transitive (connected) monotone base g factorisations, we can use the expo-

nential formula and find the generating series for the not necessarily transitive factor-

isations

Z
g
� D 1C

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ

1
X

�1;:::;�nD1

EH �;g
�;g 0.�1; : : : ; �n/x

j�j:

Collecting all factorizations for given d D j�j, we get

Z
g
� D 1C

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ

1
X

dD0

�

X

j�jDd

EH �;g
�;g 0.�/

�

xd :
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Recall that

b D b.h; n; j�j/ D 2g0 � 2C n � j�j.2g � 1/;

so we write

1
X

g 0D0

1
X

nD1

„2g 0�2Cn

nŠ

1
X

dD0

�

X

j�jDd

EH �;g
�;g 0.�/

�

xd

D
1

X

g 0D0

1
X

nD1

1
X

dD0

P

j�jDd
EH �;g

�;g 0.�/

nŠ
„b.x„2g�1/d

D
1

X

g 0D0

1
X

nD1

1
X

dD0

P

j�jDd
EH �;g

�;g 0.�/

nŠ
„b.x„1��/d :

Since EHg
�;g 0.�/ is non-zero if b � 0, we can rearrange the series by collecting all

possible g0; n for a given b and d . Viewing the partition function Z
g
� as a series

in QŒŒ„; x„1����, we find that the coefficient of xd„bCd.1��/ is precisely the number

of monotone base g factorizations of length b in Sd , i.e.,

Œxd„bCd.1��/�Z
g
�

D 1

dŠ
#

8

ˆ

<

ˆ

:

.�1; : : : ; �b; �; ˛1; ˇ1; : : : ; ˛g ; ˇg/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�i monotone transpositions;

�; ˛1; ˇ1 : : : ˛g ; ˇg 2 Sd ;

��1 : : : �b D Œ˛1; ˇ1� : : : Œ˛g ; ˇg �

9

>

=

>

;

:

Since the ˛i ; ˇi run over all elements in Sd and using [10, Lemma 17], we obtain

Œxd„bCd.1��/�Zg D .dŠ/2g�1#¹.�1; : : : ; �b/ j �i monotone transpositionsº

D .dŠ/1��

²

d C b � 1
d � 1

³

:

For the last equality, we find

Z
g
� D 1C

1
X

dD1

1
X

bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

D 1C
1

X

dD1

.dŠ/1��xd„d.1��/

1
X

bD0

²

d C b � 1
d � 1

³

„b

D 1C
1

X

dD1

.dŠ/1��xd„d.1��/

d�1
Y

j D1

1

1 � j„ ;

where we used the well-known identity in equation (2.1).
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In the case of the strictly monotone Hurwitz numbers, we do a similar calculation

and view Z
g
< as an element of QŒŒ„; x„1����. We find

Œxd„bCd.1��/�Z
g
< D .dŠ/1��#¹.�1; : : : ; �b/ j �i strictly monotone transpositionsº

and in particular

Œxd„bCd.1��/�Z
g
< D 0 for b � d .

These tuples can be expressed by evaluating the elementary symmetric polynomials

in the Jucys–Murphy elements (defined in Section 2.4.1). This also yields an enu-

meration by evaluating the same polynomials in the number of summands of the i -th

Jucys–Murphy element, which yields (see e.g., [32, eq. (4)])

#¹.�1; : : : ; �b/ j �i strictly monotone transpositions º D
�

d

d � b

�

for b � d . Hence, we have the assertion

Z
g
< D 1C

1
X

dD1

d�1
X

bD0

�

d

d � b

�

.dŠ/1��xd„bCd.1��/

D 1C
1

X

dD1

.dŠ/1��xd„1��

d�1
X

bD0

�

d

d � b

�

„d

D 1C
1

X

dD1

.dŠ/1��xd„1��

d�1
Y

j D1

.1� j„/;

where the last equality follows by equation (2.1).

Theorem 6.4. The partition function Z
g
� satisfies the differential equation

Œ Ox Oy2 C Oy C . Oy Ox/2g�Z
g
� D 0;

where Ox D x and Oy D �„ @
@x

.

Proof. The recursion formula for the Stirling numbers of the second kind yields

²

d C b � 1
d � 1

³

D .d � 1/
²

d C b � 2
d � 1

³

C
²

d C b � 2
d � 2

³

:

We multiply this equation by .dŠ/2g

.d�1/Š
xd„bCd.1��/ and sum over d � 1; b � 0. For

reasons of clarity, we first do the computations term by term before conflating them.
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For the term on the left-hand side we have

1
X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/2g

.d � 1/Šx
d„bCd.1��/

D
1

X

dD1
bD0

²

d C b � 1
d � 1

³

d.dŠ/1��xd„bCd.1��/

D x @
@x

1
X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

D x @
@x

�

1C
1

X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

�

D x @
@x
Z

g
�;

where we used the fact that the derivative of the constant 1 vanishes. For the first

expression on the right-hand side we get

1
X

dD1
bD0

.d � 1/
²

d C b � 2
d � 1

³

.dŠ/2g

.d � 1/Šx
d„bCd.1��/

D
1

X

dD1
bD0

d.d � 1/
²

d C b � 2
d � 1

³

.dŠ/1��xd„bCd.1��/

D x2„ @
2

@x2

1
X

dD1
bD0

²

d C b � 2
d � 1

³

.dŠ/1��xd„b�1Cd.1��/:

Now, note that for b D 0 we have
®

d�2
d�1

¯

D 0. Hence,

x2„ @
2

@x2

1
X

dD1
bD0

²

d C b � 2
d � 1

³

.dŠ/1��xd„b�1Cd.1��/

D x2„ @
2

@x2

1
X

dD1
bD1

²

d C b � 2
d � 1

³

.dŠ/1��xd„b�1Cd.1��/

D x2„ @
2

@x2

1
X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

D x2„ @
2

@x2
Z

g
�;
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where we performed the shift b0 D b � 1 in the second equality. For the last term we

obtain

1
X

dD1
bD0

²

d C b � 2
d � 2

³

.dŠ/2g

.d � 1/Šx
d„bCd.1��/

D
1

X

dD1
bD0

d2g

²

d C b � 2
d � 2

³

..d � 1/Š/1��xd„bCd.1��/

D
�

x
@

@x

�2g

x„1��

1
X

dD1
bD0

²

d C b � 2
d � 2

³

..d � 1/Š/1��xd�1„b�.d�1/.1��/

D
�

x
@

@x

�2g

x„1��

�

1C
1

X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

�

D x

„
�

„ @
@x
x

�2g
�

1C
1

X

dD1
bD0

²

d C b � 1
d � 1

³

.dŠ/1��xd„bCd.1��/

�

D x

„
�

„ @
@x
x

�2g

Z
g
�:

Putting things together and multiplying by „
x

we get

h

x„2 @

@x
� „ @

@x
C

�

„ @
@x
x

�2gi

Z
g
� D 0:

Substituting Ox D x and Oy D �„ @
@x

we obtain the claim

Œ Ox Oy2 C Oy C . Oy Ox/2g �Z
g
� D 0:

For the strictly monotone Hurwitz number we have a similar result.

Theorem 6.5. The partition function Z
g
< satisfies the differential equation

Œ Oy C .1 � Ox Oy/. Oy Ox/2g�Z
g
< D 0;

where Ox D x and Oy D �„ @
@x

.

Proof. The proof is in the same spirit as in Theorem 6.4 but uses the Stirling numbers

of the first kind instead.

Remark 6.6. Note, that for g D 0, we recover the quantum curve for the usual mono-

tone (strictly monotone) Hurwitz numbers of [10] (resp. [13]).
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7. A mysterious topological recursion

In this section we consider the quantum curve of the strictly monotone Hurwitz num-

bers derived in Theorem 6.5. We focus on the case with elliptic base curve, i.e., on

g D 1. Computing the semi-classical limit, we obtain the spectral curve

y C .1 � xy/.xy/2 D 0

with parametrization

x.z/ D .z � 1/2
z

; y.z/ D z

.z � 1/3 :

Surprisingly, running topological recursion for this input data yields the monotone

single Hurwitz numbers with up to a combinatorial prefactor. More precisely, we

obtain the cumulants of the Weingarten function. This points towards an unknown

relationship between the combinatorics of strictly monotone Hurwitz numbers with

elliptic base curve and monotone Hurwitz numbers with rational base curve.

As already noted in the introduction, topological recursion for monotone single

Hurwitz numbers with rational base curves and a different normalisation was proved

in [10], however for a different spectral curve and the exclusion of the .0; 2/-case. In

our normalisation, the .0; 2/-case still encodes the relevant invariants. We begin by

defining the correct normalisation of monotone single Hurwitz numbers for our pur-

pose, which coincide with the cumulants of the Weingarten function. The latter was

motivated by discussions with James Mingo on problems of higher order freeness in

free probability [8]. In particular, using the following normalizations, the numbers

coincide with certain values of the Möbius function on the set of partitioned per-

mutations, this observation is still not perfectly understood and will be investigated in

future work.

Definition 7.1. Let g be a non-negative integer, d; n be a positive integers and � a

partition d of length l . We denote bymg;n.�/ the number of connected labeled mono-

tone factorizations of a fixed (but arbitrary) permutation � with C.�/D �. Moreover,

we put

Cg;n.�/ D .�1/2g�2CnCj�jmg;n.�/ D .�1/nCj�jmg;n.�/

and denote by Wg;n.x1; : : : ; xn/ the corresponding generating series, i.e.,

Wg;n.x1; : : : ; xn/ D
1

X

�1;:::;�nD1

Cg;n.�1; : : : ; �n/

x
�1C1
1 : : : x

�nC1
n

:
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Remark 7.2. (1) The numbers Cg;n.�/ agree with the monotone Hurwitz numbers

up to the combinatorial factor .�1/nCj�j
Ql

iD1 �i .

(2) When we drop the connectivity condition in the definition of mg;n.�/, obtain

the disconnected analogs ofCg;n.�/. These numbers are the coefficients of the asymp-

totic expansion of the Weingarten function [21].

(3) In [20], the numbersmg;n.�/ are put into a generating series via

Mg;n.y1; : : : ; yn/ D
1

X

�1;:::;�nD1

mg;n.�1; : : : ; �n/y
�1�1
1 � � �y�n�1

n :

Thus their generating series relates to Wg;n.x1; : : : ; xn/ as follows:

Wg;n.x1; : : : ; xn/ D
Mg;n.

�1
x1
; : : : ; �1

xn
/

x2
1 � � � x2

n

:

Note also that this amounts to a change of variable yi D �1
xi

if we phrase things in the

language of differential forms, i.e.,

Mg;n.y1; : : : ; yn/ dy1 � � � dyn D Wg;n.x1; : : : ; xn/ dx1 � � � d xn:

The following is the main theorem of this section, which we prove in Section 7.1.

Theorem 7.3. The numbers Cg;n.�/ satisfy topological recursion with the spectral

curve given by

x.z/ D .z � 1/2
z

; y.z/ D z

.z � 1/3 ;

i.e., the differentials

!g;n.z1; : : : ; zn/ D
1

X

�1;:::;�nD1

Cg;n.�1; : : : ; �n/

x.z1/�1C1 : : : x.zn/�nC1
d x.z1/ � � � d x.zn/

for .g; n/ ¤ .0; 2/, and

!0;2 D
1

X

�1;�2D1

C0;2.�1; �2/

x.z1/�1C1x.z2/�2C1
d x.z1/ dx.z2/C

d x.z1/ d x.z2/

.x.z1/ � x.z2//2

satisfy the recursion

!g;n.z1; : : : ; zn/

D ReszD˙1K.z1; z/
h

!g�1;nC1.z; �.z/; z2; : : : ; zn/

C
0

X

g1Cg2Dg
ItJ DN n¹1º

!g1;jI jC1.z; zI /!g2;jJ jC1.�.z/; zJ /
i

(7.1)
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on 2g � 2C n > 0, where

K.z1; z/ D
1
2

R z

�.z/
!.z1; �/

!0;1.z/ � !0;1.�.z//
D z.z � 1/3 d z1

2.z C 1/.z1 � z/.z1z � 1/
; �.z/ D 1

z
;

and with the initial data given by

!0;1.z/ D y d x; and !0;2.z1; z2/ D B.z1; z2/ WD
d z1 d z2

.z1 � z2/2
:

Remark 7.4. Note that d x.z/ D z2�1
z2 has the zeroes z D ˙1 and since y.z/ has

a pole of order bigger than 1 at z D 1, the spectral curve .x; y/ is irregular in the

sense of [14, Section 2.1, item 2(b)]. Hence, the invariants !g;n agree with the invari-

ants obtained from the local spectral curve obtained by removing the point z D 1. In

particular, the residue at z D 1 in equation 7.1 does not contribute and it suffices to

compute the residue at z D �1.

Moreover, we note that while

!0;2 ¤ W0;2 d x.z1/ dx.z2/;

we have

Res
z1;z2!1

x.z1/
�1x.z2/

�2!0;2.z1; z2/ D C0;2.�1; �2/

since their difference is holomorphic by definition.

The starting point of our proof is the following recursion, which is a direct con-

sequence of [20, Theorem 2.1].

Proposition 7.5. Let g be a non-negative integer, n 2 N and � D .�1; : : : ; �n/ a

partition of a positive integer. Then we have the recursion

�Cg;n.�/ D
n

X

j D2

�jCg;n�1.�1 C �j ; �N n¹1º/C
X

˛CˇD�1

Cg�1;nC1.˛; ˇ; �N n¹1º/

C
X

˛CˇD�1

X

g1Cg2Dg
ItJ DN n¹1º

Cg1;1CjI j.˛; �I /Cg2;1CjJ j.ˇ; �J /;

where �I D .�i1 ; : : : ;�ik / for I D ¹i1; : : : ; ikº, N D ¹2; : : : ; nº and the initial value

C0;1.1/ D 1.

The following proposition reformulates the cut-and-join equation Proposition 7.5

as a differential equation for generating series.
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Proposition 7.6. It holds that

�Wg;n.x1; : : : ; xn/

D
n

X

j D2

@

@xj

xj

x1

x1Wg;n�1.X¹1;:::;nºn¹j º/� xjWg;n�1.X¹1;:::;nºn¹1º/

x1 � xj

C x1Wg�1;nC1.x1; X¹1;:::;nº/

C x1

X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.x1; XI /Wg2;jJ jC1.x1; XJ / �
1

x2
ıg;0ın;1:

Proof. We multiply the cut-and-join equation from Proposition 7.5 by

x
�.�1C1/
1 : : : x�.�nC1/

n

and sum over �1; �2 : : : ; �n � 1. We start by dealing with the first term on the right-

hand side. First observe the following. For fixed j we have

1
X

�1;�j D1

�j

Cg;n�1.�1 C �j ; �N n¹�j º/

x
�1C1
1 x

�j C1

j

D � @

@xj

1

x2
1

X

�1�1;�j �0

Cg;n�1.�1 C �j ; �N n¹�j º/

x
�1�1
1 x

�j

j

D � @

@xj

1

x2
1

1
X

�D0

X

�1C�j D�
�1;�j �0

Cg;n�1.� C 1; �N n¹�j º/

x
�1

1 x
�j

j

:

We note that

X

�1C�j D�

1

x
�1

1 x
�j

j

D �x1xj

1

x
�C1
1

� 1

x
�C1
j

x1 � xj

and hence we find

� @

@xj

1

x2
1

1
X

�D0

X

�1C�j D�
�1;�j �0

Cg;n�1.� C 1; �N n¹�j º/

x
�1

1 x
�j

j

D @

@xj

xj

x1

1
X

�D0

Cg;n�1.� C 1; �N n¹�j º/.
x1

x
�C2
1

� xj

x
�C2
j

/

x1 � xj

:
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Further, we can put this in the summation over all �1; : : : ; �n and we obtain

1
X

�1:::�nD1

�jCg;n�1.�1 C �j ; �N n¹�j º/

x
�1C1
1 : : : x

�nC1
n

D @

@xj

xj

x1

x1Wg;n�1.X¹1;:::;nºn¹j º/ � xjWg;n�1.X¹1;:::;nºn¹1º/

x1 � xj

We proceed analogously for the second term and observe that

1
X

�1;:::;�nD1

X

˛CˇD�1

Cg�1;nC1.˛; ˇ; �N n¹1º/

x
�1C1
1 : : : x

�nC1
n

D
1

X

�2;:::;�n;˛;ˇD1

Cg�1;nC1.˛; ˇ; �N n¹1º/

x
˛CˇC1
1 : : : x

�nC1
n

D x1Wg�1;nC1.x1; X¹1;:::;xnº/:

Finally, for the third term we obtain

1
X

�1;:::;�nD1

X

˛CˇD�1

X

g1Cg2Dg
ItJ DN n¹1º

Cg1;1CjI j.˛; �I /Cg2;1CjJ j.ˇ; �J /

x
�1C1
1 : : : x

�nC1
n

D x1

X

g1Cg2Dg
ItJ DN n¹1º

1
X

˛;�i D1
i2I

Cg1;1CjI j.˛; �I /

x˛C1
1

Q

i2I x
�i C1
i

1
X

˛;�i D1
i2J

Cg1;1CjI j.ˇ; �I /

x
ˇC1
1

Q

i2J x
�i C1
i

D x1

X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.x1; XI /Wg2;jJ jC1.x1; XJ /:

Putting everything together yields the desired equation.

In the perspective of CEO topological recursion it is handy to rewrite the cut-and-

join equation in way that Wg;n.x/ does not appear on the right-hand side.

Corollary 7.7. It holds

� .1C 2x1W0;1.x1//Wg;n.x1; : : : ; xn/

D
n

X

j D2

@

@xj

xj

x1

x1Wg;n�1.X¹1;:::;nºn¹j º/ � xjWg;n�1.X¹1;:::;nºn¹1º/

x1 � xj

C x1Wg�1;nC1.x1; X¹1;:::;nº/

C x1

0
X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.x1; XI /Wg2;jJ jC1.x1; XJ / �
1

x2
ıg;0ın;1;

where
P0

means that the cases .g1; I / D .0;;/ or .g2; J / D .0;;/ are excluded.
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We now compute some special cases of Wg;n, which require special treatment in

the CEO topological recursion. We have the following result for the first few values

of .g; n/.

Corollary 7.8 ([20, Theorem 1.1] and [22, Theorem 6.2]). We have that

C0;1.�/ D .�1/��1 1

�

�

2�� 2
� � 1

�

;

C0;2.�1; �2/ D .�1/�1C�2
2�1�2

�1 C �2

�

2�1 � 1
�1

��

2�2 � 1
�2

�

;

C0;3.�1; �2; �3/ D .�1/�1C�2C�3�18�1

�

2�1 � 1
�1

�

�2

�

2�2 � 1
�2

�

�3

�

2�3 � 1
�3

�

:

A straightforward calculation shows the following lemma.

Lemma 7.9. The following identities hold

W0;1.x.z// D
z

.z � 1/3 ;

W0;2.x.z1/; x.z2// D
z2

1z
2
2

.z2
1 � 1/.z2

2 � 1/.1� z1z2/2
;

W0;3.x1; x2; x3/ D
8

x2
1x

2
2x

2
3.1C 4

x1
/

3
2 .1C 4

x2
/

3
2 .1C 4

x3
/

3
2

D
3

Y

iD1

2

x2
i .1C 4

xi
/

3
2

D
3

Y

iD1

2

.zi C 1/2
1

x0.zi /
:

The next lemma is a key step towards the topological recursion for the num-

bersCg;n.�/, as determining the difference between the Bergman kernel and the .0;2/

free energy is important for the input data of the topological recursion.

Lemma 7.10. We have

W0;2.x.z1/; x.z2//dx.z1/dx.z2/ D
d z1 d z2

.1� z1z2/2
D d z1 d z2

.z1 � z2/2
� d x.z1/ dx.z2/

.x.z1/ � x.z2//2

and in particular

W0;2.x.z1/; x.z2//dx.z1/dx.z2/ D �B
� 1

z1

; z2

�

:

Proof. From the last proposition and x0.zi/ D z2
i

�1

z2
i

we obtain

W0;2.x.z1/; x.z2// D
z2

1

.z2
1 � 1/

z2
2

.z2
2 � 1/

1

.1 � z1z2/2
D 1

x0.z1/

1

x0.z2/

1

.1 � z1z2/2
;
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from which the first equality follows immediately. For the second one, a straightfor-

ward calculation yields

.x.z1/� x.z2//
2 D

�z2
1 C 1
z1

� z
2
2 C 1
z2

�2

D .1� z1z2/
2.z1 � z2/

2

z2
1z

2
2

;

which yields

1

.z1 � z2/2
� x0.z1/x

0.z2/

.x.z1/ � x.z2//2
D 1

.z1 � z2/2
� .z2

1 � 1/.z2
2 � 1/

.1� z1z2/2.z1 � z2/2

D 1

.1� z1z2/2
:

7.1. Proof of Theorem 7.3

Our proof of Theorem 7.3 is inspired by the approach in [10]. We begin by considering

the case .g; n/ D .0; 3/, which requires an independent discussion.

Lemma 7.11. The multidifferential !0;3 satisfies the recursion in equation (7.1).

Proof. Recall that, by Lemma 7.9,

W0;3.x1; x2; x3/ D
8

x2
1x

2
2x

2
3.1C 4

x1
/

3
2 .1C 4

x2
/

3
2 .1C 4

x3
/

3
2

D
3

Y

iD1

2

x2
i .1C 4

xi
/

3
2

:

We find

W0;3.z1; z2; z3/ D
3

Y

iD1

2

xi .z/2.1C 4
xi .z/

/
3
2

D
3

Y

iD1

2z2
i .zi � 1/3

.zi � 1/4.zi C 1/3

D
3

Y

iD1

2

.zi C 1/2
z2

i

.zi C 1/.zi � 1/

D
3

Y

iD1

2

.zi C 1/2
1

x0.zi/
:
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The recursion from topological recursion reads

!0;3.z1; z2; z3/

D Res
z!�1

K.z1; z/
h

w0;2.z; z2/w0;2

�1

z
; z3

�

Cw0;2.z; z3/w0;2

�1

z
; z2

�i

D Res
z!�1

z.z � 1/3 d z1

2.z C 1/.z1 � z/.z1z � 1/ d z

h d z d z2

.z � z2/2

d 1
z

d z3

.1
z
� z3/2

C d z d z3

.z � z3/2

d 1
z

d z2

.1
z
� z2/2

i

D Res
z!�1

1

z C 1
�.z � 1/3 d z1

2z.z1 � z/.z1z � 1/ d z

h 1

.z � z2/2.
1
z
� z3/2

C 1

.z � z3/2.
1
z
� z2/2

i

d z d z1 d z2 d z3;

which is of the form

f .z; z1; z2; z3/ d z

.z C 1/ d z1 d z2 d z3

where f is holomorphic in z around z D �1. Hence, we get

!0;3.z1; z2; z3/ D f .1; z1; z2; z3/ d z1 d z2 d z3

D 8 d z1 d z2 d z3

.z1 C 1/2.z2 C 1/2.z3 C 1/2
;

which concludes the proof.

Recall the polynomiality result for monotone Hurwitz numbers.

Theorem 7.12 ([22]). There are symmetric rational functions EPg;h such that

EHg;n.�1; : : : ; �n/ D
n

Y

iD1

�

2�i

�i

�

EPg;n.�1; �2; : : : ; �n/:

Moreover, if .g; n/ ¤ q.0; 1/; .0; 2/, then EPg;n is a polynomial with rational coeffi-

cients of degree 3g � 3C n.

Since Cg;n agrees with EHg;h up to the factor .�1/b Qn
iD1 �i , we immediately get

Cg;n D .�1/b
n

Y

iD1

�i

�

2�i

�i

�

EPg;n.�1; �2; : : : ; �n/:
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Thus, for the polynomial

EPg;n.�1; : : : ; �n/ D
finite
X

N
aD

N
0

Bg;n.Na/
Y

�
ai

i

with coefficients Bg;n.Na/, we can write our generating function as

Wg;n.x1; : : : ; xn/ D
finite
X

N
aD

N
0

Bg;n.Na/
n

Y

iD1

1
X

�i D1

�
ai C1
i

�

2�i

�i

�

��1
xi

��i C1

D
finite
X

N
aD

N
0

Bg;n.Na/
n

Y

iD1

fai
.xi/

with

fa.x/ D
1

X

�D1

�aC1

�

2�

�

�

��1
x

��C1

:

A careful analysis of the functions fa will give us the analytic properties ofWg;n.

Lemma 7.13. Let .g; n/ ¤ .0; 1/; .0; 2/; then the functionsWg;n.z1; : : : ; zn/ satisfy

Wg;n.z1; : : : ; zn/ D �Wg;n.�.z1/; z2; : : : ; zn/ D �Wg;n

� 1

z1

; z2; : : : ; zn

�

:

Moreover, they are rational functions in each zi having poles at zi D 1 and at zi D�1.

Proof. Note that the functions fa satisfy the recursion

fa.x/ D
1

X

�D1

�aC1

�

2�

�

�

��1
x

��C1

D � @
@x
xfa�1.x/; (7.2)

i.e.,

fa.x/ D
�

� @
@x
x

�a

f0.x/

and

f0.x/ D
1

X

nD1

�

�

2�

�

�

��1
x

��C1

D 2
p
x.x C 4/ 3

2

:

In the variable z we get

f0.z/ D
2z2

.z � 1/.zC 1/3
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and

f0.�.z// D f0

�1

z

�

D
2 1

z2

.1
z
� 1/.1

z
C 1/3 D �

2z2

.z � 1/.z C 1/3 D �f0.z/:

We find by induction

fa.z/C fa.�.z// D
@

@x
x.fa�1.z/C fa�1.�.z/// D 0

and hence

Wg;n.z1; z2; : : : ; zn/CWg;n.�.z1/; z2; : : : ; zn/

D
finite
X

N
aD

N
0

Bg;n.Na/Œfa1
.z/C fa1

.�.z//�

n
Y

iD2

fai
.xi/ D 0:

Moreover, note that equation (7.2) reads

fa.z/ D
� �z2

z2 � 1
@

@z

.z � 1/2
z

�

fa�1.z/

in the variable z. It follows by induction that fa is rational and has a pole of order 1

at z D 1 and a pole of order 2aC 3 of z D �1.

The last result can be reformulated in terms of the forms !g;n.

Corollary 7.14. For .g; n/ ¤ .0; 1/; .0; 2/, the forms !g;n.z1; : : : ; zn/ are antisym-

metric with respect to � , i.e.,

!g;n.z1; : : : ; zn/ D �!g;n.�.z1/; z2; : : : ; zn/

D �!g;n

� 1

z1

; z2; : : : ; zn

�

:

They only have poles at z D ˙1, where the pole at z D 1 has at most order 1.

Proof. The assertions follow from the Lemma 7.13.

Now, we are ready to prove Theorem 7.3.

Proof of Theorem 7.3. The initial data is given by .g; n/ D .0; 1/; .0; 2/ and the case

of .g; n/ D .0; 3/ was proved in Lemma 7.11. Thus, in the following we assume that

.g; n/ ¤ .0; 1/; .0; 2/; .0; 3/.
The idea is to add the recursions for

Wg;n.z1; z2; : : : ; zn/ and Wg;n.�.z1/; z2; : : : ; zn/

and proceed with a careful combinatorial analysis after substituting the identity in

Lemma 7.13.
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• Firstly we note that the left-hand side yields the following:

� .1C 2x1W0;1.z1//Wg;n.z1; z2; : : : ; zn/

� .1C 2x1W0;1.�.z1///Wg;n.�.z1/; z2; : : : ; zn/

D �.1C 2x1W0;1.z1//Wg;n.z1; z2; : : : ; zn/

C .1C 2x1W0;1.�.z1///Wg;n.z1; z2; : : : ; zn/

D �2x1ŒW0;1.z1/ �W0;1.�.z1//�Wg;n.z1; z2; : : : ; zn/:

• The first term on the right-hand side we treat is

n
X

j D2

@

@xj

xj

x1

x1Wg;n�1.Z¹1;:::;nºn¹j º/ � xjWg;n�1.Z¹1;:::;nºn¹1º/

x1 � xj

and its counterpart where z1 is replaced by �.z1/. First we note that, we can

rewrite the derivatives by

@

@x
D z2

z2 � 1
@

@z
:

Now, we want to focus on what happens when we replace z1 by �.z1/, using

x.�.z1// D x.z1/

we get terms of the form

z2
j

z2
j � 1

@

@zj

x.zj /

x.z1/

x.�.z1//Wg;n�1.�.z1/; Z¹2;:::;nºn¹j º/ � xjWg;n�1.Z¹1;:::;nºn¹1º/

x1 � xj

:

By our observations the latter is equivalent to

z2
j

z2
j � 1

@

@zj

x.zj /

x.z1/

�x1Wg;n�1.Z¹1;:::;nºn¹j º/ � xjWg;n�1.Z¹1;:::;nºn¹1º/

x1 � xj

:

Thus x1Wg;n�1.Z¹1;:::;nºn¹j º/ cancels in the sum and we end up with the term

�2
n

X

j D2

z2
j

z2
j � 1

@

@zj

x.zj /
2

x.z1/

Wg;n�1.Z¹1;:::;nºn¹1º/

x1 � xj

:

• The second term on the right-hand side is

x1

�

Wg�1;nC1.z1; z1; z2; : : : ; zn/CWg�1;nC1.�.z1/; �.z1/; z2; : : : ; zn/
�

D �2x1Wg�1;nC1.z1; �.z1/; z2; : : : ; zn/:
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• The third term is

x1

h

X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.z1; ZI /Wg2;jJ jC1.z1; ZJ /

C
X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.�.z1/; ZI /Wg2;jJ jC1.�.z1/; ZJ /

C 2
n

X

j D2

�

W0;2.z1; zj /Wg;n�1.z1; Z¹1;:::;nºn¹j º/

CW0;2.�.z1/; zj /Wg;n�1.�.z1/; Z¹1;:::;nºn¹j º/
�

i

:

By Lemma 7.10 and Corollary 7.14 this yields

�2x1

h

X

g1Cg2Dg
ItJ DN n¹1º

Wg1;jI jC1.z1; ZI /Wg2;jJ jC1.�.z1/; ZJ /

C
n

X

j D2

� B.�.z1/; zj /

d x.z1/ dx.zj /
Wg;n�1.z1; Z¹1;:::;nºn¹j º/

C B.z1; zj /

d x.�.z1// dx.zj /
Wg;n�1.�.z1/; Z¹1;:::;nºn¹j º/

�i

:

As .g; n/ ¤ .0; 1/; .0; 2/; .0; 3/we have .g; n� 1/ ¤ .0; 1/; .0; 2/. Thus

Wg;n�1dx.z1/ � � �dx.zn�1/

satisfies Corollary 7.14. Therefore, putting things together, dividing by

�2x1ŒW0;1.x.z1//�W0;1.x.�.z1///�

and multiplying with d x1 : : : d xn, we obtain

!g;n.z1; : : : ; zn/

D 1

.W0;1.x.z1//�W0;1.x.�.z1/// dx1

h

n
X

j D2

d x1 d x1

x2
1

z2
j

z2
j � 1

@

@zj
x2

j

!g;n�1.z2; : : : ; zn/

x1 � xj

C !g�1;nC1.z1; �.z1/; z2; : : : ; zn/

C
ı

X

g1Cg2Dg
ItJ DN n¹1º

!g1;jI jC1.z1; ZI /!g2;jJ jC1.�.z1/; ZJ /
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C
X

j D2

!0;2.�.z1/; zj /!g;n�1.z1; Z¹1;:::;nºn¹j º/

C !0;2.z1; zj /!g;n�1.�.z1/; Z¹1;:::;nºn¹j º/
i

D 1

!0;1.z1/ � !0;1.�.z1//

h

n
X

j D2

d x1 d x1

x2
1

z2
j

z2
j � 1

@

@zj
x2

j

!g;n�1.z2; : : : ; zn/

x1 � xj

C !g�1;nC1.z1; �.z1/; z2; : : : ; zn/

C
0

X

g1Cg2Dg
ItJ DN n¹1º

!g1;jI jC1.z1; ZI /!g2;jJ jC1.�.z1/; ZJ /
i

:

The d x1 in the denominator originates from the trivial expansion d x1

d x1
. The next step

is to apply Cauchy’s formula and use the fact that the !g;n are rational forms (in

particular in z1) having only poles at˙1. We have

!g;n.z1; : : : ; zn/ D Res
z!z1

!g;n.z; z2; : : : ; zn/ d z1

z � z1

D Res
z!˙1

d z1

z1 � z
!g;n.z; z2; : : : ; zn/

D Res
z!˙1

d z1

z1 � 1
z

!g;n

�1

z
; z2; : : : ; zn

�

D � Res
z!˙1

d z1

z1 � �.z/
!g;n.z; z2; : : : ; zn/;

the second equality is due to the fact that !g;n are rational differentials in each zi ,

hence the sum over all residue must vanish, i.e.,

0 D Res
z!z1

!g;n.z; z2; : : : ; zn/ d z1

z � z1

C Res
z!˙1

!g;n.z; z2; : : : ; zn/ d z1

z � z1

where Resz!˙1 denotes the sum of the residues at 1 and �1. Thus we get

!g;n.z1; : : : ; zn/ D Res
z!˙1

1

2

�

d z1

z1 � z
� d z1

z1 � �.z/

�

!g;n.z; z2; : : : ; zn/

D Res
z!˙1

�

1

2

z
Z

�.z/

!0;2.z1; �/
�

!g;n.z; z2; : : : ; zn/:
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Now, we want to invoke the recursion for the !g;n which we established before. We

get

!g;n.z1; : : : ; zn/

D Res
z!˙1

1
2

R z

�.z/ !0;2.z1; �/
!0;1.z/ � !0;1.�.z//

h

n
X

j D2

d x d x

x2

z2
j

z2
j � 1

@

@zj
x2

j

!g;n�1.z2; : : : ; zn/

x � xj

C !g�1;nC1.z; �.z/; z2; : : : ; zn/

C
X

g1Cg2Dg
ItJ DN n¹1º

!g1;jI jC1.z; ZI /!g2;jJ jC1.�.z/; ZJ /
i

:

First we need to argue that the residue at z D 1 does not contribute. But this is since

K.z1; z/ D
1
2

R z

�.z/ !.z1; �/
!0;1.z/ � !0;1.�.z//

D z.z � 1/3 d z1

2.z C 1/.z1 � z/.z1z � 1/ d z
;

i.e., K has a zero of order 3 at z D 1 which cancels the poles (of order 1) of

!g;n.z; z2; : : : ; zn/. Hence, last two terms on the right-hand side vanish. For the first

one, note that

d x d x

x2
D .z C 1/2 d z d z

.z � 1/2z2

has pole of order 2, so the zero of K.z1; z/ cancels this as well. Lastly, we show that

the first term on the right-hand side vanishes if we take the residue at z D �1. But

by the last equation we see that the pole of order 1 of K is removed by the zero of

order 2. Thus we finally arrive at

!g;n.z1; : : : ; zn/

D Res
z!�1

1
2

R z

�.z/ !0;2.z1; �/
!0;1.z/ � !0;1.�.z//

h

!g�1;nC1.z; �.z/; z2; : : : ; zn/

C
X

g1Cg2Dg

ItJ DN n¹1º

!g1;jI jC1.z; ZI /!g2;jJ jC1.�.z/; ZJ /
i

:

8. Recursions for coverings of an arbitrary base curve

In this section, we derive a recursion for monotone and Grothendieck dessins d’enfants

coverings of arbitrary base curves. Form 2 N, we denote Œm�´ ¹1; : : : ;mº. Further-

more, for a partition �, we denote the partition obtained by removing the entries in
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position i1; : : : ; in (for some n � `.�/ and ij 2 Œ`.�/�) by �Œi1; : : : ; in�. We introduce

the following notation.

Notation 8.1. For g � 0 and � be a partition of a positive integer d of length n, we

define

Ag.�/ WD j¹.˛1; ˇ1; : : : ; ˛g ; ˇg/ 2 S2g

d
WC.Œ˛1; ˇ1� � � � Œ˛g ; ˇg �/ D �ºj:

For each partition �, we fix a permutation

�� D .1 � � ��1/.�1 C 1 � � � �1 C �2/ � � �
�

n�1
X

iD1

�i C 1 � � �d
�

;

where for k 2 Œn� the cycle .
Pk�1

iD1 �i C 1 � � �
Pk

iD1 �i/ is labeled k.

We now observe

EH �;g
g 0;�.�/ D

X

�`d

Eh�;�
g 0 .�; �/

jAut.�/j �
Ag.�/

jC� j
and EH �;g

g 0;<.�/ D
X

�`d

Eh<;�
g 0 .�; �/

jAut.�/j �
Ag.�/

jC� j

for the usual (strictly) monotone double Hurwitz number h
�;�
g 0 .�;�/ (resp. h

<;�
g 0 .�;�/).

Thus, by finding a recursive method for computing the (strictly) monotone double

Hurwitz numbers in genus 0, we obtain a recursive method for all genera.

For the rest of this section, we derive a recursive structure for (strictly) mono-

tone double Hurwitz numbers. We note that the disconnected and connected (strictly)

monotone double Hurwitz numbers are equivalent by the usual inclusion-exclusion

principle. We can therefore focus on the connected numbers, which yield more com-

pact formulas.

While monotone single Hurwitz numbers satisfy a recursive formula, a recursive

formula for monotone Hurwitz numbers with an additional non-trivial ramification

remains an open problem. However, one approach to this problem was introduced

in [11] in the case of monotone orbifold Hurwitz numbers. More precisely, instead

of considering monotone orbifold Hurwitz numbers, one considers a combinatorial

refinement, which determines the former numbers and satisfy a recursion. In this sec-

tion, we follow this philosophy and introduce a combinatorial refinement of (strictly)

monotone double Hurwitz numbers and derive a recursion.

Definition 8.2. Let �; � be ordered partitions of d , let i 2 Œ`.�/� and l 2 Œ�`.�/�. We

defineN
�Il;i
g .�i j �Œi �; �/ to be the number of all tuples .�1; �1; : : : ; �b; �2/, such that

(1) �1 D �� , (with �� and its labelling as defined above),

(2) c.�1/ D �, c.�2/ D �,

(3) the cycles of �2; �2 are labeled,



M. A. Hahn, J.-W. M. van Ittersum, and F. Leid 288

(4) �b � � � �1�1 D �2,

(5) h�1; �1; : : : ; �b; �2i is a transitive subgroup,

(6) for �i D .si ti / ,where si < ti , we have ti � tiC1,

(7) we have �b D .sbtb/, where tb D
P`.�/�1

j D1 �j C l for some l 2 Œ`.�/�,
(8) tb is contained in the i -th cycle of �2.

We also define the numbers

N�Ii
g .�i j �Œi �; �/ D

�n
X

lD1

N�Il;i
g .�i j �Œi �; �/

and

N�
g .�; �/ D

`.�/
X

iD1

N�Ii
g .�i j �Œi �; �/:

Similarly, we define the notions for the strictly monotone case and denote the respect-

ive numbers by N
<Il;i
g .�i j �Œi �; �/, N<Ii

g .�i j �Œi �; �/ and N<
g .�; �/.

Remark 8.3. Before we state our recursion for

N�Il;i
g .�i j �Œi �; �/ and N<Il;i

g .�i j �Œi �; �/;

we make the following remarks.

• We note that we can compute the monotone Hurwitz numbers Eh�
g .�;�/ by consid-

ering all tuples .�1; �1; : : : ; �b; �2/ satisfying conditions (2)–(6) in Definition 8.2

as changing the order of the cycle types in the factorisations does not alter the

enumeration. We use this convention in the proof of Theorem 8.4.

• We see that

Eh�
g .�; �/ D

jC� j
dŠ

m
X

iD1

N�
g .�i j �Œi �; �/

and

Eh<
g .�; �/ D

jC� j
dŠ

m
X

iD1

N<
g .�i j �Œi �; �/:

• As we are concerned with (strictly) monotone factorisations in Definition 8.2, the

numbers tb; tb C 1; tb C 2; : : : ; j�j actually appear consecutively in the i -th cycle

of �2 (see [11, 23]), i.e., this cycle is of the form

.: : : tb tb C 1tb C 2 : : : j�j/:

• The above definition of N
�;l
g .�i j �Œi �; �/ is motivated by the notions in [11, 23].

While of technical nature, they are more natural when considered in terms of
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monodromy graphs, which is an approach taken in the works of Do, Karev, and

Hahn. In their language, the numbers N
�;l
g .�i j �Œi �; �/ counts all “monodromy

graphs, where the unique bold out-end is labeled i with counter l .” We note that

these monodromy graphs are related to tropical covers but differ from the ones,

we introduced in this work.

Theorem 8.4. Let g be a non-negative integer and�;� partitions of the same positive

integer. Moreover, let i 2 Œ`.�/� and l � �i . Then we have

N�Il;i
g .�i j �Œi �; �/

D ‚.�i C l � �n � 1/
X

j 2Œ`.�/�n¹iº

l
X

pD1

N�Ip;`.�/�1
g .�i C �j j �i;j Œ`.�/� 1�; �/

C
X

˛CˇD�i

l
X

pD1

ˇN
�Ip;i
g�1 .˛ j .�Œi �; ˇ/; �/

C
X

˛CˇD�i

X

g1Cg2Dg
X

I1[I2DŒ`.�/�n¹iº
J �Œn�1�

l
X

pD1

ˇN�Ip;jI1jC1
g1

.˛ j .�I1
; ˛/ŒjI1j C 1�; �J c /

N�IjI2jC1
g2

.ˇ j .�I2
; ˇ/; �J /

and

N<Il;i
g .�i j �Œi �; �/

D ‚.�i C l � �n � 1/
X

j 2Œ`.�/�n¹iº

l�1
X

pD1

N<Ip;`.�/�1
g .�i C �j j �i;j Œ`.�/� 1�; �/

C
X

˛CˇD�i

l�1
X

pD1

ˇN
<Ip;i
g�1 .˛ j .�Œi �; ˇ/; �/

C
X

˛CˇD�i

X

g1Cg2Dg
X

I1[I2DŒ`.�/�n¹iº
J �Œn�1�

l�1
X

pD1

ˇN<Ip;jI1jC1
g1

.˛ j .�I1
; ˛/ŒjI1j C 1�; �J c /

�

�max.J /
X

pD1

.N<Ip;jI2jC1
g2

.ˇ j .�I2
; ˇ/; �J //

�

;

where‚ is the Heavyside step function, i.e.,‚.t/D 0 for t < 0 and‚.t/D 1 for t � 0.

Furthermore, we denote �i;j D �Œi; j � [ ¹�i C �j º

Proof. As the proofs are completely parallel, we restrict our discussion to the mono-

tone numbers. We prove this theorem by a cut-and-join analysis of transitive mono-

tone factorisations .��; �1; : : : ; �b; �/ of type .g; �;�/. Recall thatN
�Il;i
g .�i j �Œi �; �/
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counts the number of all tuples .�1; �1; : : : ; �b; �2/ of type .g; �; �/ satisfying condi-

tions (1)–(8) of Definition 8.2, where �i D .si ti / with si < ti , such that �1 D �� and

sb is contained in the cycle of �2 labeled i . We fix such a factorisation, define

† D �b�1 � � � �1��

and observe that � D .��; �1; : : : ; �b�1;†/ is a monotone factorisation as well. There

are three cases.

(1) The transposition �b is a cut for †. That is, sb and tb are contained in the same

cycle of †. Then left multiplication by �b, i.e., �b† cuts the cycle of † containing sb
and tb into two cycles. Conversely, this means sb and tb are contained in different

cycles of � and �b joins those cycles by left multiplication �b�2 to a joint cycle in †.

Thus, if �b is a cut for †, any such transitive monotone factorisation .��; �1; : : : ;

�b; �/ contributing to N
�Il;i
g .�i j �Œi �; �/ yields a transitive monotone factorisation

.��; �1; : : : ; �b�1; †/ contributing to N
�Ip;`.�/�1
g .�i C �j j �i;j Œ`.�/ � 1�; �/ for

some j 2 Œ`.�/�n¹iº and p� l . The other way round, we start with a tuple .��; �1; : : : ;

�b�1; †/ contributing to N
�Ip;i
g .�i C �j j �Œi; j �; �/ for some j 2 Œ`.�/�n¹iº and

p � l . We analyse the number of possible transpositions �b which give a transitive

monotone factorisation .��; �1; : : : ; �b; �/ with C.�2/D �. The number sb is fixed to

be
Pn�1

iD1 �i C l . As mentioned before, the cycle of �2 containing sb (labeled i ) must

then be of shape

�

� � � C tbtb C 1C � � � C
n

X

kD1

�i � 1
n

X

kD1

�i

�

:

Thus the length �i of the cycle must be at least �n � l C 1, in other words ‚.�i C
l � �n � 1/ must not vanish. Moreover, as tb is fixed and sb must be contained in the

same cycle of † as tb , the value of sb is fixed as well. This yields the first summand.

(2) The transposition �b is a redundant join for †. That is, rb and sb are contained

in two different cycles of † and � is a transitive monotone factorisation as well. Then

left multiplication by �b, i.e., �b† joins the cycles of † containing sb and tb respect-

ively to one cycle. Conversely, this means sb and tb are contained in the same cycle

of �2 and �b cuts this cycle by left multiplication �b�2 to two cycles of †.

Thus, if �b is a redundant join for† any such tuple .��; �1; : : : ; �b;�2/ contributing

to N
�Il;i
g .�i j �Œi �; �/ yields a tuple .��; �1; : : : ; �b�1; †/ contributing to N

�Ip;i
g�1 .˛ j

.�Œi �;ˇ/; �/ for some i 2 Œ`.�/�, ˛C ˇ D �i (note that the genus drops by 1 since the

number of transpositions and the length of the second cycle type drop by 1) and p � l .
The other way, we start with a tuple .��; �1; : : : ; �b�1; †/ contributing to N

�Ip;i
g�1 .˛ j

.�Œi �; ˇ/; �/ for some i 2 Œ`.�/� and ˛C ˇ D �i . We analyse the number of possible
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transposition �b which yield a tuple .��; �1; : : : ; �b; �2/ contributing to N
�Il;i
g .�i j

�Œi �; �/.

The number sb is fixed to be
Pn�1

iD1 �i C l . By definition, tb is contained in a cycle

of length ˛. We need to choose sb, such that �b D .sbtb/ joint ˛ with another cycle

to a new cycle of length �i . Thus, we need to choose rb from a cycle of length ˇ.

Moreover, we can choose sb arbitrarily, which yields a factor of ˇ and we obtain the

second summand.

(3) The transposition �b is an essential join for †. That is, sb and tb are contained

in two different cycles of † and the group generated by � is non-transitive with two

orbits. Then left multiplication by �b , i.e., �b† joins two cycles of † containing sb
and tb respectively to one cycle. Conversely, this means sb and tb are contained in the

same cycle of �2 and �b cuts this cycle by left multiplication �b�2 to two cycles of †.

Thus, if �b is an essential join for †, any such tuple .��; �1; : : : ; �b; �2/ contrib-

uting to N
�Il;i
g .�i j �Œi �; �/ yields two tuples .��J

; �i.1/; : : : ; �i.c/; �
1
2 / and .��J c ;

�j.1/; : : : ; �j.d/; �
2
2 / such that

(1) J � Œn�,
(2) c C d D b,

(3) ��J
is the permutation obtained as the product of all disjoint cycles of �� with

label in J and

(4) �1
2 and �2

2 have disjoint orbits and �2 D �1
2�

2
2 , where � i

2 recovers the labels

from �2 for i D 1; 2.

These tuples contribute to
Pl

pD1 ˇN
�Ip;jI1jC1
g1

.˛ j .�I1
; ˛/ŒjI1j C 1�; �J c / for p �

l and to N
�IjI2jC1
g2

.ˇ j .�I2
; ˇ/; �J / respectively. By the same arguments as in the

previous case, we obtain a factor of ˇ and thus obtain the third summand, which

completes the proof of the theorem.

A. Examples

We provide some examples of the quasimodular q-expansions of
P

d H
g;d

k;l;m
.�/qd ,

computed using Sage [39]. See [38, Section 10] for an extensive list of quasimodular

forms corresponding to simple Hurwitz numbers (l D m D 0; � D . /):
X

d

H
2;d
2;0;0. /q

d D 1

26345
.5P 3 � 3PQ � 2R/

D 2q2 C 16q3 C 60q4 C 160q5 C 360q6 C 672q7 C 1240q8

C 1920q9 C 3180q10 C 4400q11 C 6832q12 CO.q13/;
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X

d

H
2;d
0;2;0. /q

d D 1

27345
.5P 3 � 3PQ � 2RC 45P 2 C 18QC 90P � 153/

D 2q2 C 13q3 C 44q4 C 109q5 C 235q6 C 422q7 C 760q8

C 1151q9C 1875q10C 2555q11 C 3927q12 CO.q13/;

X

d

H
2;d
0;0;2. /q

d D 1

27345
.5P 3 � 3PQ � 2R � 45P 2 � 18Q � 90P C 153/

D 3q3 C 16q4 C 51q5 C 125q6 C 250q7 C 480q8 C 769q9

C 1305q10C 1845q11 C 2905q12CO.q13/;

X

d

H
3;d
2;0;0.3/q

d D 1

2133552

�

�875P 5 C 1775P 3Q � 10P 2R � 894PQ2

C 4QRC 750P 4 � 1710P 2QC 60PRC 900Q2

C 135P 3 � 81PQ � 54R
�

D 36q3 C 540q4 C 3606q5 C 15726q6C 53298q7 C 149142q8

C 367920q9C 815886q10C 1668150q11C 3202374q12

CO.q13/;

X

d

H
3;d
0;2;0.3/q

d D 1

2143552

�

�875P 5 C 1775P 3Q � 10P 2R � 894PQ2

C 4QR � 2625P 4 � 630P 2QC 23460

7
PR

C 648

7
Q2 C 2835P 3 C 1359PQ� 5814R

C 3150P 2 � 4608QC 7020P � 4131
�

D 27q3 C 369q4 C 2337q5 C 9795q6 C 32307q7 C 88446q8

C 214536q9C 469230q10C 948600q11C 1803375q12

CO.q13/;

X

d

H
3;d
0;0;2.3/q

d D 1

2143552

�

�875P 5 C 1775P 3Q � 10P 2R � 894PQ2 C 4QR

C 4125P 4 � 2790P 2QC 22620

7
PRC 11952

7
Q2

� 2565P 3 � 1521PQC 5706R� 3150P 2C 4608Q
� 7020P C 4131

�

D 9q3 C 171q4 C 1269q5C 5931q6 C 20991q7C 60696q8

C 153384q9C 346656q10C 719550q11C 1398999q12

CO.q13/:
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