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Boundary measurement

and sign variation in real projective space

John Machacek

Abstract. We define two generalizations of the totally nonnegative Grassmannian and determ-

ine their topology in the case of real projective space. We find the spaces to be PL manifolds with

boundary which are homotopy equivalent to another real projective space of smaller dimension.

One generalization makes use of sign variation while the other uses boundary measurement.

Spaces arising from boundary measurement are shown to admit Cohen–Macaulay triangula-

tions.

1. Introduction

The totally nonnegative Grassmannian is a certain subset of the real Grassmannian

introduced by Postnikov [26]. This subset of the Grassmannian has since been the

subject of much research due its rich structure and appearance in other areas includ-

ing the computation of scattering amplitudes in physics [1] through its connection

to the amplituhedron [3]. We define two generalizations of the totally nonnegative

Grassmannian, both of which build upon work related to the amplituhedron. One gen-

eralization uses a construction called “boundary measurement” which was originally

defined on a disk [26] and has since been defined for any closed orientable surface

with boundary in the scattering amplitudes literature [9, 10]. The other generalization

uses sign variation which has been previously used in studying the totally nonnegative

Grassmannian and the amplituhedron [2, 19, 20].

An important problem in total positivity is to understand the topology of the spaces

arising. Galashin, Karp, and Lam have recently settled an important conjecture in the

area by showing that the totally nonnegative Grassmannian (and more generally the

totally nonnegative part of any partial flag manifold as defined by Lusztig [21–23])

is a regular CW complex homeomorphic to a closed ball [12]. This result was con-

jectured by Postnikov [26] for the Grassmannian and by Williams for partial flag

varieties [35]. There was a large body of work producing evidence for these former
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conjectures and establishing various properties [11, 13, 27, 29, 30]. The main theorem

of [12] also shows that the link of the identity element inside the totally positive part

of the unipotent radical of an algebraic group is a regular cell complex. This result

was conjectured by Fomin and Shapiro [7] and originally proven by Hersh [17].

Spaces in total positivity have rich structure. The totally nonnegative part also

turns out to be remarkably simple topologically compared to the whole space. Our

spaces relax total positivity in a controlled way. The topology of our spaces will be

completely determined in the special case of real projective space. We will find that

we never have a closed ball, except in the case of total positivity. However, our spaces

will have desirable properties including being PL manifolds (with boundary) and in

certain cases admit Cohen–Macaulay triangulations.

This paper is structured as follows. In Section 2 we will define the two general-

izations of the totally nonnegative Grassmannian. In the remaining sections we will

restrict our attention to the special case of real projective space where we already

observe interesting phenomena. Much of our work comes from using sign variation

to define a regular CW complex in this special case. Mnëv’s universality theorem [25]

implies the matroid stratification [16] of the Grassmannian is necessarily complicated.

Due to this, we do not currently know how to define cells in general Grassmannians

compatible with sign variation. In Section 3 we analyze the CW structure along with

its closure poset and order complex. In Theorem 3.4 we show these spaces are PL

manifolds (with boundary) by making use of Björner–Wachs lexicographic shellabil-

ity [5] to obtain order complexes which are combinatorial manifolds. We determine

homotopy types in Theorem 3.6 through the use of Forman’s discrete Morse the-

ory [8]. This allows us to deduce when we have a Cohen–Macaulay order complex

in Corollary 3.7. In Section 4 we consider boundary measurement. We find in The-

orem 4.5 that our generalization in terms of boundary measurement is a special case

of the generalization in terms of sign variation. Moreover, the boundary measurement

generalized spaces are exactly the cases in which we have a Cohen–Macaulay order

complex.

2. The totally nonnegative Grassmannian generalizations

In this section we define two generalizations of the totally nonnegative Grassmannian.

As notation, for any positive integer we define Œn� WD ¹1; 2; : : : ; nº and let
�

Œn�
k

�

denote

the collection of all k-element subsets of Œn�.
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2.1. The Grassmannian and sign variation

We briefly review the Grassmannian from the point of view we will use. The (real)

Grassmannian Grk;n is the set of subspaces V � R
n such that dim V D k. Each

V 2 Grk;n can be represented by a full rank k � n matrix whose rows span the sub-

space V . Let A be an such matrix representing V 2 Grk;n, then for any I 2
�

Œn�
k

�

let

�I .V / be the maximal minor of A with columns indexed by I . Each�I .V / is called

a Plücker coordinate. The Plücker coordinates of V depend on the choice of repres-

enting matrix A, but they are well-defined up to simultaneous scaling by a nonzero

constant. Hence, the Plücker coordinates are well-defined as elements of the real pro-

jective space RP

�

n
k

�

�1
. A subspace V 2 Grk;n is called totally nonnegative if there is

a scaling such that�I .V /� 0 for all I 2
�

Œn�
k

�

and totally positive if�I .V / > 0 for all

I 2
�

Œn�
k

�

. Following Postnikov [26], we define the totally nonnegative Grassmannian

and totally positive Grassmannian to be

Gr
�0
k;n

WD ¹V 2 Grk;nWV is totally nonnegativeº

and

Gr>0
k;n WD ¹V 2 Grk;nWV is totally positiveº

respectively. This notion of positivity agrees with the Grassmannian cases of Lusztig’s

notion of positivity in partial flag varieties.

We define the sign function by

sgn.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

� if x < 0;

0 if x D 0;

C if x > 0;

for any x 2 R. We extend this function to vectors by

sgn.v/ WD .sgn.v1/; sgn.v2/; : : : ; sgn.vn//

for any v 2 R
n. We will consider sgn.v/ up to projective equivalence by identifying

sgn.v/ with sgn.�v/ for any � 2 R n ¹0º. For example, we have

sgn..�1; 2; 0; 4;�3// D .�;C; 0;C;�/ D .C;�; 0;�;C/

and in this way can always assume that the first nonzero entry of sgn.v/ is C. If v is

any vector or sign vector, then the weight of v is denoted by wt.v/ and defined to be

the number of nonzero entries in v.

Given a vector v 2 R
n, the sign variation of v is denoted by var.v/ and is the

number of times v changes sign where zeros are ignored. The sign variation of v can
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be computed from sgn.v/. We also define

var.v/ WD max¹var.w/Ww 2 R
n and wi D vi whenever vi ¤ 0º

which gives the largest possible sign variation when zeros are allows to replaced with

any real number. For example, var..1; 0; 3;�1; 2// D 2 and var..1; 0; 3;�1; 2// D 4.

We have the following description of the totally nonnegative Grassmannian

Gr
�0
k;n

D ¹V 2 Grk;nW var.v/ � k � 1 for all v 2 V º

and totally positive Grassmannian

Gr>0
k;n D ¹V 2 Grk;nW var.v/ � k � 1 for all v 2 V n ¹0ºº

in terms of sign variation [14, 31].

Definition 2.1 (bounded sign variation Grassmannian). For any k � 1 � m � n � 1,

we then define the set

Gr
var�m
k;n

WD ¹V 2 Grk;nW var.v/ � m for all v 2 V º

which we call a bounded sign variation Grassmannian.

In Definition 2.1 there is no loss of generality assuming k � 1 � m � n � 1. If

m < k � 1, then Gr
var�m
k;n

D ;. This can be seen by putting a matrix representing

V 2 Grk;n into reduced row echelon form. Taking the alternating sum of the vectors

which are the rows of the reduced row, echelon form gives an element v 2 V with

var.v/ � k � 1. Also, since var.v/ � n� 1 for any v 2 R
n, it follows that Gr

var�m
k;n

D

Grk;n wheneverm � n � 1.

We now recall a few results of Karp phrased in terms of the bounded sign variation

Grassmannian which further demonstrate the analogy between Gr
�0
k;n

and Gr
var�m
k;n

.

A subspace V 2 Grk;n is called generic if all Plücker coordinates are nonzero. The set

of generic elements of Gr
�0
k;n

is exactly Gr>0
k;n, and the totally positive Grassmannian

is dense in the totally nonnegative Grassmannian.

Theorem ([19, Theorem 1.2 (i)]). If V 2 Gr
var�m
k;n

, then for each v 2 V

var..�I[¹iº.V //i2Œn�nI / � m � k C 1

for all I 2
�

Œn�
k�1

�

.

Theorem ([19, Theorem 1.4].). Generic elements of Gr
var�m
k;n

form a dense subset.
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Figure 1. A directed network on the annulus.

2.2. Boundary measurement

Let N D .V; E/ be a directed graph with finite vertex set V and finite edge set E.

Each edge e 2 E is assigned a weight xe. We will sometimes consider xe as a formal

variable and work in RŒŒxeW e 2 E��, the ring of formal power series in the variables

¹xeºe2E with coefficients in R. All formal power series we consider will have rational

expressions. We will also consider specializations of these rational expressions where

each xe takes a positive real value. As in [26], we will use the term directed network

to refer to the directed graph N D .V;E/ along with edge weights ¹xeºe2E .

Let S be a closed orientable surface of genus zero with b > 0 boundary compon-

ents. Let NetS
k;n

denote the collection of directed networks N embedded on S such

that

i. n vertices are on the boundary of S ,

ii. k of the n boundary vertices are nonisolated sources,

iii. the remaining n � k boundary vertices are isolated or univalent sinks,

iv. each interior vertex is trivalent,

v. and each interior vertex is neither a source nor a sink.

Elements of NetS
k;n

are considered up to isotopy. Interior vertices then come in two

types. A white interior vertex has one incoming edge and two outgoing edges while

a black interior vertex has one outgoing edge and two incoming edges. An example

directed network in NetS2;4 where S is the annulus is shown in Figure 1.

We make b � 1 cuts between various boundary components so that the comple-

ment of these cuts is simply connected. Let T denote the complement of the cuts in S .
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We will refer to the pair .S; T / as a surface with chosen cuts and to T as a choice of

cuts. The following construction depends the choice of cuts. The construction will

also make use of a drawing of S in the plane. The author has previously shown the

construction is independent of how S is drawn in the plane [24, Theorem 4].

The boundary @T is homeomorphic to a circle and can be assumed to be piecewise

smooth. We will consider the boundary equipped with a piecewise smooth paramet-

erization �W Œ0; 1� ! @T with �.0/ D �.1/. We assume throughout that all paramet-

erizations are piecewise smooth and have nowhere zero derivative. Traversing @T

according to � induces an ordering the boundary vertices of any N 2 NetS
k;n

. We will

always label the boundary vertices ¹1; 2; : : : ; kº.

Given any smooth closed curveC in the plane, let T WC ! S1 give the unit tangent

vector of each point. The rotation number of C is the degree of the map T ı WS1 !

S1, where WS1 !C is a parameterization ofC . The rotation number of a continuous

curve C we will be the rotation number of a smooth curve approximating C . The

choice of which smooth curve is used as an approximation does not affect the rotation

number.

We consider S drawn in the plane by choosing a boundary component of S to be

external. The external boundary component bounds a disk in the plane. The rest of S

as well as any directed network on S can then be draw inside this disk. Consider a

network N 2 NetSk;n drawn in the plane Then overlay the cuts used to construct T .

For any path P W i  j between boundary vertices i and j we form a closed curve

C.P / in the plane as follows:

1. traverse the path P from i to j in S ;

2. follow the boundary of T in the direction specified by � from j to i .

The boundary measurement matrix is the k � nmatrix B.N;T / with entries given

by

Bij D
X

P Wi j

.�1/sij CrP C1 wt.P /

where i is a source and j is any boundary vertex. Here sij denotes the number of

sources on the boundary strictly between i and j , and rP denotes the rotation number

of C.P /.

Postnikov [26] gave the original definition of the boundary measurement matrix

in the case where the surface is a disk. The boundary measurement matrix was con-

sidered for networks on the annulus by Gekhtman, Shapiro, and Vainshtein [15] and

for networks on any closed orientable genus zero surface with boundary by Franco,

Galloni, and Mariotti [9]. Boundary measurement has also been defined by Franco,

Galloni, Penante, and Wen [10] on any closed orientable surface with boundary. Fur-

ther study of this more general boundary measurement matrix is done in [24]. Letting

N be the directed network in Figure 1 with choice of cuts T shown by the dotted line,
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we find that

B.N; T / D

�

1 x1x6x2 0 x1x5x4

0 x3x7x2 1 x3x8x4

�

is the boundary measurement matrix.

Definition 2.2 (boundary measurement Grassmannian). Given a closed orientable

surface of genus zero with boundary S and k � n, we define a boundary measurement

Grassmannian as

GrS
k;n WD ¹B.N; T /WN 2 NetSk;n and .S; T / is a surface with chosen cutsº

where we think of the full rank k � n matrix B.N; T / as an element of Grk;n.

Postnikov [26] defined boundary measurement because when S is the disk we

have GrS
k;n D Gr

�0
k;n

. Hence, the boundary measurement Grassmannian also gives a

generalization of the totally nonnegative Grassmannian. Moreover, the author has

shown the Plücker coordinates of B.N; T / for N 2 NetSk;n have a formula which

is a rational expression described in terms of nonintersecting paths [24, Corollary 9].

Such a formula when the surface is a disk was originally shown by Talaska [33].

3. Complexes inside real projective space

In this section we focus on the case where k D 1. So, we will be working inside Gr1;n

which is the real projective space RP
n�1. We will describe a regular CW structure

on RP
n�1 which is compatible with sign variation in a way that will allow use to

obtain a CW structure on Gr
var�m
1;n for any 0 � m � n � 1. We will investigate the

topology of Gr
var�m
1;n using these CW complexes along with their closure posets and

corresponding order complexes. Section 3.1 contains standard definitions and results

in combinatorial topology.

3.1. Some general combinatorial and poset topology

Here we give a quick overview of some combinatorial topology with a bias towards

what is needed for our purposes. For further references one can see the survey of

Björner [4] and the survey of Wachs [34].

An (abstract) simplicial complex � on a (finite) vertex set V is a collection of

nonempty subsets of V that is closed under inclusion. Every simplicial complex has

a geometric realization, denoted by k�k, which is a topological space. An element

F 2� is called a face, and the dimension of F 2� is dim.F /D jF j � 1. The faces of

� which are maximal with respect to inclusion are call facets. A simplicial complex
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is said to be pure if all facets have the same dimension. A simplicial complex is

shellable if there is an ordering of the facets F1;F2; : : : ;Fk such that .
Sj �1

iD1 Fi /\Fj

is pure and .dim.Fj / � 1/-dimensional for all 2 � j � k. The join of two simplicial

complexes� and � on disjoint vertex sets is the simplicial complex

� � � WD � [ � [ ¹F [GWF 2 �;G 2 �º:

The join of two simplicial complexes is shellable if and only if both of the simplicial

complexes are themselves shellable.

The link of any face F 2 � is denoted by lk�.F / and defined by

lk�.F / WD ¹GWF [G 2 �;F \G D ¿; G ¤ ¿º:

We also let lk�.¿/ D �. We call � a normal d -pseudomanifold provided

NP1. � is pure of dimension d ,

NP2. every .d � 1/-dimensional face of� is contained in at most two facets of�,

NP3. and for all F 2 � with dimF � d � 2 the link lk�.F / is connected.

The term d -pseudomanifold refers to a complex � satisfying only the conditions

(NP1) and (NP2). We may say just “normal pseudomanifold” or “pseudomanifold”

when we do not wish to specify the dimension. In our terminology, all normal pseudo-

manifolds and pseudomanifolds are allowed to have possibly nonempty boundary.

One fact we will need is that the link of a face of codimension at least 2 in a normal

pseudomanifold is a pseudomanifold. Another fact we use later is that if a pseudo-

manifold � is shellable, then k�k is either a PL-sphere or a PL-ball. A PL-sphere

or PL-ball is a simplicial complex combinatorially equivalent to a subdivision of a

simplex or boundary of a simplex respectively. More on PL topology can be found in

the book [18].

A simplicial complex � is called a combinatorial d -manifold if for every face

F 2 � we have that k lk�.F /k is a .d � dim.F / � 1/-dimensional PL sphere or

PL ball. Similar to before, we just say combinatorial manifold when specifying the

dimension is not needed. If� is a combinatorial manifold, then k�k is a PL-manifold.

Again, we by default allow for possibly nonempty boundary.

Let P be a finite poset. An element y 2 P is said to cover x 2 P if x < y and

there does not exist any z 2 P such that x < z < y. In the case y covers x we write

x É y. A sequence of elements x0 < x1 < � � � < xt is a chain of length t . For any

x; y 2 P we define the closed interval Œx; y� by

Œx; y� WD ¹z 2 P W x � z � yº

and the open interval .x; y/ by

.x; y/ WD ¹z 2 P W x < z < yº:
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The length of P is the maximum of the lengths of all chains in P . We call a poset

pure if all chains which are maximal by inclusion have the same length.

The order complex of P is denoted by�.P / and is the simplicial complex whose

vertices of the elements of P and whose k-dimensional faces are chains x0 < x1 <

� � �< xk . In the case P has a unique minimal or a unique maximal element, we denote

it by O0 or O1 respectively. Elements which cover O0 are called atoms, and elements

covered by O1 are called coatoms. If P has O0 and every interval ŒO0; x� for x 2 P is

isomorphic to a Boolean lattice, we say that P is a simplicial poset. The join of two

posets P and Q is the poset P � Q whose underlying set in the disjoint union of

P and Q and whose order relation includes all relations from P and Q along with

declaring x < y for all x 2 P and y 2Q. It follows that�.P �Q/D�.P / ��.Q/.

Let P be a bounded poset which means P has O0 and O1. We say P admits a

recursive coatom ordering [5] if the length of P is 1, or else if P has an ordering

c1; c2; : : : ; ct of the coatoms of P satisfying

RCO1. for all 1 � j � t the interval ŒO0; cj � admits a recursive coatom ordering in

which coatoms of ŒO0; cj � which belong to ŒO0; ci � for some i < j come first;

RCO2. for all 1 � i < j � t if x < ci ; cj , then there exist k < j and a coatom d of

ŒO0; cj � such that x � d < ck .

If P admits a recursive coatom ordering, then �.P / is shellable. In the case �.P / is

shellable for a poset P we will say that P is shellable.

We let xP denote the proper part of P which is obtained by removing O0 and O1 if

they are present. A bounded poset P is shellable if and only if xP is shellable. If a

poset is shellable, then every open or closed interval is also shellable.

For a CW complexX , we let F .X/ denote the closure poset of X which consists

of the closure of cells ordered by inclusion. For a regular CW complex X , it is the

case that X is homeomorphic to �.F .X//. In fact, �.F .X// will be the barycentric

subdivision of X .

3.2. The CW structure

We nowith respect torn to our study of Gr
var�m
1;n and will define a regular CW decom-

position of Gr
var�m
1;n . Given a sign vector ! 2 ¹�; 0;Cºn n ¹0ºn, the set

U! WD ¹v 2 RP
n�1W sgn.v/ D !º

is homeomorphic to an open ball. The closure of this open ball is the closed ball which

is a .wt.!/� 1/-simplex consisting of all U!0 where !0 is obtain from ! by replacing

some of its nonzero entries by zero. The sets U! give a decomposition which makes

RP
n�1 into a regular CW complex. The subcomplex given ¹U! W var.!/ �mº defines
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.C;C;C/ .C;C;�/ .C;�;C/ .C;�;�/

.C;C; 0/ .C; 0;C/ .0;C;C/ .C;�; 0/ .C; 0;�/ .0;C;�/

.C; 0; 0/ .0;C; 0/ .0; 0;C/

Figure 2. The Hasse diagram of the poset P3;2.

a regular CW structure on Gr
var�m
1;n . We will let Pn;m denote the closure poset of this

regular CW complex we have just defined on Gr
var�m
1;n . The Hasse diagram of the poset

P3;2 is shown in Figure 2. We then let �n;m denote �.Pn;m/. An element of Pn;m is

a cell U! which we will typically just identify with the sign vector !. We have the

following lemma.

Lemma 3.1. For any 0 � m � n� 1, the poset Pn;m [ ¹O0º is a pure simplicial poset.

Proof. Each maximal chain in Pn;m [ ¹O0º will have length n since each such chain

will be of the form
O0É !1 É � � �É !n

where wt.!i / D i for 1 � i � n. Thus, Pn;m [ ¹O0º is pure. Furthermore, we see that

for any nonzero sign vector! and interval ŒO0;!� is a Boolean lattice of rank wt.!/.

3.3. Combinatorial and PL manifolds

In this section we will show that the simplicial complex �n;m is a combinatorial

.n � 1/-manifold and hence Gr
var�m
1;n is a PL manifold.

Lemma 3.2. For any 0 � m � n � 1 and F 2 �n;m the link lk�n;m
.F / is shellable.

Proof. For any x;y 2 Pn;m [ ¹O0º, we find by Lemma 3.1 that the open interval .x;y/

is isomorphic to a Boolean lattice with top and bottom elements removed. It follows

that �..x; y// is shellable. By considering joins, we may then reduce to the case for

an upset ¹yWx < yº �Pn;m for some x 2Pn;m. Moreover, by using that open intervals

of shellable posets are shellable, we may look at such an upset where x D sgn.ei / for

some 1 � i � n, where ei is the i th standard basis vector. We will consider

Qi D ¹yW sgn.ei / � yº � Pn;m [ ¹O1º
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which is a bounded poset with bottom element sgn.ei / and top element O1. So, we may

give recursive coatom ordering forQi and conclude that xQi is shellable. Showing this

will prove the lemma.

Let the coatoms of Qi be c1; c2; : : : ; ct . We will later explain the ordering of the

coatoms, but first notice that each interval Œsgn.ei /; cj � for 1 � j � t is a Boolean

lattice. Any coatom ordering in a Boolean lattice is a recursive coatom ordering, and

it follows that (RCO1) holds no matter what coatom ordering we choose in Qi .

Recalling thatQi includes O1, the coatoms are sign vectors ! such that wt.!/ D n

and var.!/ � m. We have a bijection �i between sign vectors ! such that wt.!/Dn

with var.!/ D ` and ` element subsets of Œn� n ¹iº which we will now describe. Con-

sider such a sign vector !. For j < i , we have j 2 �i .!/ if and only if !j and !j C1

differ in sign. For j > i , we have j 2 �i .!/ if and only if !j and !j �1 differ in

sign. So, �i records all sign changes with the convention that whenever two adjacent

entries differ in sign the entry furthest from i is recorded. Now, coatoms of Qi are in

bijective correspondence with subsets of Œn� n ¹iº of cardinality at mostm.

We define an order <i on Œn� n ¹iº by i C a <i i C b if jaj > jbj or if jaj D jbj

and a > 0 > b. So, the smallest elements in this order are the elements furthest from i .

The order <i is then extended to all subsets of Œn� n ¹iº in a graded lexicographical

fashion. That is, given A; B � Œn� n ¹iº, we have A <i B if and only if jAj < jBj

or jAj D jBj while A is lexicographically less than B with respect to <i . We claim

that <i gives a recursive coatom ordering in Qi . So, the coatoms of Qi are ordered

c1; c2; : : : ; ct where j1 < j2 if and only if �i .cj1
/ <i �i .cj2

/.

We must verify (RCO2). Take 1 � j1 < j2 � t and x < cj1
; cj2

. Let x D .x1;

x2; : : : ; xn/ and set F D ¹aW xa D 0º which records the positions that the sign vector

x is 0. Notice that changing values of a sign vector in positions from the set F does

not change whether or not a sign vector is above x. If F \ �i .cj2
/D¿, then it follows

that cj2
is smallest coatom in our coatom ordering which is above x. Indeed, in the

case F \ �i .cj2
/ D ¿ we can obtain cj2

from x as follows. Start at entry xi which is

nonzero since sgn.ei / � x. Then move away from i (in either direction). Whenever

an entry which is zero is encountered, it is to be filled with whatever is present in the

entry directly before it. This means the number of sign flips is as small as possible.

Also, any sign flips are as far from i as possible. Hence, �i .cj2
/ is least among all

coatoms above x. However, this contradicts x < cj1
; cj2

with j1 < j2. So, it must be

that F \ �i .cj2
/ ¤ ¿. Take b 2 F \ �i .cj2

/ and let ck be the coatom obtained by

negating position b in cj2
. Furthermore, let d be the sign vector obtained by making

position b equal to 0 in cj2
. If b < i , then �i .ck/ � .�i .cj2

/ n ¹bº/ [ ¹b � 1º. If

b > i , then �i .ck/ � .�i .cj2
/ n ¹bº/[ ¹b C 1º. In any case, �i .ck/ <i �i .cj2

/ and so

k < j2. Also, d is a coatom in Œei ; cj2
� and x � d < ck . Therefore, (RCO2) holds and

the lemma is proven.
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Lemma 3.3. For any 0�m�n� 1, the simplicial complex�n;m is a normal .n� 1/-

pseudomanifold.

Proof. Any maximal chain in Pn;m will have length n� 1. So,�n;m is a pure .n� 1/-

dimensional simplicial complex and (NP1) is verified.

Any .n � 2/-dimensional face in �n;m corresponds to a chain of length n � 2 in

Pn;m. Such a chain of length n � 2 will be missing an element of a single weight r

for some 1 � r � n. If 1 � r < n, then there are exactly two ways to complete C

to a maximal chain since by Lemma 3.1 the poset Pn;m [ ¹O0º is a simplicial poset.

When r D n, we find there are at most two ways to complete C to a maximal chain

by considering the sign vector of weight n � 1 in C which is covered by at most two

elements. Hence, (NP2) is verified.

To verify (NP3), we may appeal to Lemma 3.2 to conclude the necessary links are

connected since they are pure shellable complexes of dimension at least 1. Thus, the

proof of the lemma is complete.

Theorem 3.4. For any 0�m� n� 1 the simplicial complex�n;m is a combinatorial

.n � 1/-manifold. Thus, Gr
var�m
1;n is a PL manifold.

Proof. If F 2 �n;m with dim.F / D n � 2, then k lk�n;m
.F /k is either a single point

or two discrete points. This means we have either a 0-dimensional PL ball or PL

sphere. If F 2 �n;m with dim.F / < n � 2, then lk�n;m
.F / is a pseudomanifold by

Lemma 3.3. Also, lk�n;m
.F / is shellable by Lemma 3.2. It follows that k lk�n;m

.F /k

is a PL ball or PL sphere of the appropriate dimension. Therefore, �n;m is a combin-

atorial .n � 1/-manifold and its geometric realization Gr
var�m
1;n is a PL manifold.

3.4. Homotopy type

In this section we will show that Gr
var�m
1;n is homotopy equivalent to RP

m. Our main

tool to do this is Forman’s discrete Morse theory [8]. We will make use of Chari’s

approach to discrete Morse theory using matchings in the Hasse diagram of the clos-

ure poset of a regular CW complex [6]. So, we assume throughout that all CW

complexes are regular. For any poset P we consider its Hasse diagram as a directed

graph with directed edge b ! a for each cover relation a É b. An acyclic (perfect)

matching is a (perfect) matching of the Hasse diagram such that the directed graph

obtain by reversing the orientation of each edge in the matching is a directed acyclic

graph.

In a CW complex we use � .d/ to denote a d -dimensional cell. Let f be a function

which assigns a real number to each cell in a CW complex. The function f is a
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discrete Morse function provided both

j¹� .d�1/ � � .d/W f .� .d�1// � f .� .d//ºj � 1;

j¹� .d/ � � .dC1/W f .� .dC1// � f .� .d//ºj � 1

for every d -cell � .d/. When both these cardinalities are zero, the d -cell � .d/ is called

a critical cell. At most one of these cardinalities can be nonzero for a given cell, and

hence a discrete Morse function defines a (partial) matching of the cells. Moreover,

any matching which is an acyclic matching in the closure poset arises from some

discrete Morse function. More generally, whenever one has an acyclic matching in

a poset there exists a function which is decreasing along the matching edges and

increasing along the rest of the poset. To see this one may reverse the matching edges

to obtain a directed acyclic graph. Then treating this directed acyclic graph as a poset

consider a linear extension. The desired function can be gotten by assigning to each

element of the original poset its position in this chosen linear extension.

Given a CW complexX and discrete Morse function f , For any c 2 R we set

X.c/ D
[

�2X
f .�/�c

[

���

�:

If a < b are real numbers such that Œa; b� contains no critical values of f , then one

has X.b/ & X.a/ [8, Theorem 3.3]. Here, & denotes collapsing which gives what is

known as a simple homotopy equivalence.

Lemma 3.5. For any 0 � m < n � 1 there exists an acyclic perfect matching of

¹x 2 Pn;mW sgn.e1/ � xº.

Proof. Let Q D ¹x 2 Pn;mW sgn.e1/ � xº. We will define �WQ ! Q. Take any ! D

.!1; !2; : : : ; !n/ 2 Q and let j D max¹i W var..!1; !2; : : : ; !i // D i � 1º. Thus, the

quantity j gives the length of the maximal prefix of the form .C;�;C;�; : : : /. Since

! 2 Q, and m < n � 1, it must be that j < n. We define �.!/ D .!0
1; !

0
2; : : : ; !

0
n/

where !0
i D !i for i ¤ j C 1 and

!0
j C1 D

´

!j !j C1 D 0;

0 !j C1 ¤ 0:

We see that var.!/ D var.�.!// and �.�.!// D !. Also, either ! É �.!/ or

�.!/ É !. It follows that ¹¹!; �.!/ºW ! 2 Qº is a perfect matching of the Hasse

diagram of Q. An example of the matching produced in the case n D 3 andm D 1 is

shown in Figure 3. It remains to check it is acyclic.

Consider walks in the Hasse diagram with orientations on perfect matching edges

reversed. That is, walks which go up in the partial order on matching edges and go
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.C;C;C/ .C;C;�/ .C;�;�/

.C;C; 0/ .C; 0;C/ .C;�; 0/ .C; 0;�/

.C; 0; 0/

Figure 3. An acyclic perfect matching.

down on edges not in the matching. Take some ! D .!1; !2; : : : ; !n/ 2 Q and again

let j D max¹i W var..!1;!2; : : : ;!i //D i � 1º. This quantity j measures the maximal

prefix of the form .C;�;C;�; : : : /, and the length of this prefix cannot become any

longer moving along directed paths. Let � D .�1; �2; : : : ; �n/ be obtained from taking a

down step from !. This means that there exists k ¤ j C 1 such that �i D !i for i ¤ k

and �k D 0while !k ¤ 0. If k � j , then k � 1D max¹i Wvar..�1; �2; : : : ; �i //D i � 1º.

In this case, we can never return to ! along a directed path since the length of our

maximal prefix of the form .C;�;C;�; : : : / has gotten strictly smaller. If k > j C 1,

then �k D 0 while !k ¤ 0, but the kth entry will remain zero along any directed path.

Therefore, we have an acyclic perfect matching of Q.

Theorem 3.6. For any 0 � m � n � 1 the space Gr
var�m
1;n & RP

m.

Proof. We can identify Gr
var�m
1;n�1 with ¹Œx1; x2; : : : ; xn� 2 Gr

var�m
1;n W x1 D 0º. We will

show that Gr
var�m
1;n & Gr

var�m
1;n�1, and the theorem will follow by iteration. LetQD ¹x 2

Pn;mW sgn.e1/� xº. By Lemma 3.5, it follows we can find an acyclic perfect matching

of Q. We can then find a function gWQ ! R decreasing along the matching edges

and increasing along the rest of Q. Next define f WPn;m ! R such that

f .!/ D

´

g.!/C C ! 2 Q;

wt.!/ � 1 ! 62 Q;

where C 2 R is such that g.!/ C C > n for all ! 2 Q. We see that f is a dis-

crete Morse function for X D Gr
var�m
1;n . Furthermore, X.n/ D Gr

var�m
1;n�1 and there are

no critical values in Œn;1/. Therefore, Gr
var�m
1;n & Gr

var�m
1;n�1. Iterating, we find that

Gr
var�m
1;n & Gr

var�m
1;mC1 and Gr

var�m
1;mC1 D Gr1;mC1 D RP

m.
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Since the homology of real projective space is known, an immediate consequence

of the above theorem is that

Hi.Gr
var�m
1;n ;k/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

k if i D 0;

k if i D m and m is odd,

0 otherwise,

(1)

for any field k such that char.k/ ¤ 2.

3.5. Cohen–Macaulayness

In this section we will investigate the Cohen–Macaulayness of the simplicial com-

plexes �n;m. For a reference on Cohen–Macaulay simplicial complexes, we recom-

mend [32]. Let k be a field. The simplicial complex � is Cohen–Macaulay over k if

for all F 2 � [ ¹¿º
zHi.lk�.F /;k/ D 0

for 0 � i � dim lk�.F / � 1. We will abbreviate Cohen–Macaulay over k by k-CM.

A complex being k-CM depends only on the field k and the geometric realization (not

on the particular triangulation). Thus,� is k-CM for any k whenever k�k is a ball or

sphere. So, being k-CM can be thought of as a generalization of being a ball or sphere.

Also, a complex being k-CM is equivalent to the corresponding Stanley–Reinser face

ring being Cohen–Macaulay. Our definition of k-CM is sometimes referred to as Reis-

ner’s criterion [28].

Corollary 3.7. Let k be a field with char.k/ ¤ 2 and 0 � m � n � 1. The simplicial

complex�n;m is k-CM if and only if m is even or m D n � 1.

Proof. By Theorem 3.4, we know that k lk�n;m
.F /k is a sphere or ball for all F 2

�n;m. Hence, the condition of homology to be k-CM is satisfied for all F 2 �n;m.

By Theorem 3.6 and its consequence equation (1), we find that zHi.�n;m;k/ D 0 for

all 0 � i � n � 2 if and only if m is even or m D n � 1.

4. Networks with one source

We now turn our attention to networks with a single source. We will show that bound-

ary measurement Grassmannians for networks with a single source are bounded sign

variation Grassmannians. Here, the boundary measurement matrix B.N;T / will have

a single row. Hence, we can identify B.N;T / with a vector in R
n or with an element

of RP
n�1.
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Lemma 4.1. If .S; T / is a surface with chosen cuts and N 2 NetS1;n, then for some

n0 there exists a directed network zN 2 NetS1;n0 such that

var.B.N; T // D var.B. zN; T //

and zN has no interior vertices.

Proof. We may assume N has at least one interior vertex, otherwise we may take
zN D N . It suffices to produce a directed networkN 0 such that var.N /D var.N 0/ and

N 0 has one fewer interior vertex than N as the lemma will then follow by induction.

Let k be the unique source of N . We will consider cases depending on how edges

incident on k are connected to the rest of N . Figure 4 shows locally the reductions

from N to N 0 in each case.

First, we consider the case e D .k; u/ is an edge in N where u is a white vertex.

Let f D .u; v/ and g D .u; w/ be the other two edges incident on u. To construct

N 0, we remove the vertex u as well as the edges e; f , and g. We then add the edge

f 0 D .k;v/with weight xf 0 D xexf and the edge g0 D .k;w/with weight xg 0 D xexg .

In this case, B.N; T / D B.N 0; T /. So, var.B.N; T // D var.B.N 0; T //.

Next, we consider the case when e D .k; u/ and f D .k; u/ are edges in N ter-

minating at a black vertex u. Let g D .u; v/ be the other edge incident on u. We

constructN 0 by first removing the vertex u along with the edges e; f , and g. We then

add the edge e0 D .k; v/ and with weight xe0 D .xe C xf /xg . In this case, we also

find B.N; T / D B.N 0; T 0/. So, var.B.N; T // D var.B.N 0; T 0// again.

Lastly, we consider the case where e D .k; u/ is an edge in N incident on a black

vertex uwhile f D .v;u/ and gD .u;w/ are the other edges incident on uwith v¤ k.

In this case, we constructN 0 by removing u as well as the edges e; f , and g. We then

add a new sink k0 to the boundary of S near k as shown in Figure 4. We also add edges

e0 D .k;w/ and f 0 D .v;k0/with weights xe0 D xexg and xf 0 D xf =xe . IfN 2 NetS1;n,

thenN 0 2 NetS1;nC1. Let I and I 0 D I [ ¹k0º be the set of boundary vertices ofN and

N 0 respectively. We let B.N;T /D Œbi W i 2 I � andB.N 0; T /D Œci W i 2 zI �. Since k is a

source bk D ck D 1 > 0. There are no sources ofN 0 strictly between k and k0. Also k

and k0 are on the same boundary component, and it follows that ck0 � 0. For any i 2 I ,

we can enumerate paths k i by considering how many times the path traverses the

edge f . Notice that when a path traverses the edge f it arrives at the vertex u, and

the path must leave the vertex u on the edge g. Hence, for all i 2 I n ¹kº,

bi D ci � cick0 C cic
2
k0 � � � � D

ci

1C ck0

;

where the negative signs come from the rotation number increasing for a path which

includes a cycle through u in N which is not present in N 0. In particular, we find that
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xe

xf

xg

k

xexf

xexg

k

xe

xf

xg
k

.xe C xf /xg

k

xe

xf

xg

k

xf =xe

xexg

k

k0

Figure 4. Reductions used in the proof of Lemma 4.1.

sgn.bi/ D sgn.ci /. So, we can conclude that var.B.N; T // D var.B.N 0; T // because

bi and ci have the same sign for each i 2 I .

Given any surface with chosen cuts .S; T /, we have an abstract graph G.S;T /

whose vertices are the boundary components of S and whose edges consist of pairs

of boundary components connected by a cut.

Lemma 4.2. If .S; T / is a surface with chosen cuts, then G.S;T / is a tree.
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Proof. By definition, T must be simply connected. If G.S;T / is not connected, then

there would exist loops in T which cannot be contracted. If G.S;T / contains a cycle,

then T would not be connected. Therefore, G.S;T / must be a tree.

Lemma 4.3. If .S;T / is a surface with chosen cuts with b > 0 boundary components,

then

var.B.N; T // � min¹2.b � 1/; n� 1º

for any N 2 NetS1;n and choice of positive real weights.

Proof. We need only show that var.B.N;T //� 2.b � 1/ since var.B.N;T //� n� 1

for N 2 NetS1;n on any surface. Furthermore, by Lemma 4.1, it suffices to consider

networks with no interior vertices. TakeN 2 NetS1;n with no interior vertices and let k

be the unique boundary source ofN . In particular, the networkN will have no cycles.

Then B.N; T / D ŒBi W i 2 I �, where

Bi D
X

P Wk i

.�1/ski CrP C1 wt.P / D
X

P Wk i

.�1/rP C1 wt.P /;

since ski D 0 for all i 2 I . Thus, signs arising inB.N;T / come only from the rotation

number. Since N is acyclic, the rotation number rP can only be changed by a path

P W k i crossing cuts used to connected i and k along the boundary of T .

Assume we have boundary sinks x < y < z such that x, y, and z are all on the

same component of the boundary. If x, y, and z are on the same boundary component

as k, then Bx; By ; Bz � 0. So, we will assume that k is on a different boundary com-

ponent. We claim we can compute Bx , By , and Bz with a network on the annulus.

Let C be the boundary component containing k and C 0 be the boundary component

containing x, y, and z. First, delete all vertices except for k, x, y, and z. Next, we

contract all boundary components except C and C 0 to a point. By Lemma 4.2, G.S;T /

is a tree. We then keep only the cuts corresponding to edges along the unique path

between C and C 0 in G.S;T /. It then follows that Bx , By , and Bz can be computed on

the new network we have just formed on the annulus. Any cut not along the unique

path between C and C 0 in G.S;T / will be traversed either zero or two times when clos-

ing paths, and hence these cuts will not contribute the parity of the rotation number.

We continue working with the network we have formed on the annulus. Further,

assume that BxBz > 0. It follows that BxBy � 0 and ByBz � 0. In Figure 5, we see

an example of this situation depicted on both the annulus and the universal cover of

the annulus. It then follows that var.ŒBxW x 2 C�/ � 1.

We can now prove the lemma by induction on the number of boundary com-

ponents b. When b D 0, we know that var.B.N; T // D 0 and the lemma holds. If

b > 0, then S can be obtained by adding a boundary component C to some S 0 with

b � 1 boundary components. By Lemma 4.2, a boundary componentC which touches
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k

x y z

k

x y z

k

x y z

z

y

x

k

Figure 5. A situation illustrating part of the proof of Lemma 4.3.

exactly one cut will necessarily exist, and we choose such a C . We then have a net-

work N 0 on S 0 with choice of cuts T 0 obtained by deleting all vertices, edges, and

unique cut which intersects with C . By induction, var.B.N 0; T 0// � 2.b � 2/. Also,

B.N;T / can be obtained by takingB.N 0; T 0/ then inserting the entire vector ŒBx Wx 2

C� somewhere. That is, because C was a leaf in G.S;T / the entries Bx for x 2 C will

be a continuous segment in the vectorB.N;T /. Thus, var.B.N;T //� 2.b � 2/C 2D

2.b � 1/ as desired since var.B.N 0; T 0// � 2.b � 2/ and var.ŒBj W j 2 C 0�/ � 1.

Lemma 4.4. If S is a closed orientable surface with b > 0 boundary components and

v 2 RP
n�1 with var.v/ � min¹2.b � 1/; n� 1º, then

B.N; T / D v

for some N 2 NetS1;n and choice of cuts T .

Proof. We will make the choice of cuts where each boundary component is connec-

ted to the external boundary component by a cut. So, GS;T will be the star graph
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1
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3

4

5

6

7

8

Figure 6. A situation illustrating the construction in the proof of Lemma 4.3.

with a single vertex of degree b � 1 while the remaining vertices are leaves. Further-

more, we parameterize the boundary of T so that we start on the external boundary

component. Without loss of generality, we take a representative of v 2 RP
n�1 with

var.v/ � min¹2.b � 1/; n� 1º where the first nonzero entry is 1. We can then realize

v as B.N; T /, where the first nonzero entry corresponds to the source of N . Each

positive entry of v will correspond to a vertex on the external boundary component

while each negative entry of v corresponds to a sink on another boundary compon-

ent. Hence, when ignoring zeros we have each run of negative entries on a different

boundary component. By the assumption that var.v/ � 2.b � 1/, it follows that such

a construction can be made. Figure 6 shows how a network constructed as described

would look for b D 3 and sgn.v/ D .0;C;C; 0;�;C;�;�/.

Combining Lemma 4.3 and Lemma 4.4, we obtain the following theorem.

Theorem 4.5. If S is a closed orientable surface of genus zero with b > 0 boundary

components, then

GrS
1;n D Gr

var�min¹2.b�1/;n�1º
1;n :

Theorem 4.5 says that Gr
var�m
1;n is a boundary measurement Grassmannian for

some S if and only if m is even or m D n � 1. Thus, from Corollary 3.7 we see

that GrS
1;n is k-CM for any k not of characteristic 2.
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