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Multiple scaling limits of U.N/2
� O.D/

multi-matrix models

Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, and Guillaume Valette

Abstract. We study the double- and triple-scaling limits of a complex multi-matrix model,

with U.N /2 � O.D/ symmetry. The double-scaling limit amounts to taking simultaneously

the large-N (matrix size) and large-D (number of matrices) limits while keeping the ratio

N=
p

D D M fixed. The triple-scaling limit consists in taking the large-M limit while tun-

ing the coupling constant � to its critical value �c and keeping fixed the product M.�c � �/˛ ,

for some value of ˛ that depends on the particular combinatorial restrictions imposed on the

model. Our first main result is the complete recursive characterization of the Feynman graphs

of arbitrary genus which survive in the double-scaling limit. Next, we classify all the dominant

graphs in the triple-scaling limit, which we find to have a plane binary tree structure with dec-

orations. Their critical behavior belongs to the universality class of branched polymers. Lastly,

we classify all the dominant graphs in the triple-scaling limit under the restriction to three-edge

connected (or two-particle irreducible) graphs. Their critical behavior falls in the universality

class of Liouville quantum gravity (or, in other words, the Brownian sphere).
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1. Introduction

Field theories in zero spacetime dimensions are in principle nothing but ordinary

integrals, yet they are of great interest in physics and combinatorics. Their perturb-
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ative expansion in Feynman diagrams requires no integrals over spacetime, hence it

reduces to counting certain classes of diagrams: standard field-theoretic objects, such

as the partition function, the free energy, and so on, are generating functions of count-

ing sequences for various combinatorial classes. In physics, such theories are often

viewed as toy models, but for certain models of multi-variable integrals the relevant

representation of Feynman diagrams has a natural interpretation in terms of geomet-

rical objects, thus opening the possibility of using such models to construct theories

of random geometry, which is of interest for quantum gravity and string theory.

Matrix and tensor models, distinguished by different symmetry groups or differ-

ent representations of the same group, are clear examples of such an application.

Their Feynman diagrams are dual to piecewise flat manifolds of dimension two (for

matrices) and higher (for tensors), hence their free energy is the generating function of

connected piecewise flat manifolds, which in the continuum limit is expected to define

a functional integral for Euclidean quantum gravity [4,38]. However, such generating

functions are only a formal construction, as the perturbative expansion is divergent

due to the large proliferation of Feynman diagrams. A powerful organizational prin-

ciple that allows to construct well-defined generating functions is the large-N limit,

where N is the dimension of the (real or complex) vector space on which the matrices

or tensors act as (multi-)linear maps. For matrix models, the large-N limit leads to

an expansion in 1=N indexed by the genus of the piecewise flat surfaces [55], and

for each fixed genus the generating function is a convergent series. For tensor mod-

els, there is also a 1=N expansion, indexed in this case by a non-topological number,

known as the degree [7, 18, 27, 28, 31, 46, 47, 49, 50]. The leading order (vanishing

degree) of such an expansion is well understood, and it is dominated by melonic

graphs [21]. For the higher orders, it is known that there is only a finite number of

schemes of fixed degree [43, 52], where each scheme corresponds to a summable

class of graphs. However, except for the lowest orders (small degree) [19, 22, 23, 56],

little is known about the classification of graphs of arbitrary degree.

Given a summable class of Feynman diagrams, we are interested in their con-

tinuum limit and continuum probability distribution, the functional integral. For the

class of diagrams selected by the large-N , such a continuum limit is possible, and it

leads to two well-defined and ubiquitous continuum probabilistic models: the continu-

ous random tree (branched polymers) [1,2] and the Brownian sphere [60,62]. Typical

matrix models lead to the latter, while typical tensor models to the former [51], but

special models can be built with exchanged continuum limits [20,32]. Finding altern-

atives to these two limits remains an open problem, of particular relevance to quantum

gravity, as neither branched polymers nor the Brownian spheres approach a classical

geometry at large distances. It would therefore be desirable to find other variants of
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large-N limits selecting different classes of Feynman diagrams that could lead to new

continuum models.1

One interesting variant of large-N limit was introduced by Ferrari in [39], and fur-

ther developed and generalized in [5,40]. The fundamental variables can be described

either as D different N � N matrices, or as a tensor describing a bilinear map from a

vector space of dimension N to one of dimension D (i.e., a tensor whose array forms

a rectangular cuboid rather than a cube). Then, one has two parameters to play with,

and different limits can be considered. In particular, the large-N limit of such models

leads again to a genus expansion, but on top of that one can perform the large-D limit

as well, thus introducing a new expansion at each fixed genus. In a typical model,

sending both N and D to infinity leads back to the large-N limit of cubic tensors,

with melonic dominance, and hence to a branched polymer model. However, higher

orders of such double expansion have not been explored yet.

In this paper we consider a complex multi-matrix model, with U.N /2 � O.D/

symmetry. The U.N /2 group acts on the single matrices, while the O.D/ group acts

as a mixing of the matrices. The interaction vertex is taken to be of a tetrahedral

type, with two pairs of matrices appearing in a trace of order four. This results in a

nice geometric interpretation of the Feynman graphs. First, as in similar one-matrix

models, the ribbon structure generated by the propagation of U.N /2 indices is dual

to quadrangulated orientable surfaces of arbitrary genus. Second, as the result of the

O.D/ symmetry, these surfaces are decorated by specific patterns of cycles, referred

to as O.D/-loops, which only intersect at vertices. In this combinatorial space, the

statistical properties of the genus are controlled by the large-N limit, while the pro-

liferation of O.D/-loops – captured by a second integer number [39] that we call the

grade – is directly tied to the large-D limit. This already suggests that, by suitably

correlating the two limits, one might be able to balance the interactions between topo-

logical (genus) and combinatorial (O.D/-loops) aspects, in such a way that the model

is driven to different universality classes in the continuum. With this idea in mind, we

address three questions in the present manuscript.

(1) Given a fixed value of the genus (that is, at fixed order in the 1=N expansion),

what are the Feynman graphs that survive in the large-D limit?

(2) Are there interesting double-scaling limits, in which N and D are sent to

infinity in a correlated way, which allow to resum all the dominant fixed-genus

contributions into a single generating function?

(3) What universality classes of continuum geometry do these double-scaled gen-

erating functions lead to at criticality?

1The inverse problem could also be interesting. For example, higher-dimensional general-

izations of the Brownian map have been introduced in [61], but at the moment it is not known

how to obtain them from a field theory.
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We finally note that, while the formulation and resolution of the last two questions

is tied to the random-geometric context, the general characterization of higher-genus

leading-order Feynman graphs we will provide might be of broader interest. In higher

dimension, it might for instance provide an opportunity to embed the melonic regime

of SYK-like tensor/matrix quantum-mechanical models [6, 29, 59, 68] and large-N

tensor quantum field theory [8–10, 12, 13, 44, 45, 64], into a genus expansion tract-

able enough to allow explicit computations (of, e.g., quantum corrections to operator

dimensions).

Main results. Our first main result will be the complete recursive characterization (in

Proposition 1 and Theorem 1) of Feynman graphs with vanishing grade and arbitrary

genus, which are precisely the ones that survive in a double-scaling limit where N

and D are sent to infinity while keeping the ratio N 2=D finite.

We will then restrict our attention to a particular subclass of graphs – the dominant

graphs – which turn out to govern the critical regime of this theory. Proposition 2 will

establish that the latter have a plane binary tree structure. As a result, their partition

function (which we obtain through a triple-scaling of the multi-matrix model) has a

critical point dominated by large trees, which however describe orientable surfaces

with large genus. The expectation value of the genus (or equivalently the size of the

trees) diverges at criticality, and even though its samples look naively quite different

from a tree, this ensemble converges in the continuum limit to the universality class

of branched polymers.

Besides the free energy, which can be viewed as the generating function of vacuum

diagrams with v vertices, it is quite natural in combinatorics to consider other gen-

erating functions, with further restrictions. In Section 5, we will restrict to the class

of 3-edge connected graphs, also known in physics as two-particle irreducible (2PI)

graphs. This in particular forbids tadpoles and triple edges. On top of being an inter-

esting class of diagrams from the combinatorial point of view, the 2PI restriction is

also natural in the context of 2-dimensional quantum gravity, where tadpoles and mul-

tiple edges are viewed as dual to degenerate quadrangulations [4]. Surprisingly, with

such a restriction in the triple-scaling limit, we will find a very different critical beha-

vior, falling in the universality class of Liouville quantum gravity (or, in other words,

the Brownian sphere) [33–36]. This change of universality class resulting from the

2PI condition is an interesting new feature, not shared by the usual large-N limit,

which in contrast displays universality under such type of change of ensembles [26].

Plan of the paper. The paper is organized as follows. In Section 2, we introduce the

multi-matrix model, review what was previously known about it, and describe our

general strategy towards the definition of non-trivial double- and triple-scaling limits.

We then move on to the algorithmic characterization of Feynman graphs with vanish-

ing grade, which is the subject of Section 3, and culminates in Theorem 1. Most of the
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combinatorial concepts and tools we rely on in the paper are introduced in this sec-

tion. In particular, the key notion of scheme, which describes equivalence classes of

graphs defined up to insertion of melonic or ladder subgraphs, is thoroughly reviewed

[43, 52]. In Section 4, we specialize our analysis to the subclass of schemes which

govern the dominant singularities of the partition function. A more precise (and non-

inductive) characterization of the dominant schemes in terms of plane binary trees is

proposed in Proposition 2, which in turn allows to pinpoint that the model flows to the

universality class of branched polymers at criticality. Finally, Section 5 focuses on the

more interesting phase generated by the 2PI generating function. After showing how

to directly impose the 2PI restriction at the level of the matrix integral, we explain

that its main virtue is to remove the two classes of subgraphs which typically prolif-

erate in tensor models, and are responsible for the tree-like structure of the dominant

schemes: namely, melonic subgraphs and broken ladders. As a result, the dominant

singularities are determined by a richer family of geometries, which we call 2PI-dom-

inant schemes. Their allowed combinatorial structures are elucidated in Section 5.1

(Proposition 3) and mapped in Section 5.2 to Ising states on cubic planar maps. As

a result, and quite remarkably, the generating function of 2PI-dominant schemes is

equivalent to an Ising model on a certain family of random spheres. This model is

investigated in some details by means of an effective two-matrix model in its planar

limit (Section 5.3), and with the help of known map enumeration results (Section 5.4).

The two methods yield consistent results, and allow to conclude that the triple-scaling

of the 2PI model lies in the universality class of 2-dimensional quantum gravity. In

particular, the expectation value of the genus of 2PI-dominant schemes (or equival-

ently the number of nodes in their cubic map representation) remains finite, but its

variance diverges at the critical point.

2. The model and the general idea

We consider an O.D/-invariant complex matrix model in zero dimension. The basic

degrees of freedom are given by D complex matrices X� of size N � N : .X�/ab D
X�ab with 1 � � � D and 1 � a; b � N . Remark that writing the matrices X� in

terms of their components X�ab makes it evident that we can think of them as the

components of a rank-3 tensor with indices having different ranges. A fundamental

quantity to be determined is the free energy

F .�/ D log

Z

ŒdX�e�SŒX;X��; (2.1)

with an action SŒX; X�� to be specified, and a measure

ŒdX� D
Y

�;a;b

d Re.X�/abd Im.X�/ab :
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The global symmetry group, under which the action is invariant, is assumed to be

U.N /2 � O.D/, with the following transformation law

X� ! X 0
� D O��0U(L)X�0U

�
(R); (2.2)

where O is an orthogonal matrix in O.D/, while U(L) and U(R) are two independent

unitary matrices in two distinct copies of the group U.N /, which we call left and right,

respectively. As a result, the two matrix indices (which we omitted in (2.2) and in the

following, as standard matrix multiplication is assumed) are distinguishable because

they transform with respect to two distinct U.N / groups.

Models of this type have been studied in [5, 6, 39–41]. In this paper, we focus on

the following invariant action:2

SŒX; X�� D ND
�

TrŒX�
�X�� � �

2

p
D TrŒX�

�X�X�
�X� �

�

; (2.3)

where the interaction term is known as the tetrahedral interaction and � is the cor-

responding coupling constant. In this action, the coupling constant has been scaled in

such a way that it is kept fixed as N; D ! C1. Indeed, this is the right scaling so as

to obtain well-defined large N and large D expansions [39], as further detailed below.

The perturbative expansion in � of the free energy F .�/ admits a graphical rep-

resentation in terms of Feynman graphs. These Feynman graphs can be represented

in three equivalent ways.

• As connected 4-regular directed orientable maps (with self-loops/tadpoles and

multiple edges allowed) such that each vertex has two outgoing and two ingoing half-

edges, and, furthermore, the two outgoing (resp. two ingoing) half-edges appear on

opposite sides of the vertex (see Figure 1, left panel).

• As connected 4-regular directed orientable stranded graphs, obtained from the

above representation upon replacement of each edge by a triple of parallel strands:

two external and one internal, as illustrated in the top right corner of Figure 1. The

external strands carry the indices of the two U.N / symmetry groups, and can there-

fore be distinguished. An external strand is called left (resp. right) if it is on the left

(resp. right) side, with respect to the orientation, of an edge connecting two half-edges.

Besides, the internal strand corresponds to the O.D/ symmetry group. The contrac-

tion pattern of the three types of strands at each vertex follows from the structure of

the tetrahedral interaction (see Figure 1, right panel). It is such that a strand of a given

2Other quartic interaction terms compatible with the symmetries, namely TrŒX�
�X�X�

� X� �

and TrŒX
�
�X�� TrŒX

�
�X� �, could be added to the action, but they are of lesser interest to us, as

they do not form melonic diagrams at leading order, and thus we will not consider them.
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Figure 1. Propagator and vertex in the map (left) and stranded graph (right) representations. For

simplicity, the edge orientations are left implicit in the stranded representation (note however

that fixing the orientation is equivalent to choosing R and L sides).

type (left, right, or internal) is always connected to another strand of the same type.

In a Feynman graph, the strands are closed into loops. The loops made out of external

strands correspond to the faces of the underlying 4-regular map, and together form a

ribbon graph; we call them L- or R-faces, depending on whether they are constituted

of left or right strands. As for the loops made out of internal strands, we will call them

straight faces or O.D/-loops.

• The connected 4-colored graphs, obtained in the usual way as in tensor models,

see [48].

Remark 1. The Feynman graphs correspond to graphs embedded on Riemann sur-

faces and are thus dual to discretized surfaces. From this perspective, the O.D/-loops

can be thought of as loops drawn on these discretized surfaces. In the spirit of tensor

models, the Feynman graphs can also be viewed as dual to discretizations of 3-dimen-

sional pseudo-manifolds, in general non-orientable [48, 66], but we will not rely on

this interpretation in the present paper.

As first shown in [39], the free energy has a double expansion in 1=N and 1=
p

D,

reading

F .�/ D
X

g2N

N 2�2g
X

`2N

D1Cg� `
2 Fg;`.�/: (2.4)

In this expression, g 2 N is the genus of the Feynman graphs, which corresponds to

the genus of the 4-regular maps, or equivalently, to the genus of the corresponding

U.N /2 ribbon graphs. It is defined through Euler’s relation

2 � 2g D �e C v C fL C fR D �v C f ; (2.5)
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where e is the number of edges or propagators, v is the number of vertices (e D 2v

since the maps are 4-regular), fL (resp. fR) is the number of L-faces (resp. R-faces)

and f D fL C fR. The quantity ` 2 N is another parameter associated with the Feyn-

man graphs; it is related to the index (see below), which was defined in full generality

in [40]. In the present case, the parameter ` is given by

`

2
D 2 C v � 1

2
f � '; (2.6)

where ' is the number of straight faces or O.D/-loops. It can also be expressed,

using (2.5), as
`

2
D 1 C g C 1

2
v � ': (2.7)

As seen from (2.4), the parameter ` introduces an extra grading in the standard genus

expansion of matrix models. We therefore refer to it as the grade.3

The fact that the grade is non-negative is made evident by rewriting it as

`

2
D gL C gR;

where gL (resp. gR) is the genus of the ribbon graph obtained from a Feynman graph

in the stranded representation, by deletion of the L (resp. R) strands. Since gi 2 N

2
for

i D L; R (the corresponding ribbon graphs are not necessarily orientable), it follows

that ` 2 N.

Another important combinatorial quantity is the degree [28, 31]:

! D g C `

2
; (2.8)

a close relative of the Gurau degree [46, 50], also known as the index in the more

general context of [40]. For D D N , we recover the large N structure of both

U.N /2 � O.N / (see [31]) and O.N /3 (see [28]) tensor models

F .�/ D
X

!2 N

2

N 3�!
F!.�/:

Using (2.5) and (2.6), the degree can also be written as

! D 3 C 3

2
v � f � '; (2.9)

which does not refer to 2-dimensional topology and coincides with the familiar expres-

sion found in the tensor models literature.

3Notice that the parameter ` was called index in [39], while this name was used for a differ-

ent quantity in [40]. In order to avoid confusion, here we introduce a new name for it.
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We wish to reorganize (2.4) as

F .�/ D
X

g2N

� Np
D

�2�2g X

`2N

D2� `
2 Fg;`.�/;

from which it is evident that if we keep

M WD Np
D

(2.10)

fixed as we take N ! 1 and D ! 1, we obtain

lim
N;D!1

M <1

1

D2
F .�/ D

X

g�0

M 2�2g
Fg;0.�/ � F

.0/.M; �/: (2.11)

In other words, by allowing D ¤ N , but keeping the ratio (2.10) fixed, we have a

double-scaling limit that selects Feynman graphs with ` D 0, but of arbitrary genus.

Since such graphs are much less than all the possible graphs, they might lead to a

summable series.

As usual, we are interested in determining the critical point �c , which we do not

expect to depend on g, and the critical exponent 
.g/, associated to a non-analytic

behavior of the free energy such as Fg;0.�/crit � .� � �c/2�
.g/. Determining the

critical properties of the model is interesting both from the combinatorial and physical

point of view: from the critical point and critical exponent we can infer the asymptotic

number of graphs for large number of vertices, which is a standard objective in com-

binatorics [42]; and from the physical point of view, the critical model determines the

continuum limit of the geometrical objects dual to the Feynman graphs, as in the limit

� ! �c the average number of vertices typically diverges [38].

In principle, we could use F .0/.M; �/ as a generating function for Fg;0.�/, and

use the latter to define a continuum limit at fixed g. However, since we expect �c to

be genus-independent, we can also find a combination of M and � � �c to keep fixed

for a triple-scaling limit. More precisely, if 
.g/ D a C bg, then

lim
M !1
�!��

c

1

M 2.� � �c/2�a
F

.0/.M; �/ D
X

g2N

�2gfg ; (2.12)

with ��1 D M.� � �c/b=2 fixed. Since the large-D limit selects for each genus g a

subset of diagrams, we expect that the series in (2.12) will have an improved conver-

gence with respect to the usual double-scaling limit of matrix models, which is not

even Borel summable [38]. In fact, we will see in Section 4 that the triple-scaling limit

leads to a series with a finite radius of convergence.
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For practical reasons, it will turn out to be more convenient to work with graphs

having a marked edge, which can equivalently be thought as two-point graphs, i.e.,

graphs in the perturbative expansion of the two-point function:

hTrŒX�
�X��i D

R

ŒdX�e�SŒX;X�� TrŒX
�
�X��

R

ŒdX�e�SŒX;X��
: (2.13)

3. Recursive characterization of graphs with vanishing grade

In this section, we perform a detailed combinatorial analysis of Feynman graphs with

vanishing grade, culminating in the complete characterization of Proposition 1 and

Theorem 1.

3.1. Combinatorial structures

Most of the following structures are identical to ones previously introduced in the

tensor models literature, and more particularly in [43, 52].

3.1.1. Melon-free graphs. For convenience, we work with rooted Feynman graphs,

which are connected Feynman graphs with a marked edge, called the root-edge. This

choice will play an important role in some of our combinatorial constructions. The

root-edge can also be thought of as a book-keeping device allowing to analyze what

is really the two-point generating function, while still summing over vacuum graphs.

In addition, it is also convenient to represent the root-edge by a root-vertex of degree 2,

inserted in the middle of the root-edge, with two attached oriented edges. This is of

course nothing but the TrŒX
�
�X�� insertion in (2.13). In the rest of the paper, we will

only work with rooted Feynman graphs, even if we sometimes keep it implicit.

We introduce a particular rooted Feynman graph, called the rooted cycle graph,

which corresponds to an oriented edge that connects the root-vertex to itself; see Fig-

ure 2. By convention, it is characterized by v D 0, f D 2, and ' D 1. In particular, it

has g D ` D ! D 0.

The class of melonic Feynman graphs plays a central role in tensor models [21,

48]. In their rooted version, they are defined as follows [43, 52].

In a rooted Feynman graph, we first define an elementary melonic 2-point sub-

graph as the subgraph represented on the right side of Figure 3, where the two external

half-edges or legs are distinct. Note that by definition, an elementary melonic 2-point

subgraph does not contain the root-vertex. We then define a melonic insertion on an

edge e of a rooted Feynman graph as the replacement of e by an elementary melonic

2-point subgraph, respecting the orientation (see Figure 3). We call the reverse oper-

ation a melonic removal. Finally, a rooted Feynman graph is called melonic if it can
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L R

Figure 2. The rooted cycle graph (left) and its stranded representation (right). On the right

panel, the gray line represents the O.D/-loop or straight face, and the black lines the L- and

R-faces.

!

Figure 3. Insertion of an elementary melonic 2-point subgraph.

be reduced to the rooted cycle-graph by successive removals of elementary melonic

2-point subgraphs.

It is well known that [21, 31]:

Claim 1. The melonic rooted Feynman graphs are exactly the rooted Feynman graphs

of degree ! D 0; that is, of genus g D 0 and of grade ` D 0.

Claim 2. A melonic insertion or removal preserves the genus, grade and degree.

Claim 3. The generating function T .�/ of rooted melonic Feynman graphs obeys the

closed equation

T .�/ D 1 C �2T .�/4: (3.1)

A rooted Feynman graph is melon-free if it does not contain any elementary mel-

onic 2-point subgraph. By definition, the rooted cycle-graph is the only melon-free

rooted Feynman graph with ! D g D ` D 0. We can restrict ourselves to the study of

melon-free rooted Feynman graphs because of the following result [43, 52].

Claim 4. Any rooted Feynman graph G can be uniquely obtained from a melon-free

rooted Feynman graph H , called the core of G, by a sequence of successive melonic

insertions. In particular, the core of any melonic rooted Feynman graph is the rooted

cycle-graph.

This result can also be formulated as follows. We define the insertion of a rooted

Feynman graph G2 on an edge e1 of another rooted Feynman graph G1, denoted by

.G1; e1/#G2, as the replacement of e1 by the 2-point subgraph obtained from G2 by
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removing its root-vertex; see Figure 4. It is clear that any rooted Feynman graph G can

be obtained from its (unique) core H by inserting melonic rooted Feynman graphs on

the edges of H .

!

G1 G2 .G1; e1/#G2

# zG2
zG2

e1

Figure 4. Given two rooted graphs G1 and G2, one may construct the graph .G1; e1/#G2,

obtain by insertion of a two-point function on the edge e1.

3.1.2. Schemes. We define a dipole as a two-edge subgraph on two vertices (exclud-

ing the root-vertex) which contains a face of length two. There are three types of

dipoles (see Figure 5):

• non-planar dipoles or N-dipoles, which contain a length-two straight face;

• left dipoles or L-dipoles, which contain a length-two L-face;

• right dipoles or R-dipoles, which contain a length-two R-face.

Note that a N-dipole has the topology of a cylinder,4 whereas an L- or R-dipoles

has the topology of a disk. This is illustrated in Figure 6.

The four half-edges incident to a dipole, i.e., its external legs, can be canonically

partitioned into two pairs as depicted on Figure 5, where one pair is represented on

the left side of the dipole and the other pair on the right side. This distinction will be

useful to compose dipoles into ladders, which we now define.

A ladder5 is a sequence of n � 2 dipoles .d1; : : : ; dn/ such that two consecutive

dipoles di and diC1 are connected by two edges that involve two half-edges on the

same side of di and two half-edges on the same side of diC1. The dipoles in a ladder

will be referred to as rungs. Furthermore, the edges that connect them split into two

rails. Note that by definition, the root-vertex cannot appear on a rung or on a rail of a

ladder.

A ladder is said broken, or a B-ladder, if it contains rungs of different types; it is

unbroken otherwise. Accordingly, there are three types of unbroken ladders: N-, L-,

4The letter “N” stands for “non-planar”, and refers to the fact that the length-two face of a

N-dipole may be non-contractible.
5Our notion of ladder is equivalent to the notion of proper chain in [43].
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L

R

Figure 5. From left to right: a N-dipole, a L-dipole and a R-dipole. The Feynman graphs are

shown in the upper part, their associated stranded structures are illustrated in the lower part.

A L-dipole (resp. R-dipole) is defined as containing an internal L-face (resp. R-face).

Figure 6. Topological structure of a N-dipole: the dipole is represented in grey, and the manifold

it is canonically embedded into in black.

and R-ladders, which respectively only contain rungs of type N, L, and R. To keep

track of the external face structure of ladders, we furthermore need to split N-ladders

into two subfamilies: Ne-ladders which have an even number of rungs, and No-ladders

which have an odd number of rungs. This is summarized in Figure 7.

A ladder is maximal if it is not included into a larger ladder. We have the following

property [43, 52].

Claim 5. Any ladder can be uniquely extended into a maximal ladder. In addition,

two distinct maximal ladders are vertex-disjoint.6

In the following, we will replace maximal ladders by new 4-point vertices which

we call ladder-vertices.7 There are five types of ladder-vertices; we call them Ne-, No-,

L-, R-, and B-vertices. Whenever we do not need to distinguish Ne- and No-vertices,

we simply call them N-vertices. This is illustrated in Figure 7.

6Note that for these statements to be true, it is important that Feynman graphs are rooted

and that ladders contain at least two rungs, as it is the case with our conventions.
7They are called chain-vertices in [43].
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$ Ne $

$ No $

$ $

$ $

$ $

(even)

(odd)

R

L

B

Figure 7. Maximal ladders and their associated ladder-vertices. For any type of ladder-vertex

(center), we have represented: the parent maximal ladders they represent (left panel), and the

structure of their external faces (right panel).

Remark 2. The external legs on the two sides of each ladder-vertex are fixed by

convention as in Figure 7. In the case of a B-vertex, this may require ‘twisting’ the

two rails at one end of the corresponding B-ladder.

In the rest of the paper, we will rely heavily on schemes, which characterize equi-

valence classes of Feynman graphs, defined up to melon and ladder insertions.

Definition 1. Let G be a connected, melon-free and rooted Feynman graph. The

scheme SG of G is the graph obtained by replacing any maximal ladder by the ladder-

vertex of the corresponding type.

More generally, we will sometimes consider the larger family of Feynman graphs

with ladder-vertices, which consists of all connected and rooted graphs built out of

edges, standard vertices and ladder-vertices (see Figure 8). In the class of Feynman

graphs with ladder-vertices, an elementary melonic 2-point subgraph is defined in
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the same way as for rooted Feynman graphs. Furthermore, the definition of ladder

is extended so that rungs may correspond to dipoles or ladder-vertices. By construc-

tion, a scheme is a Feynman graph with ladder-vertices. However, the converse is not

always true, as made explicit in the following remark.

No Ne

standard vertex

edge ladder–vertices

RL

B

Figure 8. Feynman graphs with ladder-vertices and schemes are made out of edges, standard

vertices and ladder-vertices.

Remark 3. A scheme is a Feynman graph with ladder-vertices which cannot contain

any of the following subgraphs:

(1) an elementary melonic 2-point subgraph;

(2) an edge that connects the two external legs on the same side of a ladder-vertex;

(3) a ladder.

A Feynman graph with ladder-vertices is said melon-free (resp. ladder-free) if it obeys

the first two (resp. the third) conditions.8 Therefore, a scheme is a melon-free and

ladder-free Feynman graph with ladder-vertices. This is illustrated in Figure 9. Remark

on the other hand that the subgraph of Figure 10 is allowed in a scheme.

It is possible and convenient to extend the definitions of genus, degree and grade

to the class of Feynman graphs with ladder-vertices. Given G a Feynman graph

with ladder-vertices, one can construct an ordinary Feynman graph by replacing each

ladder-vertex in G with a ladder of the appropriate type (for instance, a No-vertex is

replaced by a No-ladder, etc.). One can then show that the genus, grade and degree of

the resulting Feynman graph does not depend on the replacement details, that is, on

the length of the new ladders or on the structure of the new B-ladders. This provides a

consistent prescription for the genus, grade or degree of a Feynman graph with ladder-

vertices, which is useful to compute these quantities in practice. However, to shortcut

the details of this construction, we will simply rely on the following result [43].

8A Feynman graph with ladder-vertices that obeys the three conditions is called a reduced

scheme in [43].
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X X Y X

Figure 9. Examples of subgraphs which cannot be realized in a scheme, where X and Y are

arbitrary ladder-vertices and the edge orientations are left implicit.

X

Figure 10. A subgraph which may be found in melon-free Feynman graphs with ladder-vertices,

where X is a ladder-vertex of any type. Note the crucial presence of the root-vertex.

Claim 6. Let G1 and G2 be two connected, melon-free and rooted Feynman graphs.

If SG1
D SG2

, then

g.G1/ D g.G2/; !.G1/ D !.G2/; `.G1/ D `.G2/:

In other words, the genus, degree and grade are constant on any equivalence class

of graphs defined by a scheme. This consistently extends the definition of these three

quantities to schemes, and in a second step, to Feynman graphs with ladder-vertices.

Indeed, it is easy to see that a Feynman graph with ladder vertices G can itself be

mapped to a unique scheme SG (obtained by consistent replacement of melon two-

point functions by propagators, and ladders by their corresponding ladder-vertices),

which allows to define g.G/ WD g.SG/, !.G/ WD !.SG/, and `.G/ WD `.SG/.

Finally, it will be useful to distinguish between two types of Feynman graphs

with ladder-vertices:9 whether they are two-particle reducible (2PR) or two-particle

irreducible (2PI). We say that a Feynman graph with ladder-vertices G is 2PR if it

contains a two-edge-cut, that is, a pair .e;e0/ of edges in G whose removal disconnects

G and such that e and e0 are not both incident to the root-vertex. Otherwise, we say

that G is 2PI.

We prove the following result for connected, melon-free and rooted Feynman

graphs:

Lemma 1. Let G be a connected, melon-free and rooted Feynman graph. G is 2PI if

and only if SG is 2PI.

Proof. The following implication is immediate: if SG is 2PR, then G is also 2PR.

Conversely, let us assume that G is 2PR. We can then find a pair .e; e0/ of edges in G

forming a two-edge-cut. We distinguish two subcases.

9We recall that the family of Feynman graphs with ladder-vertices contains the family of

connected and rooted Feynman graphs.
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i) If neither e nor e0 are contained in maximal ladders in G, then both are realized

as edges in SG . They therefore constitute a two-edge-cut in SG .

ii) If e (or, equivalently, e0) is contained in a maximal ladder L 2 G, it is then

straightforward to realize that e must lie on one of the two rails of the ladder; and

furthermore, e0 must lie on the opposite rail. More precisely, e and e0 must connect

the same two rungs, as shown on the left part of Figure 11. Let us call eR and e0
R (resp.

eL and e0
L) the two external legs on the right (resp. left) side of L. The fact that .e; e0/

is a two-edge-cut in G implies that in SG , both .eR; e0
R/ and .eL; e0

L/ are connected

by 2-point subgraphs, as illustrated on the right part of Figure 11. At least one of

the latter is non-empty (by the melon-free condition) and does not reduce to the root;

therefore, at least one of the two pairs of edges constitutes a two-edge-cut in SG .

This concludes the proof.

Remark 4. More generally, the 2PR/2PI property is transitive under replacement of a

maximal ladder by a ladder-vertex in the class of melon-free rooted Feynman graphs

with ladder-vertices.

SGG

eL eR eL eRe

e0

L e0

R e0

L e0

Re0

L$

Figure 11. A two-edge-cut .e; e0/ inside a maximal ladder of G necessarily translates into a

two-edge-cut .eL; e0
L/ or .eR; e0

R/ in the scheme SG , where 2-point subgraphs are represented as

shaded disks.

3.1.3. Combinatorial moves on Feynman graphs with ladder-vertices. We now

introduce a set of local operations on Feynman graphs with ladder-vertices and we

study their effect on the genus, the grade and the degree of these graphs.

We define a dipole or a ladder-vertex contraction as the operation which consists

in: 1) removing the dipole or the ladder-vertex, and 2) reconnecting the two half-edges

on each side of the dipole or the ladder-vertex. The reverse operation is called a dipole

or ladder-vertex insertion. This is illustrated in Figure 12.

Note that the contraction of a dipole or a ladder-vertex may disconnect the graph.

It is easy to check that the number of connected components can increase by at most

one. A dipole or a ladder-vertex is said separating if its contraction increases the

number of connected components by one, and non-separating otherwise.
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No

X

$

$

$

$

$ X 2 ¹B; R; L; Neº

Figure 12. Contraction/insertion of dipoles (left panel) and ladder-vertices (right panel).

Remark 5. A separating (resp. non-separating) N-dipole is also separating (resp.

non-separating) in the topological sense of the term: the cycle it constitutes separ-

ates (resp. fails to separate) the discretized Riemann surface encoded in the Feynman

graph into two disconnected regions.

For later convenience, we want to work with connected and rooted graphs. The

contraction of a non-separating dipole or ladder-vertex yields a graph in this class.

However, we need a prescription so that the contraction of a separating dipole or

ladder-vertex yields two connected and rooted graphs instead of one rooted graph

with two connected components. Let G be a Feynman graphs with ladder-vertices

and suppose that there exists a separating dipole or ladder-vertex in G. As a result, G

necessarily has a structure similar to that depicted in the left panel of Figure 13 (up to

a choice of dipole or ladder-vertex type), where zG1 and zG2 are two connected 2-point

subgraphs. Since G is rooted, the root-vertex is necessarily contained in zG1 or zG2.

Note that it may be adjacent to the separating dipole or ladder-vertex. Suppose that it

is contained in zG1, as in Figure 13 (the case of zG2 is similar). Then, when we contract

the separating dipole or ladder-vertex, we add a root-vertex in the middle of the edge

that reconnects the two half-edges of zG2. As a result, the contraction gives rise to two

Feynman graphs with ladder-vertices G1 and G2, as depicted in Figure 13, which are

both connected and rooted.

Remark 6. The above prescription implies that the insertion of a separating dipole or

ladder-vertex in between two Feynman graphs with ladder-vertices G1 and G2 must

involve the root-vertex of either G1 or G2. This specification is left implicit when it

does not play an important role. Otherwise, we specify that the insertion is performed

with respect to the root-vertex of G1 or G2.
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zG2
zG1

zG2
zG1G D No DG1 D G2!

zG2
zG1

zG2
zG1G D DG1 D G2!

Figure 13. Top: a separating dipole and its contraction. Bottom: a separating ladder-vertex and

its contraction. In both cases, we have assumed that the root-vertex of G is contained in zG1.

In the top figure, the N-dipole also constitutes a separating cycle on the discretized Riemann

surface represented by the Feynman graph. Remark here that the opposite operation is referred

to as an insertion.

Let G be a Feynman graph with ladder-vertices and suppose that it contains

a dipole. If this dipole is separating, we denote by G1 and G2 the two Feynman

graphs with ladder-vertices obtained after contracting this dipole; while if it is non-

separating, we denote by G0 the resulting Feynman graph with ladder-vertices. Clearly,

we have in both cases v.G1/ C v.G2/ D v.G/ � 2 and v.G0/ D v.G/ � 2, respect-

ively. In order to study the effect of the contraction on the genus, the grade and

the degree, one needs to analyze how the total number of faces and O.D/-loops is

affected. We have the following cases.

Separating N-, L-, or R-dipole. The contraction deletes one internal O.D/-loop

in the case of a N-dipole and one internal face in the cases of L- and R-dipoles.

Furthermore, in the case of a N-dipole, the number of external10 faces is unaffected

(the external face structure is the same before and after the contraction) and there

is one additional external O.D/-loop which is created due to the separating nature

of the dipole. In the case of a L-dipole (resp. R-dipole), it is the number of external

O.D/-loops and R-faces (resp. L-faces) that are unaffected while there is one addi-

tional external L-face (resp R-face) being created. As a result, in the three cases,

we have f .G1/ C f .G2/ D f .G/ and '.G1/ C '.G2/ D '.G/. Using (2.5), (2.6),

and (2.9), we thus obtain

g.G1/ C g.G2/ D g.G/;

`.G1/ C `.G2/ D `.G/;

!.G1/ C !.G2/ D !.G/:

(3.2)

10As is customary in the literature, a face is said internal to a given subgraph (such as, e.g.,

a dipole) if it has only supports on edges of the said subgraph, and external otherwise.
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Non-separating N-dipole. The contraction removes one internal O.D/-loop and the

number of external faces is unaffected. Besides, there is one additional external

O.D/-loop which is either created or deleted. Hence, '.G0/ D '.G/ � 1 C � with

� D ˙1, and we obtain

g.G0/ D g.G/ � 1;

`.G0/ D `.G/ � 2.� C 1/;

!.G0/ D !.G/ � .� C 2/:

(3.3)

Non-separating L- or R-dipole. The contraction removes one internal L- or R-face

while the number of external O.D/-loops and R- or L-faces remains the same, respect-

ively. As for the external L- or R-faces, there is an additional one which is either

created or deleted; therefore, in both cases, f .G0/ D f .G/ � 1 C � with � D ˙1. As

a result, we have

g.G0/ D g.G/ � 1

2
.� C 1/;

`.G0/ D `.G/ � .� C 3/;

!.G0/ D !.G/ � .� C 2/:

(3.4)

We now study the effect of contracting a ladder-vertex in a Feynman graph with

ladder-vertices G. We still denote by G1 and G2 (resp. G0) the two graphs (resp.

the graph) obtained after contracting a separating (resp. non-separating) ladder-vertex

in G. As explained in Section 3.1.2, one way to analyze how the genus, grade and

degree change when contracting a ladder-vertex is to first replace it with a ladder of

dipoles of the corresponding type. This ladder can be of arbitrarily length and arbit-

rary structure in the case of a B-vertex. Then, it is straightforward to see that the

contraction of the ladder-vertex is equivalent to the combination of two moves: 1) the

contraction of one dipole in the corresponding ladder, whose analysis has been given

above; and 2) the removal of up to two melonic 2-point subgraphs, which may have

been generated by the first move due to the presence of other dipoles in the initial lad-

der. Since the second step preserves the genus, degree and grade (see Section 3.1.1),

it requires no further discussion. We distinguish the following cases.

Separating B-, N-, L-, or R-vertex. We first replace the ladder-vertex with a B-, N-,

L-, or R-ladder, respectively. Because of the separating nature of the ladder-vertex, the

dipoles in the corresponding ladder are necessarily separating as well. Hence, we can

use the result of (3.2) for the contraction of a separating dipole. Furthermore, since

melonic removals do not change the genus, grade and degree of a Feynman graph, we

obtain
g.G1/ C g.G2/ D g.G/;

`.G1/ C `.G2/ D `.G/;

!.G1/ C !.G2/ D !.G/:

(3.5)
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Non-separating N-vertex. We replace the N-vertex with a N-ladder, made out of

non-separating N-dipoles. Using the result of (3.3) and the properties of melonic

removal, we have

g.G0/ D g.G/ � 1;

`.G0/ D `.G/ � 2.� C 1/;

!.G0/ D !.G/ � .� C 2/:

(3.6)

with � D ˙1;

Non-separating L- or R-vertex. The same reasoning as in the previous case leads,

using (3.4), to

g.G0/ D g.G/ � 1

2
.� C 1/;

`.G0/ D `.G/ � .� C 3/;

!.G0/ D !.G/ � .� C 2/:

(3.7)

with � D ˙1;

Non-separating B-vertex. We can replace the B-vertex with a B-ladder of arbitrary

length and structure, all of its dipoles being necessarily non-separating. Furthermore,

because of the structure of a B-ladder, one can check that the contraction of a non-

separating N-dipole always yields one additional external O.D/-loop (case (3.3) with

� D C1); and the contraction of a non-separating L- or R-dipole leads to one addi-

tional external face (case (3.4) with � D C1). Hence, we obtain in this final case

g.G0/ D g.G/ � 1;

`.G0/ D `.G/ � 4;

!.G0/ D !.G/ � 3:

(3.8)

Remark 7. The above discussion on the contraction of a ladder-vertex in a Feyn-

man graph with ladder-vertices naturally extends to the contraction of a ladder, not

necessarily maximal, in a connected and rooted Feynman graph.

Finally, we introduce yet another local operation that will be useful in order to ana-

lyze 2PR Feynman graphs, in the same spirit as in [23]. Let G be a Feynman graph

with ladder-vertices and suppose that it is 2PR. G therefore contains a two-edge-cut

.e; e0/ and has the structure depicted on the left of Figure 14, where zG1 and zG2 are,

by definition, two connected 2-point subgraphs that are non-empty and distinct from

the root-vertex alone. We define a flip on .e; e0/ as the operation that consists in:

1) cutting the two edges e and e0, and 2) reconnecting the four half-edges two by two,

as shown on the right side of Figure 14. A flip necessarily disconnects G into two con-

nected components. As we discussed for separating dipoles and ladder-vertices, we

add a root-vertex in the middle of the reconnected edge on the side of zG2 (resp. zG1)
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e0

e

zG2
zG2

zG1G D DG1 D G2!zG1

Figure 14. Flip operation on a 2PR Feynman graph with ladder-vertices, where we assumed

that the root-vertex of G is contained in zG1.

if the root-vertex of G is contained within zG1 (resp. zG2). By doing so, a flip gener-

ates two Feynman graphs with ladder-vertices G1 and G2, as indicated in Figure 14.

Besides, we call the reverse operation of a flip a two-edge-connection insertion, which

must be performed with respect to the root-vertex of either G1 or G2.

The following result summarizes the effect of a flip operation on the genus, grade

and degree of the graphs:

Lemma 2. Let G be a Feynman graph with ladder-vertices and suppose that it con-

tains a two-edge-cut .e; e0/. Then, the flip operation on .e; e0/ generates two Feynman

graphs with ladder-vertices G1 and G2 satisfying

g.G1/ C g.G2/ D g.G/;

`.G1/ C `.G2/ D `.G/;

!.G1/ C !.G2/ D !.G/:

(3.9)

Proof. The result follows from a direct inspection of the flip operation in Figure 14.

Indeed, the total number of vertices remains the same whereas the total number of

faces increases by two (one additional L-face and one additional R-face) and the total

number of O.D/-loops increases by one. Equation (3.9) then follows from (2.5), (2.6),

and (2.9) applied to G, G1 and G2.

3.2. Melon-free Feynman graphs with vanishing grade

We want to characterize the connected, melon-free and rooted Feynman graphs with

` D 0 and the corresponding schemes. A first trivial observation is that they always

have an even number of (standard) vertices, as made explicit in (2.7). The following

two lemmas provide a more detailed characterization.

Lemma 3. Let G be a connected, melon-free and rooted Feynman graph and SG its

scheme. If `.G/ D 0, then there exists a N-dipole in G. In particular, there exists a

N-dipole, a N-vertex or a B-vertex in SG .

Proof. It is convenient to decompose the O.D/-loops in G with respect to their length,

that is, the number of vertices they pass through, counted with multiplicity. Due to the
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No Ne

Figure 15. Connecting N-dipole and N-vertices. The dotted lines illustrate the external struc-

ture of the O.D/-loops: two distinct O.D/-loops run through the rails of the dipole or the

ladder-vertex. Upon contraction of such a connecting N-dipole or N-vertex, the two distinct

O.D/-loops merge into a single O.D/-loop.

structure of the Feynman graphs, it is straightforward to see that any O.D/-loop has

even length. We thus denote by '2n the number of O.D/-loops of length 2n (n 2 N
�)

in G and we write

' D
X

n2N�

'2n:

In addition, due to the O.D/-structure of the Feynman graph vertices, we have the

following constraint:
X

n2N�

2n'2n D 2v:

Plugging these two equations in the expression (2.7) for the grade, we deduce

`.G/ D 2 C 2g.G/ C 1

2

X

n2N�

.2n � 4/'2n � 2 C 2g.G/ � '2:

By assumption, `.G/ D 0 so that '2 � 2g.G/ C 2 > 0, which means that there is

at least one O.D/-loop of length two in G. This O.D/-loop is necessarily contained

within a N-dipole in G. If this dipole is in a maximal ladder of G, the latter translates

into a N-vertex or a B-vertex in SG .

We call connecting a N-dipole or a N-vertex which ‘connects’ two distinct external

O.D/-loops, that merge into a single O.D/-loop upon contraction. More precisely,

we have one of the subgraphs represented in Figure 15, with two distinct O.D/-loops

running through the two rails of the N-dipole or N-vertex.

Remark 8. A connecting N-dipole or N-vertex is automatically non-separating.

Lemma 4. Let G be a connected, melon-free and rooted Feynman graph and SG

its scheme. If `.G/ D 0, any N-dipole in G is separating or connecting; any other

dipole is separating. Furthermore, in SG: any N-dipole or N-vertex is separating or

connecting; any other dipole or ladder-vertex is separating.
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Proof. This follows from the variation of the grade under a dipole or a ladder-vertex

contraction (see Section 3.1.3) and from the non-negativity of the grade. Consider

a N-dipole in G and suppose it is non-separating. Performing a dipole contraction

yields another connected and rooted Feynman graph G0 such that, by (3.3),

`.G0/ D `.G/ � 2.� C 1/

with � D ˙1. Since `.G/ D 0 and ` � 0, it implies � D �1. One can check that this

can only occur if the N-dipole is connecting.

Consider now a L- or R-dipole in G and suppose it is non-separating. By (3.4),

contracting this dipole yields another connected and rooted Feynman graph G0 such

that `.G0/ < `.G/, which is impossible because `.G/ D 0 and ` � 0.

The same reasoning applies for any dipole or ladder-vertex in SG using a dipole

or a ladder-vertex contraction and (3.6)–(3.8).

At this point, it is clear that we can manipulate ` D 0 connected, melon-free and

rooted Feynman graphs11 and their schemes by successive insertions or contractions

of: 1) connecting N-dipoles or N-vertices; and 2) separating dipoles or ladder-vertices.

We will in fact prove that theses graphs can be generated inductively at arbitrary

genus, and in an entirely constructive manner, from the ones with genus one.12

To prepare the ground for this construction, it is convenient to enumerate the situ-

ations in which the contraction of a dipole or a ladder in a ` D 0 melon-free Feynman

graph generates a melonic 2-point subgraph. Let G be such a graph and suppose that it

contains a dipole or ladder X . If we assume that X is non-separating, it is necessarily

a connecting N-dipole or N-ladder by Lemma 4. Contracting X yields another ` D 0

Feynman graph G0, which is not melon-free in exactly three situations.

(1) X is connected on one side to another dipole or ladder Y (of arbitrary type),

as illustrated in Figure 16 (a). In particular, the root-vertex of G is not in between X

and Y .

(2) X is inserted in between two edges of an elementary 2-point melon, as illus-

trated in Figure 16 (b). Note that the choice of pair of edges on which X is inserted,

and therefore their orientation, is fixed by the requirement that X is connecting. As a

result, X must be a N-dipole or a No-ladder.

11To be more succinct, we assume in the following that the Feynman graphs are always

connected and rooted, unless otherwise stated.
12Genus one is peculiar because our Feynman graphs are rooted. Had we worked with non-

rooted Feynman graphs, we could have started our inductive construction at genus 0. Treating

g D 1 separately (in Proposition 1) will also allow us to introduce the ingredients of the general

proof of Theorem 1 in a progressive manner.
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(a) X is connecting or separating. (b) X is connecting. (c) X is connecting.

!

!
!

X YY

X

X

Y

Y

Figure 16. Configurations in which the contraction of a dipole or ladder X in a ` D 0 melon-free

Feynman graph, assumed to be connecting or separating, generates a melonic 2-point subgraph

(where Y is itself a dipole or a ladder).

(3) X is forming a 2-point subgraph on one side of a dipole or ladder Y (of arbit-

rary type), as illustrated in Figure 16 (c). Note that the orientation of the edges is again

fixed by the requirement that X is connecting. As a result, X must be a Ne-ladder. Fur-

thermore, the root-vertex of G is not incident to X .

If we assume instead that X is separating, it can be of any type by Lemma 4, and

its contraction yields two ` D 0 Feynman graphs G1 and G2. One can check that the

only configuration which may generate a melonic 2-point subgraph in G1 or G2 is the

one illustrated in Figure 16 (a), where the root-vertex of G is not: 1) in between X

and Y ; 2) on the side of X opposite to Y .

We now study in detail the structure of the ` D 0 melon-free Feynman graphs of

arbitrary genus. Recall that at genus zero, there is a single ` D 0 melon-free Feynman

graph, namely the rooted cycle graph. The following lemma provides all the ` D 0

melon-free Feynman graphs of genus one by specifying their schemes.

Proposition 1. There are two 2PI schemes of genus one (Figure 17) and 16 2PR

schemes of genus one (Figure 18), where X 2 ¹Ne; No; L; R; Bº.

Proof. Let G be a ` D 0 melon-free Feynman graph of genus one and SG its scheme.

We first assume that G is 2PI. By Lemmas 3 and 4, there necessarily exists a con-

necting N-dipole in G (a separating one would break the 2PI condition). Furthermore,

the maximal extension of this N-dipole in G is either the N-dipole itself or a max-

imal N-ladder (a B-ladder is necessarily separating by Lemma 4), which translates

into a N-dipole or a N-vertex in SG , respectively. Using (3.3) or (3.6) with � D �1

(by the connecting property), the contraction of the maximal extension of this con-

necting N-dipole yields a ` D 0 Feynman graph G0 of genus zero. We distinguish two

cases.

If G0 is melon-free, it must be the rooted cycle graph; and the orientation of the

edges imposes that the contraction involved a Ne-ladder. As a result, SG D S1.
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S1 S2

Ne

No

Figure 17. The two 2PI schemes of genus one.

On the other hand, if G0 is not melon-free, we must be in one of the config-

urations shown in Figure 16, where X represents the maximally extended N-dipole

to be contracted. However, configuration (a) is excluded by maximality of X , while

configuration (c) is incompatible with the 2PI character of G. We are thus left with

configuration (b), where X is a N-dipole or a No-ladder:

No

But then, the 2PI constraint further imposes that these 2-point subgraphs close

onto the root-vertex. In the first case, we find

G D

whose scheme is again S1. In the second case, G has scheme S2.
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No X

Ne

X

No

Ne

No

Ne

No

Ne

Figure 18. The 16 2PR schemes of genus one.
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We now assume that G is 2PR. We work in two steps: 1) we first prove that G

necessarily contains a separating dipole; and 2) we use that information to construct

all the 2PR schemes from the 2PI ones.

Suppose that G does not contain a separating dipole. It must still contain a two-

edge-cut .e; e0/, so that we can perform a flip on .e; e0/ as in Lemma 2. One can check

that the two resulting ` D 0 Feynman graphs G1 and G2 cannot contain melonic

subgraphs. Indeed, it would otherwise mean that there were a separating dipole in G.

Since g.G/ D 1, the conditions g.G1/ � g.G/, g.G2/ � g.G/, and g.G1/ C g.G2/ D
g.G/ of Lemma 2 further imply that (say) g.G1/ D 0 and g.G2/ D 1. Therefore,

G1 must be the rooted cycle graph. But this yields a contradiction because then, by

definition, .e; e0/ cannot be a two-edge-cut.

As a result, G must contain a separating dipole. The maximal extension of this

dipole in G is either the dipole itself or a maximal ladder, which we denote by X .

Contracting X yields two ` D 0 Feynman graphs G1 and G2, which cannot contain

melonic subgraphs because the situation of Figure 16 (a) is excluded by maximal-

ity of X . Using g.G/ D 1 and (3.2) or (3.5), these graphs further obey g.G1/ � 1,

g.G2/�1, and g.G1/ C g.G2/D1. This implies that (say) g.G1/D0 and g.G2/D1,

so that G1 is the rooted cycle graph. We thus have the following structure:

zG2X zG2G D DG1 D G2!

In particular, we have shown that the maximal extension X of a separating dipole in

G is necessarily adjacent to the root-vertex, as represented above.

We have also shown that G2 is itself a ` D 0 melon-free Feynman graph of genus

one. In addition, one can verify that G2 cannot be 2PR. Otherwise, by the arguments of

the previous paragraph, it would contain a separating dipole whose maximal extension

is adjacent to the root-vertex, which contradicts the maximality of X in G. As a result,

G2 is 2PI and has scheme S1 or S2.

Finally, by replacing X in G by an arbitrary separating dipole or ladder, which

translates into a separating dipole or ladder-vertex in SG , we obtain the 16 2PR

schemes we were after, which concludes the proof.

The following proposition then gives a way of constructing all the ` D 0 melon-

free Feynman graphs of genus g, from the family of ` D 0 melon-free Feynman graphs

of genus g0 < g.

Theorem 1. Let G be a connected, rooted and melon-free Feynman graph, such that

`.G/ D 0 and g.G/ D g � 2.
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Suppose first that G is 2PI. Then it can be obtained by insertion of a connecting

N-dipole or N-ladder into a: ` D 0, connected, rooted and melon-free Feynman graph

of genus g � 1.

Suppose instead that G is 2PR. Then one of these two conditions holds.

(i) G can be obtained by insertion of a separating dipole, a separating ladder,

or a two-edge-connection in-between: ` D 0, connected, rooted and melon-

free Feynman graphs G1 and G2, such that g.G1/ < g, g.G2/ < g, and

g.G1/ C g.G2/ D g.

(ii) G can be obtained by insertion of a separating dipole or a separating lad-

der in-between: the rooted cycle graph and a ` D 0, connected, rooted and

melon-free Feynman graph G2, such that g.G2/ D g and G2 is 2PI. Fur-

thermore, the insertion is performed with respect to the root-vertex of G2.

Proof. We follow the same strategy as in the proof of Proposition 1.

If G is 2PI, there exists a connecting N-dipole in G, which can be maximally

extended. Contracting the resulting N-dipole or N-ladder X yields a ` D 0 Feynman

graph G0 of genus g.G0/ D g � 1. Furthermore, G0 is necessarily melon-free because

the three configurations of Figure 16 are all excluded: configuration (a) because X

is maximal, configuration (b) because G is 2PI and g.G/ ¤ 1, and configuration (c)

because G is 2PI. This proves the first part of the proposition.

If G is 2PR, we prove that the negation of (i) implies (ii), by generalizing the

arguments of Proposition 1.

Suppose first that G does not contain a separating dipole. Since G is 2PR, it must

still contain a two-edge-cut .e;e0/. By Lemma 2, performing a flip on .e;e0/ yields two

Feynman graphs G1 and G2 such that g.G1/�g, g.G2/�g, and g.G1/Cg.G2/Dg.

As in Proposition 1, G1 and G2 are necessarily melon-free. The negation of (i) then

implies that (say) g.G1/ D 0 and g.G2/ D g, that is, G1 is the rooted cycle graph,

which leads to the same contradiction as in Proposition 1.

It must therefore be that G contains a separating dipole. As in Proposition 1,

we proceed to contracting its maximal extension X , itself a separating dipole or a

separating ladder. The two resulting ` D 0 Feynman graphs G1 and G2 are again

melon-free and obey: g.G1/ � g, g.G2/ � g, and g.G1/ C g.G2/ D g. Together

with the negation of (i), it implies that (say) g.G1/ D 0 and g.G2/ D g. We thus have

the same structure as in the proof of Proposition 1, namely:

zG2X zG2G D DG1 D G2!

In particular, we have shown that when G does not satisfy (i), the maximal extension

of any separating dipole in G is adjacent to the root-vertex.
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Furthermore, we have also shown that G2 is itself a ` D 0 melon-free Feynman

graph of genus g. Suppose that G2 is 2PR. One can check that G2 cannot obey

condition (i) (otherwise, G itself would). Hence, by the arguments of the previous

paragraph, G2 must contain a separating dipole, whose maximal extension is adjacent

to its root-vertex. But this is in contradiction with the maximality of X in G. As a

result, G2 must be 2PI. Finally, it is clear from the above structure for G that the

insertion of X is performed with respect to the root-vertex of G2, which concludes

the proof.

Remark 9. Even though it is not obvious from the proof of Theorem 1 itself, the

situation (i) can always be achieved, for any values of g, g.G1/ and g.G2/ allowed

by Theorem 1.

Algorithmic construction of all ` D 0 graphs. Theorem 1 is a key result of this

paper. It provides a constructive way of generating all the ` D 0 Feynman graphs,

order by order in the genus and starting at genus one, by application of the following

algorithm:

(1) Assume that the set yEg 0 of ` D 0 melon-free Feynman graphs of genus g0 �
g � 1 has been constructed.

(2) Construct the set yE2PI
g of 2PI ` D 0 melon-free Feynman graphs of genus g by

inserting a connecting N-dipole or N-ladder into any element of yEg�1, in any

possible way that yields a 2PI graph. Note that there exist situations in which

the graph before the insertion is itself 2PR, it is therefore important to start

from elements of yEg�1 as opposed to yE2PI
g�1. Topologically, this step increases

the genus by adding handles on lower-genus Riemann surfaces.

(3) Obtain a first class of 2PR contributions of genus g by inserting a separating

dipole or ladder in between the rooted cycle graph and any element of yE2PI
g

(as illustrated in the examples of Figure 13, with G1 the rooted cycle graph).

This step does not change the topology, and is only required because we work

with rooted graphs.

(4) Obtain a second class of 2PR contributions of genus g by inserting a sep-

arating dipole, a separating ladder or a two-edge-connection in between any

element of yEg1
and any element of yEg2

such that g1 C g2 D g, in any pos-

sible way. Topologically, this step increases the genus by taking the connected

sum of topologically non-trivial Riemann surfaces.

(5) Construct the set yE2PR
g of 2PR ` D 0 melon-free Feynman graphs of genus g

by taking the union of the sets obtained in the previous two steps.

(6) Obtain the set yEg D yE2PR
g [ yE2PI

g of all ` D 0 melon-free Feynman graphs of

genus g.
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(7) Finally, insert arbitrary melonic rooted Feynman graphs on the edges of any

element in yEg to obtain the set Eg of ` D 0 Feynman graphs (see Claim 4).

This constructive algorithm is to be contrasted with the characterization of the

Feynman graphs of fixed degree performed in the MO model [43] or in a O.N /3

tensor model [23]. Indeed, in these cases, one first needs to determine all the dipole-

free schemes of fixed degree, which is in general a challenging task. In contrast, the

non-trivial algorithmic simplification we have achieved here is a direct consequence of

the double-scaling limit, which allows us to restrict to Feynman graphs with vanishing

grade.

In Appendix A, we illustrate how ` D 0 graphs of genus two can be constructed

with the help of the previously described algorithm. As it will become clear in the next

sections, only a subset of the structures generated in this manner are relevant to the

analysis of the continuum limit. We will therefore focus on this particular subclass of

` D 0 graphs, which as we will explain, can be conveniently described as collections

of ladder diagrams glued together along certain effective six-point vertices. As made

apparent by some of the contributions listed in Appendix A, we emphasize that this

picture would need to be generalized in order to include all ` D 0 subgraphs: in par-

ticular, one would need to include one new type of effective eight-point vertex along

which ladders can be glued.

3.3. Schemes of vanishing grade

In the previous section, we derived an inductive algorithm to generate all the con-

nected, rooted (and melon-free) Feynman graphs of vanishing grade, order by order

in the genus. A natural question is whether a similar algorithm can be constructed in

terms of the corresponding schemes of vanishing grade. In particular, we would like

to know if such an algorithm involves a finite number of inductive moves. Since there

is a finite number of ` D 0 schemes of genus one and they are of finite size (see Pro-

position 1), it would indeed imply that there is a finite number of ` D 0 schemes of

arbitrary fixed genus. This is to be contrasted with the number of ` D 0 melon-free

Feynman graphs of fixed genus, which is infinite due to the insertions of ladders of

arbitrary length. The finiteness of the number of ` D 0 schemes of fixed genus plays

an important role for computing generating functions, as explained in the next section.

As a side remark, we note that this result can be obtained as a direct consequence of

the finiteness of the number of schemes of fixed degree, which is derived in [43].

However, in the present context, we can make use of the double-scaling limit to have

a better idea of the structure of the ` D 0 schemes of fixed genus.

Let us discuss how Theorem 1 can be adapted to ` D 0 schemes. This result

provides an induction in the class of connected, rooted and melon-free Feynman

graphs of vanishing grade. However, a direct extension of the arguments using the
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same type of insertion moves does not allow to close the induction on the class of

` D 0 schemes.

As an illustration, suppose that we replace G in Theorem 1 with its ` D 0 scheme

SG of genus g � 2. By Lemma 1, the notion of 2PR and 2PI is the same for G and SG .

Furthermore, it is natural to replace the insertions of ladders with insertions of ladder-

vertices. With these replacements, one could carry out the same strategy of proof as in

the proposition. Since we always contract the maximal extension of a dipole in G, it is

equivalent to contracting the corresponding dipole or ladder-vertex in SG . Then, the

same reasoning shows that the contraction of a connecting (resp. separating) dipole or

ladder-vertex in SG yields a ` D 0 Feynman graph with ladder-vertices G0 (resp. two

` D 0 Feynman graphs with ladder-vertices G1 and G2) which is (resp. are) melon-

free. However, it is straightforward to see that the resulting graphs are not necessarily

ladder-free; in other words, they are not necessarily schemes. As a result, a closed

induction on ` D 0 schemes can not be directly performed in this way.

A possible alternative is to first analyze the situations in which the contraction of

a dipole or a ladder-vertex in SG generates a ladder in G0, G1 or G2, and then perform

further operations on these graphs so as to obtain schemes. Let us consider a dipole or

a ladder-vertex X in SG . The contraction of X gives rise to two edges e and e0, which

can be distinct or not:13

ee 0

X !

Suppose that G0, G1 or G2 contains a ladder L. We distinguish the following cases:

(1) e; e0 62 L; (2) e 2 L; e0 62 L (or e0 2 L; e 62 L);

(3) e; e0 2 L; e D e0; (4) e; e0 2 L; e ¤ e0.

It is straightforward to see that the first case cannot happen because it would mean

that there is a ladder in SG , which is impossible. As for the remaining cases, one

can check that L necessarily has one of the following combinatorial structures of

Figure 19, where e (and/or e0) appears as an edge in these diagrams, and U; V ,

and W are dipoles or ladder-vertices (of arbitrary type, consistent with SG being a

` D 0 scheme). Enumerating all the possible situations that generate one of the ladder

structures represented above is quite cumbersome and, in fact, it is not required. The

13If X is separating, a root-vertex needs to be added in the middle of e or e0: this cannot

generate a ladder in the Feynman graph connected to that edge. Also, remark that the effect of a

flip move is essentially identical to that of a separating dipole or ladder-vertex contraction; we

focus on the latter for definiteness.
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U U V

U V U V W

Figure 19. Possible combinatorial structures of L. We do not keep track of the embedding, edge

orientations, or the position of the root-vertex, since these ingredients do not play any essential

role in the argument. In particular, the dipoles appearing in these figures can be of any type,

provided that it is consistent with the ` D 0 condition.

main point is that there is only a finite number of possibilities, since there is a finite

number of cases and a finite number of structures for L. In summary, we have argued

that there is a finite number of configurations in which the contraction of a dipole or

a ladder-vertex X in SG generates a ladder L in G0, G1, or G2.

As a second step, we can replace the ladder L in G0, G1, or G2 with a ladder-

vertex of the consistent type. As a consequence of the definition of the genus and the

grade of a Feynman graph with ladder-vertices (see Section 3.1.2), this replacement

does not affect the genus and the grade of G0, G1, or G2. Furthermore, it cannot gen-

erate melonic subgraphs. Hence, the resulting Feynman graphs with ladder-vertices,

which we respectively denote by yG0; yG1, or yG2, must correspond to ` D 0 schemes of

genus g. yG0/ D g.G0/, g. yG1/ D g.G1/, or g. yG2/ D g.G2/.

We have thus shown that the algorithm of Theorem 1 can be adapted to ` D 0

schemes by taking additional care of the configurations in which the contraction of a

dipole or ladder-vertex X in SG generates a ladder. In this way, the induction can be

closed on the set of ` D 0 schemes. Furthermore, at each step of the induction, there

is a finite number of operations. As explained earlier, since there is a finite number of

` D 0 schemes of genus one, which are of finite size, we conclude that there is a finite

number of ` D 0 schemes of arbitrary fixed genus.

3.4. Connected two-point function

We are now ready to express the double-scaled two-point function as a weighted sum

of schemes.

Let us call �g the set of schemes of vanishing grade with genus g. For each S 2 �g ,

we first construct the generating function of the connected rooted melon-free Feyn-

man graphs corresponding to such scheme:

yGS .u/ D
X

n2N

yGS;nupCn; (3.10)
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where 2p is the number of non-root standard vertices of the scheme S , and yGS;n is

the number of connected rooted melon-free Feynman graphs of scheme S with 2n

vertices inside the ladders. If S is the cycle graph, we have yGS;n D ın;0 and p D 0.

It is convenient to introduce also a generating function CX for each type of ladder-

vertex X . These are easily evaluated as (sums of) geometric series, and one finds

CNe
.u/ D u2

1 � u2
; (3.11)

CNo
.u/ D u3

1 � u2
; (3.12)

CL.u/ D CR.u/ D u2

1 � u
; (3.13)

CB.u/ D .3u/2

1 � 3u
� CNe

.u/ � CNo
.u/ � CL.u/ � CR.u/ D 6u2

.1 � 3u/.1 � u/
;

where u is again a parameter that counts half the number of vertices (or, equivalently,

the number of rungs in a ladder). The generating function yGS .u/ is then

yGS .u/ D up
CNe

.u/neCNo
.u/noCL.u/lCr

CB .u/b; (3.14)

where b, ne , no, l , and r are the respective numbers of B-, Ne-, No-, L-, and R-vertices

in S .

To obtain the sum over all connected rooted Feynman graphs, including mel-

onic decorations, we simply need to substitute u by U.�/ WD �2T .�/4, and multiply

the result by T .�/ to account for the extra propagator associated to the root-vertex.

The generating function of connected rooted Feynman graphs of genus g and grade

` D 0 is then

Gg.�/ D
X

S2�g

T .�/ yGS.T .�/ � 1/; (3.15)

where we have used the melonic equation (3.1) to write U.�/ D T .�/ � 1.

From the point of view of field theory, the presence of a root in the graphs corres-

ponds to studying the two-point function G
.0/.�/, rather than the free energy (2.11).

The two are related by the Schwinger–Dyson equation

D

Tr
h

X�
�

ıS

ıX
�
�

iE

D N 2D;

implying

G
.0/.�/ � N

D
hTrŒX�

�X��i D M 2 C 2�@�F
.0/.M; �/:

Notice that with the choice of scaling in the action (2.3), the two-point function of the

free theory is hTrŒX
�
�X��i�D0 D N , hence G

.0/.0/ D M 2, consistently with G0.0/ D 1

and Gg>0.0/ D 0.
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Therefore, the connected two-point function in the double-scaling limit has a sim-

ilar expansion to that of the free energy (2.11). Owing to our choice of combinatorial

factors in the action (2.3), it has a very simple expression in terms of the generating

functions Gg.�/:

G
.0/.�/ D

X

g2N

Gg.�/M 2�2g : (3.16)

The melonic two-point function T .�/, solving equation (3.1), is well known. It

has a dominant singularity at the critical value of the coupling constant �c D
p

33=44,

with the following singular behavior [21, 48]:

T .�/ �
�!��

c

1

3

�

4 �
s

8

3

s

1 � �2

�2
c

�

: (3.17)

When the melonic two-point function reaches criticality, the function U.�/ approaches

the value uc WD T .�c/ � 1 D 1=3 (from below), at which CB.u/ itself becomes crit-

ical. The other generating functions of ladder-vertices stay instead regular, as their

dominant singularity is at juj D 1 > uc . As a result of (3.14) and (3.15), the most sin-

gular part of Gg.�/ in the limit � ! �c will be governed by schemes that maximize

the number of B-vertices.

4. Dominant schemes of vanishing grade

In view of the preceding section, and following the nomenclature of [43, 52], we say

that a scheme is dominant if it contains a maximal number of B-vertices allowed

by its genus. The dominant ` D 0 schemes of genus g pick up the most singular

contributions in the expansion (3.15) of Gg ; they therefore determine the behavior of

the multi-matrix model in the critical limit � ! �c .

We will first show that the dominant schemes have the combinatorial structure of

decorated plane binary trees. This fact will allow us to explicitly resum them, and

define a triple-scaling limit retaining contributions with arbitrary values of the genus.

Similarly to the melonic limit, we will find that this new scaling limit admits a critical

regime dominated by large trees. However, in contrast to melonic diagrams, the tree-

like structure of dominant schemes encodes Riemann surfaces of non-zero genus, the

expectation value of which diverges at the critical point.

4.1. One-to-one mapping to plane binary trees

We first determine the maximal number of B-vertices in a ` D 0 scheme as a function

of its genus.
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Lemma 5. Let S be a ` D 0 scheme of genus g � 1 with b B-vertices. Then, b �
2g � 1 and the bound can be saturated.

Proof. All the ` D 0 schemes of genus g D 1 are identified in Proposition 1 and we see

explicitly that b � 2g � 1 D 1. There are furthermore two such schemes that saturate

the bound.

Assume that g > 1. If b � 2, then b � 2 < 2g � 1. We can therefore suppose that

b � 3. Then, there exists at least one B-vertex in S which is not adjacent to the root-

vertex. Furthermore, by Lemma 4, any B-vertex is necessarily separating. We can thus

perform a flip on one side of this B-vertex, as illustrated in the following figure:

B B!

HRHLS

zHR
zHR

zHL
zHL

e0

L e0

R

eL eR

where eL; e0
L; eR nor e0

R is adjacent to the root-vertex of S while zHL and zHR are two

connected 2-point subgraphs which are non-empty (since S is a scheme; hence, it is

melon-free) and distinct from the root-vertex alone. In addition, we assume without

loss of generality that the root-vertex of S is in zHL. Using (3.5) with `.S/ D 0 and

g.S/ D g, the graphs HL and HR obtained after the flip are both ` D 0 Feynman

graphs with ladder-vertices satisfying g.HR/ C g.HL/ D g. In addition, since we

consider a B-vertex not adjacent to the root-vertex of S , we further have g.HL/ � 1

and g.HR/ � 1, which implies that g.HL/ < g and g.HR/ < g. Finally, by the same

argument as in the proof of Theorem 1 for 2PR graphs, HL and HR are necessarily

melon-free. However, as discussed in Section 3.3, they do not necessarily correspond

to schemes because they may contain a ladder. In this case, if we want to apply the

induction hypothesis to both HL and HR, we need to perform further operations so as

to obtain ` D 0 schemes from them, in the same spirit as in Section 3.3.

We first observe that because we add a root-vertex on the left side of the B-vertex

in HR, as illustrated in the above figure, the latter is necessarily ladder-free. It is

therefore a ` D 0 scheme of genus 1 � g.HR/ < g and by the induction hypothesis,

it obeys b.HR/ � 2g.HR/ � 1.

Next, if we assume that there is no ladder generated in HL, then it also corresponds

to a ` D 0 scheme of genus 1 � g.HL/ < g. Using the induction hypothesis, it thus

verifies b.HL/ � 2g.HL/ � 1. We then find that

b D b.HL/ C b.HR/ � 2g.HL/ C 2g.HR/ � 2 D 2g � 2 < 2g � 1: (4.1)

Hence, the bound on b is verified but it is not saturated.
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If we assume instead that there is a ladder L generated in HL, then this ladder

necessarily contains the edge e that reconnects eL and e0
L in HL. We are thus in the

case 2. of Section 3.3. By studying the possible structures for L in this section, we

deduce that HL has one of the following structures (up to embedding and edge orient-

ations, which we ignore for the moment):

X

X

Y

X

Y

where X and Y are two dipoles or ladder-vertices (of any type, consistent with S

being a ` D 0 scheme). In addition, the remaining part of HL is represented with

a shaded disk, which contains the root-vertex and which can either be a connected

4-point subgraph or factorize in two connected 2-point subgraphs.

We then replace the generated ladder L in HL by a ladder-vertex of the consistent

type, as explained in Section 3.3. This yields a ` D 0 scheme yHL with the same genus

as HL. In addition, one can observe that at most two B-vertices in HL (possibly with

a dipole) are replaced with a ladder-vertex in yHL, and this ladder-vertex necessarily

corresponds to a B-vertex itself. Hence, we have b.HL/ � b. yHL/ C 1. We can then

apply the induction hypothesis to yHL so that b. yHL/ � 2g.HL/ � 1, which ultimately

leads to

b D b.HL/ C b.HR/ � b. yHL/ C b.HR/ C 1

� 2g.HL/ C 2g.HR/ � 1 D 2g � 1:

Finally, this bound can be saturated if all the previous bound can also be saturated.

On the one hand, the bounds for b. yHL/ and b.HR/ can be saturated by the induction

hypothesis. On the other hand, the bound which relates b.HL/ to b. yHL/ can also be

saturated if the ladder L in HL contains two B-vertices. In particular, using the fact

that B-vertices are necessarily separating when ` D 0, it means that zHL has one of the

structures given in Figure 20, where the two external edges correspond to eL and e0
L,

and the shaded disks correspond to connected 2-point subgraphs. Note that we have

restored relevant orientations, as well as embedding information in this figure. This

concludes the proof.

The inductive construction used in the proof of the previous lemma immediately

suggests how to saturate the upper bound on the number of B-vertices in a ` D 0
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B

B

B

B

B

B

B

B

Figure 20. Local branching structures that maximize the number of B-ladders, and, therefore

lead to dominant schemes. The twist on the leftmost figure has been introduced to comply with

our embedding conventions.

scheme; and, therefore, how to obtain the dominant ` D 0 schemes. In fact, one must

organize the B-vertices into a tree-like binary structure, whose leaves and vertices

can be extracted from the combinatorial structures encountered previously. This is the

purpose of the next proposition, which is the main result of this section.

Proposition 2. Let S be a ` D 0 scheme of genus g � 1. S is dominant, i.e.,

b.S/ D 2g � 1;

if and only if it has the structure of a plane14 binary tree with b.S/ D 2g � 1 edges,

g leaves and g � 1 inner vertices, such that

• the root corresponds to the root-vertex:

• each edge corresponds to a B-vertex:

B

Ne No

14We recall that a plane tree is a tree embedded on the plane, i.e., a tree together with an

ordering of the edges around each vertex, which has a distinguished valency-one vertex called

the root. In the present case, we emphasize that the trees associated with the dominant ` D 0

schemes are rooted because of the presence of a root-vertex.
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• each inner vertex corresponds to one of the following types of 6-point subgraphs:

(4.2)

We refer to the top-left structure as planar vertex, and to the three others as contact

vertices. Note that we rely on an arbitrary but fixed convention for the embedding of

the tree and its inner vertices, in which the root is in the tree component glued at the

bottom.

Proof. This is a direct consequence of the proof of Lemma 5. For the sake of clarity,

let us be more exhaustive about the structure of the trees.

Let S be a dominant ` D 0 scheme of genus g � 1; hence with b D 2g � 1 B-ver-

tices using Lemma 5. By saturating the bound on the number of B-vertices at each

inductive step of the proof of Lemma 5 (so as to obtain dominant schemes), it is clear

that S has the structure of a binary tree (see the structure of zHL in Figure 20 for

instance).

At some step i 2 ¹1; 2; : : : ; g � 1º of the induction, there will necessarily be a

dominant ` D 0 scheme yH .i/
L of genus one with a single B-vertex. Identifying the two

possibilities in Proposition 1, one observes that the two edges of the root-vertex are

adjacent to one side of the B-vertex. Rewinding the induction up to S , this shows that

the root of the tree is of the stated form.

Besides, the induction of Lemma 5 performs a flip on one side of a B-vertex

at each inductive step. As a result, the edges of the binary tree associated with S

correspond to B-vertices by construction.

Next, the structure of the leaves of the rooted binary tree associated with S also

follows from the induction in the proof of Lemma 5. Indeed, applying the corres-

ponding arguments while saturating the bound on the number of B-vertices at each

inductive step yields, starting from S , g dominant ` D 0 schemes of genus one. Again,
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identifying the two possibilities in Proposition 1 and rewinding the induction up to S

shows that the g leaves of the tree associated with S are of one of the two stated types.

Finally, let us study the inner vertices of the rooted binary tree associated with S .

Their structure is also a consequence of the inductive construction of the dominant

schemes deduced from the proof of Lemma 5, and in particular from the structure

of zHL in Figure 20. In fact, a convenient way of analyzing the inner vertices can be

obtained as follows. Starting from S and using its tree-like structure described above,

one can contract all the B-vertices originally present in S , one by one starting from

the bottom of the tree. That is, we first contract the B-vertex closest to the root of

the tree, then the B-vertex closest to the newly added root, and continue iteratively

until all the B-vertices have been contracted. This amounts to deleting all the edges

of the corresponding plane binary tree. Several connected components are generated

in the process, including: 1) the rooted cycle graph, which corresponds to the root

of the tree; 2) g 2PI ` D 0 schemes of genus one, which correspond to the leaves of

the tree; and 3) g � 1 rooted connected ` D 0 Feynman graphs of genus zero, which

correspond to the inner vertices of the tree. One can further verify (see Figure 20 for

instance) that these g rooted connected ` D 0 Feynman graphs of genus zero either

correspond to the rooted cycle graph or the melonic rooted Feynman graph with two

standard vertices. In the second case, the root-vertex marks the edge that corresponds,

on the tree associated with S , to the edge that belongs to the (only) path connecting

the inner vertex to the root of the tree. From this point of view, one can deduce the

four types of inner vertices or contact 6-point subgraphs. The first planar type shown

on the top-left of (4.2) in the Proposition 2 is obtained from the rooted cycle graph,

while the other contact types are obtained from the melonic rooted Feynman graph

with two standard vertices by opening up the root-vertex (which is glued to the tree

component containing the root), together with two out of its three remaining edges,

as illustrated in the following figure:

By fixing the plane embedding of the tree and its inner vertices, we obtain the three

remaining types of inner vertices in (4.2). A simple way of distinguishing these three

contact vertices is to examine what type of dipole is generated if one closes the two

half-edges connected to the root onto themselves: from left to right, we obtain a N-,

R-, or L-dipole, respectively. Likewise, for each of these cases, closing the pair of

half-edges on the top-right or top-left corners yields two different types of dipoles.
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Ne

No

No

No
Ne

B

B B

B

B
B

B

B B

Figure 21. A dominant scheme of genus g D 5. It has the structure of a rooted binary tree with

g D 5 leaves, g � 1 D 4 inner vertices, and b D 2g � 1 D 9 edges.

The last point shows that two branches of a tree emanating from a contact vertex

can be unambiguously distinguished, and therefore ordered. Since this is also true

for the planar vertex, which is by convention embedded in a clockwise manner, we

conclude that our mapping is one-to-one provided that we work with plane trees.

An example of plane binary tree associated with a dominant ` D 0 schemes of

genus g D 5 is given in Figure 21. We note that the characterization of dominant
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schemes in our model is reminiscent of the one derived in [52] and [43]. In [52],

the characterization is obtained in the context of colored tensor models in dimension

three, which do not directly generate the same types of Feynman graphs (they in fact

form a subfamily of the Feynman graphs studied in this paper). It is however similar

to our characterization because in their case, the Gurau degree is an integer like the

genus. On the other hand, the Feynman graphs of the tensor model studied in [43] are

the same as in our model. However, in that paper, the characterization of the dom-

inant schemes is performed at fixed degree !, with no constraint on the grade `.

In contrast, our double-scaling limit sets ` D 0, so that the degree ! reduces to the

genus g (see (2.8)). As a result, one can verify that all the dominant schemes iden-

tified in [43] cannot contribute in our double-scaling limit and the relevant dominant

schemes become the ones identified in Proposition 2.

4.2. Resummation and triple-scaling limit

We first provide a direct resummation of the dominant ` D 0 schemes of fixed genus g.

We then investigate a triple-scaling limit in which all genera can be resummed non-

perturbatively.

From (3.14), the generating function associated to a dominant ` D 0 scheme S of

genus g � 1 takes the form

yGS .u/ D uc6CnoCNe
.u/neCNo

.u/noCB.u/2g�1;

where c6 is the number of contact six-point functions, and we have used the fact that

leaves with No-vertices, as well as contact six-point functions, carry an extra factor of

u from their associated standard vertices.

As � approaches the critical value �c , the generating function of broken lad-

der-vertices picks up the following singular behavior, obtained by replacing u with

U.�/ D T .�/ � 1 in (3.13) and using (3.17):

CB.U.�// �
�

s

8

3

s

1 � �2

�2
c

��1

;

which is proportional to the inverse of the singular part of T .�/. Therefore, the most

singular contribution of S to the sum (3.15) is

G
.sing/

S .�/ WD T .�c/uc
c6CnoCNe

.uc/neCNo
.uc/no

�

s

8

3

s

1 � �2

�2
c

�1�2g

D uc
c6C2no

4

3

1

8g

�

s

8

3

s

1 � �2

�2
c

�1�2g

;

where we have used in the second equality that ne C no D g.
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Let us denote by Dg the set of dominant schemes of genus g. Each element of Dg

is associated to a rooted binary plane tree with g leaves. The number of such trees is

given by the .g � 1/-th Catalan number Tg WD 1
2g�1

�

2g�1
g�1

�

. Summing over all trees,

we therefore obtain

X

S2Dg

G
.sing/

S .�/ D 4

3

Tg

8g

�

r

8

3

s

1 � �2

�2
c

�1�2g

.1 C u2
c/g.1 C 3uc/g�1

D 2

3

r

8

3
Tg

� 5

48

�g
�

s

1 � �2

�2
c

�1�2g

:

To justify the first line of this equation, first note that since each tree is planar, one can

fix a canonical ordering of its vertices and leaves (for instance, by going around the

tree in a clockwise manner starting from the root). The first three factors are common

to all trees, while the last two depend on the decoration of its leaves and vertices. Each

of the g ordered leaves is either even (which brings no extra factor) or odd (which

brings a factor u2
c ), and therefore contributes a factor .1 C u2

c/. Similarly, each of the

g � 1 vertices is either planar (which brings no extra factor) or one of three contact

interactions (each bringing a factor uc), resulting in a factor .1 C 3uc/ per vertex.

Since the multi-matrix model in the double-scaling limit weighs any graph of

genus g with a factor M 2�2g (see (3.16)), we can define a triple-scaling limit by

sending M to infinity and � to �c while keeping the following ratio finite:

��1 WD M
�

1 � �2

�2
c

�1=2

:

In this limit, we have

�

M
.G .0/.�/ � M 2T .�// � 2

3

r

8

3

X

g�1

Tg

� 5

48

�g

�2g DW D.�/:

D.�/ governs the deviation of the two-point function from its leading melonic beha-

vior. A vanishing value of � corresponds to the purely melonic theory, obtained by

first taking the M ! C1 limit, before sending � to its critical value. On the other

hand, when � ¤ 0, D.�/ does not vanish anymore, which means that the full two-

point function deviates from T .�/. Using the fact that
P

g�1 Tgxg D xc.x/, where

c.x/ D .1 �
p

1 � 4x/=.2x/ is the generating function of Catalan numbers, we can

resum D.�/ explicitly for

� < �c WD 2

r

3

5

and get

D.�/ D
�2

3

�
3
2

�

1 �
r

1 � 5

12
�2

�

:
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Near the critical value �c , the fluctuations are dominated by schemes of unbounded

genus, or equivalently by large trees. In particular, the expectation value of the genus

in the ensemble defined by D.�/ diverges at the critical value:

hgi D 1

2
�@� ln D.�/ ' 1

2
p

1 � �2=�2
c

:

We conclude this section by noting that the triple-scaling regime we have just

derived shares its main features with the double-scaling limit of the multi-orientable

tensor model [53]. This should not overly surprise us, owing to the close combinatorial

similarities between both models.

5. 2PI generating function

In the previous section, we focused on dominant ` D 0 schemes because they determ-

ine the critical behavior of the generating function for ` D 0 Feynman graphs of

genus g. In particular, we have demonstrated that this class of ` D 0 schemes can

be mapped to rooted binary trees. As a result, our model converges in the continuum

limit to a branched-polymer phase [3,17], the same universality class of random geo-

metry found in the standard melonic regime of tensor models [51].

In this section, we study another class of ` D 0 schemes, which exhibits a richer

structure and thus leads to a richer continuum limit. In view of the pole structure of

the generating functions of ladder-vertices constructed in Section 3.4, it is tempting to

construct a model dominated by a critical value uc D 1, instead of uc D 1=3. This can

be achieved by making sure that neither melon subgraphs nor B-ladders can contribute

to the ` D 0 sector. Interestingly, by Lemma 1, Proposition 1, and Theorem 1, both

of these structures have in common that they can only occur in 2PR ` D 0 graphs.

Hence, we can eliminate them by restricting the sum over Feynman graphs to 2PI

contributions.

The generating function of 2PI graphs can be related to the original multi-matrix

model as follows. First, we modify the action (2.3) by introducing a quadratic “coun-

terterm”, or a source for the quadratic invariant:

SŒX; X�I m� D ND
�

.1 � m/ TrŒX�
�X�� � �

2

p
D TrŒX�

�X�X�
�X� �

�

: (5.1)

Next, we choose the parameter m D m.�/, with m.0/ D 0, such that the full two-point

function of the modified model is �-independent, and in particular it coincides with

the two-point function of the free theory (with m D � D 0):

hTrŒX�
�X��im.�/ D N ;
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where

hTrŒX�
�X��im D

R

ŒdX�e�SŒX;X�Im� TrŒX
�
�X��

R

ŒdX�e�SŒX;X�Im�
D 1

ND

@F .�I m/

@m
;

and we introduced also a modified free energy F .�I m/, defined analogously to (2.1).

We claim that m.�/ is the generating function of rooted 2PI vacuum graphs of (2.3),

with free propagators on the edges. In order to see that, we can follow the formalism

of the 2PI effective action (see for example [14, 30], and [11] for its application in

tensor models). We perform a Legendre transform of the modified free energy with

respect to m, thus defining an effective action �.�I G/:

�.�I G/ D �F .�I Qm.�I G// C N 2DG Qm.�I G/; (5.2)

where Qm.�I G/ is defined as the solution of

@F .�I m/

@m
D N 2DG:

Notice that this is equivalent to choosing m such that hTrŒX
�
�X��im D NG.

By deriving (5.2) with respect to G we also find

@�.�I G/

@G
D N 2D Qm.�I G/;

while following a computation similar to the one in [11, 14, 30], the effective action

takes the form

�.�I G/ D N 2D.G � ln G/ C �2PI.�I G/;

where �2PI.�I G/ is the sum of vacuum 2PI Feynman diagrams of the action (5.1)

with the substitution .1 � m/ ! G�1. Combining the last two equations we obtain

1 � G�1 C 1

N 2D

@�2PI.�I G/

@G
D Qm.�I G/:

Setting G D 1 and Qm.�I 1/ � m.�/, we obtain the claimed result, because deriving

�2PI.�I G/ with respect to G is equivalent to marking an edge in its diagrams.

In the double-scaling limit, similarly to Section 3.4, we define the generating func-

tion of rooted 2PI Feynman graphs as

G
.0/
2PI .�/ � lim

N;D!1
M <1

N 2

D
m.�/ D

X

g2N

G
2PI
g .�/M 2�2g ;

where

G
2PI
g .�/ D

X

S2�2PI
g

yGS .�2/; (5.3)
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in which �
2PI
g is the set of 2PI schemes of genus g and vanishing grade. Since melon

subgraphs do not contribute, propagators have weight 1 rather than T .�/, and consist-

ently, the counting variable u has been substituted by �2 instead of �2T .�/4.

By construction, the schemes that determine the singular behavior of G
2PI
g .�/ are

distinct from the dominant schemes defined in Section 4, since the latter are all 2PR.

But we can reason similarly. The only ladder-vertices allowed in ` D 0 2PI schemes

are of type Ne and No, and from equations (3.11) and (3.12), both have a dominant

simple pole at u D 1. Hence, the genus g and ` D 0 schemes that govern the most

singular part of G
2PI
g .�/ are those that maximize the number of N-vertices. In the same

spirit as in Section 4, we will therefore say that a 2PI scheme is 2PI-dominant if it

contains a maximal number of N-vertices allowed by its genus.

We now proceed with the combinatorial characterization of this new family of

schemes, before analyzing their properties in the continuum limit.

5.1. 2PI-dominant schemes

As a first step, we want to determine the maximal number of N-vertices in a 2PI

` D 0 scheme as a function of its genus. Remark that because we deal with 2PI ` D 0

schemes, they cannot contain any separating ladder-vertex (they would be 2PR oth-

erwise) and therefore, by Lemma 4, any ladder-vertex corresponds to a connecting

N-vertex. We denote by n.S/ D ne.S/ C no.S/ the number of N-vertices (even or

odd) in a given 2PI ` D 0 scheme S . Besides, we say that two N-vertices are separ-

ated by the root-vertex if they are in one of the two configurations shown in Figure 22.

V1 V2 V1 V2

Figure 22. Two N-vertices V1 and V2 separated by the root-vertex.

Lemma 6. Let S be a 2PI ` D 0 scheme of genus g � 1 with n N-vertices. Then,

n � 3g � 2. Furthermore, if g > 1 and no two N-vertices are separated by the root-

vertex, then n � 3g � 3.

Proof. All the 2PI ` D 0 schemes of genus g D 1 are identified in Proposition 1. In

particular, we see explicitly that n D 1.

Let us therefore assume that g > 1. To prove the upper bounds on the number n

of N-vertices in S , it is convenient to adopt a topological point of view, and regard
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the N-vertices in S as (equivalence classes of) simple loops drawn on the (discret-

ized) Riemann surface represented by S (see for instance [54,63]). This point of view

was already advocated in Remark 1 for N-dipoles, and naturally extends to N-ver-

tices. Indeed, the latter correspond to ladders of N-dipoles, and all the length-two

O.D/-loops in a N-ladder belong to the same homotopy class. In this topological

language, we prove that N-vertices in S , regarded as simple loops, are

(1) pairwise disjoint;

(2) non-separating (hence, non-contractible);

(3) pairwise non-homotopic, unless possibly if they are separated by the root-

vertex.

The first property is ensured by the fact that ladder-vertices in S represent max-

imal ladders, and maximal ladders are pairwise vertex-disjoint (see Claim 5).

The second property is a direct consequence of the fact that S is a 2PI `D0

scheme and therefore only contains non-separating (more precisely connecting) N-ver-

tices. The contraction of any N-vertex in S thus preserves the connectedness of the

corresponding discretized Riemann surface. Besides, a non-separating simple loop is

necessarily non-contractible.

To prove the third property, let us assume that there exist two homotopic N-ver-

tices V1 and V2 in S . Since any N-vertex in S is non-separating, it implies that S

has the structure represented on the left panel of Figure 23, where zH0 and zH1 are

4-point subgraphs and one of them (say zH0) has the topology of a 2-sphere (with two

punctures). Contracting V1 and V2 then yields two ` D 0 Feynman graphs with ladder-

vertices: H0 of genus 0, and H1 of genus g � 1. If zH0 does not contain the root-vertex

of S , then H0 must be melon-free. Indeed, contracting (say) V1 first cannot create a

melonic subgraph; otherwise, S would contain a ladder. Then, contracting V2 does not

create a melonic subgraph in H0 either, because a root-vertex is added in the middle

of the edge that closes onto H0 after the contraction of V2. As a result, H0 must be

the rooted cycle graph. But then, it means that V1 and V2 form a ladder in S , which

yields a contradiction. On the other hand, if zH0 contains the root-vertex of S , we have

two cases. If H0 is melon-free, it must correspond to the rooted cycle graph. But then,

V1 and V2 are separated by the root-vertex in S (case on the left of Figure 22). Other-

wise, H0 is a melonic rooted Feynman graph with at least two standard vertices. It is

straightforward to check that if H0 contains more than two standard vertices, then S

must either be 2PR or contain a ladder, leading to a contradiction. H0 must therefore

be the melonic rooted Feynman graph with two vertices, meaning once again that V1

and V2 are separated by the root-vertex (case on the right of Figure 22).

Now, it is well known that, on an orientable Riemann surface of genus g > 1, one

can draw a maximum of 3g � 3 pairwise disjoint, non-contractible and pairwise non-

homotopic simple loops (see, e.g., [63, Proposition 4.2.6]). Since at most one pair of
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zH0
zH1

zH0
zH1

H0H1

V1

V2

S

!

Figure 23. A 2PI ` D 0 scheme with two homotopic N-vertices V1 and V2 (left panel): after

contraction of V1 and V2 (right panel), one of the two resulting Feynman graphs (say H0) must

have vanishing genus.

N N

N

Figure 24. Combinatorial structure of a planar 6-point subgraph connecting a triplet of N-ver-

tices in a 2PI-dominant scheme. Depending on the type of N-vertices meeting at such a vertex

(Ne or No), twists may need to be added to respect our embedding conventions.

N-vertices can be separated by the root-vertex, in which case they are homotopic, this

leads to n � 3g � 3 C 1 D 3g � 2.

One can prove that the bounds of Lemma 6 are tight, and as a result, that the

2PI-dominant schemes are characterized by n.S/ D 3g.S/ � 2. We postpone this dis-

cussion to Section 5.2, which will provide an explicit description of all 2PI-dominant

schemes.

Proposition 3. Let S be a 2PI ` D 0 scheme of genus g > 1. S is 2PI-dominant (i.e.,

n.S/ D 3g � 2) if and only if it has the following structure:

• two N-vertices in S are separated by the root-vertex, as in Figure 22;

• the remaining N-vertices in S are connected by the planar 6-point subgraph

shown in Figure 24.
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Proof. The first condition follows from Lemma 6: if no two N-vertices are separated

by the root-vertex, then n.S/ D 3g � 3 < 3g � 2 and therefore, S cannot be 2PI

dominant.

Now, that we have dealt with the root-vertex, it is convenient to replace by a single

N-vertex the subgraph made out of: the two homotopic N-vertices separated by the

root-vertex, the root-vertex itself, and possibly the two standard vertices the latter is

connected to. In other words, we perform one of the following two replacements:15

N N N N

N N

! !

As a result, we obtain a non-rooted embedded graph S 0 of genus g, with 3g � 3

pairwise disjoint, non-separating and pairwise non-homotopic N-vertices, regarded as

simple loops. In topological terms, because we have a maximal number of such loops

drawn on the discretized (orientable) Riemann surface represented by S 0, it implies

that (see again [63, Proposition 4.2.6]): cutting S 0 along these 3g � 3 loops yields

2g � 2 connected components c1; : : : ; c2g�2, which all have genus zero and exactly

three boundaries. In other words, these loops correspond to the cuffs of a pants decom-

position of S 0, see [54]. Translated in terms of the corresponding N-vertices in S 0,

it means that contracting the 3g � 3 N-vertices in S 0 gives rise to 2g � 2 connec-

ted components C1; : : : ; C2g�2 such that g.Ci/ D 0 (i D 1; : : : ; 2g � 2) and each

connected component originates from a 6-point subgraph connected to three distinct

N-vertices in S 0. For instance, at genus 2 or 3, we are in one of the situations illus-

trated in Figure 25 (the genus 2 structure is unique, but there are more possibilities at

higher genus). Besides, since `.S 0/ D 0, these connected components Ci also satisfy

`.Ci / D 0 for i D 1; : : : ; 2g � 2. Hence, they must correspond to (non-rooted) mel-

onic Feynman graphs. We now prove that they are in fact (non-rooted) cyclic graphs,

which will achieve the proof.

Suppose that Ci (i D 1; : : : ; 2g � 2) is an arbitrary melonic Feynman graph. One

can recover the 6-point subgraph zCi it originates from in S 0 by performing three cuts

15To avoid a tedious enumeration of cases, we keep the edge orientations and N-vertex parit-

ies implicit, but we note that there is always a unique substitution consistent with these features.

For instance, in the situation shown on the right, the sum of the parities of the two N-vertices in

the top figure must be opposite to the parity of the N-vertex in the bottom figure.
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zC1

zC4

zC2

zC1
zC2

zC3

zC1

zC4

zC2

zC1
zC2

C1 C2

zC3

!

!

B

B

B

B

B

B B B B

Figure 25. Examples of decomposition of the graph S 0, with g.S 0/ D 2 (top) or g0.S/ D 3

(bottom). In both cases, we are left with 2g.S 0/ � 2 connected components after all N-dipoles

have been contracted. Note that more than one structure is allowed at genus g > 2.

on its edges (note that the same edge can be cut multiple times). Using the fact that the

resulting 6-point subgraph cannot contain a melonic subgraph (otherwise, S 0 and S

would not be melon-free) nor a dipole (otherwise, S 0 and S would not be ladder-free),

one can check that Ci must be

(i) the cycle graph, and in that case the corresponding 6-point subgraph zCi is

the one represented in Figure 24;

(ii) or the melonic Feynman graph with two standard vertices, and in that case

the corresponding 6-point subgraph zCi is obtained by cutting three distinct

edges.

These configurations have already been encountered in Proposition 4: situation (i)

yields a planar 6-point interaction, while (ii) gives rise to a contact vertex. The only

difference is that, in a 2PI-dominant scheme, they must connect three connecting

N-vertices. It is straightforward to see that this condition disallows contact vertices

(situation (ii)). An example is given in Figure 26, where one observes that the N-ver-

tex V2 is not connecting. We are therefore left with the planar 6-point subgraph of

Figure 24, which concludes the proof.

An example of 2PI-dominant scheme of genus 3 is provided in Figure 27.



Multiple scaling limits of U.N /2 � O.D/ multi-matrix models 417

V1 V2

V3

Figure 26. 6-point subgraph obtained by cutting three distinct edges in a melonic Feynman

graph with two vertices. It connects three N-vertices V1; V2 and V3. However, at least one of

them (here V2) cannot be connecting because of the structure of the O.D/-loops.

5.2. 2PI-dominant schemes as Ising states on planar cubic maps

We are now going to describe a class of graphs that is a subset of all the graphs of

our model, but which contains all the 2PI-dominant graphs. We will at first be slightly

less rigorous and consider unrooted graphs.

Let us view a N-ladder of a graph (or a N-vertex of a scheme) as a decorated

edge of an auxiliary ribbon graph with vertices of arbitrary order, corresponding to

planar 2n-point functions that generalize the one of Figure 24. Figure 27, with the root

removed as in the proof of Proposition 3, provides an example of such a ribbon graph,

with only tri-valent vertices. Notice that in Figure 27, due to the arrows, the vertices

have two possible orientations, clockwise and anti-clockwise, with Ne-ladders join-

ing same-orientation vertices and No-ladders joining opposite-orientation vertices; in

general this is only true for ribbon graphs without twisted edges, as otherwise we

can for example join same-orientation vertices by means of a twisted No-ladder. For

a canonical description of all possible ribbon graphs, including non-orientable ones,

it is convenient to choose the same orientation for all the vertices and allow twists

of the edges; however, in order to more easily recognize planar graphs it is actually

more convenient to allow both orientations of the vertices, so that planar graphs with

No-ladders can actually be drawn on a plane, as in Figure 27.

A ladder i has ri � 2 rungs, and therefore the original graph corresponding to a

given auxiliary graph has in total � D P

i2edges ri rungs (or N-dipoles). Remembering

the structure of external faces of the N-ladders (see Figure 7) and counting the number

of their internal faces, we find the following mapping between the number of vertices,

edges, and faces of the ribbon graph, denoted by �, ", and �, respectively, and the



D. Benedetti, S. Carrozza, R. Toriumi, and G. Valette 418

Ne No

No

No Ne

No

Ne

Figure 27. A 2PI-dominant scheme of genus g D 3. It has 3g � 2 D 7 N-vertices; all of them

are pairwise non-homotopic except for the two N-vertices separated by the root.

number of faces, vertices and N-ladders in the original graph:

v D 2�; " D n; fL D fR D � � " C �; ' D � C �:

Consequently, we have also the following mapping:

` D 4 C 4� � 2.� � "/ � 2� � 2� � 2� D 4 � 2� C 2" � 2� D 4�; (5.4)

g D " � � C 1 D �; (5.5)

where � is the genus of the ribbon graph, and � is its cyclomatic number (the number

of independent loops). For non-orientable surfaces, we have � 2 1
2
N, hence these

graphs can only have even `: they are a strict subset of all the possible graphs, which

have ` 2 1
2
N.

It is however interesting that if we take all the planar ribbon graphs and decor-

ate them by ladders as described above, we have a class of Feynman graphs of our

multi-matrix model with ` D 0 and arbitrary g (given by the number of independent

loops of the planar ribbon graph). Again, these are clearly not all the graphs with

` D 0 and arbitrary g, as made evident for example by Proposition 1.16 However,

16Notice that to actually capture at least the first graph (S1) of Proposition 1, we should

allow for exactly one two-valent vertex in the ribbon graphs, corresponding to the root. From
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from Proposition 3 we know that 2PI-dominant schemes contain only N-ladders, and

that these are connected via planar six-point functions. Therefore, the 2PI-dominant

schemes are contained in the class of graphs we have just described, by restriction to

one-particle irreducible (1PI) three-valent ribbon graphs. It is easy to verify that such

graphs indeed saturate the bound of Lemma 6. In fact, we have 2" D 3�, and therefore

from (5.5) we have n.G/ D " D 3g � 3, which is the right number of N-vertices in a

dominant 2PI scheme, once we remove the root and join its two adjacent N-vertices.

More rigorously, we can in fact construct an explicit bijection between 2PI-dom-

inant schemes on the one hand, and Ising states on a certain family of rooted planar

maps on the other hand.

Let S be a 2PI-dominant scheme of genus g. Since `.S/ D 0, its underlying ribbon

diagram has genus � D 0. We can therefore choose a planar embedding of the latter

(i.e., without crossing or twist). By convention, we can furthermore require that the

root is embedded in the plane in such a way that its R-face appears in between its two

associated rungs, as shown in the first line of Figure 28. By planarity, this completely

fixes the local embedding of the other elements of the graph. Because each side of a

N-vertex has exactly one incoming and one outgoing edge, there are exactly two pos-

sible embeddings of the vertices: clockwise, which we label C, and anti-clockwise,

which we label �. Next, one finds two possible embeddings of the Ne-vertices: those

that connect two C vertices, and those that connect two � vertices. There is finally a

unique embedding of No-vertices, each such vertex always connecting two vertices of

opposite orientations.

As a result, we realize that S encodes a unique Ising state on a planar map,

obtained by performing the substitutions illustrated in Figure 28. We emphasize that

we have replaced the two rails associated to the root (together with its associated

rung, when applicable) by two half-edges, connected to two univalent vertices. One

of these vertices represents the R-face adjacent to the root in the initial scheme, and is

distinguished by an outward-pointing arrow as the root-vertex in the planar map. By

consistency with our construction, this vertex can only be in the C state. Finally, we

note that the 2PI character of the initial scheme translates into a 1PI condition in the

colored map representation.

Examples of maps obtained in this manner are represented in Figure 29.

To summarize, the decorated map T .S/ we associate to a 2PI-dominant scheme

S is unique, and has the following properties:

(i) it is planar;

(ii) it has 3g.S/ � 2 edges;

the point of view of the matrix model discussed in Section 5.3, this would amount to studying

the two-point function rather than the free energy.



D. Benedetti, S. Carrozza, R. Toriumi, and G. Valette 420

LR

$

$

$

$

$

$

$L RR

R RNe L LNe

R LNo

C

C C

C

C C

C

Figure 28. Mapping between 2PI-dominant schemes and rooted planar maps. There are two

types of root-edges (with one canonically distinguished strand, specifying a root-face), which

we conveniently represent as pairs of univalent vertices; two types of 3-valent vertices, clock-

wise (+) and anti-clockwise (-); and three types of edges, distinguished by the signs of the

vertices they connect.

(iii) it has 2g.S/ vertices, each of which is decorated by a spin label s 2 ¹C; �º;

(iv) 2g.S/ � 2 vertices are 3-valent;

(v) 2 vertices are univalent, one of which being distinguished has the root-

vertex;

(vi) the root-vertex is in the + state;

(vii) the rooted planar map zT .S/ obtained by joining the two univalent vertices

(and keeping the arrow to specify the root-face) is 1PI.

Reciprocally, it is easy to see that any decorated map verifying these conditions allows

to reconstruct a unique 2PI-dominant scheme. The correspondence between 2PI-dom-

inant schemes and rooted planar maps we have just described is therefore bijective.

Finally, in the following, we will denote by TCC (resp. TC�) the set of decorated maps

with boundary condition CC (resp. C�).

The previous construction is particularly interesting, because it allows to under-

stand the 2PI-dominant schemes as encoding an Ising model on a family of random

planar surfaces. To see this, let us introduce a generating function for the 2PI-domin-
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T .S1/ T .S2/

C

C C C

C

C

C

Figure 29. Decorated rooted planar maps associated to: S1 and S2 of Proposition 1 (left); the

2PI-dominant scheme of Figure 27 (right).

ant schemes of genus g (g � 1)

D
2PI
g .�/ WD

X

S 2PI-dominant

yGS .�2/;

and, similarly, a generating function for all 2PI-dominant schemes:

D
2PI.�; M/ WD

X

g2N

M 2�2g
D

2PI
g .�/: (5.6)

We can also introduce the two Ising generating functions:

ZCC.t; x/ WD
X

T 2TCC

t".T /xm.T /; ZC�.t; x/ WD
X

T 2TC�

t".T /xm.T /;

where ".T / is the total number of edges in a map T ,17 and m.T / the number of mono-

chromatic edges.18 Notice that these are grand canonical partition functions, with x D
e2ˇ and t D ze�2ˇ , where ˇ is the inverse temperature and z the fugacity.

We then have the remarkable formula

D
2PI.�; M/ D M 2=3

�

ZCC.CNo
.�2/M �2=3; ��2/

C �2ZC�.CNo
.�2/M �2=3; ��2/

�

; (5.7)

where we have used (3.14) (with r D l D b D 0, p D 0 or 1) and CNo
.u/ D uCNe

.u/.

The Ising and Potts models on various families of random planar maps can be

solved explicitly, for instance by means of matrix model techniques [24,57,58], or of

a general method based on Tutte equations with two catalytic variables19 [15,16]. The

17That is, 3g � 2, where g is the genus of the scheme represented by T .
18Monochromatic edges are edges of type CC or ��, and correspond to Ne-vertices in the

original scheme representation.
19The basic idea of this method is to introduce additional parameters, known as catalytic

variables, that allow to derive tractable equations for the partition function. In the case of the

Potts model on a random map, keeping track of the degree of the root-face and the degree

of the root-vertex enables the use of deletion-contraction relations. This explains the need to

introduction two catalytic variables.
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specific case of the Ising model has also been solved by means of an exact mapping to

a problem of map enumeration [25], which shares similarities with our own construc-

tion. Indeed, the maps being enumerated in this work are bipartite, and are constructed

by further decorations of ordinary Ising states on ordinary maps: given such a colored

map, one simply adds an arbitrary odd (resp. even) number of bivalent vertices on a

CC or �� (resp. C�) edge, and color them in the unique way that results in a bipart-

ite map. It is illuminating to realize that we would obtain the exact same structure if

we were to unfold the N-vertices as sums of N-ladders in our initial 2PI-dominant

schemes (each rung in a ladder being now seen as a bivalent vertex). Hence, our con-

struction can be seen as the inverse of the type of mapping considered in [25]. From

this point of view, the relation with the Ising model established in equation (5.7) is

not so surprising.

5.3. A matrix model for the 2PI-dominant graphs

The mapping between 2PI-dominant schemes and Ising model configurations on ran-

dom planar 1PI maps can be encoded in the planar limit of a matrix model. One simply

needs to introduce two matrices, whose self-interactions represent the vertices with

spin up and down, and with propagators carrying the spin-spin interaction [24, 57].

We introduce two L � L Hermitian matrices A and B , with the following free

energy:

W Œu; M� D lim
L!1

1

L2
ln

Z

ŒdA�ŒdB�e�SeffŒA;B�;

where the action is

SeffŒA;B� D M 2L Tr
h 1

2u2
.A2 C B2/ � 1

u
AB � 1

3
.A3 C B3/ � j1A � j2B

i

: (5.8)

In order to impose the 1PI restriction on the Feynman graphs, we choose j1 and j2 to

satisfy

0 D @

@j1

W Œu; M� D @

@j2

W Œu; M�;

whose solution, with j1 D j2 because of the symmetry under exchange of A and B ,

we denote Qj.u; M/.

The global factor L in the action is the standard one, required for achieving the

usual topological expansion of matrix models (with genus � related to the grade `

by (5.4)), while the factor M 2 is chosen so to attribute the correct scaling in M to

graphs with � D g loops (see (5.5) and (5.6)).

The coefficients in the action have been chosen so that the free propagators (i.e.,

the two-point functions of the theory with neither cubic nor univalent vertices) match
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the generating functions of Ne and No ladders:

h.A/ab.A/cd ifree D h.B/ab.B/cd ifree D 1

M 2L
ıad ıbcCNe

.u/;

h.A/ab.B/cd ifree D 1

M 2L
ıad ıbcCNo

.u/;

and as discussed below (5.3), we have u D �2 because there are no melonic insertions.

For j D 0, the action (5.8), is the same as in [24, 37, 65], with the mapping c D
e�2ˇ ! u, g ! u6=M 2, and a rescaling of A and B by u2. Therefore, in principle we

could adapt their methods and results to our case, in order to compute D2PI.�; M/.

However, we are interested in the restriction to 1PI graphs, which they did not consider

explicitly, and moreover, the precise relation to D
2PI.�; M/ requires to compute a

combination of two-point functions, including hTrŒAB�i, which requires some extra

work. In fact, comparing to (5.7), we have

D
2PI.�; M/ D lim

L!1

M 2

L
.hTrŒA2�i Qj C �2hTrŒAB�i Qj /juD�2 : (5.9)

Nevertheless, we expect the universal critical properties of the model not to be affected

by the 1PI restriction or by the insertion of a special two-valent vertex, hence we can

immediately anticipate some conclusions.

The free energy of the matrix model (5.8) corresponds in the large-L limit to the

grand-canonical partition function of an Ising model on random planar 1PI graphs,

at inverse temperature ˇ D 1
2

ln. 1
u

/. The thermodynamic limit (with infinite graphs

dominating the grand-canonical partition function) is obtained by tuning the coupling

to its critical line, in our case M ! Mc.u/, with u 2 .0; 1/. In the thermodynamic

limit, the Ising model can also reach criticality at some critical point u D uc , with

0 < uc < 1 (uc D .2
p

7 � 1/=27 for the model with j1 D j2 D 0, see [24]), hence

one can have a continuum limit describing matter coupled to quantum gravity in two

dimensions by tuning u ! uc and M ! Mc.uc/. However, for u ! 1, which is the

only relevant limit for us, we are in the high-temperature limit ˇ ! 0, and the Ising

spins become completely uncorrelated, thus simply contributing a factor 2� (� being

the number of vertices in the graph) to the pure gravity partition function. Therefore,

the limit u ! 1 corresponds to the high-temperature limit of the Ising model on ran-

dom planar graphs, which is in the universality class of pure 2-dimensional quantum

gravity.

That the latter is unaffected by the 1PI restriction can easily be verified from the

solution of the one matrix model with action

SŒY � D L
�1

2
TrŒY 2� � ˛

3
TrŒY 3� � j TrŒY �

�

;
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where j is chosen in such a way that the one-point function hTrŒY �i vanishes. Such a

model was solved at large-L in [26], from which one finds for the two-point function

hTrŒY 2�i D �

˛2
.1 � 3�/; (5.10)

where

� D
X

n�1

2n�1 .3n � 2/Š

nŠ.2n � 1/Š
˛2n:

With a bit of work we find

hTrŒY 2�i D
X

n�0

2n .3n/Š

.n C 1/Š.2n C 1/Š
˛2n � 1

4

r

3

�

X

n�0

�27˛2

2

�n

n�5=2; (5.11)

from which, taking into consideration the marked edge, one can read off the usual

string susceptibility exponent of pure 2-dimensional quantum gravity, 
s D �1=2.

We conclude by noticing that the limit u ! 1 should be taken carefully, as the

propagators diverge in such limit. On the other hand, from [24] one finds that the

critical line ends at zero coupling,20 i.e., Mc.u/ ! C1 for u ! 1. Moreover, the

graphs with g loops contributing to (5.9) have by construction a factor M 2�2g , and

they have a factor .1 � u2/2�3g from the propagators. Therefore, we can approach the

high-temperature and thermodynamic limits simultaneously and without problems by

keeping M.1 � u2/3=2 fixed. We will discuss such triple-scaling limit in more detail

in Section 5.4.

5.4. Triple-scaling limit

We do not need to solve the effective Ising model described in Section 5.2 to under-

stand the critical properties of the 2PI-dominant generating function (5.6). Indeed,

equation (5.7), together with CNo
.u/ D u3=.1 � u2/, suggest to define the triple-

scaling limit in which M ! C1 and � ! 1�, while keeping the following quantity

finite:

��1 D M.1 � �/3=2:

The generating function of 2PI-dominant schemes has then a nice limit:

.1 � �/D2PI.�;M/ ! 1

�2=3

�

ZCC

�1

4
�2=3;1

�

C ZC�

�1

4
�2=3;1

��

DW zD.�/: (5.12)

Note that this is a series in �, since a genus g contribution in ZCC or ZC� behaves

like .�2=3/3g�2 D �2=3�2g�2.

20There is actually a typo in [24, (42)], the term c=4 should be absent.
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In fact, we can evaluate QD.�/ more explicitly. We first note that, since the Ising

configurations of a given combinatorial map are weighted uniformly in this limit,

ZCC.�; 1/ and ZC�.�; 1/ both reduce to the same combinatorial sum. Furthermore,

one can adopt a slightly simpler combinatorial description in terms of cubic maps

(by gluing back the univalent vertices of a given map together, to form a root-edge).

All in all, we obtain

QD.�/ D 2��2=3
X

g2N�

�1

4
�2=3

�3g�2

22g�2
Mg�1 D 1

2

X

n2N

��2

16

�n

Mn; (5.13)

where Mn is the number of rooted bridgeless planar cubic maps with 2n vertices, and

by convention M0 D 1 (which corresponds to the cycle graph, and correctly counts

the schemes S1 and S2). Mn is the A000309 integer sequence of the OEIS classifica-

tion,21 and is known in closed form [67]:22

Mn D 2n.3n/Š

.n C 1/Š.2n C 1/Š
� 1

4

r

3

�

�27

2

�n

n�5=2: (5.14)

We have encountered it before, in the expansion of (5.11). Comparing (5.13) to (5.11),

we notice the following differences: an overall factor 2��2=3, which comes from

the overall factor in (5.12) and from the two contributing configurations; a factor

22g�2 D 2� , which accounts for the uncorrelated up and down spin configurations;

instead of a weight ˛ per vertex we have a weight 1
4
�2=3 per edge. As anticipated, we

find the n�5=2 term characteristic of the universality class of random planar maps.

From equations (5.13) and (5.14), we infer that zD.�/ has a finite radius of con-

vergence

�c D 8

3
p

6
;

and the following singular behavior:

zD.�/ �
�!��

c

1

2
p

3

�

1 � �2

�2
c

�3=2

C more regular terms.

In this regime, the expectation value of the genus hgi D hn C 1i remains finite, but its

variance diverges:

hg2i �
�!��

c

K
�

1 � �2

�2
c

��1=2

;

for some constant K > 0.

21httpsW//oeis.org/A000309.
22This result can be derived from a Tutte equation involving a single catalytic variable, in

contrast to the complete Ising model (5.7). Away from the triple-scaling regime, the latter falls

into the more challenging class of problems which are governed by Tutte equations with two

catalytic variables.

https://oeis.org/A000309
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A. Algorithmic generation of graphs with vanishing grade: examples

In this appendix, we provide examples of graphs with vanishing grade, which we

obtain by applying the algorithm outlined in Section 3.2. We note that all the graphs

we have explicitly constructed in this way have a very simple structure: they are

collections of ladders or dipoles glued together through effective vertices. Further-

more, we have empirically found that three types of effective vertices are sufficient

to describe all such graphs: planar 2n-point vertices (with n � 3), as described in

Theorem 1 (for n D 3) and in Section 5.3; contact 6-point vertices, also defined in

Theorem 1; and 8-point contact vertices. The latter 8-point vertices do not make

any apparition in the main text, because they contribute to neither of the two con-

tinuum limits we have investigated. An example will however appear below. Since it

is tangential to the main objectives of this article, whether the three types of effective

vertices we have encountered is sufficient to describe ` D 0 graphs of arbitrary genus

is left as an open question.

We now illustrate all the ways in which one can obtain a ` D 0 graph of genus two,

starting from the two schemes of genus one S1 and S2 described in Proposition 1.

• Inserting a connecting N-dipole or No-ladder (Figure 30) on the two edges of

a rung increases the genus g by one, and generates an 8-point contact vertex in the

resulting graph. If the original graph is 2PI, then the resulting graph remains 2PI.

• Inserting a connecting Ne-ladder between two edges of a rail increases the genus

g by one and generates planar effective vertices (in the sense of the effective matrix

model of Section 5.3). If the original graph is 2PI, then the resulting graph remains

2PI. Both Ne- and No-ladders can be inserted in this manner, as illustrated on Fig-

ures 31 and 32.

• Inserting a separating dipole, a separating ladder, or a two-edge connection in-

between a rung of a graph of genus g1, and a rung of a graph of genus g2, yields a

2PR graph of genus g1 C g2. The example given in Figure 33 starts out with two 2PI

graphs of genus one, and results in a 2PR graph of genus two. Two 6-point contact

vertices (as defined in Theorem 1) are generated in the process.

• Inserting a separating dipole, a separating ladder, or a two-edge connection in-

between a rail of a graph of genus g1, and a rail of a graph of genus g2, yields a

2PR graph of genus g1 C g2. Planar vertices of the type described in Theorem 1 or

Section 5.3 are generated in the process. The example given in Figure 34 starts out

with two 2PI graphs with genus one, and results in a 2PR graph of genus two. When

X is a B-ladder, this is well captured by the induction of Theorem 1.

• Inserting a separating dipole, a separating ladder, or a two-edge connection in-

between a rung of a graph of genus g1, and a rail of a graph of genus g2, yields a

2PR graph of genus g1 C g2. Following this procedure, we generate a 6-point contact

vertex and a 6-point planar vertex. An example is provided in Figure 35.
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No
No

No

No

Figure 30. Insertion of a connecting No-ladder on the two edges of a rung in a 2PI g D 1 graph

(with scheme S1, as defined in Proposition 1). The resulting graph is 2PI, has genus g C 1 D 2,

and contains an 8-point contact vertex.

Ne

Ne NeNeNeNe

Figure 31. Insertion of a connecting Ne-ladder in-between two edges of a rung. Starting from a

2PI g D 1 graph with scheme S1 (as defined in Proposition 1), we obtain a 2PI graph of genus

g C 1 D 2. This graph has a planar structure, well captured by the effective matrix model of

Section 5.3.

No

No NoNoNoNo

Figure 32. Insertion of a connecting No-ladder in-between two edges of a rung. Note that, in

contrast to Figure 31, we have chosen the two edges to be cut in such a way that they separate

two No-ladders. This contribution is again included in the planar limit of the effective matrix

model of Section 5.3.
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X

No No

NeNe
X

Figure 35. Insertion of a separating dipole, a separating ladder, or a two-edge connection X , in-

between a rung and a rail. Starting from two genus one graphs with scheme S1 (Proposition 1),

we obtain a 2PR graph of genus 2. In this particular example, X must be a No-ladder or a

N-dipole.

X

NoNo

X

No No

Figure 33. Insertion of a separating dipole, a separating ladder, or a two-edge connection X ,

in-between two rungs. Starting from two genus one graphs with scheme S1 (Proposition 1), we

obtain a 2PR graph of genus 2 (in this particular example, X 2 ¹Ne; L; R; B; ;º).

X
Ne NeNe NeX

Figure 34. Insertion of a separating dipole, a separating ladder, or a two-edge connection X ,

in-between two rails. Starting from two genus one graphs with scheme S1 (Proposition 1), we

obtain a 2PR graph of genus 2 (in this particular example, X 2 ¹Ne; L; R; B; ;º).
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