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Weighted words at degree two, I:
Bressoud’s algorithm as an energy transfer

Isaac Konan

Abstract. In a recent paper, we generalized a partition identity stated by Siladić in his study of
the level one standard module of type A.2/

2
. The proof used weighted words with an arbitrary

number of primary colors and all the secondary colors obtained from these primary colors, and
a brand new variant of the bijection of Bressoud for Schur’s partition identity. In this paper,
the first of two, we analyze this variant of Bressoud’s algorithm in the framework of statistical
mechanics, where an integer partition is viewed as an amount of energy shared, according to
certain properties, between several states. This viewpoint allows us to generalize the previous
result by considering a more general family of minimal difference conditions. For example,
we generalize the Siladić identity to overpartitions. In the second paper, we connect this result
to the Glaisher theorem and give some applications to level one perfect crystals.

1. Introduction

1.1. History

1.1.1. Weighted words: from Alladi–Gordon to Siladić. Let n be a positive integer.
A partition of n is defined as a non-increasing sequence of positive integers, called the
parts of the partition, whose sum is equal to n. For example, the partitions of 5 are

.5/; .4; 1/; .3; 2/; .3; 1; 1/; .2; 2; 1/; .2; 1; 1; 1/; and .1; 1; 1; 1; 1; 1; 1/:

By a partition identity we mean a combinatorial identity that links two or several
sets of integer partitions. The study of such identities has interested mathematicians
for centuries, dating back to Euler’s proof that there are as many partitions of n into
distinct parts as partitions of n into odd parts. The Euler distinct-odd identity can be
written in terms of q-series with the following expression:

.�qI q/1 D
1

.qI q2/1
:
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In the latter formula, .xIq/m D
Qm�1
kD0 .1� xq

k/ for anym 2N [ ¹1º and x, q such
that jqj < 1.

A broad generalization of Euler’s identity was found and proved by Glaisher.
In [17], Glaisher stated that, for any positive integers m and n, there are as many
partitions of n into parts not divisible bym as partitions of n with fewer thanm occur-
rences for each positive integer. One can convey the Glaisher identity as the following
q-series:Y

n�1

.1C qn C q2n C � � � C qn.m�1// D
Y
n�1
m−n

1

.1 � qn/
D
.qmI qm/1

.qI q/1
:

The theory of integer partitions underwent significant advancement in the earlier
twentieth century. Major works on partitions identities were led by MacMahon [23,
24], Rogers and Ramanujan [27], and Schur [28]. Schur stated in his work one of the
most important identities in the theory of partitions.

Theorem 1.1 (Schur). For any positive integer n, the number of partitions of n into
distinct parts congruent to˙1 mod 3 is equal to the number of partitions of n, where
parts differ by at least three and multiples of three differ by at least six.

There have been a number of proofs of Schur’s result over the years, including a q-
difference equation proof of Andrews [4] and a simple bijective proof of Bressoud [7].

In the 1990s, seminal work of Alladi and Gordon showed how the Schur theorem
emerges from more general results [3]. They introduced weighted words, a method
that consists in associating some colors to the integers, and then considering integer
partitions into colored integers. Such partitions are called colored partitions.

We consider that the integers occur in three colors ¹a; b; abº, and we order them
as follows:

1ab < 1a < 1b < 2ab < 2a < 2b < 3ab < � � � :

We then consider the partitions with colored parts different from 1ab and satisfying
the minimal difference conditions in the matrix

0B@
ab a b

ab 2 2 2

a 1 1 2

b 1 1 1

1CA: (1.1)

Here, the term “minimal difference conditions” means that, for a colored partition
�D .�1; : : : ; �s/, the part �i with color in the row and the part �iC1 with color in the
column differ by at least the corresponding entry in the matrix. An example of such
a partition is .7ab; 5b; 4a; 3ab; 1b/. The Alladi–Gordon refinement of Schur’s partition
theorem [3] is stated as follows.
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Theorem 1.2 (Alladi–Gordon). Let u, v, n be non-negative integers. Let us denote
by A.u; v; n/ the number of partitions of n into u distinct parts with color a and v
distinct parts with color b, and denote by B.u; v; n/ the number of partitions of n
satisfying the conditions above, with u parts with color a or ab, and v parts with
color b or ab. We then have A.u; v; n/ D B.u; v; n/ and the identityX
u;v;n�0

B.u; v; n/aubvqn D
X

u;v;n�0

A.u; v; n/aubvqn D .�aqI q/1.�bqI q/1:

We obtain the Schur theorem by applying the transformation

.q; a; b/ 7! .q3; q�2; q�1/

in the latter identity. In fact, the minimal difference conditions given in (1.1) provide
after these transformations the minimal differences in Schur’s theorem.

The weighted words method appears as a major tool in the study of partition iden-
tities. On one hand, it allows us to have a better understanding of the partitions’
structure, and gives a hint to find some suitable bijective proofs for the identities.
On the other hand, one can generate an unlimited number of new identities by apply-
ing transformations on the colors. Subsequent works using this method led to the
discovery of several new identities [1, 2, 10, 14, 15, 18, 19].

Another rich source of partition identities is the representation theory of Lie algeb-
ras. This was initiated by the work of Lepowsky and Wilson [20], who proved the
Rogers–Ramanujan identities by using representations of level 3 standard modules of
the affine Lie algebra A.1/1 . Subsequently, Capparelli [8], Meurman–Primc [25] and
others examined related standard modules and affine Lie algebras and found many
new partition identities.

In [29], Siladić gave the following partition identity in his study of representations
of the twisted affine Lie algebra A.2/2 .

Theorem 1.3 (Siladić). The number of partitions �1 C � � � C �s of an integer n into
distinct odd parts is equal to the number of partitions of n, into parts different from 2,
such that �i � �iC1 � 5 and

�i � �iC1 D 5) �i C �iC1 � ˙3 mod 16;

�i � �iC1 D 6) �i C �iC1 � 0;˙4; 8 mod 16;

�i � �iC1 D 7) �i C �iC1 � ˙1;˙5;˙7 mod 16;

�i � �iC1 D 8) �i C �iC1 � 0;˙2;˙6; 8 mod 16:

This theorem has been refined by Dousse in [14], where she used weighted words
with two primary colors a, b and three secondary colors a2, ab, b2. Starting from
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her refinement, the author was able to give in [18] a generalization of Siladić’s the-
orem for an arbitrary number n of primary colors a1; : : : ; an along with the set
¹aiaj W i; j D 1; : : : ; nº of all the n2 secondary colors. He bijectively proved his iden-
tity by using a brand new variant of the algorithm given by Bressoud in his bijective
proof of Schur’s identity [7].

In this paper, we aim at generalizing the result given in [18], by using the statistic-
mechanical viewpoint of the integer partitions.

1.1.2. Integer partitions in statistical mechanics. The connection between integer
partitions and physics was first pointed out by Bohr and Kalckar [6]. In the same year,
Van Lier and Uhlenbeck noted the links between the problem of counting microstates
of the systems obeying Bose or Fermi statistics and some problems related to integer
partitions [31].

Since then, a current approach in statistical mechanics consists in considering
a partition of a given integer into parts with certain restrictions as a sharing of a fixed
amount of energy among the different possible states of an assembly. This approach
can be found in the seminal works of Auluck and Kothari [5], Temperley [30] and
Nanda [26].

In this paper, we view the weighted words in the framework of statistical mecha-
nics. We then refer to the colors as states, and the sizes of parts as potentials. To place
the study of weighted words in a more general context, we first need to relax our
conditions in the definition of integer partitions.

Let C be a set of colors, and let ZC D ¹kc W k 2 Z; c 2 Cº be the set of colored
integers. We recall that we identify the colors as states, and we now refer to the colored
integers as energetic particles having a state and a potential.

Definition 1.4. Let � be a binary relation defined on ZC . A generalized colored
partition with relation� is a finite sequence .�1; : : : ;�s/ of energetic particles, where
for all i 2 ¹1; : : : ; s � 1º, �i � �iC1.

In the following, we denote by c.�i / 2 C the state of the particle �i . The quantity
j�j D �1 C � � � C �s is the total size or energy of � , and C.�/ D c.�1/ � � � c.�s/ is
its color sequence or state.

In the remainder of this paper, an order is a binary relation that is reflexive, anti-
symmetric and transitive. With any order �, one can associate a unique strict order �
such that x � y is equivalent to x ¤ y and x � y. An order is said to be total if any
pair of element can be compared. By abuse of terminology, a strict total order is the
strict order associated to a total order.

Remark 1.5. The binary relation is not necessarily an order. When� is a strict total
order, we can easily check that every finite set of colored parts defines a generalized
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colored partition by ordering the parts. In the same way, for a total order, the general-
ized colored partitions are finite multi-sets of colored integers.

For example, if we set C D ¹cº to be a singleton, and the relation� defined by

kc � lc , k � l;

one can then see the classical partitions as the generalized partitions .�1; : : : ;�s/ such
that the last particle �s has a positive potential. Using this definition, we can convey
the minimal difference conditions in the weighted words as a relation� defined on
the set of particles.

The main contribution of this paper will consist in viewing the variant of Bres-
soud’s algorithm, used in the generalization of Siladić’s theorem in [18], as a process
in which we operate energy transfers according to the states involved in the general-
ized colored partition. This viewpoint then allows us to see the difference conditions
defined for the Siladić theorem as some particular allowable differences between the
potentials of consecutive particles. By taking a larger family of allowable differences
between the potentials of consecutive particles, we generate an infinite family of iden-
tities generalizing the previous result on the Siladić theorem.

1.2. Statement of results

Let C be a set of states, countable or not, and let P D ZC be the corresponding set
of particles. We recall that the energetic particle kc is identified by its potential k and
its state c. In the remainder of this paper, such a particle is called a primary particle.
We consider a relation � on ZC , related to a certain energy (see Definition 2.1), and
we then define the set O to be the set of generalized colored partitions with relation�.

We now define the set of secondary states by C2 D ¹cc
0W c; c0 2 Cº, and we note

that the secondary states are non-commutative products of two primary states, i.e.,
cc0 ¤ c0c for c ¤ c0 2 C . We extend this definition to degree d for any d � 1. The
set Cd of states with degree d is the set of all the non-commutative products of d
primary states. We then have C1 D C , and we use the term “secondary” for degree 2.
The weighted words method is said to be at degree d if it only involves states with
degree at most d .

A secondary particle with state cc0 is then defined to be a sum of two consecutive
primary particles, in terms of �, such that the greater particle (to the left of �) has
color c and the smaller particle (to the right of �) has color c0 (see Definition 2.7).
We denote by � the set of secondary particles. Defining a suitable relation� on the
set of primary and secondary particles P t � (see Definition 2.9), we consider the
set E of generalized colored partitions consisting of primary or secondary particles
well-related by�.
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Remark 1.6. The color sequence (or state) of an element of O or E is a finite non-
commutative product of primary states in C .

The main theorem of this paper then has the following formulation.

Theorem 1.7. For any integer n and any finite non-commutative product C of colors
in C , there exists a bijection between ¹� 2 OW .C.�/; j�j/ D .C; n/º and ¹� 2 EW

.C.�/; j�j/ D .C; n/º.

An explicit statement of the latter theorem is given in Theorem 2.12. For now, we
give an example that will generalize Siladić’s theorem to overpartitions. Recall that
an overpartition is a partition where we can over-line at most one occurrence of each
positive integer [9]. It has been a recurrent problem in partition theory to extend some
partition identities to overpartitions [11–13, 16, 21, 22].

Consider the set of colors C D ¹b < a < a < bº and the relation � defined by the
minimal difference conditions in the following matrix:

D WD

0BBB@
b a a b

b 1 1 1 1

a 0 1 1 1

a 0 0 0 1

b 0 0 0 0

1CCCA:
These difference conditions imply that a partition in O can have any number of
primary particles with a fixed potential and a non-over-lined state, while there is at
most one primary particle with a fixed potential and an over-lined state. The partitions
of O are then identified as the generalized overpartitions whose definition is given by
the following.

Definition 1.8. Let us fix a set of states C . A generalized overpartition is a generalized
partition where we are allowed to over-line at most one particle with a fixed potential
and state.

Example 1.9. The generalized partition

.1a; 1a; 1b; 0b; 0b; 0a; 0a; 0a; 0b;�1b;�1a/

belongs to O, and corresponds to the generalized overpartition

.1a; 1a; 1b; 0b; 0b; 0a; 0a; 0a; 0b;�1b;�1a/:

We then call the partitions in O the colored overpartitions, and this means that
we can have any number of particles with a fixed potential and state, with at most
one such particle over-lined. We observe that once a particle is over-lined, by the
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difference conditions in D, it no longer has the same order with respect to the other
particles. For example, we have 1b � 1a but 1b � 1a. This is different from the usual
convention, but the way we defined these relative orders plays a major role in the
definition of the corresponding secondary particles.

We now define the relation� by the minimal difference conditions in the follow-
ing matrix:

D0 WD

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b a a b b
2

ba ba bb ab a
2

aa ab ab aa a2 ab bb ba ba b2

b 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1

a 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 1

a 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1

b 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0

bb 3 3 3 3 4 4 4 4 3 4 4 4 3 3 3 4 3 3 3 3

ba 2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3

ba 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3

bb 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1

ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2

a
2

2 3 3 3 2 2 2 2 3 4 4 4 3 3 3 4 3 3 3 3

aa 2 2 2 3 2 2 2 2 1 2 2 2 1 1 1 2 3 3 3 3

ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1

ab 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2

aa 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2

a2 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2

ab 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 1 1 1 1

bb 1 1 1 1 3 3 3 3 2 3 3 3 2 2 2 3 2 2 2 2

ba 1 2 2 2 1 1 1 1 2 3 3 3 2 2 2 3 2 2 2 2

ba 1 1 1 2 1 1 1 1 0 1 1 1 0 0 0 1 2 2 2 2

b2 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (1.2)

By definition, the secondary particles with state cc0 then have a potential with the
same parity as the entry ofD corresponding to the line c and the column c0. Therefore,
we have the following correspondence for secondary states:

0BBB@
b a a b

b b2odd baodd baodd b
2

odd

a abeven a2odd a2odd abodd

a abeven a2even a2even abodd

b b
2

even baeven baeven b2even

1CCCA; (1.3)

where cparity refers to a particle with state c and potential with the same parity as the
index parity. Here again, the generalized partitions in E can be identified as some
generalized overpartitions for the set of colors ¹a; b; a2; ab; ba; b2º. We now state the
corresponding corollary to Theorem 1.7. To simplify the formulation of the corollary,
we assume that the symbols a, b and c commute in the generating functions.

Corollary 1.10. Let u, v, w and n be non-negative integers. Denote by A.nIu; v;w/
the number of colored overpartitions of size n with positive potentials and colors
in ¹a; bº, with u particles with color a, v particles with color b and w over-lined
particles. Let us denote by B.nIu; v; w/ the number of colored overpartitions of size
n with colors in ¹a; b; a2; ab; ba; b2º, with positive potential for the primary particles
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and potential greater than one for the secondary particles, satisfying the minimal
difference conditions given by D0, with u occurrences of the symbol a, v occurrences
of the symbol b, and such that w equals the number of over-lined particles plus twice
the number of even particles with color ab and odd particles with color a2, ba or b2.
We then have A.nIu; v;w/ D B.nIu; v;w/ and the identityX

n;u;v;w�0

B.nIu; v;w/aubvcwduCv�wqn

D

X
n;u;v;w�0

A.nIu; v;w/aubvcwduCv�wqn

D
.�acqI q/1.�bcqI q/1

.adqI q/1.bdqI q/1
:

In the previous corollary, if we restrict the partitions in O to those with only over-
lined particles, i.e., uC v D w, then by applying the transformations .q; a; b; c; d/ 7!
.q4; q�1; q�3; 1; 0/, we retrieve the identity given by Siladić in Theorem 1.3.

On the other hand, by restricting the partitions in O to those with only non-over-
lined particles, i.e., w D 0, and by applying the transformations .q; a; b; c; d/ 7!
.q4; q�3; q�1; 0; 1/, we obtain the following analogous theorem of Siladić’s identity.

Theorem 1.11. The number of partitions �1C � � � C �s of an integer n into odd parts
is equal to the number of partitions of n such that

�i � �iC1 D 0) �i C �iC1 � ˙4 mod 16;

�i � �iC1 D 1) �i C �iC1 � ˙3 mod 16;

�i � �iC1 D 2) �i C �iC1 � ˙2;˙6 mod 16;

�i � �iC1 D 3) �i C �iC1 � ˙1;˙5;˙7 mod 16:

Example 1.12. For n D 10, the partitions of n into odd parts are

.9; 1/; .7; 3/; .7; 1; 1; 1/; .5; 5/; .5; 3; 1; 1/; .5; 1; 1; 1; 1; 1/; .3; 3; 3; 1/;

.3; 3; 1; 1; 1; 1/; .3; 1; 1; 1; 1; 1; 1; 1/; and .1; 1; 1; 1; 1; 1; 1; 1; 1; 1/

and the partitions of given by Theorem 1.11 are

.10/; .9; 1/; .8; 2/; .7; 3/; .7; 2; 1/; .6; 4/; .6; 2; 2/; .5; 2; 2; 1/;

.4; 2; 2; 2/; and .2; 2; 2; 2; 2/:

Remark 1.13. For Siladić’s theorem, since we have b < a, we do the transformation
.a;b/ 7! .q�1; q�3/ to keep the order, while for the analogous theorem, we have a < b
and we then apply .a; b/ 7! .q�3; q�1/.
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The remainder of the paper is organized as follows. We first present in Section 2
the key tools and state explicitly the main result of this paper, namely Theorem 2.12.
Then in Section 3, we give the two bijections for Theorem 2.12 which are inverse to
each other. After that, in Section 4, we prove the well-definedness of the bijections.
Finally, in Section 5, we close with some remarks and we make the connection with
the second part of this series of papers.

2. The setup

Let C be a set of states, countable or not. We recall the set of primary particles ZC ,
which we also denote by P D Z� C . In the following, a primary particle with poten-
tial k and state c is identified as kc or .k; c/.

Definition 2.1. A minimal energy is a function " from C2 to ¹0; 1º. The term minimal
here refers to energies with values in Z�0, as 0 and 1 are the smallest non-negative
integers. When C D ¹c1; : : : ; cnº is a finite set, the data given by " is equivalent to the
matrix M" D .".ci ; cj //

n
i;jD1, which we call the energy matrix for ".

We say that a minimal energy is transitive if it satisfies the triangle inequality:

8c; c0; c00 2 C ; ".c; c00/ � ".c; c0/C ".c0; c00/:

Let c1; : : : ; ct be a sequence of primary states. We then define the energy of transfer
from c1 to ct to be the sum of the intermediate minimal energies:

t�1X
iD1

".ci ; ciC1/:

Remark 2.2. Note that if " is a (transitive) minimal energy, then "�W .c; c0/ 7! ".c0; c/

is also a (transitive) minimal energy. Furthermore, if C is finite, the energy matrixM"�

is then the transpose of the energy matrix M".

In the remainder of this paper, we consider " to be a minimal energy.

Definition 2.3. The energy relation �" with respect to " is the binary relation on P 2

defined by
.k; c/ �" .k

0; c0/, k � k0 � ".c; c0/: (2.1)

This relation is transitive if and only if " is transitive.

Examples 2.4. Let C D ¹c1; : : : ; cnº be a set of states. For any proposition A, set
�.A/ D 1 if A is true and �.A/ D 0 otherwise.
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(1) For ".ci ; cj / D �.i < j /, we can define on C the strict order c1 < � � � < cn
and the energy relation �" becomes the lexicographic order on P :

� � � �" .k C 1/c1
�" kc �" kcn

�" kcn�1
�" kcn�1

�" � � � �" kc2

�" kc2
�" kc1

�" kc1
�" � � � :

Here, ordering kci
�" kci

simply indicates a possible repetition of the part kci
.

The corresponding energy matrix is given by

M" D

0BBBBBB@

c1 c2 � � � cn�1 cn

c1 0 1 � � � 1 1

c2 0 0
: : : 1 1

:::
:::

:::
: : :

: : :
:::

cn�1 0 0 � � � 0 1

cn 0 0 � � � 0 0

1CCCCCCA:

(2) For ".ci ; cj / D �.i � j /, using the previous ordering on C , the energy rela-
tion �" is the strict lexicographic order on P :

� � � �" .k C 1/c1
�" kcn

�" kcn�1
�" � � � �" kc2

�" kc1
�" � � � :

Here, we do not have a repetition of the parts kci
. The corresponding energy

matrix is given by

M" D

0BBBBBB@

c1 c2 � � � cn�1 cn

c1 1 1 � � � 1 1

c2 0 1 � � � 1 1
:::

:::
: : :

: : :
:::

:::

cn�1 0 0
: : : 1 1

cn 0 0 � � � 0 1

1CCCCCCA:

Example 2.5. Let C 0 D ¹c1; : : : ; cnº be a set of states. If we set C
0
D ¹cW c 2 C 0º and

C D C 0 t C
0

we can then define " on C2, for any i; j 2 ¹1; : : : ; nº, by the following:

(1) ".ci ; cj / D �.i < j /;

(2) ".ci ; cj / D 0, ".ci ; cj / D 1;

(3) ".ci ; cj / D �.i � j /.

The relation �" is then an order on ZC , where over-lined colored particles can occur
at most once in any ordered chain:

� � � �" .k C 1/cn
�" kcn

�" kcn
�" kcn�1

�" � � � �" kc2
�" kc1

�" kc1
�" kc1

�" kc2
�" � � � �" kcn�1

�" kcn
�" � � � :
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The latter inequalities give some generalized colored partitions that can be identified
as overpartitions. The corresponding energy matrix is given by

M" D

0BBBBBBBB@

cn � � � c1 c1 � � � cn

cn 1 � � � 1 1 � � � 1
:::

:::
: : :

:::
::: 1?

:::

c1 0 � � � 1 1 � � � 1

c1 0 � � � 0 0 � � � 1
:::

::: 0?
:::

:::
: : :

:::

cn 0 � � � 0 0 � � � 0

1CCCCCCCCA
:

Note that the examples given in Examples 2.4 respectively correspond to the restric-
tion to ¹c1; : : : ; cnº in the first case, and the restriction to ¹cn; : : : ; c1º, with ci �
cnC1�i in the second case.

We also remark that for C 0 D ¹a < bº, we retrieve the primary particles used
in Corollary 1.10.

Example 2.6. Let us consider C D ¹a; bº, and the minimal energy " given by the
following energy matrix:

M" D

 a b

a 1 0

b 0 1

!
:

The relation " is not transitive, as we have ".a; a/ > ".a; b/ C ".b; a/. The well-
ordered sequences of particles with the same potential have the form

� � � �" ka �" kb �" ka �" kb �" � � � :

We recall that a secondary state is the product of two primary states. The key
idea is to build secondary particles starting from the primary particles. The following
definition permits a suitable construction for these secondary particles.

Definition 2.7. We define the secondary particles as sums of two consecutive primary
particles in terms of �". We denote by �" D Z � C2 the set of secondary particles,
in such a way that the particle

.k; c; c0/ D .k C ".c; c0/; c/C .k; c0/

has potential 2kC ".c; c0/ and state cc0. In fact, .kC ".c; c0/; c/ is exactly the primary
particle of state c with the smallest potential, which is well-related to .k; c0/ in terms
of �". We then set the functions  and � on �", defined by

.k; c; c0/ D .k C ".c; c0/; c/ and �.k; c; c0/ D .k; c0/;
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to be respectively the upper and lower halves of .k;c;c0/. In the following, we identify
the secondary particle as .k; c; c0/ or .2k C ".c; c0//cc0 .

Example 2.8. Let us take C D ¹a; aº in Example 2.5. We then have

 a a

a 1 1

a 0 0

!
and we obtain with Definition 2.7 and (1.3) the following secondary particles:8̂̂̂̂

<̂
ˆ̂̂:
.k; a; a/ D 2ka2 ;

.k; a; a/ D 2kaa � 2ka2 ;

.k; a; a/ D 2k C 1aa � 2k C 1a2 ;

.k; a; a/ D 2k C 1a2 � 2k C 1a2 :

We now build a relation on the set P t �" of primary and secondary particles.

Definition 2.9. We define the relation�" on P t �" as follows:

(1) Two primary particles of P are well-ordered by �" if and only if they are
well-ordered but not consecutive in terms of �":

.k; c/�" .k
0; c0/, k � k0 > ".c; c0/: (2.2)

(2) A primary particle of P is well-ordered with a secondary particle of �" if and
only if their potentials’ difference is at least equal to the energy of transfer
from the first to the last primary states:

.k; c/�" .k
0; c0; c00/, k � .2k0 C ".c0; c00// � ".c; c0/C ".c0; c00/: (2.3)

(3) A secondary particle of �" is well-ordered with a primary particle of P if and
only if their potentials’ difference is greater than the transfer energy (from the
first to the last state):

.k; c; c0/�" .k
0; c00/, .2k C ".c; c0// � k0 > ".c; c0/C ".c0; c00/: (2.4)

(4) Two secondary particles of �" are well-ordered by�" if and only if the lower
half of the first one is greater than the upper half of the second in terms of �":

.k; c; c0/�" .k
0; c00; c000/, �.k; c; c0/ �" .k

0; c00; c000/: (2.5)

This is equivalent to saying that the potentials’ difference k � k0 is at least
equal to the energy of transfer ".c0; c00/C ".c00; c000/.
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One can check that for C 0 D ¹a < bº and the minimal energy " described in
Example 2.5, the relations in the latter definition exactly give the minimal difference
conditions presented in (1.2).

Remark 2.10. We notice that

.k; c/ �" .k
0; c0/ and .k; c/ 6�" .k

0; c0/, k � k0 D ".c; c0/:

Such pair of primary particles is called a troublesome pair.

Definition 2.11. We define O" (respectively E") to be the set of all generalized colo-
red partitions with particles in P (respectively P t �") and relation �" (respectively
�").

For � 2 ¹0; 1º, we consider the following sets:

• P �C D Z�� � C and �
�C
" D Z�� � C2 D ¹.k; c; c0/ 2 �"W k � �º;

• P �� D Z�� � C and �
��
" D ¹.k; c; c

0/ 2 �"W k C ".c; c
0/ � �º.

We then denote by O
�C
" (respectively O

��
" ) the subset of O" of generalized colored

partitions with particles in P �C (respectively P ��), and by E
�C
" (respectively E

��
" )

the subset of E" of generalized colored partitions with particles in P �C t �
�C
" (respec-

tively P �� t �
��
" ).

Since the secondary states are products of two primary states, the states of parti-
tions in O" and E" are then seen as a finite non-commutative product of primary states
in C .

We now present the main result of this paper.

Theorem 2.12. For any integer n and any state C as a finite non-commutative pro-
duct of states in C , there exists a bijection between ¹� 2 O"W .C.�/; j�j/ D .C; n/º

and ¹� 2 E"W .C.�/; j�j/D .C; n/º. In particular, for � 2 ¹0; 1º, we have the identitiesˇ̌®
� 2 E

�C
" W .C.�/; j�j/ D .C; n/

¯ˇ̌
D
ˇ̌®
� 2 O

�C
" W .C.�/; j�j/ D .C; n/

¯ˇ̌
;ˇ̌®

� 2 E��" W .C.�/; j�j/ D .C; n/
¯ˇ̌
D
ˇ̌®
� 2 O��

" W .C.�/; j�j/ D .C; n/
¯ˇ̌
:

One can observe that, for any integer n and any state C with at least two primary
states, the sets ¹� 2 O"W .C.�/; j�j/ D .C; n/º and ¹� 2 E"W .C.�/; j�j/ D .C; n/º are
infinite. However, as soon as we give an upper or a lower bound on the particles’
potentials, the corresponding subsets are finite.

Example 2.13. Let us consider C 0 D ¹a < bº in Example 2.5 and the corresponding
minimal energy. We then have for n D 10 and C D baba the relation®
� 2 O1�

" W .C.�/; j�j/ D .baba; 10/
¯
D
®
� 2 E1�" W .C.�/; j�j/ D .baba; 10/

¯
D ;;
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and the partitions in O
�C
" and E

�C
" with the corresponding energy and state are given

in the following table:

O
0C
" O

1C
" E

0C
" E

1C
"

.9
b
; 1a; 0b ; 0a/ .9

b
; 1a; 0ba/

.8
b
; 2a; 0b ; 0a/ .8

b
; 2a; 0ba/

.7
b
; 3a; 0b ; 0a/ .7

b
; 3a; 0ba/

.7
b
; 2a; 1b ; 0a/ .7

b
; 3ab ; 0a/

.6
b
; 4a; 0b ; 0a/ .6

b
; 4a; 0ba/

.6
b
; 3a; 1b ; 0a/ .6

b
; 3a; 1b ; 0a/

.6
b
; 2a; 1b ; 1a/ .6

b
; 2a; 1b ; 1a/ .6

b
; 3ab ; 1a/ .6

b
; 3ab ; 1a/

.5
b
; 4a; 1b ; 0a/ .9

ba
; 1b ; 0a/

.5
b
; 3a; 2b ; 0a/ .7

ba
; 3b ; 0a/

.5
b
; 3a; 1b ; 1a/ .5

b
; 3a; 1b ; 1a/ .5

b
; 3a; 2ba/ .5

b
; 3a; 2ba/

.4
b
; 3a; 2b ; 1a/ .4

b
; 3a; 2b ; 1a/ .7

ba
; 2b ; 1a/ .7

ba
; 2b ; 1a/

We have for n D �8 and C D baba the relation®
� 2 O

0C
" W .C.�/; j�j/D .baba;�8/

¯
D
®
� 2 E

0C
" W .C.�/; j�j/D .baba;�8/

¯
D ;;

and the partitions in O
��
" and E

��
" with the corresponding energy and state are given

in the following table:

O1�
" O0�

" E1�
" E0�

"

.1
b
; 0a;�1b ;�8a/ .1

b
;�1ab ;�8a/

.1
b
; 0a;�2b ;�7a/ .1

ba
;�2b ;�7a/

.1
b
; 0a;�3b ;�6a/ .1

ba
;�3b ;�6a/

.1
b
;�1a;�2b ;�6a/ .1

b
;�3ab ;�8a/

.1
b
; 0a;�4b ;�5a/ .1

ba
;�4b ;�5a/

.1
b
;�1a;�3b ;�5a/ .1

b
;�1a;�3b ;�5a/

.0
b
;�1a;�2b ;�5a/ .0

b
;�1a;�2b ;�5a/ .0

b
;�3ab ;�5a/ .0

b
;�3ab ;�5a/

.1
b
;�1a;�4b ;�4a/ .1

b
;�1a;�8ba/

.1
b
;�2a;�3b ;�4a/ .1

b
;�3a;�6ba/

.0
b
;�1a;�3b ;�4a/ .0

b
;�1a;�3b ;�4a/ .�1

b
;�3a;�4ba/ .�1

b
;�3a;�4ba/

.0
b
;�2a;�3b ;�3a/ .0

b
;�2a;�3b ;�3a/ .0

b
;�2a;�6ba/ .0

b
;�2a;�6ba/

We obtain the following corollary of Theorem 2.12.
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Corollary 2.14. For any set C of primary states and any minimal energy " on C2,
we haveX

n�0
C2hCi

ˇ̌®
� 2 E

�C
" W .C.�/; j�j/ D .C; n/

¯ˇ̌
Cqn

D

X
n�0
C2hCi

ˇ̌®
� 2 O

�C
" W .C.�/; j�j/ D .C; n/

¯ˇ̌
Cqn D

Y
m��

FC ."I q
m/;

where hCi is the non-commutative monoid generated by the primary states of C , and
FC ."; x/, in the commutative algebra ZŒŒC ; x��, is the generating function of all the
partitions in O" with particles’ potential equal to 1, and C is the commutative product
corresponding to C in ZŒŒC ; x��. In particular, we have the following explicit expres-
sions for FC ."; x/:

(1) For C D ¹c1; : : : ; cnº, we have

".ci ; cj / FC ."; x/

0
1

1 � .c1 C � � � C cn/x

1 1C .c1 C � � � C cn/x

�.i ¤ j / 1C

nX
iD1

cix

1 � cix

�.i < j /

nY
iD1

1

1 � cix

�.i � j /

nY
iD1

.1C cix/

(2) For C 0 D ¹c1; : : : ; cnº and " as described in Example 2.5,

FC ."; x/ D

nY
iD1

1C cix

1 � cix
:

(3) For C D ¹a; bº and " as described in Example 2.6,

FC ."; x/ D
.1C ax/.1C bx/

.1 � abx2/
:

Remark 2.15. In Theorem 2.12, by setting C D¹a1< � � �<atº, ".ai ;aj /D�.i � j /,
and �C D 1C (equivalent to the last case of (1) in the latter corollary), we recover the
main generalization of Siladić’s theorem given in [18].

The remainder of the paper will focus on the bijective proof of Theorem 2.12.
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3. Bijective maps for Theorem 2.12

In this section, we define an operator on the pairs of particles of different degrees
(primary and secondary), presented as an energy transfer, and a bijection for the proof
of Theorem 2.12 which uses this operator.

3.1. Energy transfer

Definition 3.1. We define a mapping ƒ on P � �" t �" � P by the following rela-
tions:

P � �" ! �" �P ;

.k; c/; .k0; c0; c00/ 7! .k0 C ".c0; c00/; c; c0/; .k � ".c; c0/ � ".c0; c00/; c00/;

�" �P ! P � �";

.k; c; c0/; .k0; c00/ 7! .k0 C ".c; c0/C ".c0; c00/; c/; .k � ".c0; c00/; c0; c00/:

What doesƒ do to the particles? Let us consider the following diagrams according
to the occurrences of primary states:

P � �" ! �" �P : c c0 c00,
C".c0; c00/C".c; c0/

�".c; c0/ � ".c0; c00/

�" �P ! P � �": c c0 c00.
�".c0; c00/�".c; c0/

C".c; c0/C ".c0; c00/

These diagrams sum up the transfer of energies that occurs during the application
of ƒ. For example, one can understand the process on the first diagram as follows:

(1) The lower half .k0; c00/moves from state c00 to c0 and gains the minimal energy
".c0; c00/:

c0  c00;

k0 C ".c0; c00/ k0:

(2) The upper half .k0 C ".c0; c00/; c0/ moves from state c0 to c and gains the
minimal energy ".c; c0/:

c  c0;

k0 C ".c; c0/C ".c0; c00/ k0 C ".c0; c00/:
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(3) The primary particle .k; c/ moves from state c to state c00, through state c0,
and loses the energy of transfer ".c; c0/C ".c0; c00/:

c ! c0 ! c00;

k ! k � ".c; c0/! k � ".c; c0/ � ".c0; c00/:

The second diagram follows exactly the same transfer of energies. We can then seeƒ
as an energy transfer that conserves the sequence of states but switches particles with
the minimal loss or gain of energies. One can check that the operator ƒ is an involu-
tion, i.e., ƒ2 D Id.

In the following, if we apply ƒ to a pair of particles .x; y/ in P � �" t �" � P ,
we say that we cross the particles x and y.

Example 3.2. We take C 0 D ¹a < bº in Example 2.5. We then haveƒ.3ab;�10a/D
.�9a; 2ba/. The energy transfer that occurs can be summarized by the diagram:

2a C 1b �10a

1b C 1a�9a

�1 �0

C1

The main proposition that follows from the definition of ƒ is the following.

Proposition 3.3. For any .p; s/ 2 P � �", let us set .s0; p0/ D ƒ.p; s/. We then have

p 6�" s, s0 �" p
0; (3.1)

p 6�" .s/, �.s0/�" p
0: (3.2)

The relation (3.1) means that the operator ƒ allows us to order, in terms of�",
two particles of different degrees which are not well-related. This property stands
as the key result that will allow us to construct the mapping ˆ from O" to E". On
the other hand, the more subtle to explain relation (3.2) will play a major role in the
inverse ‰ of ˆ.

Proof of Proposition 3.3. Let us set p D .k; c/ and s D .k0; c0; c00/. We then obtain
s0 D .k0 C ".c0; c00/; c; c0/ and p0 D .k � ".c; c0/ � ".c0; c00/; c00/. We also observe
that �.s0/ D .s/. We then have the following equivalences:

p 6�" s, k � .2k0 C ".c0; c00// < ".c; c0/C ".c0; c00/ by (2.3)

, Œ2.k0 C ".c0; c00//C ".c; c0/� � .k � ".c; c0/ � ".c0; c00//

> ".c; c0/C ".c0; c00/

, s0 �" p
0; by (2.4)
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p 6�" .s/, k � .k0 C ".c0; c00// < ".c; c0/ by (2.1)

, k � k0 � 1C ".c; c0/C ".c0; c00/

, .k0 C ".c0; c00// � .k � ".c; c0/ � ".c0; c00//

� 1C ".c0; c00/

, �.s0/�" p
0: by (2.2)

This completes the proof of Proposition 3.3.

3.2. From O" to E"

We now present the map ˆ from O" to E".
Let us take any � 2 O". We set � D .�1; : : : ; �s/ with �k �" �kC1 for any k 2

¹1; : : : ; s � 1º. We illustrate this map by an example with C 0 D ¹a < bº and " as
described in Example 2.5:

� D .11b; 5b; 5a; 5a; 4a; 2a; 1b; 1a; 0a; 0b;�1b;�2b/:

Step 1: First identify the consecutive disjoint troublesome pairs of particles (�k ,
�kC1 such that �k 6�" �kC1), beginning by those with the smallest potentials (from
the right to the left).

Then, sum up these troublesome pairs .�k; �kC1/ to have the secondary particles
corresponding to �k C �kC1, without changing the order of the particles. We then
obtain a new sequence of particles (where particles are not necessarily well-related
in terms of�") �0 D .�01; : : : ; �

0
t /, with particles �0

k
in O" and E". In our example,

we have the troublesome pairs

� D .11b; 5b; 5a; 5a„ƒ‚…; 4a; 2a; 1b„ƒ‚…; 1a; 0a„ƒ‚…; 0b;�1b„ ƒ‚ …;�2b/
and we obtain

�0 D .11b; 5b; 10a2„ƒ‚…; 4a; 3ab„ƒ‚…; 1aa„ƒ‚…; �1bb„ƒ‚…;�2b/:
Step 2: As long as there is a pair .�0

k
; �0
kC1

/ 2 .P � �"/ t .�" � P / such that
�0
k
6�" �

0
kC1

, cross the particles in the pair with the operator ƒ:

.�0k; �
0
kC1/! ƒ.�0k; �

0
kC1/:

The order in which we perform the crossings is not specified here. Let us then apply
this process in our example according to whether we choose the particles with the
greatest or the smallest potentials for each application ofƒ. We then have the follow-
ing diagrams:
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Choice of the smallest potentials

11b 5b 10a2 4a 3ab 1aa �1bb �2b

11b 10ba 5a 4a 3ab 1aa �1bb �2b

11b 10ba 5a 5aa 2b 1aa �1bb �2b

11b 10ba 6aa 4a 2b 1aa �1bb �2b

11b 10ba 6aa 4a 2b 1aa �1b �2b2

Choice of the greatest potentials

11b 5b 10a2 4a 3ab 1aa �1bb �2b

11b 5b 10a2 4a 3ab 1aa �1b �2b2

11b 5b 10a2 5aa 2b 1aa �1b �2b2

11b 10ba 5a 5aa 2b 1aa �1b �2b2

11b 10ba 6aa 4a 2b 1aa �1b �2b2

One can observe in this example that the final result is the same for both choices.
This is indeed the case in general, whatever the choice of the applications of ƒ.

We claim that Step 2 always ends, and that the final result �00 is unique and belongs
to E" (two consecutive particles are always well-related by�"). We then set ˆ.�/ to
be the final partition �00 obtained at the end of Step 2. In our example we have

ˆ.11b; 5b; 5a; 5a; 4a; 2a; 1b; 1a; 0a; 0b;�1b;�2b/

D .11b; 10ba; 6aa; 4a; 2b; 1aa;�1b;�2b2/:

3.3. From E" to O"

Here we present the map ‰ inverse of ˆ. Let us take any � D .�1; : : : ; �t / 2 E".
We illustrate ‰ by the example � D .11b; 10ba; 6aa; 4a; 2b; 1aa;�1b;�2b2/, the final
result obtained before for the map ˆ.

Step 1: As long as there is a pair .�k; �kC1/ 2 P � �" such that �k 6�" .�kC1/ or
.�k; �kC1/ 2 �" �P such that �.�k/ 6�" �kC1, cross the particles in the pair withƒ:

.�k; �kC1/! ƒ.�k; �kC1/:

Here again, the order in which the applications of ƒ occur is not specified. We pro-
ceed, as before, according to whether we choose the smallest or the greatest potentials.
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We observe that the process by choosing the smallest potentials is the exact reverse
process of Step 2 of ˆ by selecting the greatest potentials. The same occurs between
the choice of the greatest potentials, which gives the reverse process of Step 2 of ˆ
by choosing the smallest potentials. We again have the same final result at the end of
Step 1 for both choices. Let us set �0 D .�01; : : : ; �

0
t / for the final sequence.

Step 2: Split all the secondary particles �0
k

of �0 into their upper and lower halves:

�0k ! .�0k/; �.�
0
k/:

We then obtain �00. In our example, we have

�00 D .11b; 5b; 5a; 5a; 4a; 2a; 1b; 1a; 0a; 0b;�1b;�2b/:

We claim that Step 1 always ends in a unique result, whatever the choice of the
applications of ƒ, and that the final result �00 after Step 2 belongs to O" (the primary
particles are well-related in terms of �"). We finally set ‰.�/ D �00. In our example
we have

‰.11b; 10ba; 6aa; 4a; 2b; 1aa;�1b;�2b2/

D .11b; 5b; 5a; 5a; 4a; 2a; 1b; 1a; 0a; 0b;�1b;�2b/:

4. Proof of Theorem 2.12

In this section, we prove that the maps ˆ and ‰ given in Section 3 are well-defined
and inverse to each other.

4.1. Well-definedness of ˆ

Let us take any � D .�1; : : : ; �s/ 2 O", and set �k D .lk; ck/ 2 P for k 2 ¹1; : : : ; sº.
Here we take the example from Section 3.2,

� D .11b; 5b; 5a; 5a; 4a; 2a; 1b; 1a; 0a; 0b;�1b;�2b/:

We then have s D 12 and the following table:

k 1 2 3 4 5 6 7 8 9 10 11 12

ck b b a a a a b a a b b b

lk 11 5 5 5 4 2 1 1 0 0 �1 �2

(4.1)

In the first part of the following, we define some functions related to the partition �,
which will be useful for the second part, where we give the argumentation for the
proof of the well-definedness of ˆ. We explicitly compute all the functions defined in
the following for our example.
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4.1.1. The setup. We first define the function � on ¹1; : : : ; sº2 as follows:

�W .k; k0/ 7!

8̂̂̂̂
<̂̂
ˆ̂̂̂:
0 if k D k0;
k0�1P
uDk

".cu; cuC1/ if k < k0;

�

k�1P
uDk0

".cu; cuC1/ if k > k0:

(4.2)

We remark that, for any k � k0,

0 � �.k; k0/ � k0 � k; �.k; k0/ D ��.k0; k/; (4.3)

and, for all k 2 ¹1; : : : ; s � 1º, we have by (2.1) that

lk � lkC1 � ".ck; ckC1/ D �.k; k C 1/:

Moreover, the function � satisfies Chasles’ relation:

�.k; k0/C�.k0; k00/ D �.k; k00/

for all k;k0; k00 2 ¹1; : : : ; sº. We then identify�.k;k0/ as the formal energy of transfer
from the primary state ck to the primary state c0

k
. Using (4.1), we obtain the following

table in our example:

k 1 2 3 4 5 6 7 8 9 10 11
�.k; k C 1/ 1 0 0 0 1 1 0 1 0 1 0

(4.4)

We now formalize the choice of troublesome pairs of primary particles in Step 1.
In order to select the pairs with the smallest potentials, from the right to the left, we
proceed as follows:

• i1 is the greatest k 2 ¹1; : : : ; s � 1º such that lk � lkC1 D �.k; k C 1/;

• if it�1 is selected, then it is the greatest k 2 ¹1; : : : ; it�1 � 2º whenever it is still
possible, such that lk � lkC1 D �.k; k C 1/.

We then set I D ¹itº and J D ¹1; : : : ; sº n .I t .I C 1//. In our example, we have
by (4.1) and (4.4) that

i1 D 10; i2 D 8; i3 D 6; i4 D 3;

and then
I D ¹3; 6; 8; 10º and J D ¹1; 2; 5; 12º:

Remark 4.1. The sets I , J are the unique sets I 0, J 0 that satisfy the following rela-
tions:
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(1) I 0, I 0 C 1, J 0 form a set-partition of ¹1; : : : ; sº;

(2) for all i 2 I 0, li � liC1 D �.i; i C 1/;

(3) for all j 2 ¹2; : : : ; sº \ J 0, lj�1 � lj > �.j � 1; j /.

By setting the function ˛ on ¹1; : : : ; sº2 to be such that

˛W .k; k0/ 7!

´
j.k; k0� \ J j if k � k0;

�˛.k0; k/ if k > k0;

we then have that ˛ satisfies Chasles’ relation. One can also observe that ˛.k; k/ D 0
for all k 2 ¹1; : : : ; sº. Therefore, using Remark 4.1, we obtain for all k� k0 2 ¹1; : : : ; sº
that

lk � lk0 � ˛.k; k
0/C�.k; k0/: (4.5)

We finally define the function ˇ on ¹1; : : : ; sº2 by

ˇW .k; k0/ 7!

´
jŒk; k0/ \ J j if k � k0;

�ˇ.k0; k/ if k > k0;

and we have that ˇ satisfies Chasles’ relation. Our example gives the table

k 1 2 3 4 5 6 7 8 9 10 11
˛.k; k C 1/ 1 0 0 1 0 0 0 0 0 1 0

ˇ.k; k C 1/ 1 1 0 0 1 0 0 0 0 0 0

(4.6)

Using this table, Chasles’ relation then allows us to compute all the values for ˛
and ˇ. For example,

˛.2; 4/ D ˛.2; 3/C ˛.3; 4/ D 0

and
ˇ.4; 2/ D ˇ.4; 3/C ˇ.3; 2/ D �0 � 1 D �1:

To conclude, we observe that, at the end of Step 1, the particles in �" are �i C �iC1
for i 2 I . The set I then corresponds to the index set of the upper halves, the set
I C 1 – to the index set of the lower halves, and J represents the index set of the
particles �j that stay in P .

4.1.2. Proof of the well-definedness of ˆ. During Step 2, the positions of particles
change by the actions of ƒ. Here we see the secondary particles in �" as the corres-
ponding pair of two consecutive particles in P . We can then consider the permuta-
tion � of ¹1; : : : ; sº which determines the new positions of these primary particles,
and � satisfies the following properties:
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• �.i C 1/ D �.i/ C 1 for all i 2 I , since we move the upper and lower halves
together;

• � is increasing on I and J , sinceƒ never crosses the particles of the same degree.

We can now state the main results that will ensure the well-definedness of the
map ˆ.

Proposition 4.2 (Final positions). Let � be the function on J � I defined by

�W .j; i/ 7! lj � 2liC1 ��.j; i C 1/ ��.i C 1 � ˇ.j; i/; i C 1/:

Then the final position � after Step 2 is such that, for any .j; i/ 2 J � I ,

�.j / < �.i/, �.j; i/ � 0:

Furthermore, Step 2 comes to an end after exactly

j¹.j; i/ 2 J � I W j > i and �.j; i/ � 0; or j < i and �.j; i/ < 0ºj (4.7)

applications of ƒ.

The above proposition ensures that the process Step 2 always ends. Using (4.1),
(4.4) and (4.6), we obtain in our example the following table corresponding to �:

i

j 3 6 8 10

1 0 4 5 6
2 �5 �1 1 2
5 �6 �1 0 1

12 �8 �2 �1 0

By the proposition, we have exactly four crossings that occur in the pairs .j; i/
in ¹.2; 3/; .2; 6/; .5; 6/; .12; 10/º, and this corresponds to the illustration of Step 2 in
Section 3.2.

The fact that the final partition belongs to the suitable set is given by the next two
propositions.

Proposition 4.3. The partition obtained after Step 2 belongs to E".

Proposition 4.4. For any � 2 ¹0; 1º, we have ˆ.O�˙
" / � E

�˙
" .

Before proving these propositions, we first state and show two lemmas that will
be useful to that end.

Lemma 4.5. If a primary particle .lk; ck/ originally at position k moves to posi-
tion �.k/, then it becomes an energetic particle .lk C�.�.k/; k/; c�.k//.
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Lemma 4.6. The function � is non-increasing in the first argument in J and non-
decreasing in the second argument in I .

Lemma 4.5 plays a central role in the understanding of the operatorƒ. Rephrased,
it can be stated as follows: a primary particle that moves from a state ck to a state ck0
gains the formal energy of transfer from ck to ck0 . By (4.3), this energy is non-negative
if k � k0, and non-positive if k � k0.

Proof of Lemma 4.5. We prove the lemma by induction on the number of applications
of ƒ. The energy transfer ƒ conserves the state of the partition, so that the sequence
of states is fixed. On the other hand, the particles gain or lose exactly the minimal
energy needed for the transfer, and by definition, this is exactly what � keeps track
of. As an example, if we do the transformation ƒ, at position k, on a pair of particles
in P � �", we obtain

initial positions j i C 1 i C 2

positions before ƒ k k C 1 k C 2

states before ƒ ck ckC1 ckC2

potentials before ƒ l 0k l 0kC1 l 0kC2

positions after ƒ k C 2 k k C 1

states after ƒ ckC2 ck ckC1

potentials after ƒ �.k C 2; k/C l 0k �.k; k C 1/C l 0kC1 �.k C 1; k C 2/C l 0kC2

Here we recall that l 0
kC1
� l 0

kC2
D �.k C 1; k C 2/. The same calculation occurs

when we consider the application of ƒ on a pair in �" �P .

Proof of Lemma 4.6. We first prove that � is non-increasing in the first argument, and
then that � is non-decreasing in the second argument.

• For any j < j 0 2 J and i 2 I , we have by Chasles’ relation and (4.5) that

�.j; i/ � �.j 0; i/ D lj � lj 0 ��.j; j
0/ ��.i C 1 � ˇ.j; i/; i C 1 � ˇ.j 0; i//

� ˛.j; j 0/ ��.i C 1 � ˇ.j; i/; i C 1 � ˇ.j 0; i//:

But Chasles’ relation and (4.3) give that

i C 1 � ˇ.j 0; i/ � .i C 1 � ˇ.j; i// D ˇ.j; j 0/ � 0;

so that by (4.3) again, we obtain that �.j; i/ � �.j 0; i/ � ˛.j; j 0/ � ˇ.j; j 0/.
Since j; j 0 2 J , we have

˛.j; j 0/ D j.j; j 0� \ J j D 1C j.j; j 0/ \ J j D jŒj; j 0/ \ J j D ˇ.j; j 0/:

Therefore, we always have for any j < j 0 2 J and i 2 I that �.j; i/��.j 0; i/� 0.
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• For any j 2 J and i < i 0 2 I , we have by Chasles’ relation and (4.5)

�.j; i 0/ � �.j; i/ D 2.liC1 � li 0C1/ ��.i C 1; i
0
C 1/

C�.i C 1 � ˇ.j; i/; i C 1/C�.i 0 C 1; i 0 C 1 � ˇ.j; i 0//

D 2.liC1 � li 0C1 ��.i C 1; i
0
C 1//

C�.i C 1 � ˇ.j; i/; i 0 C 1 � ˇ.j; i 0//

� 2˛.i C 1; i 0 C 1/C�.i C 1 � ˇ.j; i/; i 0 C 1 � ˇ.j; i 0//:

Since we have by (4.3) that

i 0 C 1 � ˇ.j; i 0/ � .i C 1 � ˇ.j; i// D i 0 � i � ˇ.i; i 0/

D jŒi; i 0/ \ .I t .I C 1//j

� 0;

we then obtain that �.j; i 0/ � �.j; i/ � 0.

We can now prove Propositions 4.2, 4.3 and 4.4.

Proof of Proposition 4.2. Let � be the final position.

• Let us suppose that there exists .j; i/ 2 J � I such that �.j / < �.i/ and �.j; i/
< 0. By Lemma 4.6 we have �.j 0; i 0/ < 0 for all j < j 0 2 J; i 0 < i 2 I . Moreover,
since � is increasing on J and I , and �.J /C 1 n �.J / � �.I /, we necessarily
have some j < j 0 2 J; i 0 < i 2 I such that �.j 0/C 1 D �.i 0/. We then obtain
by Lemma 4.5 the following difference of potentials:

D D �0�.j 0/ � .�
0
�.j 0/C1 C �

0
�.j 0/C2/ ��.�.j

0/; �.j 0/C 2/

D lj 0 C�.�.j
0/; j 0/ � Œ2.li 0C1 C�.�.i

0
C 1/; i 0 C 1//

C�.�.i 0/; �.i 0 C 1//� ��.�.j 0/; �.i 0 C 1//

D lj 0 � 2li 0C1 ��.j
0; i 0 C 1/ ��.�.i 0/; i 0 C 1/:

We now compute �.i 0/. Since � is increasing on I t .I C 1/ and on J , we have

�.i 0/ � 1 D �.j 0/

D jŒ1; j 0� \ J j C jŒ1; i 0/ \ .I t .I C 1//j

D 1C ˇ.j 0/C i 0 � 1 � ˇ.i 0/ D i 0 � ˇ.j; i 0/:

Finally, we obtain by definition that D D �.j 0; i 0/ < 0. Since the potential dif-
ference is negative, by (2.3), we have �0

�.j 0/
6�" �

0
�.j 0/C1

C �0
P.j 0/C2

and � is no
longer the final position.
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• Let us now suppose that there exists .j; i/ 2 J � I such that �.j / > �.i/ and
�.j; i/ � 0. By Lemma 4.6, we have �.j 0; i 0/ � 0 for all j > j 0 2 J; i 0 > i 2 I .
Since � is increasing on J and I , and �.J /� 1 n �.J /� �.I /C 1, we necessarily
have some j > j 0 2 J; i 0 > i 2 I such that �.j 0/� 1D �.i 0/C 1. We then obtain
by Lemma 4.5 the following difference of potentials:

D D .�0�.j 0/�2 C �
0
�.j 0/�1/ � �

0
�.j 0/ ��.�.j

0/ � 2; �.j 0//

D Œ2.li 0C1 C�.�.i
0
C 1/; i 0 C 1//C�.�.i 0/; �.i 0 C 1//�

� lj 0 ��.�.j
0/; j 0/ ��.�.i 0/; �.j 0//

D 2li 0C1 � lj 0 ��.i
0
C 1; j 0/ ��.i 0 C 1; �.i 0 C 1//:

We now compute �.i 0 C 1/ Since � is increasing on I t .I C 1/ and on J ,

�.i 0 C 1/C 1 D �.j 0/

D jŒ1; j 0� \ J j C jŒ1; i 0 C 1� \ .I t .I C 1//j

D 1C jŒ1; j 0/ \ J j C 2C jŒ1; i 0/ \ .I t .I C 1//j

D 2C ˇ.j 0/C i 0 � ˇ.i 0/

D 2C i 0 � ˇ.j; i 0/:

Finally, we obtain by definition that D D ��.j 0; i 0/ � 0. Since the potential dif-
ference is non-positive, by (2.4), we have �0

�.j 0/�2
C �0

�.j 0/�1
6�" �

0
�.j 0/

and � is
no longer the final position.

To conclude, for � being the last position, the first part of the reasoning gives �.j / <
�.i/) �.j; i/ � 0 and the second part gives �.j / < �.i/( �.j; i/ � 0, so that we
obtain the equivalence

�.j / < �.i/, �.j; i/ � 0:

One can see in the previous reasoning that for any .j; i/ 2 J � I , whatever the
choice of Step 2, once they meet for some position � 0 (particles have consecutive
positions), we then have that the corresponding difference D between the potential
of the particle to the left and the potential of the particle to the right does not depend
on � 0:

• if � 0.j /C 1 D � 0.i/, then D D �.j; i/;

• if � 0.j / � 1 D � 0.i C 1/, then D D ��.j; i/.

By (2.4) and (2.3), this means that once the particles coming from i and j cross byƒ
in Step 2, they cannot cross back. Moreover, by the fact that the position function � 0

is increasing on J and I t .I C 1/, the crossings only occur, once, for j < i such
that �.j; i/ < 0 or j > i such that �.j; i/ � 0, and this gives (4.7).



Weighted words at degree two, I 631

Proof of Proposition 4.3. By (3.1) of Proposition 3.3, we obtain, by crossing two
particles with different degrees which are not well-related in terms of �", that the
resulting particles become well-related in terms of�". Step 2 then consists in order-
ing consecutive particles with different degrees, as the process stops as soon as this is
the case.

Let us show that two consecutive primary particles are well related in terms of�".
Since � is increasing on J , we then have, by Chasles’ relation, that for any j < j 0 2 J

.lj C�.�.j /; j // � .lj 0 C�.�.j
0/; j 0// D lj � lj 0 ��.j; j

0/C�.�.j /; �.j 0//:

In particular, if �.j 0/D �.j /C 1, we then obtain by (4.5) and the definition of ˛ that

.lj C�.�.j /; j // � .lj 0 C�.�.j
0/; j 0// � ˛.j; j 0/C�.�.j /; �.j 0//

D j.j; j 0� \ J j C ".c�.j /; c�.j 0//

� 1C ".c�.j /; c�.j 0//:

This means, by (2.2), that two consecutive primary particles are always well-ordered
in terms of�" in the final result.

Finally, with the same reasoning as before, since � is increasing on I t .I C 1/,
we have for i < i 0 2 I such that �.i/C 2 D �.i 0/ that

.liC1 C�.�.i C 1/; i// � .li 0 C�.�.i
0/; i 0// � ˛.i C 1; i 0/C�.�.i C 1/; �.i 0//

D j.i C 1; i 0� \ J j C ".c�.j /; c�.j 0//

� ".c�.j /; c�.j 0//;

so that by (2.1), we have �0
�.iC1/

�" �
0
�.i 0/

. We then obtain, by (2.5), that two consec-
utive secondary particles are always well-ordered in terms of�" in the final result.

Proof of Proposition 4.4. It suffices to show that all primary particles stay in the inter-
val corresponding to �˙. By using (4.3), (4.5), and Lemma 4.5, we obtain for any
k 2 ¹1; : : : ; sº that

lk C�.�.k/; k/ � l1 � ˛.1; k/ ��.1; �.k// � l1

and
lk C�.�.k/; k/ � ls C ˛.k; s/C�.�.k/; s/ � ls:

Therefore, the potentials of the primary particles in the final partition stay in Œls; l1�.
If �k 2 O

�˙
" for all k 2 ¹1; : : : ; sº, then �0

�.k/
2 O

�˙
" and then �0

�.j /
2 O

�˙
" and

�0
�.i/
C �0

�.iC1/
2 E

�˙
" for all .j; i/ 2 J � I .



I. Konan 632

4.2. Well-definedness of ‰

Let us consider � 2 E" with � D .�1; : : : ; �t /. We rename the indices by enumerating
all primary particles that occur in �. This means that we count the secondary particles
as a pair of consecutive primary particles. We take the example in Section 3.3

� D .11b; 10ba; 6aa; 4a; 2b; 1aa;�1b;�2b2/;

and the rewriting gives

� D .11b; 5b; 5a„ƒ‚…; 3a; 3a„ƒ‚…; 4a; 2b; 1a; 0a„ƒ‚…;�1b;�1b;�1b„ ƒ‚ …/:
As we did before for the process ˆ, we first give some functions related to �, and
then prove the well-definedness of ‰. We explicitly compute these functions for our
example.

4.2.1. The setup. We consider � D .�01; : : : ; �
0
s/ written according to the primary

particles that occur in �. There then exist unique sets J; I such that ¹1; : : : ; sº D
J t I t .I C 1/, where J is the index set of the particles in P , and I and I C 1 are
respectively the index sets of upper and lower halves of the particles in �". We have
in our example

I D ¹2; 4; 8; 11º and J D ¹1; 6; 7; 10º:

We also set
�0k D .lk; ck/ for all k 2 ¹1; : : : ; sº;

and define the function � on ¹1; : : : ; sº2 in the same way we previously did in (4.2).
We finally set the function � on ¹1; : : : ; sº2 to be as follows:

�W .k; k0/ 7!

´
j.k; k0� \ J j if k � k0;

��.k0; k/ if k > k0:

We notice that � satisfies Chasles’ relation. In our example, we obtain the following
table:

k 1 2 3 4 5 6 7 8 9 10 11 12

ck b b a a a a b a a b b b

lk 11 5 5 3 3 4 2 1 0 �1 �1 �1

�.k; k C 1/ 1 0 0 0 1 1 0 1 0 1 0

�.k; k C 1/ 0 0 0 0 1 1 0 0 1 0 0

We now give in the next lemma the relations that link the particles’ potentials.
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Lemma 4.7. Let us set

l 0k D

´
lk if k 2 J;

2lk if k 2 I t .I C 1/:

Then, for all k � k0 2 ¹1; : : : ; sº, we have

l 0k � l
0
k0 � �.k; k

0/C�.k; k0/: (4.8)

In particular, for all i � i 0 2 I t .I C 1/, we have

li � li 0 � �.i; i
0/: (4.9)

Proof. Since the functions � and � satisfy Chasles’ relation, in order to show (4.8),
it suffices to prove that for all k 2 ¹1; : : : ; s � 1º,

l 0k � l
0
kC1 � ˇ.k; k C 1/C�.k; k C 1/:

• If k 2 I , then k C 1 2 I C 1 and

l 0k � l
0
kC1 D 2�.k; k C 1/ � �.k; k C 1/ D ˇ.k; k C 1/C�.k; k C 1/:

• If k 2 I C 1 and k C 1 2 I , then by (2.5), .lk; ck�1; ck/� .lkC2; ckC1; ckC2/ is
equivalent to

l 0k � l
0
kC1 � 2�.k; k C 1/ � �.k; k C 1/C�.k; k C 1/:

• If k 2 I C 1 and k C 1 2 J , then by (2.4), .lk; ck�1; ck/� .lkC1; ckC1/ is equi-
valent to

l 0k � l
0
kC1 � 1C�.k; k C 1/ D �.k; k C 1/C�.k; k C 1/:

• If k 2 J and kC 12 I , then by (2.3), .lk; ck/� .lkC2; ckC1; ckC2/ is equivalent to

l 0k � l
0
kC1 � �.k; k C 1/ D �.k; k C 1/C�.k; k C 1/:

• If k; k C 1 2 J , then by (2.2), .lk; ck/� .lkC1; ckC1/ is equivalent to

l 0k � l
0
kC1 � 1C�.k; k C 1/ D �.k; k C 1/C�.k; k C 1/:

To show (4.9), we only need to prove the relation for two consecutive i; i 0 2 I t I C 1.
This is obvious for i 2 I , since the following index is i C 1 2 I C 1, and li � liC1 D
�.i; i C 1/. Now let us take i 2 I C 1. The next i 0 (if it exists) must necessarily be
in I , and by (4.8), we obtain by the definition of � and (4.3) that

2.li � li 0/ D l
0
i � l

0
i 0 � �.i; i

0/C�.i; i 0/

D i 0 � i � 1C�.i; i 0/ � 2�.i; i 0/ � 1

) li � li 0 � �.i; i
0/ �

1

2
) li � li 0 � �.i; i

0/:
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4.2.2. Proof of the well-definedness of ‰ . We can now focus on the position � of
the particles during Step 1 of ‰. Note that Lemma 4.5 still holds here, as well as the
fact that �.i C 1/ D �.i/C 1 for all i 2 I and � is increasing on I t .I C 1/ and J .

We now give the analogous results of Propositions 4.2, 4.3 and 4.10 that ensure
the well-definedness of ‰.

Proposition 4.8 (Final position). Let  be the function on J � I defined by:

 W .j; i/ 7! lj � li ��.j; i/:

Then, the final position � of ‰ after Step 1 is such that, for all .j; i/ 2 J � I ,

�.j / < �.i/,  .j; i/ � 0;

and Step 1 comes to an end after exactly

j¹.j; i/ 2 J � I W j > i and  .j; i/ � 0; or j < i and  .j; i/ < 0ºj (4.10)

applications of ƒ.

Proposition 4.9. The resulting partition after Step 2 belongs to O".

Proposition 4.10. For any � 2 ¹0; 1º, we have ‰.E�˙" / � O
�˙
" .

In our example, we obtain the corresponding table for ‰:

i

j 2 4 8 11

1 5 7 7 7
6 0 2 2 2
7 �1 1 1 1

10 �3 �1 �1 �1

According to Proposition 4.8, we have four crossings that occur in the pairs .j; i/
in ¹.6; 2/; .6; 4/; .7; 4/; .10; 11/º.

We now prove Propositions 4.8, 4.9 and 4.10.

Proof of Proposition 4.8. By using Lemma 4.7, one can easily show that is decreas-
ing in the first argument in J (using (4.8)) and non-decreasing in the second argument
in I (using (4.9)). Let � be the final position of Step 1 of ‰.

• Let us suppose that there exists .j; i/ 2 J � I such that �.j / < �.i/ but  .j; i/
< 0. Since � is increasing on J and I , and �.J /C 1 n �.J / � �.I /, there exist
.j 0; i 0/ 2 J � I such that j < j 0, i 0 < i and �.j 0/C 1D �.i 0/. We also have that

 .j 0; i 0/ �  .j 0; i/ �  .j; i/ < 0:
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By evaluating the potential difference at �.j 0/, we obtain that

D D �00�.j 0/ � �
00
�.j 0/C1 ��.�.j

0/; �.j 0/C 1/

D .lj 0 C�.�.j
0/; j 0// � .li 0 C�.�.i

0/; i 0// ��.�.j 0/; �.i 0//

D lj 0 � li 0 ��.j
0; i 0/ D  .j 0; i 0/ < 0:

This means by (2.1) that �00
�.j 0/
6�" �

00
�.j 0/C1

. Since .�00
�.i 0/
C �00

�.i 0C1/
/D �00

�.j 0/C1
,

we can apply ƒ, so that � is no longer the final position.

• Let us now assume that there exists .j; i/ 2 J � I such that �.j / > �.i/ but
 .j; i/ � 0. Since � is increasing on J and I t .I C 1/, and �.J /� 1 n �.J / �
�.I C 1/, there exist .j 0; i 0/ 2 J � I such that j > j 0, i 0 > i and �.j 0/ � 1 D
�.i 0 C 1/ D �.i 0/C 1. We also have that

 .j 0; i 0/ �  .j 0; i/ �  .j; i/ � 0:

By evaluating the potential difference at �.j 0/, we obtain

D D �00�.j 0/�1 � �
00
�.j 0/ ��.�.j

0/ � 1; �.j 0//

D .li 0C1 C�.�.i
0
C 1/; i 0 C 1// � .lj 0 C�.�.j

0/; j 0//

��.�.i 0 C 1/; �.j 0//

D li 0C1 � lj 0 ��.i
0
C 1; j 0/ D li 0 � lj 0 ��.i

0; j 0/ � 0:

This means by (2.2) that �00
�.j 0/�1

6�" �
00
�.j 0/

. Since�.�00
�.i 0/
C �00

�.i 0C1/
/D �00

�.j 0/�1
,

we can apply ƒ, so that � is no longer the final position.

To conclude, we observe that the first part gives that �.j / < �.i/)  .j; i/ � 0

and the second part �.j / < �.i/(  .j; i/ � 0, so that we obtain the first result
in Proposition 4.8.

We obtain (4.10) with the same reasoning as in the proof of Proposition 4.8, by
observing that the difference of potential when two particles meet does not depend
on the choice in which we apply ƒ, and once particles cross by ƒ, they cannot cross
back.

Proof of Proposition 4.9. Since for all k; k0 2 ¹1; : : : ; sº, we obtain by Lemma 4.5
that

�00�.k/ � �
00
�.k0/ ��.�.k/; �.k

0// D lk � lk0 ��.k; k
0/:

Let us now consider any k, k0 such that �.k/C 1 D �.k0/.

• If .k; k0/ 2 J 2, we have then by (4.8) that

�00�.k/ � �
00
�.k0/ � �.k; k

0/ D j.k; k0� \ J j � 1;

so that by (2.2), �00
�.k/
�" �

00
�.k0/

.
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• If .k; k0/ 2 J � I , then since Step 1 ended, we necessarily have

�00�.k/ �" �
00
�.k0/:

• If .k; k0/ 2 I � I C 1, then we have

�00�.k/ � �
00
�.k0/ D 0;

so that by (2.1), �00
�.k/
�" �

00
�.k0/

.

• If .k; k0/ 2 I C 1 � J , then since Step 1 ended, we necessarily have

�00�.k/ �" �
00
�.k0/:

• If .k; k0/ 2 I C 1 � I , we then have by (4.9) that

�00�.k/ � �
00
�.k0/ � 0;

so that by (2.1), �00
�.k/
�" �

00
�.k0/

.

We obtain that �00 D .�001 ; : : : ; �
00
s / is well-ordered by �", so that it belongs to O".

Remark 4.11. In the latter proof, one can check that the sets �.I /, �.I / C 1 and
�.J / form the unique set-partition of ¹1; : : : ; sº such that

(1) for all i 2 �.I /, �00i � �
00
iC1 D �.i; i C 1/;

(2) for any j 2 �.J / \ ¹2; : : : ; sº, �00j�1 �" �
00
j .

Proof of Proposition 4.10. For � 2 ¹0; 1º, it suffices to show that �00
�.k/
� � in the case

�C and �00
�.k/
� � in the case ��.

• If � 2 E
�C
" , then, by Lemma 4.7, this implies that l 0s � �. For the last j 2 J , it is

easy to see by (4.8) that

�00�.j / D l
0
j C�.�.j /; j / � l

0
s C �.j; s/C�.�.j /; s/ � �:

For the last i C 1 2 I C 1, we have by (4.8) that

2�00�.iC1/ D 2.liC1 C�.�.i C 1/; i C 1//

� l 0s C �.i C 1; s/C�.i C 1; s/C 2�.�.i C 1/; i C 1/

but we have by definition and (4.3) that �.i C 1; s/ D s � i � 1 � �.i C 1; s/, so
that

2�00�.iC1/ � l
0
s C 2�.�.i C 1/; s/ � l

0
s ) �00�.iC1/ �

1

2
�:

Since � 2 ¹0; 1º and �00
�.iC1/

2 Z, we necessarily have that �00
�.iC1/

� �. Then for
any k 2 ¹1; : : : ; sº, �00

�.k/
� �.
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• For � 2 E
��
" , we have the following:

– If 1 2 I , since � is increasing on I t I C 1, we obtain by (4.9) that for all
i 2 I t .I C 1/,

�00�.i/ D li C�.�.i/; i/ � l1 ��.1; �.i// � l1 � �:

For the first j 2 J , we have by (4.8) that

�00�.j / D lj C�.�.j /; j / � 2l1 � �.1; j / ��.1; �.j //

� 2l1 � �.1; j / � 2� � 1:

Since � 2 ¹0; 1º, we then have that �00
�.k/
� � for all k 2 ¹1; : : : ; sº.

– If 1 2 J , we can easily see as before that by (4.8), �00
�.j /
� � for all j 2 J .

Now let us consider the first i 2 I . We have by (4.8) that

2�00�.i/ D 2.li C�.�.i/; i// � 2.li C�.1; i//

� l1 � �.1; i/C�.1; i/ D l1 � i C 2C�.1; i/:

By using (4.3), we obtain that

2�00�.i/ � �C 1) �00�.i/ �
�C 1

2
;

so that, since � 2 ¹0; 1º and �00
�.i/
2 Z, we then always have �00

�.i/
� �.

4.3. The maps ˆ and ‰ are inverse of each other

4.3.1. The relation ‰ ıˆ D IdO" . For any � D .�1; : : : ; �s/ 2 O", we choose the
unique sets I , J such that

(1) I , I C 1, J form a set-partition of ¹1; : : : ; sº;

(2) for all i 2 I , li � liC1 D �.i; i C 1/;

(3) for all j 2 ¹2; : : : ; sº \ J , lj�1 � lj > �.j � 1; j /.

Let � be the final position after ˆ. Since by Lemma 4.5

�00�.k/ � �
00
�.k0/ ��.�.k/; �.k

0// D lk � lk0 ��.k; k
0/;

by considering the function  in Proposition 4.8, we obtain, for all .j; i/ 2 J � I ,
that

j < i ,  .�.j /; �.i// D lj � li ��.j; i/ � ˛.j; i/ D j.j; i � \ J j � 0;

j > i ,  .�.j /; �.i// D lj � li ��.j; i/ � �˛.i; j / D �j.i; j � \ J j � �1;

so that I , J are exactly the final positions of �.I /; �.J / after applying ‰. We then
have ‰.ˆ.�// D �.
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4.3.2. The relation ˆ ı‰ D IdE" . Let us now take any � 2 E", and let � be the final
position after ‰, and ‰.�/ D �00 D .�001 ; : : : ; �

00
s / with the enumeration of primary

particles. We saw in Remark 4.11 that �.I /, �.I / C 1 and �.J / form the unique
set-partition of ¹1; : : : ; sº, such that

• for all �.i/ 2 �.I /, �00
�.i/
� �00

�.i/C1
D �.�.i/; �.i/C 1/;

• for all �.j / 2 �.J / \ ¹2; : : : ; sº, �00
�.j /�1

�" �
00
�.j /

.

The sets �.I / and �.J / then are exactly the unique sets we obtain after Step 1 in the
process of ˆ on �00. Let us recall ˇ. We have that for k � k0

ˇ.k; k0/ D jŒk; k0/ \ �.J /j and ˇ.k; k0/ D �ˇ.k0; k/:

We then have for any .j; i/ 2 J � I , since � is increasing on J and I t .I C 1/,

ˇ.�.j /; �.i// D jŒ1; �.i// \ �.J /j � jŒ1; �.j // \ �.J /j

D �.i/ � 1 � jŒ1; �.i// \ �.I u .I C 1//j � jŒ1; j / \ J j

D �.i/ � 1 � jŒ1; i/ \ .I u .I C 1//j � jŒ1; j / \ J j

D �.i/ � i C jŒ1; i/ \ J j � jŒ1; j / \ J j:

We then obtain by Proposition 4.2 and the fact that li D liC1 C�.i; i C 1/

�.�.j /; �.i// D lj C�.�.j /; j / � 2.liC1 C�.�.i C 1/; i C 1//

��.�.j /; �.i C 1// ��.�.i C 1/ � ˇ.�.j /; �.i//; �.i C 1//

D lj � 2liC1 ��.j; i C 1/

��.i C 1 � jŒ1; i/ \ J j C jŒ1; j / \ J j; i C 1/

D lj � 2li ��.j; i/ ��.i C 1 � jŒ1; i/ \ J j C jŒ1; j / \ J j; i/:

By using (4.3) and (4.8), we obtain that

j < i , �.�.j /; �.i// � �.j; i/ ��.i � j.j; i/ \ J j; i/

� j.j; i � \ J j � j.j; i/ \ J j D 0

and

j > i , �.�.j /; �.i// � ��.i C 1; j / ��.i C 1C jŒi C 1; j / \ J j; i C 1/

� �j.i C 1; j � \ J j C jŒi C 1; j / \ J j D �1:

The final positions for �.I /, �.J / after applying ˆ on �00 are then exactly I , J .
We then obtain that ˆ.‰.�// D �.
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5. Closing remarks

We end this paper with three remarks.
First, we consider another relation �" on P t �", which is the same as �"

for (2.2) and (2.5), but slightly different for other comparisons:

.k; c/�" .k00; c0; c00/, k � .2k00 C ".c0; c00// > ".c; c0/C ".c0; c00/;

.k0; c; c0/�" .k00; c00/, .2k0 C ".c; c0// � k00 � ".c; c0/C ".c0; c00/:

One can easily check that, for "�.c0; c/ D ".c; c0/, we have the following:

.k; c/�" .k0; c0/, .�k0; c0/�"� .�k; c/;

.k; c/�" .k0; c0; c00/, .�k0 � "�.c00; c0/; c00; c0/�"� .�k; c/;

.k; c; c0/�" .k0; c00/, .�k0; c00/�"� .�k � "
�.c0; c/; c0; c/;

.k; c; c0/�" .k0; c00; c000/, .�k0 � "�.c000; c00/; c000; c00/

�"� .�k � "
�.c0; c/; c0; c/:

If we define E" to be the set of all generalized colored partitions with particles in
P t �" and related by�", we then obtain the following corollary of Theorem 1.1.

Corollary 5.1. For any integer n and any finite non-commutative product C of col-
ors in C , there exists a bijection between ¹� 2 O"W .C.�/; j�j/ D .C; n/º and ¹� 2
E"W .C.�/; j�j/ D .C; n/º.

While the relation �" differs from �", they both give similar difference con-
ditions. A good example of the similarity between these relations is the fact that
we can retrieve Siladić’s theorem by setting in the latter corollary C D ¹a < bº,
".i; j / D �.i � j / with non-negative primary part size, followed by the transforma-
tion .q; a; b/ 7! .q4; q; q3/.

Second, we point out that another major result, the Euler distinct-odd identity,
can be retrieved from Corollary 1.10. Let us consider the restriction of C to the
singleton ¹aº. The corresponding difference condition gives the matrix

� a
a 0

�
and the corresponding generalized partitions in Corollary 1.10 are the classical parti-
tions where all the parts have state a. The restriction of D0 to the states a, a2 gives
the matrix  a a2

a 1 0

a2 1 0

!
:
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One can view the corresponding partitions in E as the generalized partitions into dis-
tinct positive particles with state a, along with some particles with states a2 having
positive even potentials. In other words, we have a pair of partitions, the first partition
into distinct positive particles with state a, and the second into particles with positive
even potential and state a2.

We then redo the process with the following rules. At Step k, we apply the trans-
formation .q; a/ 7! .q2

k�1
; a2

k�1
/ into the identity given by Step 1. This leads to

the following identity: the number of partitions of n into particles with state a2
k�1

and potential divisible by 2k�1 is equal to the number of partitions of n into distinct
particles with state a2

k�1
and potential divisible by 2k�1, and particles with state a2

k

and potential divisible by 2k .
By considering the initial Step 1, and iterating Steps k we then have the following

identity: the number of partitions of n into positive particles with state a is equal to
the number of partitions of n into distinct particles, with the particles with states a2

k

(k 2Z�0) having a potential divisible by 2k . We finally recover the Euler distinct-odd
identity by applying in the latter identity the transformation .q; a/ 7! .q2; q�1/.

Finally, we remark that the maps given in Sections 3.2 and 3.3 differ from the
variant of Bressoud’s algorithm in [18] for the generalization of Siladić’s theorem.
In Step 1 of ˆ, instead of choosing the troublesome pairs of primary particles from
the right to the left, we started in [18] from the left to the right by first choosing the
greatest potentials. This choice could have been made here. The major observation by
proceeding this way is that the map ˆ remains the same. This comes from the fact
that the choice of troublesome pairs only depends on the maximal subsequences of �
of the form �k; : : : ; �k0 , which satisfy li � liC1 D �.i; i C 1/ for all i 2 ¹k; : : : ; k0º,
with the notation used in Section 4.1. For such a sub-sequence with an even length,
whatever the choice made, we always take the primary particles pairwise. When the
length is odd, our choice implies that we take the particles pairwise from the right
to the left so that there still remains a primary particle to the left of the sequence.
By crossing this primary particle with the secondary particles obtained after summing
the pairs in the sequence, by Lemma 4.5, we exactly obtain the pairs resulting from
the choice of the troublesome pairs starting from the left to the right, and the primary
particle then becomes the rightmost particle of the sequence.

This observation unveils a strong property that links the generalized partitions
of O" and E", both kinds of partitions seen as sequences of primary particles: their
major attribute are the maximal sequences of consecutive primary particles. In the
second paper of this series, we will see how this attribute allows us to define the
particles of degree k for a positive k � 3, and how this definition is closely related to
the notion of crystal and energy function in the quantum theory.
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