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The signed monodromy group of an Adinkra

Edray Goins, Kevin Iga, Jordan Kostiuk, and Kory Stiffler

Abstract. An ordering of colours in an Adinkra leads to an embedding of this Adinkra into

a Riemann surface X , and a branched covering map ˇX WX ! CP
1. This paper shows how

the dashing of edges in an Adinkra determines a signed permutation version of the monodromy

group, and shows that it is isomorphic to a Salingaros vee group.

1. Introduction

An Adinkra is a bipartite directed graph, together with various markings (each edge

is coloured from among N colours, and is either drawn with a solid or dashed line),

subject to a certain list of conditions [20]. Adinkras arise from representations of the

supersymmetry algebra from physics [8]. In [3], it was shown that given an Adinkra,

and a cyclic ordering of the colours, there is an embedding of the Adinkra into a

Riemann surface X , and a branched covering map ˇX WX ! CP
1, branched over the

N -th roots of �1.

One important approach in studying branched covers is the monodromy group.

This is the set of permutations of the points ˇX
�1.1/D ¹p1; : : : ;pd º, resulting from

loops in CP
1 based at1 that avoid the branch points. The monodromy group of this

branched covering map turns out to be isomorphic to a group of the form F
m
2 , where

2m D d , see [3].

The edges of an Adinkra are either solid or dashed. This can be used to turn

these permutations into signed permutations, meaning that we formally invent objects

¹�p1; : : : ;�pd º, and instead of pi going to pj , it might go to �pj , if there is an odd

number of dashed edges that are involved in the corresponding path. In this way we

end up with a signed permutation group.

In this paper we calculate this signed permutation group for any connected

Adinkra, and prove them to be the vee groups Gn due to Nikos Salingaros in [18].
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This will give a more general context for the appearance of the quaternionic group

Q8 (which is isomorphic to G2) in the case N D 4 with code h1111i, as described

in [11].

This distinction between solid or dashed edges corresponds naturally to the mean-

ing that this distinction has in the representation of the 1-dimensional supersymmetric

Poincaré algebra, where Adinkras were first discussed. The signed monodromy group

also is the natural place for the holoraumy tensors VIJ and zVIJ as defined in [2, 10].

We begin in Section 2 by reviewing Adinkras, the Riemann surface X , the Belyı̆

map ˇX WX!CP
1, and the monodromy group. Section 3 introduces the mathematics

of signed permutations, and Section 4 defines the signed monodromy group for an

Adinkra.

The signed monodromy group will be defined in Section 4, the Salingaros vee

group Gn will be defined in Section 5, and the main theorem, which computes the

signed monodromy group, will be stated in Section 6. The proof of this will be in

Sections 7 through 9. There is an application to relations in the GR.d; N / algebra in

Section 10.

2. Background

We begin by summarizing several concepts about Adinkras and the corresponding

Riemann surfaces and Belyı̆ maps. A more thorough introduction can be found in [5,

6, 8, 20].

2.1. Adinkras

To aid in studying GR.d; N / algebras, M. Faux and S. J. Gates introduced diagrams

called Adinkras [8]. A mathematically rigorous definition of Adinkras is built in steps,

as described in [20].

Definition 2.2. 1. An N -dimensional Adinkra topology is a bipartite N -regular graph;

we call the two sets in the bipartition bosons and fermions, and colour them white and

black respectively.

2. An Adinkra chromotopology is an Adinkra topology for which the set of edges

is N -coloured, with each vertex incident with one edge of each colour, and the subset

of edges consisting of two distinct colours forms a disjoint union of 4-cycles – these

special cycles are known as 2-coloured 4-cycles.

3. An Adinkra is an Adinkra chromotopology equipped with two additional struc-

tures: an odd-dashing – a dashing of the edges for which there is an odd number of

dashed edges in each 2-coloured 4-cycle – and a height assignment, which is a ranked
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Figure 1. An N D 4 Adinkra with the topology of a Hamming 4-cube. Bosons are the white

nodes, and fermions are black. Note the colouring and dashing of the edges. The height assign-

ment here, shown literally by height on the page, puts all bosons at height 0 and all fermions at

height 1.

Figure 2. The quotient of the 4-cube Adinkra by the doubly even code generated by h1111i.

This can be obtained from the Adinkra in Figure 1 by identifying each of the four leftmost

bosons (and the four leftmost fermions) with the boson (resp. fermion) four nodes to its right.

poset structure on the vertices described by a Z-valued function on the vertex set

subject to certain constraints.

One example of an Adinkra is the N -dimensional Hamming cube, with vertex set

¹0; 1ºN D F
N
2 . If v and w are vertices that are identical except in a single coordinate

(say the i -th coordinate), then there is an edge of colour i connecting v and w. Given a

vertex .x1; : : : ; xN /, it is a boson if
P

xi is even, and it is a fermion if the sum is odd.

The integer labeling of that vertex is given by
P

xi . An edge of colour i connecting

.x1; : : : ; xN / with .y1; : : : ; yN / is solid if
Pi�1

j D1 xi is even and is dashed if the sum

is odd (note that by definition, xj D yj for all j 6D i ). See Figure 1.

Other interesting graphs can be obtained by quotienting the Hamming cube by

some linear subspace of F
N
2 , also called a linear code.

A code is a vector space over F2, and so has a dimension, which we will call k.

The number of elements of the code will be 2k , and the number of vertices in the

quotient is 2N �k .

This process preserves the bipartition of the vertices if the code is even (meaning

that the number of 1s in every element is even) and can be made compatible with

the dashing condition conditions above if the code is doubly even (meaning that the

number of 1s in every element is a multiple of four), see [6]. That is, we can construct

an Adinkra out of a doubly even linear code. Conversely, every connected Adinkra

arises in this fashion [6]. Since every Adinkra is a disjoint union of such connec-

ted components, the topology of Adinkras reduces to knowledge of the doubly even

codes. One example is the bottom Adinkra in Figure 2, which has N D 4 and uses the
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code ¹0000; 1111º. This has N D 4 and k D 1, and is obtained by identifying each

boson, and each fermion, with a corresponding boson (resp. fermion) that is diamet-

rically opposite it on the 4-cube. In the Figure, this is obtained from the top Adinkra

by identifying each of the four leftmost bosons (and the four leftmost fermions) with

the boson (resp. fermion) four nodes to its right.

2.3. The Riemann surface for an Adinkra

In this section we review the material in [3, 4].

Consider an Adinkra. A rainbow is a cyclic ordering of the N colours. An Adinkra

and a rainbow give rise to a Riemann surface X . This is done by attaching a square to

every cycle of four edges that alternate between two colours, both of which are adja-

cent in the rainbow. The Riemann surface X is connected if and only if the Adinkra

is. If X is connected, its genus is

g D 1C .N � 4/
d

4
;

where d be the number of bosons (which is equal to the number of fermions). For a

connected Adinkra, which is the quotient of F
N
2 by a code of dimension k,

d D 2n�k�1:

There is also an order d branched covering map ˇX WX!CP
1, branched over the

N -th roots of �1, �j D e
.2j �1/�

N for j D 1; : : : ; N , and the covering map is ramified

to order 2 around each of these �j . In CP
1, we draw a single white vertex at 0, a

single black vertex at1, and N edges from 0 to1, one for each colour joining the

two vertices. These edges are parameterized by

zj .t/ D te
2.j �1/�i

N ; 0 � t � 1;

and form the rays joining 0 to 1 making an angle 2.j �1/�
N

with the real axis. This

CP
1, together with these markings, we call a beachball (see Figure 3).

Then the preimage of the white vertex at 0 by ˇX is the set of d bosons, and

likewise the preimage of the black vertex at 1 by ˇX is the set of d fermions. The

preimage by ˇX of the edge coloured j is the set of edges of colour j . The wedge

between colour j and colour j C 1 in CP
1 contains one branch point �j ramified to

order 2, and its preimage under ˇX is the set of squares between colour j and colour

j C 1 edges. Note that the map ˇX is not ramified on the Adinkra. As an example,

the Riemann surface X from the N D 4, k D 1 example in Figure 2 is a torus with

an embedding of the Adinkra. This torus, together with its corresponding beachball,

is shown in Figure 4.
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z1.t /

z2.t /

z3.t /

z4.t /

z5.t /

1

2
3

4

5

Figure 3. The beachball for N D 5. The white node is the boson at 0, the black node is the

fermion at1, the coloured edges are the zj .t /, and the � are at the �j , where the covering map

ˇX is ramified.

Figure 4. On the left, the Riemann surface X for the N D 4, kD 1 Adinkra from Figure 2. There

is an order 4 branched covering map ˇX that sends it to the corresponding N D 4 beachball on

the right.

As an aside, we might mention that in [3], this covering map ˇX was composed

with the map ˇN WCP
1 ! CP

1 given by

ˇN .z/ D
zN

zN C 1
:

The result, ˇN ı ˇX WX ! CP
1, is a cover of order Nd , branched over ¹0;1;1º, and

is hence a Belyı̆ map, and connects the subject of Adinkras with the dessins d’enfants

of Grothendieck. But this composed map will not play a rôle in this paper, and we

will focus exclusively on ˇX .

2.4. The monodromy group

Let Y D CP
1 � ¹�1; : : : ; �N º, the set of regular points of CP

1 with respect to the

branched cover ˇN . Pick the basepoint y0 D1 in Y (the basepoint y0 D 0 leads to a

similar story). Above y0D1 lie all d of the fermions in X , F D ˇ�1
X .¹1º/. Figure 5

shows Y near 0 and near1, together with the deleted points �j and the edges zj .t/.
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The fundamental group �1.Y;1/ acts on the set X0 as follows: for each loop

c 2 �1.Y;1/ and each element x0 2 F , there is a unique lift of c to a path in X

starting at x0 and ending at some other fermion �c.x0/ 2 F . The point �c.x0/ does

not depend on the homotopy class of the loop c and, in this way, we obtain a map

� W�1.Y; y0/! Sd , where Sd means the symmetric group on d elements.

Definition 2.5. Given a connected Adinkra A, the monodromy group of A is the image

of �1.Y;1/ in Sd .

z1.t / z1.t /

z2.t / z2.t /

z3.t / z3.t /z4.t / z4.t /

z5.t / z5.t /
1 1

2 2

3 3

4 4

N N
0

zN.t / zN.t /

1

Figure 5. Views of the beachball CP
1 near 0 and1. The path z1.t / goes along the positive real

axis. Note that the ordering of colours goes counterclockwise around 0 and clockwise around1.

The fundamental group �1.Y; y0/ is generated by loops cj that start at 1 and

wrap around �j positively; the only relation between these loops is that1

c1 : : : cN D 1;

so it suffices to use c1; : : : ; cN �1 as generators. See Figure 6.

It will be convenient to use a different set of loops, w1; : : : ; wN �1, defined so that

wj is the simple closed curve starting and ending at1, that goes around ¹�1; : : : ; �j º.

See Figure 7. More symbolically,

w1 D c1;

w2 D c1c2;
:::

wN �1 D c1c2 : : : cN �1:

Likewise, we can write

ci D

8

ˆ

<

ˆ

:

w1 i D 1;

wi�1
�1wi i D 2; : : : ; N � 1;

wN �1
�1 i D N;

and thus, w1; : : : ; wN �1 is also a set of generators for �1.Y /.

1We will write path composition from right to left.
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c1

c2

c3

c4

cN

1

1

2
3

4

N

Figure 6. The generators c1; : : : ; cN of �1.Y / are loops around each of the ramification points.

Note that the product c1 : : : cN D 1, so it suffices to use c1; : : : ; cN �1 as generators.

1

2
3

4

N

w1

w2

w3

w4

1

Figure 7. The generators w1; : : : ; wN �1 of �1.Y / are an alternative set of generators of the

monodromy group.

Up to homotopy, the loop wj can be represented by the concatenation of coloured

edges in the beachball CP
1: more specifically, the path zj C1.t/ from1 to 0, followed

by z1.t/ from 0 to1.

To find the monodromy �j associated with wj , pick any fermion x02FDˇ�1
X .1/.

The path wj has a lift Qwj in X that starts at x0. This lifted path again follows coloured

edges but these are now in the Adinkra. Again, Qwj follows an edge of colour j C 1,

then an edge of colour 1. Since wj started and ended at1, it must be that Qwj ends at

a fermion. Then define �j .x0/ to be the fermion at the endpoint of Qwj . In this way, �j

is a map from fermions to fermions, and is thus a permutation on the set of fermions.

The �j generate the monodromy group, denoted M.
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This was analyzed in [3], and for a connected Adinkra,

M Š F
N �k�1
2 :

More precisely, a connected Adinkra is associated to a doubly even code C of length

N of dimension k, see [6]. This is a k-dimensional vector subspace of F
N
2 . Define

E D ¹.x1; : : : ; xN /W
X

xi � 0 .mod 2/º;

which is also a vector subspace of F
N
2 of dimension N�1, and note that C�E�F

N
2 .

For an N -dimensional cubical Adinkra, with vertex set ¹0; 1ºN , moving along

colour j means translating modulo 2 by the standard basis vector with a single 1 in

the j -th coordinate. Then �wj
is translation modulo 2 by

.1; 0; : : : ; 0; 1; 0; : : : ; 0/

with a 1 in the first and .j C 1/-st coordinate. In F
N
2 , these generate E. Then M Š

E Š F
N �1
2 .

For a more general connected Adinkra, which is a quotient of the cubical Adinkra

by a code C , the monodromy group is obtained by quotienting E by the code C , so

that M Š E=C Š F
N �k�1
2 . We can write the following short exact sequence:

1! C ! E !M ! 1: (1)

A summary of short exact sequences with examples pertinent to this paper is given in

Appendix A.

3. Signed permutations

If S is a set, then a permutation on S is a bijection from S to itself. In this section,

we will define a signed permutation using a similar idea, where the objects of S have

signs. To do this, we must first define the notion of signed set.

A signed set is a set S , together with a free Z=2Z action on the set. Since there will

be several distinct rôles of the group Z=2Z in this paper, we will write this group as

¹˙1º D ¹1;�1º when in this context. If x 2 S , we write �x for .�1/x. The orbits of

S partition S into subsets, each of which have precisely two elements; let jS j denote

the set of such orbits.

If S and T are signed sets, then a signed set morphism from S to T is a function

f W S ! T so that f .�x/ D �f .x/ for all x 2 S . This corresponds to the standard

notion of a morphism of sets on which a group acts. If this map is bijective, we say

it is a signed set isomorphism. A signed set morphism f WS ! T gives rise to a set
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map abs.f /W jS j ! jT j that sends ¹x;�xº to ¹f .x/; f .�x/º. This is functorial in the

sense that if f WS ! T and gW T ! U are signed set morphisms, then abs.g ı f / D

abs.g/ ı abs.f /W jS j ! jU j.

A signed permutation on S is a signed set isomorphism from S to itself. The set

of signed permutations on S is a group under composition, and is called the signed

permutation group, BC.S/. If S D ¹˙1; : : : ;˙nº, then we write2 BCn D BC.S/. The

map

absWBCn ! Sn

that takes a signed permutation f to the permutation jf j on the n-element set jS j is a

homomorphism.

3.1. Signed permutation matrices

Recall that an n � n permutation matrix is an n� n matrix where every row and every

column has exactly one non-zero entry, and where the non-zero entries must be 1.

Such a matrix corresponds to the linear automorphism of R
n induced by a permutation

of the n standard basis vectors ¹Ee1; : : : ; Eenº. Conversely, given a set S , and an ordering

on S D ¹x1; : : : ; xnº, a permutation � on S gives rise to an n � n matrix L, whose

i -th row and j -th column is

Li;j D

´

1 if �.xj / D xi ,

0 otherwise.

Likewise, an n � n signed permutation matrix is an n � n matrix where every

row and every column has exactly one non-zero entry, and where the non-zero entries

must be either 1 or �1. If we take the corresponding linear automorphism of R
n, and

restrict to the set ¹Ee1; : : : ; Een;�Ee1; : : : ;�Eenº, viewed as a signed set in the obvious

way, we obtain a signed permutation.

And conversely, given a signed set S , suppose we have an ordered subset T D

¹x1; : : : ; xnº of S so that for each x 2 S , exactly one of x or �x is in T . Then a

signed permutation � on S gives rise to the n � n matrix L whose i -th row and j -th

column is

Li;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if �.xj / D xi ,

�1 if �.xj / D �xi ,

0 otherwise.

2There is no universally recognized standard notation for this group in the literature. We

follow the notation that arises from the classification of Coxeter groups, where the groups called

Bn and those called Cn coincide, and are thus sometimes denoted BCn. It is also sometimes

called the hyperoctahedral group, because it is the group of symmetries for the hyperoctahedron,

which is the convex hull of the vectors ¹˙Ee1; : : : ;˙Eenº 2 R
n.
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If A is a signed permutation matrix, we let jAj be the matrix obtained by taking

the absolute value of each entry. Then jAj is a permutation matrix and this notation

is compatible with the definition of abs.f / for signed permutations f . Let DA be the

diagonal signed permutation matrix whose i -th diagonal entry is 1 or �1 according to

the sign of the non-zero entry in the i -th row of A.

If P is a permutation matrix and D is a diagonal signed permutation matrix, then

PDP �1 is a diagonal signed permutation matrix. Viewing the set of diagonal signed

permutation matrices as ¹˙1ºn, then this forms a normal subgroup of BCn, and its

quotient is the symmetric group Sn. Thus, we have the following short exact sequence:

1! ¹˙1ºn ! BCn

abs
�! Sn ! 1: (2)

Since any permutation matrix can be viewed as a signed permutation matrix, the map

abs admits a section and the exact sequence is split. Thus, BCn is a semidirect product:

BCn D ¹˙1ºn Ì Sn:

Thus, each signed permutation matrix A admits a unique factorization:

A D B P (3)

where B is a diagonal signed permutation matrix, and P is a permutation matrix. The

unique solution is B D DA and P D jAj. This is a manifestation of the fact that a

signed permutation can be viewed as the composition of a permutation on the pairs of

the form ¹x;�xº, followed by a specification of whether an element x goes to y or

�y.

4. The signed monodromy group

Given an Adinkra and a corresponding Riemann surface X with ˇN WX ! CP
1, as

defined in Section 2.3, the dashing of the edges of the Adinkra describes a signed

monodromy group. Specifically, take1 as our basepoint and let F D ˇ�1
N .1/ be the

set of fermions; let �F be another disjoint copy of F . Let˙F be the union F [�F ,

defined as the signed set which pairs elements of F with the corresponding element

of �F .

We again take the loops wj in Y D CP
1 � ¹�1; : : : ; �N º based at1, as described

above, and again apply a homotopy to bring these loops to the composition of coloured

paths zj C1 and z1. For each wj , we define a signed permutation �j as follows: if

x0 2 F , then the path wj has a lift Qwj that starts at x0. This lifted path again follows

coloured edges but these are now in the Adinkra. Again, Qwj follows an edge of colour

j C 1, then an edge of colour 1, and ends at �j .x0/.
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Now define �j .x0/ to be .�1/s�j .x0/ where s is the number of dashed edges in

Qwj , and �j .x0/ as before is the endpoint of Qwj . Likewise, �j .�x0/D .�1/sC1�j .x0/.

In this way, �j is a signed permutation of the signed set˙F .

Definition 4.1. Notations as above, the group generated by the �1; : : : ; �N is called

the signed monodromy group, which we denote by H .

Taking the absolute value of these signed monodromies gives the old monodromy

group M from Section 2.3:

Proposition 4.1. There is an epimorphism

absWH !M:

Proof. We identify F with j ˙ F j, and let abs denote the homomorphism defined in

Section 3. To show abs is onto, suppose m 2M. Then there is a loop in Y that gives

rise to m. This loop defines a signed monodromy h so that abs.h/ D m.

If we define † to be the kernel of the above map, then we have the short exact

sequence

1! †! H
abs
�!M! 1: (4)

5. Salingaros vee groups

In this section, we review the vee groups due to Salingaros [18].

Definition 5.1. The Salingaros vee group, denoted by Gn, is the group with the fol-

lowing presentation:

Gn D h�1; g1; : : : ; gn j .�1/2 D 1; gi
2 D �1; gigj D �1gj gi ; .�1/gi D gi .�1/i:

It has a central element �1 of order two, and n other generators g1; : : : ; gn which

square to �1 and anticommute with each other. These groups relate to the Clifford

algebras C`n, or more generally C p̀;q , in the same way that the quaternionic group

Q8 relates to the quaternion algebra: each is a finite multiplicative subgroup that con-

tains the defining generators. For more basic information about Clifford algebras,

see [16].

When n is even, Gn is an example of an extra special 2-group.

This group can be viewed as a signed set, with the natural meaning of �1. Since

the element �1 is central, the action of Gn on itself by left multiplication is a signed

permutation. Given a concatenated string of generators in Gn, it is straightforward to

use the anticommutation relations to arrange the gi in ascending order, and then use
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the fact that gi
2 D �1 to insist that each gi occurs at most once. Then, the fact that

�1 is central and squares to 1 can be used to demonstrate the following:

Proposition 5.1. Every element of Gn can be written uniquely as

.�1/bg
x1

1 : : : gxn
n

for b; x1; : : : ; xn 2 ¹0; 1º. Therefore Gn has 2nC1 elements.

Uniqueness can be shown by comparing two such strings and canceling out com-

mon factors of gi , until we can write one of the generators in terms of the others.

Alternately, this group can be constructed explicitly from formal strings of the

form given in the Proposition, and defining the multiplication so that the anticommut-

ation relations hold.

Remark 5.2. In [19], there is a similar construction, except that the generators square

to 1 instead of �1. The same techniques work, and the main results are analogous.

More generally, [1] defines the groups Gp;q , where p generators square to 1, and q

generators square to �1. [16] also briefly introduces this group. Both [19] and [16]

calls this group the Clifford group, though this term is used to mean at least two other

things in the literature.

Example 5.3. G0 D ¹˙1º Š Z=2Z.

Example 5.4. G1ŠZ=4Z. This is because g1 squares to�1, and so�1 is not needed

as a generator. So g1 generates the group and is of order 4.

Example 5.5. G2 Š Q8. The group Q8 is the famous “unit quaternion” group of

order 8,

Q8 D ¹˙1;˙i;˙j;˙kº:

The isomorphism here sends �1 to �1, and g1 to i and g2 to j . Then g1g2 goes to k.

The relations that define G2 are consistent with the relations that define Q8.

Example 5.6. G3 Š Q8 � Z=2Z. The isomorphism sends g1 to .i; 0/, g2 to .j; 0/,

and g3 to .k; 1/.

Other examples result in groups that are less familiar.

6. Main theorem

Let h1 D 111 : : :1 2 F
N
2 be the word of all ones. Since the code C is doubly even, h1

cannot be in C unless N is a multiple of 4.

The main theorem is the following:



The signed monodromy group of an Adinkra 13

Theorem 6.1. Suppose a connected Adinkra is given, and has code C of dimension k.

The groups H and † depend on whether h1 2 C or not:

• if h1 62 C , then H Š GN �1 and † Š F
kC1
2 ;

• if h1 2 C , then H Š GN �2 and † Š F
k
2 .

Example 6.1 (k D 0). In this specific case, the code C is trivial, i.e., C D ¹000 : : :0º.

Then h1 62 C , H Š GN �1, and † D ¹˙1º. The quotient of H by ¹˙1º gives rise to

the monodromy group M Š E Š F
N �1
2 .

For each such unsigned monodromy there are two signed monodromies, which

are negatives of each other. Suppose we follow a loop consisting of a concatenation

of various wj s. Whereas the order of the wj s does not affect the unsigned monodromy,

it can affect the sign in the signed monodromy.

Example 6.2 (N D 4; C D h.1111/i). In this case, h1 D 1111 2 C , and according

to the theorem, H Š G2 Š Q8, and † D ¹1;�1º Š F2. There are 22 D 4 bosons

and 4 fermions. The unsigned monodromy group M Š F2
2 acts on these fermions

freely, transitively, and faithfully. To each unsigned monodromy, there are two signed

monodromies, each the negative of the other.

Example 6.3 (N D 5; C D h.11110/i). In this case, note that h1D 11111 is not in the

code (it cannot be since it has weight 5). According to the theorem, H ŠG4, †Š F
2
2 ,

and M Š F
3
2 . There are 8 bosons and 8 fermions. The 8 unsigned monodromies act

on these fermions freely, transitively, and faithfully. To each unsigned monodromy,

there are four signed monodromies.

7. Signed Monodromies and the GR.d; N / algebra

Given an Adinkra, let B D ¹b1; : : : ; bd º be the set of bosons and let F D ¹f1; : : : ; fd º

be the set of fermions. Define formal negatives �B D ¹�b1; : : : ;�bd º and �F D

¹�f1; : : : ;�fd º. The sets˙B D B [ �B and˙F D F [ �F are then signed sets.

We define signed set homomorphisms �1; : : : ; �N from ˙F to ˙B , as follows.

If fj is a fermion, then �i .fj / D bk if there is a solid edge of colour i from fj to

bk , and �i .fj / D �bk if there is a dashed edge of colour i from fj to bk . Because

each vertex has exactly one edge incident with it of each colour, this is well defined.

Likewise, define �1; : : : ; �N from ˙B to ˙F where �i .bj / D fk if there is a solid

edge of colour i from bj to fk and �i .bj / D �fk if there is a dashed edge of colour

i from bj to fk .

Then the signed monodromy �j is then

�j D �1�j C1:
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Since an edge from the boson bj to the fermion fk is also an edge from the fermion

fk to the boson fj , we see that

�i D �i
�1; (5)

and, in particular, the �i and �i are signed set isomorphisms.

By the odd dashing property Adinkras, if i 6D j , then

�i �j D ��j �i ; (6)

�i �j D ��j �i : (7)

As a consequence, we have the following:

Lemma 7.1. For all j ,

�j
2 D �1

and for all i 6D j ,

�i �j D ��j �i :

Proof. One has

�j
2 D �1.�j C1�1/�j C1

D ��1�1�j C1�j C1

D �1

and

�i �j D �1�iC1�1�j C1

D ��1�1�iC1�j C1

D ��iC1�j C1:

Switching i and j shows that �j �i D ��j C1�iC1, which is �iC1�j C1 D ��i �j .

Corollary 7.2. If N � 1, then �1 2 H , and if � 2 H , then �� 2 H also.

If we number the bosons b1; : : : ; bd and number the fermions f1; : : : ; fd , then

these signed isomorphisms can be written as matrices. If we write Li for the signed

permutation matrix corresponding to �i and Ri for the signed permutation matrix

corresponding to �i , then (5)–(7) can be phrased as

Li Rj C Lj Ri D 2ıij I; (8)

Ri Lj C Rj Li D 2ıij I: (9)

which is the form found in [12–14] and is known as the algebra of general, real d � d

matrices describes N supersymmetries: the GR.d; N / algebra.
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8. Properties of the Salingaros vee groups

In order to prove the main theorem, and in order to best use the results, it will be

necessary to first prove some basic facts about Salingaros vee groups Gn. The results

described here are found in [1, 18, 19], but we restate them here for completeness.

Proposition 8.1. There is a group epimorphism

absWGn ! F
n
2

with kernel ¹1;�1º. In other words, the following is a short exact sequence of groups:

1! ¹˙1º ! Gn
abs
�! F

n
2 ! 1: (10)

Proof. If we quotient by ¹1;�1º, then the resulting relations say that the generators

commute and are of order 2. Thus, the quotient is isomorphic to F
n
2 .

Proposition 8.2. If

x D .�1/bg
x1

1 : : : gxn
n

and gj is a generator then

gj x D xgj

if
P

i 6Dj xi is even. Otherwise,

gj x D �xgj :

Proof. This is a tedious but straightforward calculation that follows from the anticom-

mutativity of the gi .

Proposition 8.3. Let x 2 Gn. The conjugacy class of x is either ¹xº, if x is in the

centre, or ¹x;�xº if it is not.

Proof. The results from Proposition 8.2 imply that gj xg�1
j is either x or �x. By

induction, a conjugate of x can only be x or �x. Trivially, the conjugacy class of x

must contain x. The statement that it contains only x is equivalent to the statement

that x is in the centre of Gn.

Definition 8.1. In Gn, define ! D g1 : : : gn.

Proposition 8.4. The centre of Gn is

Z.Gn/ D

´

¹˙1º if n is even,

¹˙1˙ !º if n is odd.
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Proof. Let x be in the centre. Then it commutes with each of the gj . Write

x D .�1/bg
x1

1 : : : gxn
n :

By Proposition 8.2, x1 D � � � D xn. If these are all 0, x D ˙1. If these are all 1, then

x D ˙!: Finally, ˙! commutes with all gj if and only if n is odd.

Proposition 8.5. One has

!2 D .�!/2 D

´

1 if n � 0; 3 .mod 4/,

�1 if n � 1; 2 .mod 4/.

Proof. In rewriting !2 D g1 : : : gng1 : : : gn in order, we do
�

n
2

�

D n.n� 1/=2 swaps.

This is even if and only if n is congruent to 0 or 1 modulo 4. The result when this is

done is

g1
2 : : : gn

2 D .�1/n:

This is 1 if n is even, and �1 if n is odd.

8.2. Normal subgroups of Gn

We now classify all normal subgroups of Gn. As we will see, there are two kinds:

those of the type abs�1.V / for some subgroup V of F
n
2 , and those that are contained

in the centre.

First, the normal subgroups of the first type.

Proposition 8.6. Given a subgroup V of F
n
2 , abs�1.V / is a normal subgroup of Gn

that contains �1.

Proof. Since F
n
2 is abelian, any subgroup of it is automatically normal, and the preim-

age of a normal subgroup under the group homomorphism abs is a normal subgroup

of Gn. Since the kernel of abs is ¹1;�1º, we have that �1 is in such a preimage.

The main observation is the following:

Proposition 8.7. Every normal subgroup of Gn either contains �1 or is contained in

the centre.

Proof. Suppose G is a normal subgroup of Gn that is not contained in the centre. Let

x 2G be not in the centre of Gn. Since G is normal, all conjugates of x are in G. Then

by Proposition 8.3, �x 2 G. Since x and �x are in G, we conclude that �1 2 G.

Note that of course, it is possible for a normal subgroup to be both contained in

the centre and contain �1.

These facts are what we need to prove:
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Theorem 8.8. Let G be a normal subgroup of Gn.

• If �1 2 G, then G D abs�1.V / for some V 2 Fn
2 .

• If �1 62 G, then either G D ¹1º, or n � 3 .mod 4/ and either G D ¹1; !º or

G D ¹1;�!º.

Proof. Let G be a normal subgroup of Gn that contains �1. Then, by closure, for

every x 2 G, �x D .�1/x 2 G. Therefore G D abs�1.V / for some subset V of

F
n
2 . Since abs is onto, we have that V D abs.abs�1.V //. This is abs.G/, which is a

subgroup of F
n
2 .

Now suppose G is a normal subgroup of Gn that does not contain �1. By Pro-

position 8.7, we have that G is contained in the centre Z.Gn/. By Proposition 8.4,

this means G is trivial if n is even. If n � 1 .mod 4/, by Proposition 8.5, G contain-

ing ! implies G contains �1. Likewise, .�!/2 D �1 and G containing �! implies

G contains �1. Therefore, if G does not contain �1, then G must be trivial. For

n � 3 .mod 4/, we simply examine the subgroups of the centre ¹1;�1; !;�!º that

do not contain �1.

Proposition 8.9. If n � 3 .mod 4/, then

Gn Š Gn�1 �Z=2Z

We also have

Gn =¹1; !º Š Gn�1 Š Gn =¹1;�!º:

Proof. First, if n � 3 .mod 4/, then !2 D 1 by Proposition 8.5. Thus ¹1; !º is a

normal subgroup of Gn and is isomorphic to Z=2Z.

Likewise, the subgroup J generated by ¹g1; : : : ; gn�1º is isomorphic to Gn�1 and

is normal, by Proposition 8.3.

Since ! 62 J , we have that ¹1; !º \ J D ¹1º. Therefore these two subgroups form

Gn as an internal direct product. The quotient Gn =¹1; !º is therefore isomorphic

to Gn�1.

The same arguments work for ¹1;�!º.

9. Proof of main theorem

In this section we will prove the main theorem, Theorem 6.1, computing H and †.

The �j satisfy the same relations in Lemma 7.1 as the generators of GN �1. This

proves:
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Proposition 9.1. There is a group epimorphism

�WGN �1 ! H

with �.gj / D �j and �.�1/ D �1.

Proof. Define �.gj / D �j and �.�1/ D �1, and extend � to products of these gen-

erators in order to ensure that � is a homomorphism. Lemma 7.1 guarantees that this

is well defined. The �j generate H , so that this map is onto.

If we define K D ker.�/, then H Š GN �1 =K. This results in the following short

exact sequence:

1! K ! GN �1

�
�! H ! 1: (11)

We can use this, and the short exact sequences (1), (4), and (10), to put together

the following diagram:

1 1

¹˙1º †

1 K GN �1 H 1

1 C E Š FN �1
2 M 1

1 1

 !  !

 !  !

 !  !  !
�

 ! abs

 !

 ! abs

 !  !  !
�

 !

 !

 !

(12)

Here we have defined † to be the kernel of absWH ! M. The isomorphism

E Š F
N �1
2 is obtained by taking �WFN

2 ! F
N �1
2 , the projection onto the last N � 1

coordinates, and restricting to E. The result is a linear map �jE WE!F
N �1
2 . Since the

kernel of this is trivial, and the dimensions of E and F
N �1
2 are both N � 1, �jE is an

isomorphism. The inverse takes .y1; : : : ; yN �1/ 2 F
N �1
2 to .y0; y1; : : : ; yN �1/ 2 E,

where y0 D
PN �1

iD1 yi .mod 2/.

Proposition 9.2. The diagram (12) above is commutative.

Proof. Let

y D .�1/sg
y1

1 : : : g
yN �1

N �1 2 GN �1 :

Then

�.y/ D .�1/s�
y1

1 : : : �
yN �1

N �1 :
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If x0 is any fermion, then

�.y/.x0/ D ˙�
y1

1 : : : �
yN �1

N �1 .x0/

and

abs.�.x//.jx0j/ D �
y1

1 : : : �
yN �1

N �1 .jx0j/:

Likewise,

abs.y/ D .y1; : : : ; yN �1/

and

�.abs.y//.jx0j/ D �
y1

1 : : : �
yN �1

N �1 .jx0j/:

Proposition 9.3. The diagram (12) can be extended to the following commutative

diagram:

1 1

1 ¹˙1º †

1 K GN �1 H 1

1 C F
N �1
2 M 1

1 1

 !

 !

 !

 !

 !

 !�

 !  !

 !

 !

 !

 ! abs

 !
�

 ! abs

 !

 ! abs  !

 !  !  !
�

 !

 !

 !

 !

(13)

Proof. Note that the unlabeled maps K ! GN �1, C ! F
N �1
2 , ¹˙1º ! GN �1, and

†! H are all inclusion maps.

We first demonstrate the existence of the abs map from K to C . We first restrict

abs to K D ker.�/. We need to show abs.K/ � C . Then the map we want is simply

the restriction of abs to K.

Let k 2 K. Then

�.abs.k// D abs.�.k// D abs.1/ D 1

so abs.k/ 2 ker.�/ D C .

The fact that absWK ! C is the restriction of absWGN �1 ! F
N �1
2 shows that the

following part of the diagram is commutative:

K GN �1

C F
N �1
2

 !

 ! abs  ! abs

 !
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An analogous argument shows that �W ¹˙1º ! † exists and is the restriction of �

to ¹˙1º. In turn, the fact that � is the restriction of � shows that the following part of

the diagram is commutative:

¹˙1º †

GN �1 H

 !�

 !  !

 !
�

To show that absWK! C is a monomorphism, suppose k 2K so that abs.k/D 1.

Then in GN �1 we know that k D 1 or k D �1. But �1 62 K, because �.�1/ D �1.

Therefore k D 1.

The fact that � is a monomorphism follows from the fact that �.�1/ D �1.

The maps in the diagram involving the trivial group 1 are the trivial maps. Com-

mutativity of the squares that involve 1 follows.

9.1. Calculating K

Proposition 9.4. If N � 0 .mod4/, then K can be ¹1º, ¹1;!º, or ¹1;�!º. Otherwise,

K D ¹1º.

Proof. We note that K is a normal subgroup of GN �1, and since �.�1/D�1, we see

that �1 62 K. The result is a consequence of Theorem 8.8, applied to n D N � 1.

We now investigate under which conditions K can be ¹1º, ¹1;!º, or ¹1;�!º. Now

if N is not a multiple of 4, then by Proposition 9.4, K must be ¹1º, so assume N is a

multiple of 4.

Proposition 9.5. Suppose N is even. Then abs.!/ D abs.�!/ D h1 2 E (recall that

h1 D 11 : : : 1 is the word of all 1s).

Proof. Recall that ! D �1 : : : �N �1. Then abs.!/ D .1; : : : ; 1/ 2 F
N �1
2 . Applying

the isomorphism .�jE /�1W FN �1
2 Š E described earlier, this corresponds to h1 D

.1; 1; : : : ; 1/ 2 E.

Corollary 9.6. If h1 62 C , then K D ¹1º. If h1 2 C , then for every fermion f , either

�.!/.f / D f of �.!/.f / D �f .

Proof. If ! 2 K or �! 2 K, then h1 D abs.!/ D abs.�!/ 2 C . If h1 2 C , then we

know that �.abs.!//.jf j/ D jf j, and so �.!.f // D f or �f .

The question of whether or not ! 2 K comes down to whether, for every fer-

mion f , �.!/.f / D f . Likewise �! 2 K if and only if, for every fermion f ,
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�.!/.f / D �f . In other words, when h1 2 C , the existence of a non-trivial ker-

nel K comes down to whether the signs obtained by applying �.!/ are consistent. In

principle, this could be checked for every fermion in the Adinkra, but by the following

proposition, we only need check each connected component of the Adinkra.

Proposition 9.7. Let N be even. If f1 and f2 are two fermions in the same connected

component of an Adinkra, then �.!/.f1/D f1 if and only if �.!/.f2/D f2. Likewise,

�.!/.f1/ D �f1 if and only if �.!/.f2/ D �f2.

Proof. Since f1 and f2 are in the same connected component, there is a path connect-

ing f1 to f2, which corresponds to an element g 2GN �1 so that �.g/.f1/D .�1/sf2.

Now ! is in the centre of GN �1. So !g D g!. Suppose �.!/.f1/ D .�1/tf1.

Then

�.!/.f2/ D �.!/..�1/s�.g/.f1//

D .�1/s�.g/.�.!/.f1//

D .�1/sCt�.g/.f1/ D .�1/tf2:

Theorem 9.8. Suppose A is a connected Adinkra. If h1 2 C , then either K D ¹1; !º

or K D ¹1;�!º. If h1 62 C , then K D ¹1º.

For disconnected Adinkras, K D ¹1; !º if and only if each connected component

of the Adinkra has K D ¹1; !º. Likewise, K D ¹1;�!º if and only if each connected

component of the Adinkra has K D ¹1;�!º. We can only have K D ¹1º if h1 62 C

(so that for some connected component, K D ¹1º) or if there are some connected

components with K D ¹1; !º and others with K D ¹1;�!º.

Proof. If N is not a multiple of 4, then h1 62 C (since C is doubly even) and K D ¹1º,

and the theorem is proved.

Suppose A is connected. Let f0 be a fermion of A. If h1 2 C , then by Corol-

lary 9.6, �.!/.f0/ D f0 or �.!/.f0/ D �f0.

Suppose �.!/.f0/ D f0. By Proposition 9.7, since A is a connected Adinkra,

then for all fermions f , �.!/.f / D f and K D ¹1; !º. By a similar argument, if

�.!/.f0/ D �f0, K D ¹1;�!º.

Suppose A is disconnected. By restriction, ! 2 K implies that for any connected

component of A, ! 2 K. Likewise, if ! 2 K for each connected component of A,

then for every fermion f , �.!/.f / D f . Then ! 2 K for A. Likewise when ! is

replaced by �!.

If K D ¹1º, then it is not the case that each connected component of the Adinkra

has K D ¹1; !º, nor is it the case that each connected component has K D ¹1;�!º.

The conclusion follows.
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Definition 9.2. Let A be an Adinkra. Define �0 for A as follows:

�0 D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if K D ¹1; !º,

�1 if K D ¹1;�!º,

0 if K D ¹1º.

Remark 9.3. This definition of �0 generalizes that of [9], for connected Adinkras

with N D 4. In that case, codes C D ¹0000º and C D ¹0000; 1111ºwere considered.

When ! 2 K, then h1 D 1111 2 C , and for every fermion f , !.f / D f . This

means that a path beginning at f , following a colour sequence .4; 1; 3; 1; 2; 1/ ends

in at f and has an even number of dashed edges. Then by swapping the second and

third colours, we see that the path from f with colour sequence .4; 3; 1; 1; 2; 1/ has

an odd number of dashed edges. The third and fourth colours cancel and gives us the

colour sequence .4; 3; 2; 1/. This is the path that in [9] was used to define �0 D 1. If

b is a boson, then a path starting at b with the same colour sequence .4; 3; 2; 1/ has

an even number of dashed edges, according to the ideas in [7].

Likewise, if �! 2 K, the same argument shows that paths starting at a fermion

with colour sequence .4; 3; 2; 1/ have an even number of dashed edges, and paths

starting at a boson with that colour sequence have an odd number of dashed edges,

which is how [9] defined �0 D �1.

If K D ¹1º, for connected Adinkras, C D ¹0000º, and [9] defined �0 in this case

to be 0.

9.4. Calculating H

Theorem 9.9. The signed monodromy group H is given by the following:

• if K D 1, then H Š GN �1;

• if K 6D 1, then H Š GN �2.

Proof. We have generally that H Š GN �1 =K. If K D 1 then H Š GN �1. If K 6D 1,

then K D ¹1; !º or K D ¹1;�!º, and by Proposition 8.9, H Š GN �2.

9.5. Calculating †

We now turn our attention to †, which consists of those signed monodromies which

give rise to trivial (unsigned) monodromies. More generally, † describes the extent to

which an unsigned monodromy comes from many signed monodromies.

Note by the diagram (13) that † contains ¹˙1º as a normal subgroup.
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Theorem 9.10. The kernel † of absWH !M is given by

• if K D 1, then † Š F
kC1
2 ;

• if K 6D 1, then † Š F
k
2 .

Proof. Suppose K D 1. Then H Š GN �1 and � is an isomorphism. Under this iso-

morphism, † is a normal subgroup of GN �1 that contains �1. By the commutativity

of the diagram, ��1.†/ is the kernel of � ı absWGN �1 !M. Since C is the kernel

of �, we have that the kernel of � ı abs is abs�1.C /.

More explicitly, for each codeword .x1; : : : ; xN / 2 C , there are two elements

˙g
x2

1 : : : g
xN

N �1

in ��1.†/, which becomes

˙�
x2

1 : : : �
xN

N �1

in †. All elements of † are of this form, so that j†j D 2kC1. By the fact that C

is doubly even, each such element squares to 1. Since doubly even codes are self-

dual [15], it follows that any two such have an even number of factors in common, so

that by Proposition 8.2, † is abelian. These facts prove that † Š F
kC1
2 .

Now suppose K 6D 1. Then K D ¹1; !º or K D ¹1;�!º, and H Š GN �1 =K Š

GN �2.

We begin as before by identifying the kernel of � ı absWGN �1 !M. As before,

this is abs�1.C /. For every codeword .x1; : : : ; xN / 2 C , we get two elements of this

kernel of the form

˙g
x2

1 : : : g
xN

N �1

Again, this set is an abelian group isomorphic to F
kC1
2 .

In this case, however, because of K, � is not an isomorphism, and so to get † we

must quotient by ! or �! (whichever is in K). This shows that † is an abelian group

isomorphic to Fk
2 .

To consider more exactly how this fits in with H , we trace this construction

through the isomorphism in Proposition 8.9. Use a generating set of C so that at

most one generator has xN D 1. Let C0 be the subcode that is generated by the other

generators. Then for every word .x1; : : : ; xN �1; 0/ 2 C0, we have

˙g
x2

1 : : : g
xN �1

N �2

in GN �2. For H , this is

˙�
x2

1 : : : �
xN �1

N �2 :
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To fit together our knowledge of † and K from a more abstract perspective, it will

be helpful to apply the Snake Lemma3 to the bottom two short exact sequences of our

diagram (13), which we show here:

1 K GN �1 H 1

1 C F
N �1
2 M 1

 !  !

 ! abs

 !
�

 ! abs

 !

 ! abs

 !  !  !
�  !

The Snake Lemma then gives us the following exact sequence:

1! ¹˙1º ! †! C= abs.K/! 1:

As we found earlier, † is abelian and in fact either F
k
2 or F

kC1
2 , so we can see that

this sequence must split, and that

† Š ¹˙1º ˚ C= abs.K/:

Example 9.6 (k D 0). In this specific case, the code C is trivial, i.e., C D ¹000 : : :0º.

Then the commutative diagram becomes an isomorphism of short exact sequences:

1 ¹˙1º GN �1 F
N �1
2 1

1 † H M 1

 !

 ! Š

 !

 ! Š

 !
abs

 ! Š

 !

 ! Š  ! Š

 !  !  !
abs  !

(Note that we have rotated the diagram for typesetting reasons.)

Then we can view H as GN �1, and every signed monodromy is a monodromy

with an extra˙1 sign.

The loops w1; : : : ; wN �1 give rise to signed monodromies �1; : : : ; �N �1, which

generate H ŠGN �1. This is like the (unsigned) monodromies in M, except that there

are two signed monodromies for each unsigned monodromy, which differ due to an

overall sign, which is influenced by the order in which the loops wi are traversed. This

overall sign is in † Š ¹1;�1º.

Example 9.7 (N D 4; C D h.1111/i (connected Adinkra)). In this case, K D ¹1; !º

or K D ¹1;�!º. For this example, suppose we choose K D ¹1;!º. The signed mono-

dromy group H is generated by elements �1; �2; �3 and they have the same meaning as

3See Appendix A.1.
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for the 4-cube. But since �1�2�3 D ! is in K, we also have �3 D �2�1, with the result

that the signed monodromy group is generated by �1 and �2, and H Š G2 Š Q8:

1 1

1 ¹˙1º ¹˙1º

1 ¹1; !º G3 H Š G2 1

1 ¹0000; 1111º F
3
2 M Š F

2
2 1

1 1
 !

 !

 !

 !

 !

 !

 !  !

 !

 !

 !
 ! abs

 !
�

 ! abs

 !

 ! abs  !

 !  !  !
�

 !

 !

 !

 !

Example 9.8 (N D 5;kD 1). In this specific case, KD 1. Let us consider the Adinkra

obtained by quotienting the 5-cube by the code C D h.11110/i. In this case, the cov-

ering group is M D E=C is of order 25�1�1 D 8. There are 8 bosons and we have

the following commutative diagram:

1 1

1 ¹˙1º ¹˙1;˙�1�2�3º

1 1 G4 H Š G4 1

1 ¹00000; 11110º F
4
2 M Š F

3
2 1

1 1

 !

 !

 !

 !

 !
 !

 !  !

 !

 !

 !

 ! abs

 !
�

 ! abs

 !

 ! abs  !

 !  !  !
�

 !
 !

 !

 !

The kernel K is trivial, which means that the signed monodromy group is G4. This

group is generated by �1; : : : ; �4, which has 25D 32 elements (same as for the 5-cube),

but the monodromy group M is F3
2 , which has 23 D 8 elements.

The group † has not only the usual 1 and �1, but also �1�2�3 and ��1�2�3. These

correspond to traversing colours 1, 2, 3, and 4, and in terms of M sends every fermion

to itself. But in terms of the signed monodromy H , four of the fermions are sent to

their negatives [7].
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10. Relations between LI matrices

As one application of this, we consider relations between the various LI and RI

matrices. There are sometimes relations between LI and RI matrices. There are con-

sequences to the Garden algebra relations, for instance, LI RI should be the identity,

and LI RJ D�LJ RI , and so on. But there are some relations that do not always hap-

pen in the Garden Algebra but nevertheless may happen in a specific representation.

For instance, when N D 4, k D 1, there is the example

L1 D

�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�

; L2 D

�

0 �1 0 0
1 0 0 0
0 0 0 1
0 0 �1 0

�

;

L3 D

�

0 0 0 �1
0 0 1 0
0 �1 0 0
1 0 0 0

�

; L4 D

�

0 0 �1 0
0 0 0 �1
1 0 0 0
0 1 0 0

�

:

In addition, R1 D L1, R2 D �L2, R3 D �L3, R4 D �L4.

In this representation,

R1L2R3 D R4

which is not generally true for arbitrary representations.

Note that as matrices, L1 is the identity, so L1R2 D R2, but we do not consider

such equations as relations because L1R2 goes from bosons to bosons, while R2 goes

from bosons to fermions.

Theorem 10.1. Non-trivial relations occur if and only if h1 2 C .

Proof. If h1 2 C , then either ! 2 K or �! 2 K. Then in H ,

˙1 D �1 : : : �N �1

which can be written as

˙1 D �1�2

.N �2/=2
Y

iD1

�1�2iC1�1�2iC2

D �1�2

.N �2/=2
Y

iD1

��1�1�2iC1�2iC2

D .�1/.N �2/=2�1�2

.N �2/=2
Y

iD1

�2iC1�2iC2;

or, as matrices,

R1L2R3L4 : : : RN �1LN D ˙1:

This can be written as

LN D ˙LN �1 : : : R4L3R2L1:

This is a nontrivial relation in the Garden algebra.
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Conversely, if it were possible to write LN in terms of other matrices, this would

result in a product of the form

Ri1 : : : Lik D ˙1

which in turn can be manipulated, via the ideas above, to

˙�i1�1 : : : �ik�1 D 1

and thus a non-trivial element of K.

A. Summary of commutative diagrams and exact sequences

This appendix includes notions like commutative diagrams and exact sequences that

are common in algebraic topology, algebraic geometry, homological algebra, and

many other such subjects. This is included to help readers who are less familiar with

these subjects. For more information, see [17].

If A and B are groups, then the diagram

A
f
�! B

denotes a group homomorphism f with domain A and codomain B . In this paper, we

sometimes see many of these put together, for instance, like this:

A B

C D

 !
f

 ! g  ! i

 !h

We say this diagram is commutative if i ı f D h ı g.

When two or more such homomorphisms are aligned collinearly,

� � �
f0
�! A1

f1
�! A2

f2
�! A3

f3
�! � � � (14)

we say the sequence is exact if for every i , the image of fi is equal to the kernel of

fiC1. Note that in that case, if for some j , Aj is the trivial group 1, then fj must be a

monomorphism and fj �1 is an epimorphism.

The term short exact sequence refers to an exact sequence of four maps where the

first and last groups are trivial:

1! A
˛
�! B

ˇ
�! C ! 1: (15)
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The important features of a short exact sequence are, in no particular order:

1. ˛ is a monomorphism;

2. ˇ is an epimorphism;

3. ker.ˇ/ D im.˛/;

4. ker.ˇ/ Š A;

5. cok.˛/ Š C .

A.1. Snake lemma

In Section 9, we referred to the following standard lemma from the theory of com-

mutative diagrams:

Lemma A.1 (snake lemma). Given two short exact sequences in the following com-

mutative diagram,

1 A1 A2 A3 1

1 B1 B2 B3 1

 !  !

 ! �1

 !

 ! �2

 !
 ! �3

 !  !  !  !

there is a long exact sequence

1! ker �1 ! ker �2 ! ker �3

ı
�! cok �1 ! cok �2 ! cok �3 ! 1:

The proof is a matter of diagram chasing. For instance, in [17], where it is called

the serpent lemma, it is an exercise.
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