
Ann. Inst. H. Poincaré D

Comb. Phys. Interact. 9 (2022), 567–604

DOI 10.4171/AIHPD/127

© 2022 Association Publications de l’Institut Henri Poincaré

Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the moments of the moments

of the characteristic polynomials

of Haar distributed symplectic and orthogonal matrices

Theodoros Assiotis, Emma C. Bailey, and Jonathan P. Keating

Abstract. We establish formulae for the moments of the moments of the characteristic poly-

nomials of random orthogonal and symplectic matrices in terms of certain lattice point count

problems. This allows us to establish asymptotic formulae when the matrix-size tends to infinity

in terms of the volumes of certain regions involving continuous Gelfand–Tsetlin patterns with

constraints. The results we find differ from those in the unitary case considered previously.

1. Introduction

1.1. Context

Let

PG.N /.� I g/ D det.I � ge�i� /

denote the characteristic polynomial on the unit circle (where i WD
p

�1) of a mat-

rix g 2 G.N /, for G.N / 2 ¹Sp.2N /; SO.2N /º. Here, Sp.2N / denotes the group

of 2N � 2N symplectic unitary matrices, and SO.2N / denotes the group of 2N �
2N orthogonal matrices and with determinant C1. We note that the eigenvalues of

matrices from Sp.2N / and SO.2N / lie on the unit circle and come in complex con-

jugate pairs, namely they are of the form ei�1 ; e�i�1 ; ei�2 ; e�i�2 ; : : : ; e�i�N ; ei�N . In

particular, we have that

PG.N /.� I g/ D PG.N /.�� I g/: (1)

Endowing the groups Sp.2N / and SO.2N / with the normalized Haar measure, we

denote by Eg2G.N / the mathematical expectation with respect to the corresponding
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measure on G.N /. We are interested in the following quantities, which we call the

moments of the moments of the characteristic polynomial:

MoMG.N /.k; ˇ/ D Eg2G.N /

h� 1

2�

2�Z

0

jPG.N /.� I g/j2ˇd�
�ki

: (2)

Our focus will be on the asymptotics of MoMG.N / .k; ˇ/ in the limit as N ! 1 when

k and ˇ are fixed integers.

When G.N / is the unitary group U.N /, there has recently been a good deal of

interest in the moments of the moments. General conjectures were made concerning

the large-N asymptotics in this case by Fyodorov, Hiary, and Keating in [12] and, in

more detail, by Fyodorov and Keating in [14]. These conjectures were explored in

numerical computations and further generalized in [13]. One reason for studying the

moments of the moments is that the conjectured asymptotics can be used to motivate

conjectures for the extreme value statistics of the characteristic polynomials [12, 14].

In the case of the unitary group, the conjectured asymptotics for MoMG.N / .k; ˇ/

was proved when k D 2 by Claeys and Krasovsky using a Riemann–Hilbert ana-

lysis [9], and for all non-negative integer values of k and ˇ by Bailey and Keating [5]

using an approach based on exact formulae for finite N . An alternative approach when

k and ˇ are non-negative integers was developed by Assiotis and Keating [3], using a

connection with representation theory and constrained Gelfand–Tsetlin patterns and

thus establishing a connection with combinatorics. This yields the same results as

found in [5], but leads to an alternative explicit formula for the coefficient appearing

in the leading-order contribution to the asymptotics in terms of the volume of the asso-

ciated Gelfand–Tsetlin polytopes; i.e., it provides a geometrical interpretation for this

constant. Recently, Fahs has extended the approach developed in [9] to give a proof of

the asymptotic formula for MoMG.N /.k; ˇ/ for non-negative integer values of k and

general non-negative real ˇ, but without an explicit expression for the coefficient of

the leading order term. There is considerable interest in removing the assumption that

k is a non-negative integer though this is likely to require new ideas. Finally, there

has also been a good deal of progress in proving the associated conjectures for the

extreme value statistics of the characteristic polynomials; see, for example, [1, 8, 22].

Our purpose here is to extend the approach developed in [3] to give formulae for

MoMG.N / .k; ˇ/, when k and ˇ are non-negative integers and when G.N / is either

of the groups Sp.2N / and SO.2N /, in terms of the associated constrained Gelfand–

Tsetlin patterns (which are different to those that appear in the unitary case). We then

establish asymptotic formulae in which the volumes of the related Gelfand–Tsetlin

polytopes appear. Importantly, we find that the leading order asymptotic dependence

on N depends on the group in question.
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We now have a well-developed understanding of how to use results for random

matrices to make conjectures about the corresponding questions in number theory. For

example, formulae for the moments of the moments of the characteristic polynomials

of random unitary matrices, and for the extreme value statistics of the characteristic

polynomials, can be used to motivate conjectures for the moments of the moments

and for the extreme value statistics of the Riemann zeta-function on short intervals of

its critical line [12,14]. There has recently been progress in proving these conjectures;

see, for example, [2, 16, 17, 20]. Our results here provide a similar basis for conjec-

turing formulae for the moments of the moments of L-functions from orthogonal

and symplectic families, for example L-functions associated with quadratic twists of

elliptic curves and quadratic Dirichlet L-functions, where the two averages are, first,

over a short section of the critical line (e.g., a section of length 2�) centered on the

symmetry point of the functional equation, and, second, over members of the family

(i.e., in the two examples given, over twists). This application will be explored further

in a subsequent paper.

It would be interesting to extend the approach developed in [9, 11] to the ortho-

gonal and symplectic groups. This would require uniform asymptotics for determ-

inants of the form Toeplitz + Hankel as the singularities merge; as far as we are

aware this theory remains to be developed. It would also be interesting to explore

the implications of our results for orthogonal and symplectic analogues of Gaussian

Multiplicative Chaos, along the lines of the corresponding theory in the unitary case

(see, for example, [21, 25]).

1.2. Main results

Theorem 1.1. Let G.N / D Sp.2N /. Let k;ˇ 2 N. Then, MoMSp.2N / .k; ˇ/ is a poly-

nomial function in N . Moreover,

MoMSp.2N / .k; ˇ/ D cSp.k; ˇ/N kˇ.2kˇC1/�k C O.N kˇ.2kˇC1/�k�1/; (3)

where the leading order term coefficient cSp.k; ˇ/ is the volume of a convex region

defined in Section 4.2 and is strictly positive.

Theorem 1.2. Let G.N / D SO.2N /. Let k; ˇ 2 N. Then, MoMSO.2N /.k; ˇ/ is a

polynomial function in N . Moreover,

MoMSO.2N /.1; 1/ D 2.N C 1/ (4)

otherwise,

MoMSO.2N /.k; ˇ/ D cSO.k; ˇ/N kˇ.2kˇ�1/�k C O.N kˇ.2kˇ�1/�k�1/; (5)
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where the leading order term coefficient cSO.k; ˇ/ is given as a sum of volumes of

convex regions described in Section 5.2 and is strictly positive.

We remark that in the case of the unitary group, the power of N appearing in the

corresponding asymptotic formula is k2ˇ2 � k C 1.

1.3. Strategy of proof

In order to prove our main results we combine the approaches that were developed

in [3,5] (see also [18]) for treating the simpler case of the unitary group. We first adapt

an argument presented in [5] to prove that MoMG.N /.k; ˇ/ is a polynomial in N .

Then, in order to obtain the leading order term and an expression for its coefficient,

we develop the combinatorial approach of [3] to this setting.

The outline of the proof is as follows. We first obtain an expression for

MoMG.N /.k; ˇ/ in terms of certain combinatorial objects, namely Gelfand–Tsetlin

patterns, satisfying some (quite involved) constraints. We do this by making use of

formulae due to Bump and Gamburd [7] that express averages of products of charac-

teristic polynomials over the classical compact groups in terms of certain associated

characters. The next step can be seen as taking a discrete to continuous limit, which

gives the leading order coefficient as the volume of an explicit polytope, see Sec-

tions 2.3, 4.2, and 5.2 for more precise statements.

There are certain important, not entirely technical, differences to the unitary group

setting. In particular, the combinatorial objects we work with, namely the symplectic

and orthogonal Gelfand–Tsetlin patterns, are more complicated than their unitary

counterparts. For example, in order to apply the results required for the discrete to

continuous limit in the orthogonal case, we first need to perform a decomposition of

the corresponding patterns. The most significant difference however is the complexity

of the constraints involved in the orthogonal and symplectic settings. For the case of

the unitary group, the constraints only depend on a single level of the pattern, whereas

for the cases considered in this paper they involve several levels.

This complication has the following consequences. Firstly, from the discrete to

continuous limit argument it is not immediately clear that the leading order coeffi-

cient is actually strictly positive (which is straightforward in the unitary case). We

manage to overcome this problem by a careful analysis of the different types of con-

straints. This is one of the more challenging parts of the paper, and the argument is

supplemented by a number of diagrams. Secondly, the intricacies of the constraints

prevents us, at least at present, from obtaining a more explicit expression for the lead-

ing order coefficient as was done in [3] (such an expression has been used to connect

this coefficient to Painlevé equations for k D 2, see [6, 18]). However we do not

believe that this is an intrinsic limitation of our approach, since, as we show in Sec-
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tion 4.3 for example, whenever such a leading order coefficient in an allied problem

has been computed explicitly by different methods, it can fact also be reproduced by

calculating volumes of Gelfand–Tsetlin polytopes.

2. Preliminaries

2.1. Symplectic and orthogonal Gelfand–Tsetlin patterns and Schur

polynomials

We will now give some background on symplectic and orthogonal Schur polynomi-

als (which are in fact Laurent polynomials). These can be defined as the characters

of irreducible representations of the corresponding classical compact groups. From

this perspective, making use of the Weyl character formula, one obtains well-known

explicit expressions in terms of ratios of determinants (which we also record below).

For our purposes however, we shall need some equivalent (see [23]) combinatorial

definitions in terms of sums over objects called Gelfand–Tsetlin patterns. We mainly

follow the recent exposition in [4, Section 2].

Definition 2.1 (signature). A signature � of length M is a sequence of M non-

increasing integers .�1 � �2 � � � � � �M /. We denote the set of all such signatures

by SM . We also denote the set of the signatures with non-negative entries by SC
M . For

� D .�1; : : : ;�M / 2 SC
M we define �� WD .�1; : : : ;�M �1;��M /. If �1 D � � � D �M D n

then we also write � D hnM i.

Definition 2.2 (interlacing). We say that signatures � 2 SM and � 2 SM C1 interlace,

and write � � �, if

�1 � �1 � �2 � � � � � �M � �M � �M C1: (6)

Similarly, we say that � 2 SM and � 2 SM interlace, and still write � � � if

�1 � �1 � �2 � � � � � �M � �M : (7)

We now define the notion of a half pattern, see Figure 1 for an example. Sym-

plectic and orthogonal Gelfand–Tsetlin patterns will be half patterns with additional

properties.

Definition 2.3 (half patterns). Let n be a positive integer. A half (Gelfand–Tsetlin)

pattern of length n is given by a sequence of interlacing signatures .�.i//n
iD1 such that

�.2i�1/; �.2i/ 2 Si and the interlacing is as follows:

�.1/ � �.2/ � � � � � �.n�1/ � �.n/:

We call the first entries on the odd rows, namely �
.2i�1/
i , the odd starters.
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�.1/
1

�.2/
1

�.3/
2

�.3/
1

�.4/
2

�.4/
1

�

� �

� �

Figure 1. A half pattern of length 4, .�.i//4
iD1

, with the interlacing explicitly shown.

1

2

1 2

2 3

wsp.P / D x2

(a) An example of a (4)-symplectic Gelfand–Tsetlin pat-

tern P , with its corresponding weight wsp.P / below for

some complex numbers x1; x2 as appearing in Defini-

tion 2.4.

�1

1

0 2

2 2

�2 2 4

wo.P / D .x1x2x2
3
/�1

(b) An example of a (5)-orthogonal Gelfand–Tsetlin pat-

tern P , with its corresponding weight wo.P / below for

some complex numbers x1; x2; x3 as appearing in Defin-

ition 2.6.

Figure 2. Figures giving examples of symplectic and orthogonal Gelfand–Tsetlin patterns.

We arrive to the definition of a symplectic Gelfand–Tsetlin pattern, see Figure 2a

for an illustration.

Definition 2.4 (symplectic patterns). Let n be a positive integer. A .2n/-symplectic

Gelfand–Tsetlin pattern P D .�.i//2n
iD1 is a half pattern of length 2n all of whose

entries are non-negative integers. For fixed complex numbers .x1; : : : ; xn/ we associ-

ate to the pattern P a weight wsp.P / (dependence on x1; : : : ; xn is suppressed from

the notation and will be clear from context in what follows) given by

wsp.P / D
n

Y

iD1

x

Pi
j D1 �

.2i/

j
�2

Pi
j D1 �

.2i�1/

j
C

Pi�1
j D1 �

.2i�2/

j

i ;
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with �.0/ � 0. For � 2 S
C
M , we write SP� for the set of all .2M/-symplectic Gelfand–

Tsetlin patterns with top row �.2M / D �.

We now give the combinatorial definition of the symplectic Schur polynomial as

a sum of weights over symplectic patterns.

Definition 2.5 (symplectic Schur polynomial). Let � 2 S
C
M . We define the symplectic

Schur polynomial by

sp.2M /
� .x1; : : : ; xM / D

X

P 2SP�

wsp.P /: (8)

It can be shown (see [23]) that this combinatorial definition coincides with the

following determinantal form given by the Weyl character formula

sp.2M /
� .x1; : : : ; xM / D

det.x
�j CM �j C1

i � x
�.�j CM �j C1/

i /M
i;j D1

det.x
M �j C1
i � x

�.M �j C1/
i /M

i;j D1

:

We move on to the definition of orthogonal patterns. This is slightly more involved

than the symplectic case since some of the elements are now permitted to be negative.

We will use the notation

sgn.x/ D
´

C1; x � 0;

�1; x < 0:

Definition 2.6 (orthogonal patterns). Let n be a positive integer. A .2n � 1/-ortho-

gonal Gelfand–Tsetlin pattern P D .�.i//2n�1
iD1 is a half pattern of length 2n � 1 all of

whose entries are either all integers or all half-integers1 and which moreover satisfy:

• all entries except odd starters are non-negative;

• the odd starters satisfy j�.2i�1/
i j � min¹�.2i�2/

i�1 ; �
.2i/
i º for i D 2; : : : ; n � 1 and

moreover j�.1/
1 j � �

.2/
1 and j�.2n�1/

n j � �
.2n�2/
n�1 .

For fixed complex numbers .x1; : : : ;xn/ we associate to the pattern P a weight wo.P /

given by

wo.P / D
n

Y

iD1

x
sgn.�

.2i�1/

i
/sgn.�

.2i�3/

i�1
/Œ

Pi
j D1 j�

.2i�1/

j
j�2

Pi�1
j D1 j�

.2i�2/

j
jC

Pi�1
j D1 j�

.2i�3/

j
j�

i ;

with �.0/;�.�1/ � 0. For � 2 SM , we write OP� for the set of all .2M � 1/-orthogonal

Gelfand–Tsetlin patterns with top row �.2M �1/ D �.

1It transpires that for our application the entries of .2n � 1/-orthogonal Gelfand–Tsetlin

patterns are always all integers.
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See Figure 2b for an example of an orthogonal Gelfand–Tsetlin pattern.

As in the symplectic case, we have the following combinatorial definition of the

orthogonal Schur polynomial as a sum of weights over orthogonal patterns.

Definition 2.7 (orthogonal Schur polynomial). Let � 2 S
C
M . We define the orthogonal

Schur polynomial by

o.2M /
� .x1; : : : ; xM / D

X

P 2OP� [ OP��

wo.P /: (9)

Again, it can be shown (see [23]) that this combinatorial definition coincides with

the following determinantal expression given by the Weyl character formula

o.2M /
� .x1; : : : ; xM / D

2 det.x
�j CM �j

i C x
�.�j CM �j /

i /M
i;j D1

det.x
M �j
i C x

�.M �j /
i /M

i;j D1

:

2.2. Averages of products of characteristic polynomials as Schur polynomials

We have the following results due to Bump and Gamburd, see [7, Sections 5 and 6]

(note that [7] uses the equivalent definition of Schur polynomials in terms of determ-

inants). These relate products of characteristic polynomials averaged (with respect to

Haar measure) over the classical compact groups with Schur polynomials.

Proposition 2.1. Let M be a positive integer and x1; : : : ; xM be complex numbers.

Then,

Eg2Sp.2N /

h M
Y

j D1

det.I � xj g/
i

D .x1 : : : xM /N sp
.2M /

hN M i
.x1; : : : ; xM /: (10)

Proposition 2.2. Let M be a positive integer and x1; : : : ; xM be complex numbers.

Then,

Eg2SO.2N /

h M
Y

j D1

det.I � xj g/
i

D .x1 : : : xM /N o
.2M /

hN M i
.x1; : : : ; xM /: (11)

In our applications below we will be taking particular choices of the complex

numbers x1; : : : ; xM lying on the unit circle in the complex plane for some even

integer M .

2.3. Asymptotics of the number of lattice points in convex sets

We have the following theorem on the number of lattice points in convex regions of

Euclidean space, see for example [24, Section 2].
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Theorem 2.3. Assume � � R
L is a convex region contained in a closed ball of

radius �. Then,

#.� \ Z
L/ D volL.�/ C OL.�L�1/; (12)

where the implicit constant in the error term depends only on L.

We will prove our main results on the asymptotics of the moments of the moments

by applying the theorem above with some judicious choices (different for each group)

of the convex set � .

2.4. Averages of products of characteristic polynomials as combinatorial sums

Instead of expressing the averages of products of characteristic polynomials over the

various matrix groups in terms of their Schur polynomials, one can instead view them

as combinatorial sums. These descriptions follow from work of Conrey et al. [10] and

will be used when determining the polynomial structure of the moments of moments.

Proposition 2.4. Let M be a positive integer and x1; : : : ; xM be complex numbers.

Then,

Eg2Sp.2N /

h M
Y

j D1

det.I � xj g/
i

D .x1 : : : xM /N
X

"j 2¹�1;1º

QM
j D1 x

"j N

j
Q

1�i�j �M .1 � x
�"i

i x
�"j

j /
:

Proposition 2.5. Let M be a positive integer and x1; : : : ; xM be complex numbers.

Then

Eg2SO.2N /

h M
Y

j D1

det
�

I � xj g
�i

D .x1 : : : xM /N
X

"j 2¹�1;1º

QM
j D1 x

"j N

j
Q

1�i<j �M .1 � x
�"i

i x
�"j

j /
:

Once more, M will be an even integer and we will be picking the complex num-

bers x1; : : : ; xM in a particular way, always lying on the unit circle in the complex

plane.

3. Polynomial structure

In this section we prove the following proposition. This, together with results stated

in Sections 4 and 5 will prove Theorem 1.1 and 1.2.

Proposition 3.1. Let G.N / D Sp.2N /, or G.N / D SO.2N /, and k; ˇ 2 N. Then

MoMG.N /.k; ˇ/ is a polynomial function of N .
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Proof. We make use of the expressions for averages through the different matrix

groups due to Conrey et al. [10] that were introduced in Section 2.4. The argument

follows that for the moments of the moments of the characteristic polynomials of

unitary matrices, presented in [5].

We begin with the symplectic case. We apply Fubini’s Theorem to obtain

MoMSp.2N /.k; ˇ/ D 1

.2�/k

2�Z

0

� � �
2�Z

0

Eg2Sp.2N /

h2kˇ
Y

j D1

det.I � xj g/
i

d�1 : : : d�k;

(13)

where, by recalling observation (1):

N
x D . e�i�1 ; : : : ; e�i�1

„ ƒ‚ …

ˇ

; ei�1 ; : : : ; ei�1

„ ƒ‚ …

ˇ

; e�i�2 ; : : : ; e�i�2

„ ƒ‚ …

ˇ

; ei�2 ; : : : ; ei�2

„ ƒ‚ …

ˇ

; : : : ;

e�i�k ; : : : ; e�i�k

„ ƒ‚ …

ˇ

; ei�k ; : : : ; ei�k

„ ƒ‚ …

ˇ

/:

Then, by Proposition 2.4, we can write the moments of moments in the following

form.

MoMSp.2N /.k; ˇ/

D 1

.2�/k

2�Z

0

� � �
2�Z

0

X

"j 2¹�1;1º

Q2kˇ
j D1 x

"j N

j
Q

1�i�j �2kˇ .1 � x
�"i

i x
�"j

j /
d�1 : : : d�k:

Above, each summand appears to have a pole of finite order (when x
"i

i D x
�"j

j ),

but these cancel with zeros in the numerator when the sum is considered as a whole.

This is clearly the case since the average of a product of polynomials is bounded [10].

Following this calculation, one may compute the resulting function by applying

l’Hôpital’s rule a finite number of times, which results in a polynomial function in

the variables ei�1 ; : : : ; ei�k , and whose coefficients are themselves polynomials in N .

Finally, after performing the integration over the �1; : : : ; �k , only the constant term

of said polynomial survives, which as noted is a polynomial in N . This concludes the

proof of Proposition 3.1. The argument for the orthogonal case is completely analog-

ous via Proposition 2.5.

4. Results for the symplectic group Sp.2N /

We give the proof of the leading order behaviour and coefficient of MoMSp.2N /.k; ˇ/

as described in Theorem 1.1. The argument is split in to stages. Firstly, we give an
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expression for the moments of moments using symplectic Gelfand–Tsetlin patterns

with constraints. Secondly, we observe that part of the pattern is determined, and

hence only the “free” part plays a role. Finally, by essentially passing from a discrete

to a continuous setting and using the results presented in Section 2.3, we arrive at the

result.

4.1. A combinatorial representation

We begin with a combinatorial representation for MoMSp.2N /.k; ˇ/.

Proposition 4.1. Let k; ˇ 2 N. Then, MoMSp.2N /.k; ˇ/ is equal to the number of

.4kˇ/-symplectic Gelfand–Tsetlin patterns P D .�.i//
4kˇ
iD1 with top row �.4kˇ/ D

hN 2kˇ i, which moreover satisfy the following k constraints for i D 1; : : : ; k:

.2i�1/ˇ
X

j D.2i�2/ˇC1

h j
X

lD1

�
.2j /

l
� 2

j
X

lD1

�
.2j �1/

l
C

j �1
X

lD1

�
.2j �2/

l

i

D
2iˇ
X

j D.2i�1/ˇC1

h j
X

lD1

�
.2j /

l
� 2

j
X

lD1

�
.2j �1/

l
C

j �1
X

lD1

�
.2j �2/

l

i

: (14)

We denote the set of such patterns by GTSp.N I kI ˇ/.

Proof. As in Proposition 3.1, by an application of Fubini’s Theorem we have

MoMSp.2N /.k; ˇ/ D 1

.2�/k

2�Z

0

� � �
2�Z

0

Eg2Sp.2N /

h2kˇ
Y

j D1

det.I � xj g/
i

d�1 : : : d�k;

(15)

with (using (1))

N
x D . e�i�1 ; : : : ; e�i�1

„ ƒ‚ …

ˇ

; ei�1 ; : : : ; ei�1

„ ƒ‚ …

ˇ

; e�i�2 ; : : : ; e�i�2

„ ƒ‚ …

ˇ

; ei�2 ; : : : ; ei�2

„ ƒ‚ …

ˇ

; : : : ;

e�i�k ; : : : ; e�i�k

„ ƒ‚ …

ˇ

; ei�k ; : : : ; ei�k

„ ƒ‚ …

ˇ

/:

Now, we make use of Proposition 2.1 along with Definition 2.5 to rewrite the

integrand in (15) as follows, where the signature determining the set SP� is

� D hN 2kˇ i 2 S
C
2kˇ

:
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We get

Eg2Sp.2N /

h 2kˇ
Y

j D1

det.I � xj g/
i

D
X

P 2SP
hN 2kˇi

ˇ
Y

j D1

e�i�1Œ
Pj

lD1
�

.2j /
l

�2
Pj

lD1
�

.2j �1/
l

C
Pj �1

lD1
�

.2j �2/
l

�

�
2ˇ
Y

j DˇC1

ei�1Œ
Pj

lD1
�

.2j /
l

�2
Pj

lD1
�

.2j �1/
l

C
Pj �1

lD1
�

.2j �2/
l

�

�
3ˇ
Y

j D2ˇC1

e�i�2Œ
Pj

lD1
�

.2j /

l
�2

Pj

lD1
�

.2j �1/

l
C

Pj �1

lD1
�

.2j �2/

l
�

�
4ˇ
Y

j D3ˇC1

ei�2Œ
Pj

lD1
�

.2j /

l
�2

Pj

lD1
�

.2j �1/

l
C

Pj �1

lD1
�

.2j �2/

l
� � � � �

�
.2k�1/ˇ

Y

j D.2k�2/ˇC1

e�i�k Œ
Pj

lD1
�

.2j /
l

�2
Pj

lD1
�

.2j �1/
l

C
Pj �1

lD1
�

.2j �2/
l

�

�
2kˇ
Y

j D.2k�1/ˇC1

ei�k Œ
Pj

lD1
�

.2j /

l
�2

Pj

lD1
�

.2j �1/

l
C

Pj �1

lD1
�

.2j �2/

l
�:

Finally, by making use of the fact that

1

2�

2�Z

0

eis� d� D ısD0;

the statement of the proposition readily follows.

We now make the simple observation that the form of the top signature hN 2kˇ i
essentially fixes the top right triangle of a pattern in GTSp.N I kI ˇ/, see Figure 3. In

order to formalize the argument, it is convenient to have the following definition.

Definition 4.1. Consider the following set of integer arrays .y.i//
4kˇ�1
iD1 2 Z

kˇ.2kˇC1/,

which we denote by ISp.N I kI ˇ/, and which additionally satisfy the following con-

ditions:

1. for all 1 � i � 2kˇ, y.i/; y.4kˇ�i/ 2 S
C�

iC1
2

˘;

2. both .y.i//
2kˇ
iD1 and .y.4kˇ�i//

2kˇ
iD1 form .2kˇ/-symplectic Gelfand–Tsetlin pat-

terns;

3. 0 � y
.i/
j � N for any valid i; j ;
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2kˇ

N � � � � � � N N

NN � � � N N

N

: :
:

:::
:::

:::

::: N

2kˇ
odd starters

�

�

� �

�

:::

:::

:::

:::

: :
:

�

�

�

�

Figure 3. Figure depicting the fixed region of a .4kˇ/-symplectic Gelfand–Tsetlin pattern P 2
SPhN 2kˇi. The shaded area represents the fixed region, whilst the unshaded region shows which

elements have some freedom in the values that they can take.

4. the rows .y.i//
4kˇ�1
iD1 fulfil the following constraints. In the case k is even, let

i D 1; : : : ; k
2

(with y.0/; y.4kˇ/ � 0). Then

.2i�1/ˇ
X

j D.2i�2/ˇC1

h j
X

lD1

y
.2j /

l
� 2

j
X

lD1

y
.2j �1/

l
C

j �1
X

lD1

y
.2j �2/

l

i

D
2iˇ
X

j D.2i�1/ˇC1

h j
X

lD1

y
.2j /

l
� 2

j
X

lD1

y
.2j �1/

l
C

j �1
X

lD1

y
.2j �2/

l

i

; (16)

and

.2i�1/ˇ
X

j D.2i�2/ˇC1

h j
X

lD1

y
.4kˇ�2j /

l
� 2

j
X

lD1

y
.4kˇ�2j C1/

l
C

j �1
X

lD1

y
.4kˇ�2j C2/

l

i

D
2iˇ
X

j D.2i�1/ˇC1

h j
X

lD1

y
.4kˇ�2j /

l
� 2

j
X

lD1

y
.4kˇ�2j C1/

l
C

j �1
X

lD1

y
.4kˇ�2j C2/

l

i

:

(17)
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While, when k is odd, we have the same constraints as above for i D 1; : : : ; k�1
2

along with

kˇ
X

j D.k�1/ˇC1

h j
X

lD1

y
.2j /

l
� 2

j
X

lD1

y
.2j �1/

l
C

j �1
X

lD1

y
.2j �2/

l

i

D
kˇ
X

j D.k�1/ˇC1

h j
X

lD1

y
.4kˇ�2j /

l
� 2

j
X

lD1

y
.4kˇ�2j C1/

l
C

j �1
X

lD1

y
.4kˇ�2j C2/

l

i

:

(18)

Observe that for both k odd and even there are a total of k constraints.

We claim that there is a natural bijection, essentially a relabeling of the coordin-

ates, between GTSp.N I kI ˇ/ and ISp.N I kI ˇ/:

BSpW GTSp.N I kI ˇ/ ! ISp.N I kI ˇ/: (19)

This can be seen as follows, and for additional clarity see Figure 4. Let .�.i//
4kˇ
iD1 2

GTSp.N IkIˇ/. Observe that, by the interlacing �.4kˇ�1/ � hN 2kˇ i D �.4kˇ/, we have

a single free coordinate

�
.4kˇ�1/
1 ; : : : ; �

.4kˇ�1/

2kˇ�1
� N; 0 � �

.4kˇ�1/

2kˇ
� N:

We thus relabel y
.4kˇ�1/
1 D�

.4kˇ�1/

2kˇ
. Secondly, again due to the interlacing �.4kˇ�2/�

�.4kˇ�1/, we have

�
.4kˇ�2/
1 ; : : : ; �

.4kˇ�2/

2kˇ�2
� N

and moreover,

y
.4kˇ�1/
1 D �

.4kˇ�1/

2kˇ
� �

.4kˇ�2/

2kˇ�1
� N:

We write y
.4kˇ�2/
1 D �

.4kˇ�2/

2kˇ�1
. We continue relabeling in this fashion up to (and

including) �.2kˇC1/ (after which no coordinates are necessarily fixed to equal N )

and finally, we put .y.i//
2kˇ
iD1 � .�.i//

2kˇ
iD1. Clearly, the map BSp described above is

invertible. Thus, by making use of Proposition 4.1 we obtain the following:

Proposition 4.2. Let k; ˇ 2 N. Then,

MoMSp.2N /.k; ˇ/ D #ISp.N I kI ˇ/:
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N N N

N NN N

N

: :
:

: ::
:::

:::

::: N

.4kˇ 1/

2kˇ

.4kˇ 2/

2kˇ 1

.4kˇ 3/

2kˇ 1

.4kˇ 3/

2kˇ 2

:::

.2kˇ/

1

:::
:::

:::

:::

: :
:

: : :
.2kˇ/

2

.2kˇ 1/

1

.2/

1

.1/

1

y
.4kˇ 1/

1

y
.4kˇ 2/

1

y
.4kˇ 3/

2
y

.4kˇ 3/

1

y
.2kˇ/

1

:::
:::

:::

:::

:::

: :
:

: : : y
.2kˇ/

2

y
.2kˇ 1/

1

y
.2/

1

y
.1/

1

BSp

Figure 4. Representation of the relabeling of the coordinates given by the bijection

BSpW GTSp.N I kI ˇ/ ! ISp.N I kI ˇ/.

4.2. Asymptotics and the leading order coefficient

To conclude the proof, we require some final definitions and notation, which will

also be useful for the orthogonal case in Section 5. We consider the continuous Weyl

chamber

WN D ¹x D .x1; : : : ; xN / 2 R
N W x1 � � � � � xN º;

and also let WC
N D WN \ R

N
C . We say that y 2 WN and x 2 WN C1 interlace if

the inequalities (6) (from the discrete setting) are satisfied and we also write y � x

(similarly for y 2 WN and x 2 WN ). The definitions of continuous half-patterns and

continuous symplectic and orthogonal Gelfand–Tsetlin patterns are completely ana-

logous to the discrete setting (we simply replace Si by Wi ).

We consider the following index set, which encodes a subset of the elements in

the patterns in ISp.N I kI ˇ/ resulting from applying the relabeling,

�
Sp

.k;ˇ/
WD

°

.m; n/W 1 � m �
jn C 1

2

k

and 1 � n � 2kˇI

or 1 � m �
j4kˇ � n C 1

2

k

and 2kˇ C 1 � n < 4kˇ � 1I

n ¤ 4ˇ; 8ˇ; : : : ; 4.k � 1/ˇ
±

[
°

.m; 4nˇ/W 1 � m � 2nˇ � 1 and 1 � n �
jk

2

k

I

or 1 � m � 2.k � n/ˇ � 1 and
jk

2

k

C 1 � n < k
±

:
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4ˇ�1

4ˇ

4ˇ

4ˇ

4ˇ

4ˇ

fixed

24ˇ

�

�

�

�

�

�

Figure 5. Visual representations of how the index sets �
Sp

.k;ˇ/
, and hence the diagram given by

V
Sp

.k;ˇ/
, for general integer ˇ and k D 6 are constructed. A pair .i; j / in �

Sp

.k;ˇ/
represents any

non-fixed element i in row j of the continuous pattern V
Sp

.k;ˇ/
above, except for the elements

depicted by �. These are not included in �
Sp

.k;ˇ/
, since these are chosen to be fixed by the linear

equations. The overlap in the pattern shows the 5 rows x.4ˇ/; : : : ; x.20ˇ/ where the constraints

overlap.

Thus, the pair .m; n/ appears in �
Sp

.k;ˇ/
if and only if y

.n/
m 2 ISp.N I kI ˇ/, except for

some particular choices of pairs .m; n/, which we remove. The k missing pairs are

precisely the encodings of y
.4ˇ/

2ˇ
, y

.8ˇ/

4ˇ
, : : : , y

.4.k�2/ˇ/

4ˇ
, y

.4.k�1/ˇ

2ˇ
, and y

.4kˇ�1/
1 ; see

Figure 5 for a visual representation.

Observe that �
Sp

.k;ˇ/
has exactly kˇ.2kˇ C 1/ � k elements. Now, define

V
Sp

.k;ˇ/
WD ¹x.n/

m 2 RW .m; n/ 2 �
Sp

.k;ˇ/
; 0 � x.n/

m � 1º � R
kˇ.2kˇC1/�k ; (20)

alongside elements defined as follows:

x
.n/
n
2

for n D 4ˇ; 8ˇ; : : : ; 4
jk

2

k

ˇ; (21)

x
.n/
4kˇ�n

2

for n D 4
�jk

2

k

C 1
�

ˇ; : : : ; 4.k � 1/ˇ; (22)

x
.4kˇ�1/
1 ; (23)

which are determined by the linear equations (16)–(18) (we simply solve for the rel-

evant term) so that

• 0 � x
.n/
m � 1, for all x

.n/
m described by (20)–(23),

• x.n/; x.4kˇ�n/ 2 W
C�

nC1
2

˘, for all n D 1; : : : ; 2kˇ,
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• both .x.n//
2kˇ
nD1 and .x.4kˇ�n//

2kˇ
nD1 form continuous .2kˇ/-symplectic Gelfand–

Tsetlin patterns.

We call the index set corresponding to the “determined” elements

T
Sp

.k;ˇ/
WD ¹.m; n/W y.n/

m 2 ISp.N I kI ˇ/ºn�
Sp

.k;ˇ/
:

Observe that V
Sp

.k;ˇ/
is convex as an intersection of hyperplanes. Moreover,

V
Sp

.k;ˇ/
is contained in the cube Œ0; 1�kˇ.2kˇC1/�k and hence in a closed ball of radius

p

kˇ.2kˇ C 1/ � k.

Proof of Theorem 1.1. The proof of the aspect of the theorem pertaining to the poly-

nomial structure of the moments of moments was given in Proposition 3.1. For the

leading order coefficient term we observe that

#ISp.N I kI ˇ/ D #.Zkˇ.2kˇC1/�k \ .N V
Sp

.k;ˇ/
//;

where for a set A, we write N A D ¹NxW x 2 Aº for is its dilate by a factor of N .

Thus, from Proposition 4.2 and Theorem 2.3 with � D N V
Sp

.k;ˇ/
, we obtain

MoMSp.2N /.k; ˇ/ D #ISp.N I kI ˇ/ D #.Zkˇ.2kˇC1/�k \ .N V
Sp

.k;ˇ/
//

D vol.N V
Sp

.k;ˇ/
/ C Ok;ˇ .N kˇ.2kˇC1/�k�1/:

Since

vol.N V
Sp

.k;ˇ/
/ D N kˇ.2kˇC1/�k

vol.V
Sp

.k;ˇ/
/

we have cSp.k; ˇ/ D vol.V
Sp

.k;ˇ/
/. It then suffices to prove that vol.V

Sp

.k;ˇ/
/ > 0 which

is the content of Lemma 4.3 below.

Proving the strict positivity of the constant cSp.k; ˇ/ is important, because other-

wise we simply have a bound for MoMSp.2N /.k; ˇ/. This task is also one of the more

complicated parts of this paper. A crucial role is played by a number of figures which

elucidate the argument.

Lemma 4.3. Let k; ˇ 2 N. Then

cSp.k; ˇ/ D vol.V
Sp

.k;ˇ/
/ > 0: (24)

Proof. We consider the following subset zVSp

.k;ˇ/
� V

Sp

.k;ˇ/
defined as for V

Sp

.k;ˇ/
, but

additional we require both that 0 < x
.n/
m < 1 and the interlacing is strict

x.nC1/
m > x.n/

m > x
.nC1/
mC1 ;
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the above holding also for x
.n/
m for .m; n/ 2 T

Sp

.k;ˇ/
as given in (21)–(23). Now, we

claim that if there exists at least one element in zVSp

.k;ˇ/
, then vol. zVSp

.k;ˇ/
/ > 0 since

zVSp

.k;ˇ/
contains a small cube around this element (this clearly implies the statement

of the lemma). This can easily be seen as follows. Take a continuous pattern P D
.z

.n/
m /

.m;n/2�
Sp

.k;ˇ/

2 zVSp

.k;ˇ/
and let d be the minimal distance between any two ele-

ments z
.n/
m of P , or between z

.n/
m and 0 or 1 (including those z

.n/
m corresponding to

the points described in eqs. (21)–(23)). We observe that if we change each of the

coordinates .z
.n/
m /

.m;n/2�
Sp

.k;ˇ/

by at most some positive �, then there exists some con-

stant Ck;ˇ such that the extra values given by z
.n/
m for .m; n/ 2 T

Sp

.k;ˇ/
change by at

most Ck;ˇ � �. Thus, if � D �.d/ is small enough we get that .z
.n/
m /

.m;n/2�
Sp

.k;ˇ/

C

Œ��; ��kˇ.2kˇC1/�k � zVSp

.k;ˇ/
.

It suffices to exhibit such an element. We observe that the constraints described

in (16)–(18) essentially fall in to four distinct categories, hereafter types 1, 2, 3, and 4.

These can be visualized as in Figures 6a, 6b, 7a, and 7b. In each diagram, the shaded

triangular region shows the part of the pattern P 2 GTSp.N I kI ˇ/ which was fixed to

be N , and the numbers shown to the left of the pattern are the “row coefficient.” One

can reconstruct the particular constraint described in each figure by first multiplying

each row sum by its row coefficient, and the summing the resulting expressions for

the top half of the pattern, and equating it with the sum for the bottom half of the

pattern (the “symmetry line” is given by the row with row coefficient 0). For example,

Figure 6a shows the following constraint, (k D 1; ˇ D 3 in (18)),

3
X

j D1

h j
X

lD1

y
.2j /

l
� 2

j
X

lD1

y
.2j �1/

l
C

j �1
X

lD1

y
.2j �2/

l

i

D
3

X

j D1

h j
X

lD1

y
.12�2j /

l
� 2

j
X

lD1

y
.13�2j /

l
C

j �1
X

lD1

y
.14�2j /

l

i

;

or, equivalently,

2

5
X

j D1

.�1/j r .j / D 2

11
X

j D7

.�1/j r .j /;

where r .j / is the sum of the elements in row j .

We will first show that it is possible to exhibit an element with strict interlacing

and positive distances from 0 and 1 for each of the four types of constraints. We will

then argue that these constructions are compatible and yield an element of zVSp

.k;ˇ/
;

this fact is not entirely trivial since two consecutive constraints (e.g., i D 1; 2 in (16))

overlap in a single row, see Figures 11 and 12, and clearly interlacing still plays a role.
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0

�2

2

�2

2

�2

�2

2

�2

2

�2

� � �

� � �

� � �

� �

� �

� �

� �

�

�

�

�

(a) Example of constraint type 1. This occurs exclusively

for k D 1, and is drawn for k D 1, ˇ D 3. The circled

coordinates are those which feature in the “overlap” of the

constraint (18). The grey shaded area shows which ele-

ments are fixed to be N . The numbers on the left show the

coefficient that appears against any given row sum in (18).

0

�2

2

�2

1

�2

2

�2

1

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

(b) Example of constraint type 2. This occurs for k > 1,

k odd, and is drawn for k D 3, ˇ D 2. The circled

coordinates are those which feature in the “overlap” of

constraint (18) (i.e., those in row 2kˇ ). The grey shaded

area shows the lower part of the section which is fixed to

be N , and the number on the left show the coefficient that

appears against any given row sum in (18).

Figure 6. Figures showing constraints of type 1 and 2 for the symplectic case.

The first two types of constraints, types 1 and 2 are shown in Figures 6a and 6b.

Type 1 only occurs for k D 1 and Figure 6a shows an example for k D 1 and ˇ D 3. In

this case, only (18) is relevant. The row sum for the (2kˇ)th row appears on both sides

of (18), and so this contribution is canceled out. All the remaining row sums have a

coefficient of either C2 or �2 in (18), and precisely which coefficient corresponds to

which row can be seen on the left in Figure 6a. Similarly, type 2 is the generalisation of

type 1 but for k > 1, odd. For these larger values of odd k, the shape of the constraint

changes from triangular to pentagonal, but always occurs in the center portion of

the overall pattern. Figure 6b shows the type 2 for k D 3 and ˇ D 2. For both said

constraints, it is easy to exhibit such an element by symmetry: simply pick the lower

half-pattern to have strict interlacing and coordinates a positive distance away from 0

and 1 and reflect in the symmetry line (cf. the row with factor 0 in either figure).

Constraints of types 3 and 4 are shown in Figures 7a and 7b. Type 3 occurs for

k � 2 and corresponds to eqs. (16) and (17) for i D 1 – henceforth we say that a

“lower” type 3 pattern comes from setting i D 1 in (16); whereas an “upper” type 3

pattern is the analogous object using (17). The shape of type 3 is always triangular

and covers the lowermost and uppermost portion of the overall pattern (cf. the top and

bottom patterned triangles in Figure 5). Figure 7a shows type 3 for k D 2, ˇ D 2, and

in particular the lower version, corresponding to i D 1 in (16). Note now that all rows

have coefficients that are either ˙2, except for the top (resp. for the upper version,

bottom) row which gets a coefficient of 1. Type 4 occurs for k � 4 and represents i > 1

in eqs. (16) and (17); the terms “lower” and “upper” are used just as for type 3. Type 4

constraints are trapezoidal, and an example of the lower type is drawn in Figure 7b
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�2

2

�2

0

�2

2

�2

1

�

�

� �

� �

� � �

� � �

� � � �

� � � �

(a) Example of constraint type 3. This occurs for k � 2,

and is partly drawn for k D 2, ˇ D 2. The figure depicts

the first constraint (i.e., i D 1 in (16)) and the boxed ele-

ments are those which appear in the “overlap” of said

constraint. Note that by reflecting this diagram in the x-

plane, one gets a figure for the last constraint, i.e., i D 1

in (17). The numbers on the left are the coefficients that

appear against the relevant row in (16), with i D 1.

�2

C2

�2

0

�2

2

�2

1

� � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � � �

� � � � � � � �

(b) Example of constraint type 4. This occurs for k � 4

and is drawn for k D 4; ˇ D 2 and depicts the (lower)

constraint for i D 2 in (16). The boxed elements are those

which feature in the “overlap” of the described constraint,

and the numbers on the left give the coefficient of a given

row sum in (16). Note that the shape and row coefficients

of the upper constraint can be seen by reflecting the dia-

gram in the x-plane.

Figure 7. Figures showing constraints of type 3 and 4 for the symplectic case.

for k D 4; ˇ D 2. Here (as for the general case) the row coefficients are once again

symmetrical around the “overlap” row. For type 3 and type 4 constraints, exhibiting

an element is more complicated than type 1 and 2, and we proceed as follows.

In case of a constraint of type 3, we split the configuration as in Figure 8. This

results in a type 1 constraint and a new constraint, hereafter referred to as type 5. In

Figure 8, the top diagram gives an example of this splitting for a general form of a

lower type 3, and the particular form of the resulting type 5 constraint is shown in

the bottom diagram. For the constraint of type 1 resulting from the splitting, we will

again use symmetry. However, the constraint of type 5 requires a separate argument.

Take � > 0 to be very small according to k and ˇ. We pick the lower half-pattern of

constraint type 1, see Figure 8, so that the distances between any two nearest coordin-

ates, and between the closest coordinate to 0 (and respectively 1), is strictly positive

and at most �. We then use reflection through the middle row (the row with 0 as

its row coefficient) for the upper half-pattern. We then proceed to the constraint of

type 5. We again pick the coordinates, except the largest one (see circled element in

Figure 8) to be at a strictly positive distance of at most � to its neighbor coordinates,

and to the edge of the upper half-pattern of the constraint of type 1. Then, the total

sum corresponding to constraint type 5 excluding the largest coordinate, which we

have yet to pick, is negative and at most ck;ˇ � � in absolute value, for some constant

ck;ˇ depending only on k and ˇ. We can then pick the largest coordinate so that this

weighted sum over all coordinates is zero as long as ck;ˇ � � < 1.

In order to deal with a constraint of type 4 we split it into a constraint of type 2

and type 5, see Figure 10. There, the general “lower” type 4 constraint is shown, along
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with the method of splitting. One may use exactly the same method described above

for type 3 constraints.

Splitting of Type 3

�2

2

�2

:::

:::

0

�2

2

:::

:::

�2

2

�2

:::

:::

�2

1

�

�

� �

::: : :
:

::: : :
:

� � � � �
ˇ

� � � � � � �
ˇ

� � � � � � �

::: :::
:::

:::
:::

: :
:

: :
::::

� �

� � � � � � � �
� � � � � � � � � �

� �

2ˇ

Type 1

Type 5

Type 5

2ˇ

2ˇ

1

�2

:::

�2

2

�2

y.2ˇ/

y.2ˇ�1/

: :
:

y.3/

y.2/

y.1/

�

� � � � � � � �
� � � � � � � � � �

� �

: :
:

: :
::::

:::
���

��

�

Figure 8. Figures giving the construction of a type 5 constraint, which comes from splitting

a type 3 constraint (see Figure 7a). This occurs for k � 2, and the version for a lower type 3

constraint (i.e., i D 1 in (16)) is drawn in the upper figure to show the situation for general ˇ,

and k � 2. The type 3 constraint is split in to one of type 1 (the unshaded region) and one of

a new type, type 5 (the shaded region). The bottom figure shows explicitly the constraint of

type 5, which forms a Gelfand–Tsetlin pattern .y.i//
2ˇ

iD1
, where y.i/ 2 W

C

i
and y.i/ � y.iC1/.

In both diagrams, the circled top right element is the largest, and the numbers on either side

show the row sum weightings for i D 1 in (16). The equivalent form for the upper version (i.e.,

i D 1 in (17)) can be seen by reflecting the top diagram in the x-plane.

Finally, we need to argue that using the procedures above is compatible with put-

ting constraints together. For example, type 3 and type 4 constraints overlap, see Fig-

ures 9 and 11, and two type 4 constraints also may overlap, see Figures 12 and 13.

With a mixture of type 3 and type 4 (the case for a mixture of two type 4s is ana-

logous), if we use the algorithm above to satisfy the constraint of type 3, then the

interlacing forces the coordinates at the edges of the next constraint of type 4 to be
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�

�

Type 4

Type 3

overlap

mirror

mirror

Figure 9. Example of combining a split type 3 and a split type 4. The dashed horizontal lines

represent the lines of reflection, and the solid diagonal lines show where the splitting of the

respective types occurs. The circled elements are the largest element for each section, and the

arrows show the location of elements that, due to the interlacing, are forced the be “large,” and

also direction of growth.

1

�2

:::

:::

�2

0

�2

:::

:::

�2

1

�2

:::

:::

�2

1

� � � � � �

� � � � � � � �

:::

: :
:

: :
:

� � � � � � � � �

:::

� � � � � � � � �

� � � � � � � � � �

:::

:::
:::

:::
:::

: :
:

: :
:

� � � � � � � � �

�

:::

� � � � � � � � � � � � �
� � � � � � � � � �

� �

�.2.2i�2/ˇ/

�.2.2i�2/ˇC1/

�.2.2i�1/ˇ�1/

�.2.2i�1/ˇ/

�.2.2i�1/ˇC1/

�.4iˇ�1/

�.4iˇ/

Type 2

Type 5

Figure 10. Figure showing splitting a type 4 constraint (see Figure 7b) in to a type 2 and type

5. This occurs for k � 4, and the lower constraint for some 1 < i �
j

k
2

k

in (16) is drawn in

the top figure for general k � 4; ˇ, involving rows �.n/ for n D 2.2i � 2/ˇ; : : : ; 4iˇ. The type

4 constraint is split in to one of type 2 (the unshaded region) and one of type 5 (the shaded

region), see Figure 8. The circled top right element is the largest, and the numbers on the far left

and the far right give the row sum weightings as appearing in (16). The equivalent form for the

upper version (i.e., 1 < i �
j

k
2

k

in (17)) can be seen by reflecting the diagram in the x-plane.

“large,” of the order of ck;ˇ � � for the constant ck;ˇ described above. This then

forces the largest coordinate of the constraint of type 5 coming from the splitting of

the constraint of type 4 to be Qck;ˇ � � for some (possibly much) larger constant Qck;ˇ .

However, we note that this does not present any real problems since we only need

to apply this procedure a finite number of times and thus as long as we pick � small

enough so that c�
k;ˇ

� � < 1 for some finite and fixed constant c�
k;ˇ

, the result is as

claimed.
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�2

0

�2

1 1

�2

0

�2

1

Type 4

Type 3

�

�

� �

� �

� � �

� � �

� � � �

� � � �

Figure 11. Example of a mixture of type 3 and type 4. This example shows k D 4, ˇ D 1, and

the interplay between i D 1 and i D 2 in (16) is demonstrated through the overlap between the

two patterns. The corresponding diagram for i D 1 and i D 2 in (17) is simply the reflection of

this diagram in the x-plane.

1

�2

0

�2

1 1

�2

0

�2

1

Type 4

Type 4

� �

� � �

� � �

� � � �

� � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

Figure 12. Example of a mixture of constraints of type 4. This figure is drawn for k D 6; ˇ D 1

and depicts the mixture of constraints for i D 2 in (16) and (17).

�

�

Type 4

Type 4

overlap

mirror

mirror

Figure 13. Example of combining two split type 4 constraints. The dashed horizontal lines

represent the lines of reflection, and the solid diagonal lines show where the splitting of the

respective types occurs. The circled elements are the largest element for each section, and the

arrows show the location of elements that, due to the interlacing, are forced the be “large,” and

also direction of growth.

4.3. Asymptotics at the symmetry point

In this section we show how the method illustrated above can also be used to recover

results of Keating and Snaith on the asymptotics of moments of the characteristic

polynomial at the symmetry point, see [19]. The original proof involved the Selberg

integral and asymptotics for the Barnes G-function. More precisely, we show that, for

s 2 N,

MSp.s/ WD Eg2Sp.2N /Œdet.I � g/s� D cSp.s/N
s.sC1/

2 C Os.N
s.sC1/

2
�1/; (25)
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N

2s

(a) Figure showing a .2s/-symplectic Gelfand–Tsetlin

pattern with top row (and hence top right triangle) fixed

to be hN 2s i.

� � �

s

s

(b) Figure showing the two continuous half patterns in

Œ0; 1� joined at the top row which give VSp.s/.

Figure 14. Figures showing both the general structure of the (discrete) symplectic half pattern,

and the two continuous half patterns formed by the free coordinates joined at the top row.

where the leading order coefficient is explicit:

cSp.s/ D 1
Qs

j D1.2j � 1/ŠŠ
:

By applying Proposition 2.1 with xi � 1 and inserting this into the combinatorial

representation of Definition 2.5, we obtain the following proposition.

Proposition 4.4. Let s 2 N. MSp.s/ is equal to the cardinality of the set SPhN si,

namely the number of .2s/-symplectic Gelfand–Tsetlin patterns with top row hN si.

As before, the form of the top row fixes the top right triangle of the pattern, see

Figure 14a. An analogous argument to that given in Proposition 4.2 yields the follow-

ing.

Proposition 4.5. Let s 2 N. Then,

MSp.s/ D N
s.sC1/

2 vol.VSp.s// C Os.N
s.sC1/

2 �1/

where the set VSp.s/ � Œ0; 1�
s.sC1/

2 consists of joining two continuous half patterns of

length s at the top row, as in the Figure 14b.

Thus, it suffices to show that the volume of VSp.s/ can be computed explicitly and

equals cSp.s/. We require the following lemma (which is certainly well known, but

we have not located this exact form in the literature).

Lemma 4.6. Let s 2 N. The volume of a continuous half pattern of length s with

non-negative coordinates and top row .x1; : : : ; x�
sC1

2

˘/ 2 W
C�

sC1
2

˘, that we denote
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by vols.x1; x2; : : : ; x�
sC1

2

˘/, is given by

vols.x1; x2; : : : ; x�
sC1

2

˘/ D
s

Y

j D1

1

.j � 1/ŠŠ
det.x

2.j �1/C1.s even/
�

sC1
2

˘

C1�i
/

�
sC1

2

˘

i;j D1 :

Proof. Direct computation by induction on s, using multi-linearity of the determinant.

We finally have:

Proposition 4.7. Let s 2 N. Then,

vol.VSp.s// D 1
Qs

j D1.2j � 1/ŠŠ
:

Proof. Recall that VSp.s/ is obtained by joining at the top row two continuous half

patterns with coordinates in Œ0; 1�. We then calculate using Lemma 4.6 and Andreief’s

identity (see Figure 14b):

vol.VSp.s// D
Z

1�x1�x2�����x�
sC1

2

˘�0

vols.x1; x2; : : : ; x�
sC1

2

˘/2dx1 : : : dx�
sC1

2

˘

D
s

Y

j D1

� 1

.j � 1/ŠŠ

�2

det

� 1Z

0

x2.i�1/C2.j �1/C21.s even/dx

�b sC1
2 c

i;j D1

D
s

Y

j D1

� 1

.j � 1/ŠŠ

�2

det
� 1

2.i C j � 3
2

C 1.s even//

�b sC1
2

c

i;j D1
:

In order to evaluate this further one uses the Cauchy determinant formula:

det
� 1

xi � yj

�n

i;j D1
D

Qn
iD2

Qi�1
j D1.xi � xj /.yj � yi /

Qn
iD1

Qn
j D1.xi � yj /

:

Applying this with,

xi D 2i � 3

2
C 1.s even/; yj D �2j C 3

2
� 1.s even/

and after some elementary manipulations we readily obtain the statement of the pro-

position.

Remark. Similar arguments apply in the setting of SO.2N /, see [19] for the original

proof.
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5. Results for the special orthogonal group SO.2N /

We now give the proof of the asymptotic growth of the moments of the moments

for SO.2N /. The key difference between the argument presented here and that of

Section 4 is that the leading elements in the odd rows of the half-patterns, the “odd-

starters,” are now allowed to be positive or negative. This introduces an additional

level of complexity due to the fact that now the constraints are not linear (they involve

absolute values and signs).

Analogously to the symplectic case outlined in Section 4, we break the proof down

in to steps. Firstly, we prove a proposition connecting the moments of moments to a

count of restricted orthogonal Gelfand–Tsetlin patterns. Secondly, we note that the

constraints on the patterns fix a triangular region, thus the count simplifies down to

considering a subregion of the array. This induces a natural bijection between these

constrained patterns and certain integer arrays. Finally, by considering the number of

fixed parameters and moving to a continuous setting, we may apply Theorem 2.3 to

achieve Theorem 1.2.

5.1. A combinatorial representation

The relevant combinatorial representation for the orthogonal group SO.2N / is the

following.

Proposition 5.1. Let k; ˇ 2 N. Then MoMSO.2N /.k; ˇ/ is equal to the number of

.4kˇ � 1/-orthogonal Gelfand–Tsetlin patterns P D .�.i//
4kˇ�1
iD1 with top row either

�.4kˇ�1/ D hN 2kˇ i or �.4kˇ�1/ D hN 2kˇ i�, which moreover satisfy each of the fol-

lowing k constraints for i D 1; : : : ; k:

.2i�1/ˇ
X

j D.2i�2/ˇC1

sgn.�
.2j �1/
j / sgn.�

.2j �3/
j �1 /

h j
X

lD1

j�.2j �1/

l
j � 2

j �1
X

lD1

j�.2j �2/

l
j

C
j �1
X

lD1

j�.2j �3/

l
j
i

D
2iˇ
X

j D.2i�1/ˇC1

sgn.�
.2j �1/
j / sgn.�

.2j �3/
j �1 /

h j
X

lD1

j�.2j �1/

l
j � 2

j �1
X

lD1

j�.2j �2/

l
j

C
j �1
X

lD1

j�.2j �3/

l
j
i

; (26)

where �.0/; �.�1/ � 0. GTSO.N I kI ˇ/ denotes the set of such patterns. Further, we

write GTC
SO.N I kI ˇ/ for the set of such constrained .4kˇ � 1/-orthogonal patterns

with top row hN 2kˇ i, and GT�
SO.N I kI ˇ/ for the equivalent (but disjoint) set with top

row hN 2kˇ i�.
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P 2 GTC
SO.N I 1I 1/

�
.1/
1

N

N N

Q 2 GT�
SO.N I 1I 1/

�
.1/
1

N

�N N

Figure 15. Cases for determining MoMSO.2N /.1; 1/. The relevant constraint is �
.1/

1
D �

.1/

1
�

sgn.˙N /.

Proof. The proof of Proposition 5.1 follows entirely the same method as described in

the proof of Proposition 4.1.

The case for k D ˇ D 1 is separate from the general case. This is essentially due

to the fact that in this particular situation, the limited number of non-fixed elements

in the pattern means that the constraints (26) behave differently compared to the case

for higher k; ˇ (note that in the case of GTC
SO.N I 1I 1/ the corresponding constraint

does not fix any coordinate, as we see in the proof below). We handle this special case

here.

Proposition 5.2. We have that

MoMSO.2N /.1; 1/ D 2.N C 1/:

Proof. By Proposition 5.1,

MoMSO.2N /.1; 1/ D jGTC
SO.N I 1I 1/j C jGT�

SO.N I 1I 1/j;

where here GTSO.N I 1I 1/ is the set of all .3/-orthogonal Gelfand–Tsetlin patterns P

with top row either .N; N / or .N; �N /, corresponding to the sets GTC
SO.N I 1I 1/ and

GT�
SO.N I 1I 1/ respectively, satisfying the constraint:

sgn.�
.1/
1 /�

.1/
1 D sgn.�

.3/
2 / sgn.�

.1/
1 /�

.1/
1 ; (27)

see Figure 15. The fact that there is only one “free” parameter, namely �1, here is the

key difference between this special case, and the situation for general k; ˇ. Hence,

jGTC
SO.N I 1I 1/j D 2N C 1 since all values of 0 � j�.1/

1 j � N are valid. However, the

only option satisfying constraint (27) in the second case is �
.1/
1 � 0. Thus,

MoMSO.2N /.1; 1/ D 2.N C 1/:
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2kˇ

N � � � � � � N N

N � � � � � � N N

NN � � � N N

N

: :
:

:::
:::

:::

::: N

2kˇ � 1

odd starters

�

�

� �

�

:::

:::

:::

:::

: :
:

�

�

�

�

Figure 16. Figure depicting the fixed region of a .4kˇ � 1/-orthogonal Gelfand–Tsetlin pattern

with top row hN 2kˇi. The shaded area represents the fixed region, whilst the unshaded region

shows which elements have some freedom in the values that they can take.

Henceforth, we assume that we are in the general case (i.e., we exclude the case

k D ˇ D 1). Then, we note that by requiring the top row of the pattern P to be either

hN 2kˇ i or hN 2kˇ i�, the top right triangle of GTSO.N I k; ˇ/ is also determined, as

shown in Figure 16. We now introduce notation which captures the sign of the odd

starters for a given pattern P 2 GTSO.N IkIˇ/. Note that the ability of the odd starters

to be positive or negative is one of the key differences between the orthogonal and the

symplectic case.

We consider the following decomposition of GTSO.N IkIˇ/ into the disjoint union:

GTSO.N I kI ˇ/ D
[

N
"2¹˙1º2kˇ

GTN
"

SO.N I kI ˇ/;

where GTN
"

SO.N I kI ˇ/ is the subset of GTSO.N I kI ˇ/ where the sign of �
.2i�1/
i for

1 � i � 2kˇ is required to be equal to "i . We decompose in this way due to the

requirement of convexity in Theorem 2.3. One then sees that, for instance,

GTC
SO.N I kI ˇ/ D

[

N
"2¹˙1º2kˇ W

"2kˇD1

GTN
"

SO.N I kI ˇ/:

Further examples of the definition are given by Figure 17.
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P 2 GTN
"

SO.8I 2I 1/
N
" D .�1; 1; �1; �1/

�1

2

0 6

5 8

�2 8 8

8 8 8

�8 8 8 8

Q 2 GTN
"

SO.5I 2I 1/
N
" D .�1; �1; 1; 1/

�3

2

�3 4

3 5

2 5 5

5 5 5

5 5 5 5

Figure 17. Examples of patterns P; Q in GTN
"

SO.N I kI ˇ/ for k D 2, ˇ D 1, and different, given

values of N and
N
".

˙N N N N

N N N

N NN N

N

: :
:

:::
:::

:::

::: N

.4kˇ 3/

2kˇ 1

.4kˇ 4/

2kˇ 2

.4kˇ 5/

2kˇ 2

.4kˇ 5/

2kˇ 3

:::

.2kˇ 1/

1

:::
:::

:::

:::

: :
:

.2kˇ 1/

2

.2kˇ 2/

1

.2/

1

.1/

1

"2kˇ

"2kˇ 1y
.4kˇ 3/

1

y
.4kˇ 4/

1

"2kˇ 2y
.4kˇ 5/

2
y

.4kˇ 5/

1

y
.2kˇ 1/

1

:::
:::

:::

:::

:::

: :
:

y
.2kˇ 1/

2

y
.2kˇ 2/

1

y
.2/

1

"1y
.1/

1

BSO

Figure 18. Pictorial representation of the relabeling of the coordinates given by the bijection

BN
"

SOWGTN
"

SO.N IkIˇ/ ! I N
"

SO.N IkIˇ/. Above on the right-hand side (the image of the bijection),

"j D sgn.�
.2j �1/

j
/ for j D 1; : : : ; 2kˇ � 1 and "2kˇ D sgn.�

.4kˇ�1/

2kˇ
/ D sgn.˙N /.

As in Section 4, for ease we now concentrate on the undetermined elements. The

following definition formally defines a relabeling of said parts, and Figure 18 demon-

strates the bijection between a given pattern P 2 GTN
"

SO.N I kI ˇ/ and the renaming.

In spirit, this process is the same as that described in Definition 4.1, though with the

added complexity of the signs of the odd starters.
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Definition 5.1. We consider the decomposition of ISO.N I kI ˇ/ into the union of

multisets

ISO.N I kI ˇ/ D
[

N
"2¹˙1º2kˇ

I N
"

SO.N I kI ˇ/;

where for a fixed
N
" 2 ¹˙1º2kˇ , I N

"

SO.N I kI ˇ/ is the set of integer arrays .y.i//
4kˇ�3
iD1 2

Z
kˇ.2kˇ�1/ satisfying the following additional requirements.

1. y.i/; y.4kˇ�2�i/ 2 S
C�

iC1
2

˘ for 1 � i � 2kˇ � 1.

2. Both .y.i//
2kˇ�1
iD1 and .y.4kˇ�2�i//

2kˇ�1
iD1 form .2kˇ � 1/-orthogonal Gelfand–

Tsetlin patterns.

3. 0 � y
.i/
j � N for any valid i; j unless y

.i/
j is an odd-starter with its associated

".iC1/=2 D �1, in which case 0 < y
.i/
j � N .

4. The rows .y.i//
4kˇ�3
iD1 fulfil the following constraints. In the case k is even, let

i D 1; : : : ; k
2

(with y.�1/; y.0/; y.4kˇ�2/; y.4kˇ�1/ � 0, and "0 � 1). Then,

.2i�1/ˇ
X

j D.2i�2/ˇC1

"j "j �1

h j
X

lD1

y
.2j �1/

l
� 2

j �1
X

lD1

y
.2j �2/

l
C

j �1
X

lD1

y
.2j �3/

l

i

D
2iˇ
X

j D.2i�1/ˇC1

"j "j �1

h j
X

lD1

y
.2j �1/

l
� 2

j �1
X

lD1

y
.2j �2/

l
C

j �1
X

lD1

y
.2j �3/

l

i

(28)

and

.2i�1/ˇ
X

j D.2i�2/ˇC1

"2kˇ�j C1"2kˇ�j

h j
X

lD1

y
.4kˇ�2j �1/

l
� 2

j �1
X

lD1

y
.4kˇ�2j /

l

C
j �1
X

lD1

y
.4kˇ�2j C1/

l

i

D
2iˇ
X

j D.2i�1/ˇC1

"2kˇ�j C1"2kˇ�j

h j
X

lD1

y
.4kˇ�2j �1/

l
� 2

j �1
X

lD1

y
.4kˇ�2j /

l

C
j �1
X

lD1

y
.4kˇ�2j C1/

l

i

: (29)
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While, when k is odd we have the same constraints as above for i D 1; : : : ; k�1
2

along with

kˇ
X

j D.k�1/ˇC1

"j "j �1

h j
X

lD1

y
.2j �1/

l
� 2

j �1
X

lD1

y
.2j �2/

l
C

j �1
X

lD1

y
.2j �3/

l

i

D
kˇ
X

j D.k�1/ˇC1

"2kˇ�j C1"2kˇ�j

h j
X

lD1

y
.4kˇ�2j �1/

l
� 2

j �1
X

lD1

y
.4kˇ�2j /

l

C
j �1
X

lD1

y
.4kˇ�2j C1/

l

i

: (30)

Observe that, as in the symplectic case, for both k odd and even there are a total of k

constraints.

Then, analogously to how BSp was defined in Section 4 (see (19)), one may also

define

BSOW GTSO.N I kI ˇ/ ! ISO.N I kI ˇ/: (31)

The bijection is depicted by Figure 18, and can be constructed as follows. Take

P 2 GTSO.N I kI ˇ/ so P D .�.i//
4kˇ�1
iD1 . In particular, there exists

N
" 2 ¹˙1º2kˇ such

that P 2 GTN
"

SO.N IkIˇ/. Due to the interlacing �.4kˇ�3/ � hN 2kˇ�1i D �.4kˇ�2/, all

but one element of �.4kˇ�3/ is fixed:

�
.4kˇ�3/
1 ; : : : ; �

.4kˇ�3/

2kˇ�2
� N; 0 � j�.4kˇ�3/

2kˇ�1
j � N:

We now set y
.4kˇ�3/
1 D j�.4kˇ�3/

2kˇ�1
j and "2kˇ�1 D sgn.�

.4kˇ�3/

2kˇ�1
/. Repeating the

same logic, we consider the next pair of interlaced rows �.4kˇ�4/ � �.4kˇ�3/ which

once more fixes all but one coordinate:

�
.4kˇ�4/
1 ; : : : ; �

.4kˇ�4/

2kˇ�3
� N;

y
.4kˇ�3/
1 D j�.4kˇ�3/

2kˇ�1
j � �

.4kˇ�4/

2kˇ�2
� N:

Thus, set y
.4kˇ�4/
1 D �

.4kˇ�4/

2kˇ�2
. This process can be repeated up to and including

�.2kˇ/, after which there are no more coordinates fixed by the interlacing. Thereafter

set y
.i/
j D j�.i/

j j, and throughout use the fact that "j D sgn.�
.2j �1/
j /. It is apparent

that this entire process is invertible, hence the map given by this construction, BSO is

a bijection. We may then employ Proposition 5.1 to achieve the following statement.
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Proposition 5.3. Let k; ˇ 2 N. Then

MoMSO.2N /.k; ˇ/ D # GTSO.N I k; ˇ/ D
X

N
"2¹˙1º2kˇ

#GTN
"

SO.N I kI ˇ/

D
X

N
"2¹˙1º2kˇ

#I N
"

SO.N I kI ˇ/ D #ISO.N I k; ˇ/:

5.2. Asymptotics and the leading order coefficient

Recall, from Section 4.2, that we defined continuous half-patterns and continuous

orthogonal Gelfand–Tsetlin patterns using the continuous Weyl chamber,

WN D ¹x D .x1; : : : ; xN / 2 R
N W x1 � � � � � xN º:

There we defined the index set �
Sp

.k;ˇ/
, here we give the equivalent definition for

the orthogonal case. For more explanation of the construction of this set, see the Sec-

tion 4.2:

�
SO
.k;ˇ/ WD

°

.m; n/W1 � m �
jn C 1

2

k

and 1 � n � 2kˇ � 1I

or 1 � i �
j4kˇ � n � 1

2

k

and 2kˇ � n < 4kˇ � 3I

n ¤ 4ˇ � 1; 8ˇ � 1; : : : ; 4.k � 1/ˇ � 1
±

[
°

.m; 4nˇ � 1/W 1 � m � 2nˇ � 1 and 1 � n �
jk

2

k

I

or 1 � m � 2.k � n/ˇ � 1 and
jk

2

k

C 1 � n < kº
±

:

Note that the size of the set �
SO
.k;ˇ/

is kˇ.2kˇ � 1/ � k. The set corresponding to

the indices “missing” from �
SO
.k;ˇ/

is the following

T
SO

.k;ˇ/ WD ¹.m; n/W y.n/
m 2 ISO.N I kI ˇ/ºn�

SO
.k;ˇ/:

Now, define the following set V
SO
.k;ˇ I

N
"/

� R
kˇ.2kˇ�1/�k , which is the continuous ver-

sion of I N
"

SO.N I kI ˇ/, except that a particular choice of k of the coordinates from

I N
"

SO.N I kI ˇ/ are determined by the linear equations (28)–(30). Then, V
SO
.k;ˇ I

N
"/

com-

prises the following elements. Firstly, we take coordinates x
.n/
m indexed by .m; n/ 2

�
SO
.k;ˇ/

which moreover satisfy

0 � x.n/
m � 1 for .m; n/ 2 �

SO
.k;ˇ/;

unless .m; n/ denotes the position of an odd-starter with corresponding ".nC1/=2 D
�1, in which case 0 < x

.n/
m � N ; and we take

N
" just as in the definition of 	 N

"

SO.N Ik;ˇ/,
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i.e., a fixed set of signs for the odd-starters. Additionally, V
SO
.k;ˇ I

N
"/

contains the fol-

lowing k elements, determined by the linear equations (28)–(30) in the definition of

I N
"

SO.N I kI ˇ/,

x
.n/
�

nC1
2

˘ for n D 4ˇ � 1; 8ˇ � 1; : : : ; 4bk
2
cˇ � 1;

x
.n/
�

4kˇ�n�1
2

˘ for n D 4.bk
2
c C 1/ˇ � 1; : : : ; 4.k � 1/ˇ � 1; 4kˇ � 3:

Thus,

• 0 � x
.n/
m � 1, for all x

.n/
m 2 V

SO
.k;ˇ I

N
"/

unless .m; n/ denotes the position of an odd-

starter with corresponding ".nC1/=2 D �1, in which case 0 < x
.n/
m � 1;

• x.n/; x.4kˇ�n/ 2 W
C

b nC1
2

c
, for all n D 1; : : : ; 2kˇ � 1;

• both .x.n//
2kˇ�1
nD1 and .x.4kˇ�n//

2kˇ�1
nD1 form continuous .2kˇ � 1/-orthogonal

Gelfand–Tsetlin patterns.

Observe that, just as in the symplectic case, V
SO
.k;ˇ I

N
"/

is convex as an intersection of

hyperplanes. Moreover, V
SO
.k;ˇ I

N
"/

is contained in the cube Œ0; 1�kˇ.2kˇ�1/�k and hence

in a closed ball of radius
p

kˇ.2kˇ � 1/ � k.

Proof of Theorem 1.2. The fact that the moments of moments are polynomials in N

was proven in Proposition 3.1, and the case of k D ˇ D 1 was handled above in

Proposition 5.2.

What remains to be shown is the statement concerning the leading order for gen-

eral k; ˇ. Firstly, note that, for a given
N
" 2 ¹˙1º2kˇ ,

#I N
"

SO.N I kI ˇ/ D #.Zkˇ.2kˇ�1/�k \ .N V
SO
.k;ˇ I

N
"///;

where for a set A, we write N A D ¹NxWx 2 Aº for its dilate by a factor of N . Making

use of Theorem 2.3 with � D N V
SO
.k;ˇ I

N
"/

we get

#I N
"

SO.N I kI ˇ/ D vol.N V
SO
.k;ˇ I

N
"// C Ok;ˇ .N kˇ.2kˇ�1/�k�1/

D N kˇ.2kˇ�1/�k
vol.VSO

.k;ˇ I
N
"// C Ok;ˇ .N kˇ.2kˇ�1/�k�1/:

Thus, by Proposition 5.3 we obtain

MoMSO.2N /.k; ˇ/ D
X

N
"2¹˙1º2kˇ

#I N
"

SO.N I kI ˇ/

D
X

N
"2¹˙1º2kˇ

ŒN kˇ.2kˇ�1/�k
vol.VSO

.k;ˇ I
N
"// C Ok;ˇ .N kˇ.2kˇ�1/�k�1/�

D cSO.k; ˇ/N kˇ.2kˇ�1/�k C Ok;ˇ .N kˇ.2kˇ�1/�k�1/;
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where

cSO.k; ˇ/ D
X

N
"2¹˙1º2kˇ

vol.VSO
.k;ˇ I

N
"//: (32)

Once more, it suffices to prove that cSO.k; ˇ/ > 0, which is the content of Lemma 5.4

below.

Lemma 5.4. Let k; ˇ 2 N. Then,

cSO.k; ˇ/ > 0: (33)

Proof. Recall that

cSO.k; ˇ/ D
X

N
"2¹˙1º2kˇ

vol.VSO
.k;ˇ I

N
"//:

Thus, the proof of the strict positivity of the leading order coefficient cSO.k; ˇ/ can

be deduced from showing that, for at least one choice of
N
" 2 ¹˙1º2kˇ , the volume

vol.VSO
.k;ˇ I

N
"/

/ is strictly positive. Henceforth, we choose
N
" D .1; 1; : : : ; 1/. Then, the

argument is near identical to the one given in the symplectic case, see the proof of

Lemma 4.3, aside from trivial differences in the shapes considered.

6. Examples

We give various explicit examples of the polynomials MoMG.N /.k; ˇ/ for G.N / 2
¹Sp.2N /; SO.2N /º and small, integer values of k; ˇ. These examples were calcu-

lated using expressions for averages over Sp.2N /;SO.2N / using Toeplitz and Hankel

determinants, see for example [15]. For small k; ˇ this is a computationally feasible

task, but the complexity grows swiftly with k; ˇ.

6.1. Symplectic case

We have

MoMSp.2N /.1; 1/ D 1

2
.N C 1/.N C 2/;

MoMSp.2N /.1; 2/ D 1

181440
.N C 1/.N C 2/.N C 3/.N C 4/.2N C 5/

� .23N 4 C 230N 3 C 905N 2 C 1650N C 1512/;
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MoMSp.2N /.1; 3/ D 1

405483668029440000
.N C 1/.N C 2/.N C 3/.N C 4/

� .N C 5/.N C 6/

� .10253349N 14 C 502414101N 13 C 11401640999N 12

C 158831139621N 11 C 1517607151837N 10

C 10524657547803N 9 C 54662663279397N 8

C 216189375784263N 7 C 655178814761674N 6

C 1517469287314596N 5 C 2654161159219304N 4

C 3424171976788416N 3 C 3125457664755840N 2

C 1856618315596800N C 563171761152000/;

MoMSp.2N /.2; 1/ D 1

10080
.N C 1/.N C 2/.N C 3/.N C 4/

� .3N 4 C 30N 3 C 127N 2 C 260N C 420/;

MoMSp.2N /.3; 1/ D 1

133382785536000
.N C 1/.N C 2/.N C 3/.N C 4/

� .N C 5/.N C 6/

� .5810N 12 C 244020N 11 C 4746259N 10 C 56513415N 9

C 459233580N 8 C 2688408450N 7 C 11665223647N 6

C 38004428175N 5 C 93222284960N 4

C 171600705780N 3 C 236485094544N 2

C 239758263360N C 185253868800/:

6.2. Orthogonal case

We have

MoMSO.2N /.1; 1/ D 2.N C 1/;

MoMSO.2N /.1; 2/ D 1

60
.N C 1/.N C 2/.2N C 3/.13N 2 C 39N C 20/;

MoMSO.2N /.1; 3/ D 1

43589145600
.N C 1/.N C 2/.N C 3/.N C 4/

� .677127N 10 C 16928175N 9 C 188303800N 8

C 1226849750N 7 C 5186281891N 6

C 14881334615N 5 C 29392642150N 4 C 39443286500N 3

C 34230199032N 2 C 17098220160N C 3632428800/;
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MoMSO.2N /.2; 1/ D 1

2
.N C 1/2.N C 2/2;

MoMSO.2N /.3; 1/ D 1

1360800
.N C 1/.N C 2/2.N C 3/2.N C 4/

� .N 2 C 5N C 9/.31N 4 C 310N 3 C 1163N 2

C 1940N C 2100/:
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