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Configuration polynomials under contact equivalence

Graham Denham, Delphine Pol, Mathias Schulze, and Uli Walther

Abstract. Configuration polynomials generalize the classical Kirchhoff polynomial defined
by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands.
Contact equivalence provides a way to study the associated configuration hypersurface. In the
contact equivalence class of any configuration polynomial we identify a polynomial with min-
imal number of variables; it is a configuration polynomial. This minimal number is bounded
by
�

rC1

2

�
, where r is the rank of the underlying matroid. We show that the number of equiva-

lence classes is finite exactly up to rank 3 and list explicit normal forms for these classes.

1. Introduction

The Matrix-Tree Theorem is a classical result in algebraic graph theory. It was found
by German physicist Gustav Kirchhoff in the mid-19th century in the study of elec-
trical circuits. It states that the number of spanning trees of a connected undirected
graph G with edge set E agrees with any principal submaximal minor of its Lapla-
cian. Putting weights on the edges e 2 E of G and considering them as variables xe
yields the Kirchhoff polynomial

 G D
X
T2TG

xT ;

where TG is the set of all spanning trees of G, and xT D
Q
e2T xe .

Kirchhoff polynomials are a crucial ingredient of the theory of Feynman integrals
(see, for example, [1, 4, 9, 10] and the literature trees in these works). In short, the
Kirchhoff polynomial of a graph appears in the denominator of the Feynman inte-
gral attached to the particle scattering encoded by the dual graph via Feynman’s rule.
In certain cases, the integrand is just a power of the Kirchhoff polynomial, but in
general there is also another component, a second Symanzik polynomial. In this way,
singularities of Kirchhoff polynomials influence the behavior of the corresponding
Feynman integral.
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Considered as functions over K D C, Kirchhoff polynomials are never zero if all
variables take values in a common open half-plane (defined by positivity of a non-
trivial R-linear form). Because Kirchhoff polynomials are homogeneous, this prop-
erty is independent of the choice of half-plane. For the right half-plane (with positive
real part) it is referred to as the (Hurwitz) half-plane property; the upper half-plane
(with positive imaginary part) defines the class of stable polynomials. Generalizing
beyond graphs, any matroidMwith set of bases BM defines a matroid basis polynomial
 M D

P
B2BM

xB . In this way,  G D  MG
depends only on the graphic matroid MG

on E with set of bases TG . Conditions for the half-plane property of  M in terms
of M were formulated by Choe, Oxley, Sokal and Wagner (see [11, p. 92]). They con-
sider general polynomials  M;a D

P
B2BM

aBx
B with matroid support and arbitrary

coefficients a D .aB/B2BM . The question whether the half-plane property of  M;a for
some coefficients a descends to  M is studied for example by Brändén and González
D’León (see [7, Theorem 2.3]), while Amini and Brändén (see [2]) consider interac-
tions of the half-plane property, representability and the Lax conjecture.

Recently, Brändén and Huh [8] introduced the class of Lorentzian polynomials,
which are defined by induction over the degree using partial derivatives, starting from
quadratic forms satisfying a signature condition. Stable polynomials are Lorentzian.
These polynomials have interesting negative dependence properties and close rela-
tions with matroids. For example, if a multiaffine polynomial (that is, a polynomial
supported on squarefree monomials) is Lorentzian, then it has the form  M;a for some
matroid M and positive coefficients a.

By the Matrix-Tree Theorem, however, the coefficients 1 of the Kirchhoff poly-
nomial arise in a particular way: Pick any orientation on G and let A be an incidence
matrix with one row deleted. Then  G D det.AXA|/, where X the diagonal matrix
of variables xe for all e 2 E. In more intrinsic terms, this is the determinant of the
generic diagonal bilinear form, restricted to the span WG � ZE of all incidence vec-
tors. Bloch, Esnault and Kreimer took this point of view for any linear subspace
W � KE over a field K (see [5, 15]). With respect to the basis of KE , this is a linear
realization of a matroid M, or a configuration. The dimension dimW equals the rank
of M, which we refer to as the rank of the configuration W (see Definition 2.1). The
generic diagonal bilinear form on KE restricts to a configuration form QW on W .
Its determinant  W D det.QW / is the configuration polynomial associated with W ,
a homogeneous polynomial of degree dimW in variables xe for all e 2 E (see Defi-
nitions 2.3 and 2.5). Configuration polynomials over K D C are stable, by a result of
Borcea and Brändén (see [6, Proposition 2.4]). Notably, the above mentioned second
Symanzik polynomial is a configuration polynomial, but not a Kirchhoff polynomial.

The configuration point of view has recently led to new insights on the affine and
projective hypersurfaces defined by Kirchhoff polynomials (see [12, 13]). At present,
the understanding of all the details of the singularity structure, as well as a satisfactory
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general treatment of Feynman integrals, is highly incomplete. There is some evidence
that this is due to built-in complications coming from complexity issues (see [3]).
A natural problem is then to determine to what extent the formula for a configuration
hypersurface is the most efficient way to encode the geometry: given a configura-
tion polynomial, can it be rewritten in fewer variables, and can this even be done via
another configuration?

In this article, we elaborate on this idea by studying configurations through the
lens of (linear) contact equivalence of their corresponding polynomials. This is the
equivalence relation on polynomials induced by permitting coordinate changes on the
source and target of the polynomial (see Definition 4.1). Polynomials in the same
equivalence class define the same affine hypersurfaces, up to a product with an affine
space. While this approach is very natural from a geometric point of view, forgetting
the matroid structure under the equivalence makes it difficult to navigate, and provides
certain surprises discussed below.

The main vehicle of our investigations is that any matrix representation of QW
consists of Hadamard products v ? w of vectors v; w 2 W , defined with respect to
a basis of KE (see Notation 2.2). After some preliminary discussion in earlier sec-
tions, we focus in Section 5 on the problem of finding “small” representatives within
the contact equivalence class of a given configuration. This requires us to look in detail
at the structure of the higher Hadamard powersW ?s ofW (see Section 3). While such
Hadamard powers usually do not form chains with increasing s, they nonetheless have
some monotonicity properties with regard to suitable restrictions to subsets of E (see
Lemma 3.3). We use this to minimize the number of variables of configuration poly-
nomials under contact equivalence (see Proposition 5.3). As a result, we obtain the
following:

Theorem 1.1. LetW �KE be a configuration over a field K of characteristic chKD

0, or ch K > dimW . Let �.W / be the minimal number of variables appearing in any
polynomial contact equivalent to  W . Then

�W �

 
dimW C 1

2

!
:

This minimum is realized within the set of configuration polynomials: there is a config-
urationW 0 � K�.W /, constructed fromW by a suitable matroid restriction, with  W
and  W 0 contact equivalent.

In Sections 6, 7 and 8, we then consider the classification problem of determining
all contact equivalence classes for configurationsW of a given rank, and we prove the
following:



G. Denham, D. Pol, M. Schulze, and U. Walther 796

Theorem 1.2. For configurations of rank up to 3, there are only finitely many contact
equivalence classes. For each rank at least 4, there is an infinite family of pairwise
inequivalent configurations over K D Q.

More precisely, we identify for dimW � 3 all contact equivalence classes and
write down a normal form for each class (see Table 1). This list is made of all possible
products of generic determinants in up to 6 variables together with

det

0B@y1 y4 y5

y4 y2 0

y5 0 y3

1CA and det

0B@ y1 y4 y4 C y5

y4 y2 y5

y4 C y5 y5 y3

1CA :
For dimW D 4, already for jEj D 6 variables, we exhibit an infinite family of contact
equivalence classes of configurations (see Proposition 8.2).

Our computations show that the contact equivalence class of a configuration nei-
ther determines nor is determined by the underlying matroid. Thus, one is prompted
to wonder what characteristics of the graph/matroid of a Kirchhoff/configuration poly-
nomial determine its complexity. We hope that our investigations here will help to shed
light on this problem.

2. Configuration forms and polynomials

Let K be a field. We denote the dual of a K-vector space W by

W _ WD HomK.W;K/:

Let E be a finite set. Whenever convenient, we order E and identify

E D ¹e1; : : : ; enº D ¹1; : : : ; nº:

We identify E with the canonical basis of the based K-vector space

KE
WD

M
e2E

K � e:

We denote by E_ D .e_/e2E the dual basis of

.KE /_ D KE_ :

We write xe WD e_ to emphasize that x WD .xe/e2E is a coordinate system on KE .
For F � E we denote by

xF WD
Y
f 2F

xf
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the corresponding monomial. For w 2 KE and e 2 E, denote by we WD e_.w/ the
e-component of w.

Definition 2.1. Let E be a finite set. A configuration over K is a K-vector space
W � KE . It gives rise to an associated matroid M D MW with rank function S 7!
dimKhS

_jW i and set of bases BM. We refer to its rank

rW WD dimKW

as the rank of the configuration. Equivalent configurations obtained by rescaling E or
by applying a field automorphism have the same associated matroid.

Notation 2.2. We denote the Hadamard product of u; v 2 KE by

u ? v WD
X
e2E

ue � ve � e 2 KE :

We suppress the dependency on E in this notation. We abbreviate

u?s WD u ? � � � ? u„ ƒ‚ …
s

:

Definition 2.3 ([13, Remark 3.21, Definition 3.20], [14, §2.2]). Denote by �K the
multiplication map of K. Let W � KE be a configuration of rank r D rW . The asso-
ciated configuration form is

QW D
X
e2E

xe � �K ı .e
_
� e_/W W �W ! hxiK:

A choice of (ordered) basis w D .w1; : : : ; wr/ of W � KE together with an
ordering ofE is equivalent to the choice of a configuration matrixAD .wij /i;j 2Kr�n

with row span hAi equal to W . With respect to these choices, QW is represented by
the r � r matrix

Qw WD QA WD .hx;w
i ? wj i/i;j D

�X
e2E

xe � w
i
e � w

j
e

�
i;j
:

Different choices of bases w, w0 and orderings (or, equivalently, of configuration
matrices) yield conjugate matrix representatives for QW .

Judicious choices of the basis and the orderings lead to a normalized configuration
matrix A D .Ir jA0/, where Ir is the r � r unit matrix.

Remark 2.4. For fixed e 2 E, .wie � w
j
e /i�j is the image of .wie/i under the second

Veronese map Kr ! K.
r
2/. Thus, Qw determines the vectors .wie/i up to a common

sign. In particular, QW determines the configuration W up to equivalence.
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Definition 2.5 ([13, Definition 3.2, Remark 3.3 and Lemma 3.23]). Let W � KE be
a configuration. If A is a configuration matrix forW with corresponding basisw, then
the associated configuration polynomial is defined by

 W WD  w WD  A WD det.QA/ 2 KŒx�:

It is determined by W up to a square factor in K�. One has the alternative description

 A D
X
B2BM

det.KB w
! W � KB/2 � xB ;

using the ordering corresponding to A on every basis B � E.
The matroid (basis) polynomial

 M D
X
B2BM

xB 2 ZŒx�

of M D MW has the same monomial support as  W but the two can be significantly
different (see [13, Example 5.2]).

Remark 2.6. If G D .V;E/ is a graph andW � KE is the row span of the incidence
matrix of G, then  W D  G is the Kirchhoff polynomial of G (see [13, Proposi-
tion 3.16]).

3. Hadamard products of configurations

Let W � KE be a configuration of rank

r D rW D dimKW � jEj:

For s 2 N�1, denote by

W ?s
WD W ? � � � ? W„ ƒ‚ …

s

WD hw1 ? � � � ? ws j w1; : : : ; ws 2 W i � KE

the s-fold Hadamard product of W and by

rsW WD dimKW
?s
� jEj

its dimension. Note that rW D r1W . By multilinearity and symmetry of the Hadamard
product, we have a surjection

Syms
KW � W ?s; wi1 � � �wis 7! wi1 ? � � � ? wis :
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In particular, for all s; s0 2 N�1, there is an estimate

rsW �

 
rW C s � 1

s

!
; (3.1)

and equations
.KE /?s D KE ; W ?s ? W ?s0

D W ?.sCs0/:

Example 3.1. Consider the non-isomorphic rank 2 configurations in Kn

W D h.1; : : : ; 1/; .1; 2; 3; : : : ; n/i; W 0 D h.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/i:

Then rsW Dmin¹s;nº follows from properties of Vandermonde determinants, whereas
rsW 0 D 2.

Remark 3.2. Extending a configuration W � KE by a direct summand K with ba-
sis f yields a new configuration W 0 D W ˚ K¹f º � KEt¹f º with configuration
matrix A0 D

�
A 0
0 1

�
, rsW 0 D r

s
W C 1 and  W 0 D  W � xf .

For F � E, denote by
�F W KE

! KF

the corresponding K-linear projection map. Abbreviate

wF WD �F .w/; WF WD �F .W /:

By definition, .w1 ? � � � ? ws/F D w1F ? � � � ? w
s
F and hence

.W ?s/F D .WF /
?s
DW W ?s

F :

Lemma 3.3. For every configuration W � KE there is a filtration

F1 � � � � � Ft � � � � � E

on E such that, for all s0 � s in N�1, there is a commutative diagram

KE KFs

W ?s0 W ?s0

Fs

�Fs

�

Š

� (3.2)

in which the right-hand containment is an equality for s0 D s. In particular, for s0 � s,

rs
0

W � r
s
W : (3.3)
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Proof. Note that (3.3) is a direct consequence of (3.2) and the filtration property. We
will construct the filtration inductively, starting with F1. Let F1 be any subset of E
such that rWF1

D jF1j (in other words, a basis for the matroid MW represented byW ).
Then (3.2) is clear.

Suppose that F1 � � � � � Ft have been constructed, satisfying (3.2) whenever
s0 � s � t . We claim first that W ?.tC1/

Fs
D KFs for all 1 � s � t . So, take a basis

element e 2 Fs . From the inductive hypothesis W ?s
Fs
D KFs we obtain a v 2 W ?s

such that vFs
D e. By definition of W ?s , there must be a u 2 W such that ue D 1 as

otherwiseWe D 0. But then w WD u?.tC1�s/ ? v 2W ?.tC1/ satisfies wFs
D e, so that

W
?.tC1/
Fs

D KFs as claimed.

The just established equation W ?.tC1/
Ft

D KFt says that Ft is an independent set
for the matroid associated to the configuration W ?.tC1/ � KE . Extend it to a ba-
sis FtC1. Then (3.2) follows for s0 D s D t C 1 (including the equality of the right
inclusion). On the other hand, for s0 � t , the natural composite surjection

W ?s0 � W ?s0

FtC1
� W ?s0

Ft

is by the inductive hypothesis an isomorphism. Hence each of the two arrows in the
display is an isomorphism as well, proving that (3.2) holds for s0 < s D t C 1.

Definition 3.4. Let W � KE be a configuration. By Lemma 3.3, there is a minimal
index tW such that r tW D r

tW
W for all t � tW . We call tW the Hadamard exponent

and r tWW the Hadamard dimension of W .

4. Linear contact equivalence

Definition 4.1. We call two polynomials � 2 KŒx1; : : : ; xm� and  2 KŒx1; : : : ; xn�

(linearly contact) equivalent if for some p � m; n there exists an ` 2 GLp.K/ and
a � 2 K� such that

� D � �  ı ` (4.1)

in KŒx1; : : : ; xp�. We write � '  in this case.

Remarks 4.2. (a) If K is a perfect field and  is homogeneous, then one can
assume � D 1 in (4.1) at the cost of scaling ` by �1= deg. /.

(b) By definition, both adding redundant variables and permuting variables yield
equivalent polynomials. In particular, enumerating E and considering E �
¹1; : : : ; pº as a subset for any p � jEj gives sense to equivalence of config-
uration polynomials  W .
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Notation 4.3. For a fixed field K, we set

‰ WD
®
 W j E finite set; W � KE

¯
:

We aim to understand linear contact equivalence on ‰.

5. Reduction of variables modulo equivalence

Lemma 5.1. Let W � KE be a configuration. Then there is a subset F � E of size
jF j D r2WF

D r2W such that  W '  WF
.

Proof. Lemma 3.3 with t D 2 yields a subset F � E such that

�F jW W W
Š
�! WF and �F jW ?2 W W ?2 Š

�! W ?2
F D KF : (5.1)

Let �F be the section of �F that factors through the inverse of �F jW ?2 ,

�F W KF W ?2 KE :
.�F jW ?2 /

�1

(5.2)

Consider the K-linear isomorphism of based vector spaces

qW KE
! KE_ ; w 7!

X
e2E

we � xe

inducing the configuration q.W / � KE_ . Set F _ WD q.F / and �F_ WD q ı �F ı q�1.
Then �F_ D q ı �F ı q�1, and (5.1) and (5.2) persist if F is replaced by F _ and W
by q.W / throughout.

Now choose a basiswD .w1; : : : ;wr/ ofW . ThenwF D .w1F ; : : : ;w
r
F / is a basis

of WF by (5.1) and

QW D .q.w
i ? wj //i;j D .q.w

i / ? q.wj //i;j

(5.2)
D
�
�F_ ı �F_.q.w

i / ? q.wj //
�
i;j

D �F_.q.w
i /F_ ? q.w

j /F_/i;j D �F_.q.w
i
F / ? q.w

j
F //i;j

D �F_.q.w
i
F ? w

j
F //i;j D �F_QWF

:

Since �F_ is a section of �F_ ,  W '  WF
by taking determinants.

Lemma 5.2. LetW �KE be a configuration. Suppose that ch KD 0, or ch K > rW .
If  W ' � 2 KŒy1; : : : ; yn�1�, where n WD jEj, then  W '  WEn¹eº

for some e 2 E.
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Proof. Let ` 2 GLp.K/ and � 2 K� realize the equivalence � '  W , that is, � D
� � W ı `, whereE � ¹1; : : : ; pº (see Remark 4.2 (b)). Consider the K-linearly inde-
pendent K-linear derivations of KŒx1; : : : ; xp�

ıi WD `�

� @

@yn�1Ci

�
D

@

@yn�1Ci
.� ı `/ ı `�1; i D 1; : : : ; p � nC 1:

Since � is independent of yn; : : : ; yp , we have

ıi . W / D �
�1
�

@�

@yn�1Ci
ı `�1 D 0; i D 1; : : : ; p � nC 1: (5.3)

By suitably reordering ¹1; : : : ; pº, we may assume that the matrix .ıi .xj // with 1 �
i; j � p � nC 1 is invertible. After replacing the ıi by suitable linear combinations,
we may further assume that ıi .xj / D ıi;j for all i; j 2 ¹1; : : : ; p � nC 1º. Then

xi D x
0
i ; i D 1; : : : ; p � nC 1;

xi D x
0
i C

p�nC1X
jD1

ıj .xi / � x
0
j ; i D p � nC 2; : : : ; p;

defines a coordinate change such that

ıj D

pX
iD1

ıj .xi /
@

@xi
D

pX
iD1

@xi

@x0j

@

@xi
D

@

@x0j
; j D 1; : : : ; p � nC 1: (5.4)

If ch K > 0, then ch K > rW D deg. W / by hypothesis. By (5.3) and (5.4),  W is
thus independent of x01; : : : ; x

0
p�nC1. Setting xi D x0i D 0 for i D 1; : : : ; p � nC 1

thus leaves  W unchanged and makes xi D x0i for i D p � nC 2; : : : ; p. It follows
that

 W '  W jx0
1
D���Dx0

p�nC1
D0 D  W jx1D���Dxp�nC1D0 D  WEn¹1;:::;p�nC1º

:

Then any e 2 E \ ¹1; : : : ; p � nC 1º satisfies the claim.

Proposition 5.3. Let W � KE be a configuration. Then there is a subset F � E of
size jF j D r2WF

� r2W such that  W '  WF
. Suppose that ch K D 0, or ch K > rW .

Then any polynomial � '  WF
depends on at least jF j variables. In other words,

among the polynomials equivalent to  W with minimal number of variables is the
configuration polynomial  WF

.

Proof. By Lemma 5.1, there is a subset G � E such that jGj D r2WG
D r2W and

 W '  WG
. Note that jGj D r2WG

means W ?2
G D KG which for any subset F � G

implies thatW ?2
F DKF and hence jF jD r2WF

� r2W . Pick such anF with WF
' WG

minimizing jF j. Note that rWF
� rW . By Lemma 5.2 applied to the configuration
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WF � KF , any � '  WF
depending on fewer than jF j variables yields an e 2 F

such that  WF
'  WFn¹eº

, contradicting the minimality of F .

Remark 5.4. By Remark 2.4, QW determines r2W . By definition, (the equivalence
class of)  W determines r1W D rW D deg W . We do not know whether it also deter-
mines r2W .

6. Extremal cases of equivalence classes

Notation 6.1. For r; d 2 N, set

‰dr D
®
 W j E finite set; W � KE ; rW D r; r

2
W D d

¯
:

Lemma 6.2. Let W � KE be a configuration of rank r with basis .w1; : : : ; wr/.
Let G be the graph on the vertices v1; : : : ; vr in which ¹vi ; vj º is an edge if and only
if wi ? wj ¤ 0. Let G� be the cone graph over G. If ¹wi ? wj j i � j;wi ? wj ¤ 0º
is linearly independent, then

 W '  G�

is the Kirchhoff polynomial of G�.

Proof. See [3, Theorem 3.2] and its proof.

Proposition 6.3. If d D r , then every element of ‰dr is equivalent to x1 � � �xr . If d D�
rC1
2

�
, then every element of‰dr is equivalent to the elementary symmetric polynomial

of degree r in the variables x1; : : : ; xd .

Proof. Let W � KE be a configuration.
First, suppose that r2W D rW . By Lemma 5.1, we may assume that jEj D r2W . Then

W D KE and hence  W D xE is the matroid polynomial of the free matroid on rW
elements.

Now suppose that r2W D
�
rWC1
2

�
. Then ¹wi ? wj j 1 � i � j � rº is linearly

independent for any basis .w1; : : : ; wr/ of W . By Lemma 6.2,  W is then equivalent
to the Kirchhoff polynomial of the complete graph on rW C 1 vertices.

7. Finite number of classes for small rank matroids

The purpose of this section is to give a complete classification of configuration poly-
nomials for matroids of rank at most 3 with respect to the equivalence relation of
Definition 4.1. Due to Proposition 5.3, we may assume that jEj D r2W .
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Definition 7.1 ([14, §2.2]). A choice of basis .w1; : : : ; wr/ of W � KE and order
of E gives rise to a configuration matrix AD .wij /i;j 2Kr�n, whose row span recov-
ersW D hAi. Up to reordering E it can be assumed in normalized form A D .Ir jA

0/,
where Ir is the r � r unit matrix.

Proposition 7.2. Let W be a configuration of rank 2. If r2W D 2, then  W ' x1x2,
otherwise, r2W D 3 and  W ' x1x2 � x23 .

Proof. Most of this follows from the proof of Proposition 6.3. Apply x1 7! x1 C x2

to the Kirchhoff polynomial x1x2 C x2x3 C x3x1 of K3; the result is x21 C x1.x2 C
2x3/C x2x3.

If ch KD 2, then this is x21 C x2.x1 C x3/. If 2 2 K is a unit, complete the square
and scale x2 by 2 to arrive at x21 � x

2
2 C x

2
3 . In both cases the result is easily seen to

be equivalent to x1x2 � x23 .

Proposition 7.3. The numbers of equivalence classes for rank 3 configurations W
for different values of r2W are

j‰33='j D 1; j‰
4
3='j D 2; j‰

5
3='j D 2; j‰

6
3='j D 1:

Table 1 lists the equivalence classes of  W that arise from normalized configuration
matrices A when rW D 3 and r2W D jEj.

jE jDr2
W

A Conditions  W ' det.�/

3
�

1 0 0
0 1 0
0 0 1

�
None

�
y1 0 0
0 y2 0
0 0 y3

�

4

�
1 0 0 a1

0 1 0 a2

0 0 1 a3

�
ai D 0 for exactly one i

�
y1 y4 0
y4 y2 0
0 0 y3

�
�

1 0 0 a1

0 1 0 a2

0 0 1 a3

�
ai ¤ 0 for all i

�
y1 y4 y4
y4 y2 y4
y4 y4 y3

�

5

�
1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2

�
Exactly one pair of

� ai;1�aj;1
ai;2�aj;2

�
,

i ¤ j , is linearly dependent

�
y1 y4 y5

y4 y2 0
y5 0 y3

�
�

1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2

�
All pairs of

� ai;1�aj;1
ai;2�aj;2

�
, i ¤ j ,

are linearly independent

�
y1 y4 y4Cy5
y4 y2 y5

y4Cy5 y5 y3

�
6

�
1 0 0 a1;1 a1;2 a1;3

0 1 0 a2;1 a2;2 a2;3

0 0 1 a3;1 a3;2 a3;3

�
None

�
y1 y4 y6
y4 y2 y5
y6 y5 y3

�
Table 1. Equivalence classes for rank rW D 3 configurations.
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Proof. LetW �KE be a configuration of rank rW D 3with normalized configuration
matrix A. By (3.1) and Lemma 5.1, we may assume that

3 D rW � r
2
W D jEj �

 
rW C 1

2

!
D 6:

The cases where r2W 2 ¹3; 6º are covered by Proposition 6.3.
Suppose now that r2W D 4. Up to reordering rows and columns, A then has the

form

A D

0B@1 0 0 a1

0 1 0 a2

0 0 1 a3

1CA ; a1; a2; a3 2 K; a1a2 ¤ 0;

and hence

QA D

0B@x1 C a21x4 a1a2x4 a1a3x4

a1a2x4 x2 C a
2
2x4 a2a3x4

a1a3x4 a2a3x4 x3 C a
2
3x4

1CA :
If a3 D 0, then we can write, in terms of suitable coordinates y1, y2, y3, y4,

QA D

0B@y1 y4 0

y4 y2 0

0 0 y3

1CA ;  A D det.QA/ D .y1y2 � y24/y3: (7.1)

On the other hand, if a3 ¤ 0, then we can write

Q�;� WD QA D

0B@ y1 y4 �y4

y4 y2 �y4

�y4 �y4 y3

1CA ; � WD
a3

a1
; � WD

a3

a2
:

Applying the coordinate change .y1; y2; y3; y4/ 7! .y1

�2 ;
y2

�2 ; y3;
y4

��
/ yields

Q0�;� WD

0B@
y1

�2

y4

��
y4

�
y4

��
y2

�2

y4

�
y4

�
y4

�
y3

1CA ;
and hence by extracting factors from the first and second row and column

det.Q�;�/ ' �2�2 det.Q0�;�/ D det.Q1;1/:

In contrast to  A in (7.1), this cubic is irreducible since MW D U3;4 is connected
(see [13, Theorem 4.16]). In particular, the cases a3D 0 and a3¤ 0 belong to different
equivalence classes.
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Suppose now that r2W D 5. Then A has the form

A D

0B@1 0 0 a1;1 a1;2

0 1 0 a2;1 a2;2

0 0 1 a3;1 a3;2

1CA :
First, suppose that, after suitably reordering the rows and columns of A, w1 ? w2

and w2 ? w3 are linearly dependent, and hence w1 ? w2 and w1 ? w3 are linearly
independent. In terms of suitable coordinates y1; : : : ; y5, we can write

Q� WD QA D

0B@y1 y4 y5

y4 y2 �y4

y5 �y4 y3

1CA ; � 2 K:

By symmetric row and column operations,

det.Q�/ D det

0B@ y1 y4 y5 � �y1

y4 y2 0

y5 � �y1 0 y3 � 2�y5 C �
2y1

1CA ' det.Q0/:

One computes that the ideal of submaximal minors of Q0 equals

I2.Q0/ D hy1y2 � y
2
4 ; y3; y5i \ hy1y3 � y

2
5 ; y2; y4i: (7.2)

Suppose now that all pairs ofwi ?wj with i < j are linearly independent. In terms
of suitable coordinates, y1; : : : ; y5, we can write

Q�;� D

0B@ y1 y4 �y4 C �y5

y4 y2 y5

�y4 C �y5 y5 y3

1CA ; �; � 2 K�:

Applying the coordinate change

.y1; y2; y3; y4/ 7! .�2y1; y2; �
2y3; �y4; �y5/

yields

Q0�;� D

0B@ �2y1 �y4 ��.y4 C y5/

�y4 y2 �y5

��.y4 C y5/ �y5 �2y3

1CA ;
and hence by extracting factors from the first and last row and column

det.Q�;�/ '
1

�2�2
det.Q0�;�/ D det.Q1;1/:
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The linear independence of all pairs of wi ? wj with i < j implies that MW D U3;5
which is 3-connected (see [14, Table 8.1]). In contrast to I2.Q0/ in (7.2), I2.Q1;1/
must be a prime ideal (see [13, Theorem 4.37]). In particular, the two cases with
r2W D 5 belong to different equivalence classes.

8. Infinite number of classes for rank 4 matroids

For rank 4 configurations there are infinitely many equivalence classes of configura-
tion polynomials. For simplicity, we prove this over the rationals, so in this section
we assume K D Q.

Consider the family of normalized configuration matrices

A WD

0BBB@
1 0 0 0 1 1

0 1 0 0 a1 b1

0 0 1 0 a2 0

0 0 0 1 0 b2

1CCCA ;
depending on parameters a1; a2; b1; b2 2Q, where a1a2b1b2 ¤ 0. We will see that it
gives rise to an infinite family of polynomials

 m WD det.Qm/; Qm WD

0BBB@
y1 y5 C y6 y5 my6

y5 C y6 y2 y5 y6

y5 y5 y3 0

my6 y6 0 y4

1CCCA ; m WD
a1

b1
2 Q;

which are pairwise inequivalent for jmj > 1.

Lemma 8.1. With the above notation, we have  A '  m.

Proof. The configuration form associated to A is given by

QA D

0BBB@
x1 C x5 C x6 a1x5 C b1x6 a2x5 b2x6

a1x5 C b1x6 x2 C a
2
1x5 C b

2
1x6 a1a2x5 b1b2x6

a2x5 a1a2x5 x3 C a
2
2x5 0

b2x6 b1b2x6 0 x4 C b
2
2x6

1CCCA :
The coordinate changes

.z1; : : : ; z6/ WD .x1 C x5 C x6; x2 C a
2
1x5 C b

2
1x6; x3 C a

2
2x5;

x4 C b
2
2x6; a1x5; b1x6/;

.y1; : : : ; y6/ WD
�
z1;

z2

a21
;
z3

a22
;
z4

b22
;
z5

a1
;
z6

a1

�
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turn QA into

QA D

0BBB@
z1 z5 C z6

a2

a1
z5

b2

b1
z6

z5 C z6 z2 a2z5 b2z6
a2

a1
z5 a2z5 z3 0

b2

b1
z6 b2z6 0 z4

1CCCA

D

0BBB@
y1 a1.y5 C y6/ a2y5

a1b2

b1
y6

a1.y5 C y6/ a21y2 a1a2y5 a1b2y6

a2y5 a1a2y5 a22y3 0
a1b2

b1
y6 a1b2y6 0 b22y4

1CCCA ;
so that det.QA/D a21a

2
2b
2
2 det.Qm/ by extracting factors from the last three rows and

columns.

Proposition 8.2. For m;m0 2 Q�,  m '  m0 if and only if m D m0 or mm0 D 1.

Proof. By a SINGULAR computation, the primary decomposition of the ideal of sub-
maximal minors of Qm reads

I2.Qm/ D Pm;1 \ Pm;2 \ Pm;3;

where

Pm;1 D
˝
y1 Cmy2 � .mC 1/y5 � .mC 1/y6;

y2y4 � y4y5 � y4y6 C .m � 1/y
2
6 ;

my2y3 � y3y5 C .1 �m/y
2
5 � y3y6

˛
;

Pm;2 D
˝
y6; y4; y1y2y3 � y

2
5.y1 C y2 C y3 � 2y5/

˛
;

Pm;3 D
˝
y5; y3; y1y2y4 � y

2
6.y1 Cm

2y2 C y4 � 2my6/
˛
:

Fix m;m0 2 K� with  m '  m0 . Then there is an ` 2 GL6.K/ such that®
`�.Pm;i / j i 2 ¹1; 2; 3º

¯
D
®
`�.Pm0;i / j i 2 ¹1; 2; 3º

¯
:

Let us assume first that

`�.Pm;1/ D Pm0;1; `�.Pm;2/ D Pm0;2; `�.Pm;3/ D Pm0;3: (8.1)

Then `� stabilizes the vector spaces hy3; y5i and hy4; y6i and hence

`�.y3/ D `3;3y3 C `3;5y5; `�.y4/ D `4;4y4 C `4;6y6;

`�.y5/ D `5;3y3 C `5;5y5; `�.y6/ D `6;4y4 C `6;6y6;
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with non-vanishing determinants

`1;1`2;2 � `1;2`2;1 ¤ 0; `3;3`5;5 � `3;5`5;3 ¤ 0; `4;4`6;6 � `4;6`6;4 ¤ 0: (8.2)

In degree 3 the second equality in (8.1) yields

.`3;3y3 C `3;5y5/

6X
iD1

`1;iyi

6X
jD1

`2;jyj � .`5;3y3 C `5;5y5/
2

�

� 6X
iD1

.`1;i C `2;i /yi C .`3;3 � 2`5;3/y3 C .`3;5 � 2`5;5/y5

�
� �.y1y2y3 � y

2
5.y1 C y2 C y3 � 2y5// mod hy4; y6i; � 2 K�: (8.3)

By comparing coefficients of y1y2y5 in (8.3), we find .`1;1`2;2 C `1;2`2;1/`3;5 D 0,
which forces `3;5 D 0 by (8.2). Comparing next the coefficients of the monomials

y21 ; y22 ; y1y
2
5 ; y2y

2
5

in (8.3), we then obtain

`1;1`2;1 D 0; `1;2`2;2 D 0;

�`25;5.`1;1 C `2;1/ D ��; �`
2
5;5.`1;2 C `2;2/ D ��;

(8.4)

which yields
`1;1 C `2;1 D `1;2 C `2;2: (8.5)

In degree 1 the first equality in (8.1) yields

6X
iD1

.`1;i Cm`2;i /yi � .mC 1/.`5;3y3 C `5;5y5/ � .mC 1/.`6;4y4 C `6;6y6/

D �.y1 Cm
0y2 � .m

0
C 1/y5 � .m

0
C 1/y6/:

Comparing coefficients of y1 and y2, we find

`1;1 Cm`2;1 D �; `1;2 Cm`2;2 D m
0�: (8.6)

By equation (8.4), `1;i or `2;i must be zero for i D 1; 2. Thus, we consider the fol-
lowing cases:

• If `1;1D `1;2D 0, then `2;1D
�
m

and `2;2D
m0�
m

by (8.6), hence �
m
D

m0�
m

by (8.5),
so m0 D 1.

• If `1;1 D `2;2 D 0, then `2;1 D
�
m

and `1;2 D m0� by (8.6), hence �
m
D m0�

by (8.5), so m0 D 1
m

.
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• If `2;1D `1;2D 0, then `1;1D� and `2;2D
m0�
m

by (8.6), hence�D m0�
m

by (8.5),
so m0 D m.

• If `2;1D `2;2D 0, then `1;1D� and `1;2Dm0� by (8.6), hence�Dm0� by (8.5),
so m0 D 1.

A similar discussion applies, with the same consequences, to the case where

`.Pm;1/ D Pm0;1; `.Pm;2/ D Pm0;3; `.Pm;3/ D Pm0;2:

In conclusion and by replacing ` with `�1, we find

m0 2
°
1;m;

1

m

±
; m 2

°
1;m0;

1

m0

±
:

Unlessm0 D m, we havem0 D 1
m
D

b1

a1
. In terms of the coordinates from the proof of

Lemma 8.1, we can write

 A D a
2
2b
2
2 det

0BBBB@
z1 z5 C z6

z5

a1

z6

b1

z5 C z6 z2 z5 z6
z5

a1
z5

z3

a2
2

0

z6

b1
z6 0 z4

b2
2

1CCCCA

' det

0BBB@
z1 z5 C z6

z5

a1

z6

b1

z5 C z6 z2 z5 z6
z5

a1
z5 z3 0

z6

b1
z6 0 z4

1CCCA :
One can see that the morphism that leaves z1, z2 fixed, and interchanges the pairs
z3 $ z4, z5 $ z6, a1 $ b1 transforms this final matrix into a conjugate matrix.
However, by Lemma 8.1 the determinants of these two matrices are equivalent to  m
and 1=m respectively, wheremD a1

b1
. It follows that m and 1=m are equivalent.

Corollary 8.3. For every k 2 N, we have j‰6Ck
4Ck

='j D 1 over K D Q.

Proof. Applying the construction from Remark 3.2 yields configurations W with
rW D 4 C k and r2W D 6 C k which give rise to the infinite family of polynomi-
als  m;k D  m � y7 � � � y7Ck , contact equivalent to elements of ‰6Ck

4Ck
. For reasons of

degree,  m;k '  m0;k is equivalent to  m '  m0 , so the claim follows from Proposi-
tion 8.2.
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