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Hepp’s bound for Feynman graphs and matroids
Erik Panzer

Abstract. We study a rational matroid invariant, obtained as the tropicalization of the Feynman
period integral. It equals the volume of the polar of the matroid polytope and we give efficient
formulas for its computation. This invariant is proven to respect all known identities of Feynman
integrals for graphs. We observe a strong correlation between the tropical and transcendental
integrals, which yields a method to approximate unknown Feynman periods.
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1. Introduction

To a connected graph G with N edges, Kirchhoff [77] attached the graph polynomial

W =Y [[xe€Zlxi.....xn] (1.1)

TeTg e¢T

given by a sum over the set 7 of spanning trees. In the context [13,88] of perturbative
quantum field theory, the variables x, associated to each edge e are called Schwinger
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Figure 1. Two non-isomorphic graphs with the same completion.

parameters. The scalar Feynman integral encoded by G contributes the period [10,81]

N-1 % 1
P(G) = (]‘[ /dxe)T/z
e=17 \IIG

to the beta function of the field theory in d dimensions of space-time [80, 99, 109].

(1.2)

xy=1

This integral is well defined when G is primitive logarithmically divergent (p-log),
which means that w(G) = 0 and w(y) > 0 for every non-empty, proper subgraph
y C G, where

w(G) = |G| — % -4(G) = #{edgesin G} — % - #{loops in G}

is called the superficial degree of convergence of G. For example, the complete graph
K, with | K4| = 6 edges and £(K4) = 3 loops is p-log in d = 4 dimensions. Its period
is

P(Ky) = J’(@) — 6¢(3) ~ 7.21 (1.3)

in terms of the Riemann zeta function. The transcendental numbers [23,27,91] emer-
ging as periods of graphs are extremely difficult to compute exactly, and even approx-
imations are very challenging. For most graphs, the periods thus remain unknown.

This complexity stimulates the search for simpler graph invariants, that are easier
to compute, but still capture information about the period [44]. To be meaningful,
such invariants should obey period identities. For example, conformal invariance [22]
equates the periods of the complements G\v and G\w in Figure 1. This completion
relation and the product identity show that

P(1 ) = 2(d 1) = 2((R) = 3sc

Further relations include planar duality, the twist [99] and the recently discovered
Fourier split [71], which generalizes the uniqueness relations [74]. It is a challenge
to construct non-trivial graph invariants with these symmetries. In fact, apart from the
period itself, only two such invariants had been found so far: the ¢, invariant [100]
and the (extended) graph permanent [45,46].
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The ¢, invariant is constructed from the point counts of the hypersurface
_ N
{Vg =0} CF,

over finite fields IF,. It is related to the number theory of the period [27,28,30,91],
but several of the symmetries remain conjectural despite recent progress [55,56, 120].
For the permanent (of copies of the incidence matrix), the first four symmetries above
are proven. It is not yet clear, however, what the permanent implies for the period.

In this paper, we study a new invariant obtained by a drastic simplification of
the period integral. In the spirit of tropical geometry, replace W by its maximal
monomial,

W = max Xe. (1.4)

T eT
G e¢T

This function is locally just some monomial, but which particular monomial it is
depends on the actual values of the Schwinger parameters. We refer to the corres-
ponding integral

N—1 %

H(G) = ( ]_[ /dxe) W |

as the Hepp bound, which defines a rational number for each p-log graph. It is indeed
a bound on the period, since we have W, < W < W, - | 75| and therefore

eQ (1.5)

H(G)-|Tg|"¥* < P(G) < #(G). (1.6)

Hepp [70] used this idea to deduce the convergence of the integral #(G) from a
power-counting argument, by dissecting the integration domain into regions

Dy = {Xeq) < -+ < Xov)} C RY (1.7)

according to the permutation o of the edges determined by the order of the Schwinger
parameters. These regions Dy, called Hepp sectors, have wide applications to renor-
malization, regularization and asymptotic expansion of Feynman integrals [8,49, 103,
105].

Symmetries. The surprising observation is that the crude bound (1.5) is in fact very
well behaved and closely related to the actual period (1.2). Firstly, we will prove

Theorem 1.1. The Hepp bound respects the five period symmetries from [71,99].

This suggests that graphs with equal periods might also have the same Hepp
bound. Analogous conjectures were made for the ¢, invariant and the permanent men-
tioned above. We conjecture that, for the Hepp bound, also the converse is true — at
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least in the case of ¢* theory [78]. Concretely, we say that a graph G is in ¢* if it is
p-log in d = 4 dimensions and every vertex has degree at most 4 (for example K4
from before). More than a thousand ¢* periods are known [91], and they are all in
agreement with:

Conjecture 1.2. Two ¢* graphs have equal periods if and only if they have equal
Hepp bounds.

This significant strengthening of Theorem 1.1 is wrong for the ¢, invariant and
the permanent, because there exist pairs of ¢* graphs with the same ¢, invariant or
permanent, but whose periods are known and different. There still seems to be a pos-
sibility, however, that ¢, and the permanent combined might distinguish periods [45,
Appendix A].

The “faithfulness” of the Hepp bound according to Conjecture 1.2 would imply
new relations between yet unknown periods, which are not explained by the five oper-
ations discussed in [71,99]. The first examples of still unproven, conjectural identities
of ¢* periods appear at 8 loops, where in the notation of [99] we find two pairs

1724488
H (Pg30\v) = H(Pg36\v) = e (1.8a)
and
%(Pg,31\v) = %(PS’:;S\U) = 536760 (18b)

of graphs with equal Hepp bounds and thus conjecturally equal periods (see Fig-
ure 24). Of these four, only & (Pg 31) ~ 460.09 could be computed exactly in [99].
The combinatorial origin of the equalities (1.8) is currently not understood.

Hepp-Period correlation. For explicit computations of the Hepp bound, the integral
representation (1.5) is not very practical. In Proposition 3.2 we rewrite it as a sum over
flags of bridgeless subgraphs, a generalization of ear decompositions. This formula
reads

_ [yil-1y2\yil...1G \ ye-1
nG = 2 w(n) - o(rr)

Y1 EEVZ=G

and allows the calculation of # (G) for most graphs of interest. We used it to obtain
the Hepp bounds of all ¢* graphs with £(G) < 11 loops. For example, we find

H(Ky) = J(’(@) — 84, (1.9)

which should be compared with the much smaller period (1.3). So, the Hepp bound
is very crude indeed and it can exceed the period by several orders of magnitude.
Surprisingly, this bound nonetheless allows us to predict the numeric values of periods
within a range of a few percent. Namely, we observe that the period is very strongly
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Figure 2. The period as a function of the Hepp bound for all ¢* periods at 7 loops, the dashed
line is a power law fit £(G) ~ 3.96/10° - [#(G)]'-34°°. The graphs are labelled according
to [99], see Table 2 for details.

correlated with the Hepp bound, as illustrated in Figure 2. At higher loop orders,
a smooth curve interpolating the known periods then gives estimates for unknown
periods.

It is remarkable that the rational number # (G), which is easy to compute for
any graph, gives such a sensitive measure of the intricate period integral J#(G). This
connection was exploited in [80] to estimate the contributions from higher orders in
perturbation theory to a calculation of the beta function in ¢* theory, and we are
optimistic that generalizations and refinements of this method can provide a new
approach to the numeric evaluation of Feynman integrals, efficient even at large loop
orders.

Geometry. The correlation of #(G) with #(G) is so far an empirical observa-
tion, but it appears to be related to a geometric interpretation of the Hepp bound.
The approximation of Feynman integrals by the method of sector decomposition
uses a resolution of singularities [12] of the graph hypersurface {V¢ = 0}. This is
achieved most efficiently by a triangulation of the normal fan of the Newton polytope
of Wg [19,73,97,103]. It is also known as the spanning tree polytope of G, and we
define it as the convex hull

Ng = conv{vr: T € g} ¢ RY (1.10)

of the characteristic vectors vy of the spanning trees 7', with coordinates vz, = 1 for
all edges e € T in the tree, and vy, = —1 whenever e ¢ T. The polar of this polytope
is
NG = (57 -9r <1} CRV. (1.11)
TeTg
Theorem 1.3. For a graph G with N edges that is p-log in d = 4 dimensions, we
have
H(G) = (N — 1! Vol(Ng N{yn = 0}). (1.12)
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The asymptotic growth of period integrals implies that the volume of the polytope
N¢ is concentrated on directions near the facet normals v, like a cross-polytope.
Dually, Mg behaves like a cube in the sense that its volume is concentrated in the
corners. We show in Lemma 6.23 that the period integral (1.2) can be written as an
integral of a log-concave function over the polytope N5, and argue that this explains
at least qualitatively the correlation between the period and # (G).

An important tool for our proofs of the symmetries is a functional generalization
of the Hepp bound. Instead of the mere number (1.5), we consider the rational function

R(G a) - (l_[/ < ldxe) (qjtr)d/z

given by the Mellin transform of (\I/‘(r;)_d /2. This is a well-defined rational function
for arbitrary biconnected graphs, and not just p-log graphs. The period symmetries
from [71,99] extend to this functional setting, and we prove them in this general-

€ Qay,...,an) (1.13)

xy=1

ity. We exploit that # (G, @) is a function with simple poles, located on hyperplanes
{5: w(y) = O} for suitable graphs y C G, where the superficial degree of convergence
is the linear function J
o(y) = ae—— - L(y).
() ; e =5 L)
The Hepp bound has a pole at w(y) = 0 precisely when y and its quotient G/y are
biconnected. Such subgraphs correspond to a facet of the Newton polytope, and it
factorizes as N, x Ng/, C dNg. Generalizing (1.12), the function # (G, a) is the
volume of the polar of the translated Newton polytope @ + Ng, such that the facets
of Ng correspond directly to the poles of the Hepp bound. Hence, the residues are
products
Res H(G,a) = H(y,a')- H(G/y,a") (1.14)
(y)=0
and separate the dependence on variables @’ = (a.)eey, associated to the subgraph and
the quotient, @” = (a¢)eeg\y- This gives a tool for inductive proofs of identities of
rational functions, similar to the BCFW recursion [20].

The same mechanism of associating rational functions with simple poles and fac-
torizing residues to polytopes is also used for tree level scattering amplitudes, under
the name canonical forms [3]. In that context, the Mellin variables a, play the role of
Mandelstam invariants obtained from momenta of particles; the factorization above
is interpreted as unitarity, and the fact that only simple poles occur is attributed to
locality.

Matroid invariants. The Hepp bound (1.13) is not restricted to graphs and extends
to all matroids. In this paper we work in this more general universe, with the sole
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exception of three symmetries: completion, twist and Fourier-split are only defined
for graphs.

Our definition of the Hepp bound gives zero whenever a matroid is not connected.
Otherwise, let Sps denote the set of submatroids y € M such that both y and M/y
are connected. These y label the facets of Nz, and we will show:

Proposition 1.4. The Hepp bound 3 (M, a) of a connected matroid M is a non-
zero rational function with simple poles, precisely on the hypersurfaces w(y) = 0 for
y € Sy, and factorizing residues as in (1.14).

Matroid polytopes have been studied extensively, but little seems to be known
about their polars. Our findings suggest that the volume of the (sliding) polar Ny, (@),
as a rational function, is a very interesting matroid invariant. It has a rich structure
and it determines the matroid completely (Remark 2.3). Furthermore, the symmetries
of the Hepp bound show that polar volumes are subject to more identities than the
volumes of the matroid polytopes themselves.

Outline of the paper

This article aims to be broadly accessible and includes relevant definitions and results
from the combinatorial literature. The focus here is on the mathematical properties of
the Hepp bound, but the particle physicist will recognize the motivation and applica-
tions.

We give a combinatorial definition of the Hepp bound for arbitrary matroids in 2,
which is consistent with the Mellin integral, and obtain its poles and the factorization
of residues discussed above. We compute the Hepp bound of uniform matroids, and
illustrate relations to Crapo’s and Derksen’s matroid invariants in Section 2.7.

The remaining sections are essentially independent of each other: formulas in
terms of flags of bridgeless submatroids or flats are derived in Section 3 and applied to
compute the Hepp bound of all wheel graphs. The five period symmetries are proven
for the Hepp bound in Section 4. We report the results for ¢* graphs in Section 5,
addressing the correlation with the period and unexplained identities, and we discuss
improvements of the Hepp bound. The convex geometric point of view is worked out
in Section 6.

2. Definition and basic properties
Our construction is motivated by the Feynman integrals of perturbative quantum field

theory [24, 88, 106]. The period #(G) defined in (1.2) is only one particular integ-
ral that can be associated to a graph G. More generally, one considers the Mellin
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transform
N-1 %P 1
= e—1
fP(G,a) = (l_[ /XZ dxe)w (21)
e=1 | G '*n=1
of \Ilgd/ 2 as a multivariate function of the variables @ = (ai,...,an), which we call

indices. In particle physics, they are the exponents of the momentum space propagat-
ors attached to each edge of the graph. The dependence of (2.1) on a is very useful to
understand Feynman integrals. For example, difference equations with respect to the
indices are heavily used in practical calculations [34, 67]. When amplitudes in string
theories are seen as Mellin transforms, then the indices a play the role of particle
momenta [5].

The function (2.1) is called the analytically regularized Feynman integral. If the
graph G is biconnected, this integral converges for suitable indices, and it extends
to a unique meromorphic function of the indices, with poles on families of hyper-
planes [106].

Example 2.1. The cycle C; :Q with two edges (also called “bubble”) has £(Cy)=1
loop and it is p-log when a1, a,; > 0 and % = ay + a,. Since C, has precisely two
spanning trees {e; } and {e,}, consisting of the individual edges, the graph polynomial
is We, = x1 + x2. The regularized Feynman integral therefore becomes

m —
s [ aore
’ (x1 + Dartaz T(ay +az)’
0

which is meromorphic in @ € C? with poles on the hyperplanes a1, a, € Z <.

The Hepp bound (1.13) is the variant of (2.1) obtained by replacing the graph
polynomial Wg with its tropical analogue W¢;. This yields a rational function of
the indices, which captures precisely the first pole in each family of singularities of
P(G,a).

Example 2.2. The tropical graph polynomial of the bubble is ‘I—'tcrz = max {X1, X2}
Whenever both indices are positive, a; > 0 and a, > 0, the Hepp bound integral

00 al—ld 1 00 n
- X X1 a;—1 —ar—1 ay T dz
H(E y.d) = L = ~d 27y =
9) / (max {x1, 1})21+a2 /xl 1 +/x1 it aas
0 0 1

is absolutely convergent. It has poles at a¢; = 0 and a, = 0, and it can be obtained
formally by replacing each gamma function in 2 (C,, @) by its first pole, T'(s) > 1/s.

The Hepp bound emerges as the tropical limit of the Feynman integral. A substitu-
tion x§ > X, transforms x5 ~'dx, > x¢ " dxe /e and WG > (X reqy, [egr xa/eye,
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the latter converges to W for positive & — 0, and so the integral (2.1) turns into the
Hepp bound:
H(G,a) = lim [N 1P (G, ea). (2.2)
£—>

The inequality W& < Wg < W - |Tg| underlying (1.6) shows that both Mellin
integrals (1.13) and (2.1) have the same domain of convergence. Outside this domain,
the integrals define the Hepp bound and Feynman integral only indirectly via analytic
continuation. Our first goal is a definition of the Hepp bound as an explicit rational
function, valid for all indices, and without reference to integrals.

Remark 2.3. If G is biconnected with N > 2 edges, we will see that the Mellin integ-
rals converge for suitable indices. The inverse Mellin transform (an integral over a)
then allows us to recover the function X > W (X) from the Hepp bound # (G, a).
Every spanning tree dictates W¢; in some domain of the Schwinger parameters, so we
can obtain the set Jg from the tropical graph polynomial. Similarly, we can reverse
engineer the spanning trees from the Feynman integral & (G, @). This may be illus-
trated as
H(G.a) < VE(X) < Tg < VUg(X) <« P(G,ad).

where each arrow 4 <> B indicates that A determines B and vice versa. We see that
the rational function # (G, a) completely determines the Feynman integral (G, a)

as a function of a. This does not, however, impinge on Conjecture 1.2, which is a
statement about special values at a; = --- = ay = 1, and only for certain graphs

(p-log in ¢*).

2.1. Combinatorial definition

We consider arbitrary undirected graphs, which may have multiple edges between the
same pair of vertices, and edges with both endpoints at the same vertex (self-loops)
are also allowed. We write |G| := | Eg| for the number of edges, which is often also
denoted by N. The loop number £(G) is the first Betti number of the graph, which is

UG) = |G| = |Vg| + «(G) (2.3)

in terms of the number |V | of vertices and the number « (G) of connected compon-
ents. The superficial degree of convergence of a subgraph y C G is the linear function

d
o(y) = wz(y) = ) ae— = L), (2.4)
ecy
and we will always impose the condition w(G) = 0 called ‘logarithmic divergence’.
For graphs with loops, it means that the dimension is determined by the indices as
a+---+an

=26
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Figure 3. The first few cycle/polygon graphs C;,, and the bonds/dipoles/melons D, .

For forests (graphs without loops), the dimension disappears from (2.4) and plays no
role. The condition w(G) = 0 then imposes the constrainta; + --- +ay = 0.

Definition 2.4. If G is a graph with N > 1 edges and we are given a permutation o
of its edges, we denote by G7 := {0 (1),...,0(k)} the subgraphs formed by the first
k edges in the order . The Hepp bound of G is the homogeneous rational function

H(G.d):=) ! (2.5)

o2, 0(G) . w(G_)

of degree 1 — N, obtained by summing over all N! permutations. For a single edge
N =1, the empty product in the denominator is defined as unity such that # (G, a;) =1.

Example 2.5. For the bubble from Example 2.2, there are only two N! = 2 permuta-
tions to consider. The graphs Gfl’z) = {1} and sz’l) = {2} formed by the first edges
have no loops and we recover the result #(C,,a) = % + é from w({e}) = a..

Example 2.6. Consider any cycle Cy (Figure 3) with unitindicesa; =---=ay = 1.
Because every proper subgraph is a forest, we get (G ) = k in (2.5). So, each of the
N'! summands contributes 1/(N — 1)! and the total Hepp bound is #(Cy) = N =
d/2.

Example 2.7. If G =] consists of two isolated edges, we obtain the same expression
% + é from the sum (2.5). But in this case without loops, we consider it as a function
on the hyperplane 0=w(G) =a + a, where it vanishes. Hence, we find # (]}, d)=0.

In the same way, we will see later that # (G, a) = 0 for all forests with N > 2
edges. The Hepp bound is therefore only really interesting for graphs with loops.

2.2. The Mellin integral

In order to relate Definition 2.4 to the integral (1.13) for arbitrary graphs, we define
the tropical graph polynomial W¢, for disconnected graphs similarly as in (1.4), but
with a sum over all spanning forests. In particular, ‘I/tcr; = 1 whenever G is itself a
forest.
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It follows from (2.3) that the graph polynomial is homogeneous of degree £(G),
SO
WL (Axy, ..., Axy) = AHO) gl

for all positive A > 0 and X € R% . The function (\I/‘(r;)_d /211, xé¢ is therefore homo-
geneous of degree w(G), and the condition w(G) = 0 ensures that the Mellin integ-
ral (1.13) is in fact an integral over projective space, written in the chart xy = 1.
It is therefore irrelevant which edge we choose to label N, and we can write (1.13)
symmetrically as

- Q(a
H(G,a) = &.
(qﬁr)d/z
pc = ©
The integration domain is the positive orthant
PG = {[x;:--:xn]ix1....,xy > 0} Cc RPV!

inside real projective space, and 2(a) denotes the N — 1 form

N N
Q@) = (]‘[ xge—l) 3 =1 e A oy (2.6)
e=1 e=1

f#e

To compute the integral, we subdivide the domain P¢ into the Hepp sectors (1.7):

- Q(a)
H(G.a)=)_ Wy
UG@N Do G
Each summand is an integral over the projective simplex with 0 < xg(1) <--- < Xg(n)-
Hepp noted that within every sector D, there is a unique spanning tree T, € J¢ that
dominates all others, i.e., the function \I’tGr is given by a fixed monomial inside the
sector:

WE () xen, = [ [ xe- (%)
e¢Ty
Indeed, the dominating spanning tree T, (or forest, if G is disconnected) is nothing
but the minimum weight spanning tree with respect to the edge weights log x., and
following Kruskal [83] this spanning tree is uniquely determined by the total order o
of the weights:

Lemma 2.8 (Kruskal’s greedy algorithm). If we are given a total order of the edge
weights, hence a permutation o € Gy of the edges, then the minimum weight spanning
forest Ty consists of precisely those edges that do not increase the loop number:

Ty = {6(k):£(G?) = L(GT_,)} € Ts.
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The edges e ¢ T, contributing to the dominating monomial (x) are therefore
precisely those edges e = o(k) at which the loop number £(G)) = 1 + ¢(G7_,)
increases. In the affine chart x,(x) = 1, the integral over a Hepp sector can therefore
be written as

Q) pl 1-4 (UGD—UGT_,)
_ Ao(k)y—17—72 PRI
/ we)an = / | dxo ).
G _1 k=1
Dy 0<X5(1)<<Xg(N)=1

Changing variables to yx = X4 (k)/Xo(k+1), this evaluates to the summand in (2.5):

N-1 1
(Cisiao@)-1-94GD) 1
l_[ Yk dyk - Go GO .
=119 o(GY)...0(GY_))
This integral converges precisely when all real parts Re w(G7), ..., Rew(G{,_;) >0

are positive. We can summarize this calculation as follows.

Proposition 2.9. The Mellin integrals (1.13) and (2.1) converge precisely for those
indices @ C CN whose real part lies in the open convex polyhedral cone

®:=( @ e R":w;(y) > 0} <RV, .7
P#ySG

For such a, the Hepp bound integral (1.13) coincides with the function in Defini-
tion 2.4.

The characterization of the convergence of Feynman integrals in terms of power
counting conditions w(y) > 0 is fundamental for renormalization in physics [58,117].
Many of these constraints are redundant, however. The independent constraints are
given in (2.21); for more general Feynman integrals with kinematics see [106, 107].

In the sequel we will mostly use the combinatorial formula (2.5), which allows
us to ignore questions of convergence. However, the convergence domain ® is non-
empty in all cases of interest (Lemma 2.16), and we may thus use the Mellin integral
freely.

Example 2.10. We compute the Hepp bound of the cycle graph Cy as a function of
the indices. Its N spanning trees are the edge complements T = Cy \ {e} and thus

W' = max {x1,...,xn}. The integral over the domain where ¥ = x; is maximal
gives
> Xk ai—1
Q@) v\ I
(\ljtr)d/Z = (l_[ /xe dx. d/2 = l_[ a_’
- e#k X k=1 g T€

=Xk
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computed in the chart x;z = 1. Adding all these contributions, we find in generalization
of Example 2.2 and Example 2.6 that the full Hepp bound function is given by

H(Cy.dy= DT ran _ d2 2.8)
ay...anN ay...dnN

2.3. Matroids

The Hepp bound depends only on the set of spanning trees, so it is not sensitive to the
full combinatorial structure of a graph. This suggests a generalization, and indeed the
weaker notion of a matroid is sufficient. We use standard terminology as in [89].

A matroid M = (Ejs, Iar) consists of a ground set Epy and a non-empty family
I of subsets of Eyy, called the independent sets, such that

1. every subset § C y of an independent set y € Iy is independent: § € Tyy;

2. if §,y € I are independent and || < |y |, then we can find an elemente € y \ §
such that § U {e} € I is independent.

Example 2.11. Every graph defines the cycle matroid M(G) = (Eg, Ig) on the
edges E¢ as ground set [89,113]. Its independent sets Ig = {y € Eg:{(y) = 0} are
the forests (loopless subgraphs) of G. It is well understood when two graphs share iso-
morphic cycle matroids [110,119], and this is exploited in practical calculations [116].

Matroids that come from graphs in this way are called graphic, and most matroids
are not graphic. Even non-graphic matroids do arise in Feynman integral calcula-
tions [82].

Example 2.12. The uniform matroid U,] withrank O <r < is defined on the ground
set {1,...,n} and its independent subsets are precisely all subsets of size at most r.
The extremes U," and U are the cycle matroids of forests and collections of self-
loops, respectively. The only other graphic uniform matroids are the cycles U1 =~
M(C,) and the bonds (also called dipoles) U} =~ M(D,) illustrated in Figure 3.

The maximal independent sets Bas < I of a matroid are called its bases, and in
the case of the cycle matroid the bases are precisely the spanning trees. The (tropical)
graph polynomial therefore generalizes naturally to the (tropical) matroid polynomial'

W= [[xe and ¥ := max []xe. 2.9)
TeBys e¢T TeBM ot

!Graph polynomials can also be interpreted as configuration polynomials [52,92]. Applied
to matroids, these polynomials are typically not unique and different from (2.9); they agree
only for regular matroids. It not clear if a sensible Hepp bound can be defined for configuration
polynomials.
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and the Mellin integral (1.13) may thus be considered for an arbitrary matroid. We can
also extend the combinatorial Definition 2.4 to all matroids: the rank of a submatroid
y C E)j is the maximal size of an independent set contained in it,
rk(y) = max |F|.
)= m x |F
Fcy

The surplus of edges is the corank £(y) := |Ey| —1k(y), and in the case of a graphic
matroid it is precisely the loop number (2.3). Using the corank, the superficial degree
of convergence (2.4) defines a linear function w(y) for each submatroid, and so (2.5)
defines the Hepp bound for all matroids.

Example 2.13. The uniform matroid M = U,] withrank O <r <nhas{ =n —r
loops, such that % = % for unit indices a; = --- = a, = 1. Every subset y C U,
with k = |y| < r elements has rank k, and for k > r, the rank of y is r. Every

permutation of the edges therefore produces the same sequence of superficial degrees

of convergence,
k forl <k <r,
oM7) = . .
k—(k—-r)g=m-k)g forr <k <n.
Therefore, the Hepp bound of the uniform matroid with unit indices is given by
n! 1AV
HU)=——(-) . 2.10
() (r—l)!Z!(r) 2.10)

This reproduces the cycles #(C,) = #(U~!) = n from Example 2.6. For the smal-
lest non-graphic matroid we get #(U?) = 12.

Remark 2.14. The uniform matroid is the unique minimizer of the Hepp bound
among all matroids of fixed rank and size. If M has n elements and rank r, then
H (M) > H(U,), with equality if and only if M == U,;". This follows from 8y € By
and (2.9).

Almost all results in this paper apply to arbitrary matroids; in fact, the only excep-
tion are the completion and twist symmetries in Section 4, which we only define for
graphs. In particular, the compatibility of the Mellin integral and the combinatorial
definition as stated in Proposition 2.9 holds for arbitrary matroids. This hinges on the
fact that the greedy algorithm from Lemma 2.8 works for arbitrary matroids [59].

We find it convenient, however, to use graph-inspired notation. We refer to the
elements e € Eps of the ground set as edges and denote bases by T € Bjs. We also
write e € M for e € Ep; and more generally we denote submatroids as y € M. The
number of edges is N = |M | = | Eps|, and we write the group of permutations of the
edges as Gyy.
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2.4. Convergence

Definition 2.15. The direct sum of two matroids A and B is the matroid M = A & B
on the disjoint union Epy = E4 U Ep such that a subset y € M is independent pre-
cisely when y N 4 and y N B are independent in A and B, respectively. A matroid
M is disconnected if it can be written as a direct sum of two non-empty, proper sub-
matroids. If no such decomposition exists, M is connected.

For example, note that the uniform matroid U =~ (U])®" of a forest is a direct
sum of n copies of the single edge U} = M (~—). Similarly, we have U? =~ (U?)®"
for a union of self-loops U, =~ M(Q). Both matroids U? and U} are therefore dis-
connected when n > 2. All other uniform matroids U] (0 < r < n) are connected.

Lemma 2.16. The convergence domain © of the Mellin integral (1.13) for a matroid,
given by (2.77), is non-empty precisely when the matroid is connected.

Proof. If M is disconnected, let M = A & B with non-empty A, B & M. Since
(M) =L(A)+ £(B), wenote 0 = w(M) = w(A) + w(B), so at least one of w(A)
and w(B) is not positive. This implies ® = @. Now, assume that M is connected, and
consider the vector

o= 8re=Y & [T € By:i ¢ T}|.
TeBp ieM
Its entries sum to |Bps | £ (M) because |T¢| =£(M),andso wz(M)=0ind =2 |By]|
dimensions. For a subset y € M, recall that max7 |y N T| = rk(y) = |y| — £(y).
Hence

w;(y) =Y Iy \T|—|8Bult(y) =Y (ky =y N T} =0

TEfBM TE.fBM

and equality holds only if |y N T'| = rk(y) for every basis 7. But in this situation we
get [yNT|=1|T|—|yNT|=r1k(M)—rk(y) for all bases, such that tk(y¢) =
k(M) — rk(y), which implies that M = y & y°. Since M is connected, this is
impossible unless y = @ or y = M. We conclude that we have the strict inequal-
ity wz(y) > O0forall@ #y C M. ]

The connectedness of a graph G is not the same as connectedness of the cycle
matroid. For instance, adding an isolated vertex disconnects a graph, but does not
change M(G); and a tree with > 2 edges is a connected graph with disconnected
cycle matroid.

Definition 2.17. A separation of a graph G is a partition Eg = A U B of its edges
into two non-empty sets, which meet in at most one vertex (see Figure 4). We call
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H® @ I o H°

Figure 4. A separation can be disconnected in the graph sense (far left) or meet in a single
vertex (called articulation point, left). Special instances are bridges (center) including the case
B =~ «— (right), and self-loops B =~ Q (far right).

G separable if a separation exists; otherwise, we say G is nonseparable. A graph is
biconnected if it is connected (as a graph) and still remains connected after deleting
any vertex.

A graph G is nonseparable if and only if it is either a graph with at most one edge,
or a union of isolated vertices and one biconnected component without self-loops.
This characterizes graphs with connected cycle matroids [89, Proposition 4.1.7]:

Lemma 2.18. The cycle matroid M(G) is disconnected if and only if G is separable.

For physical applications, we are therefore only interested in biconnected graphs
with N > 2 edges and no self-loops. Such graphs are necessarily 2-edge connected
(bridgeless), referred to as “one-particle irreducible” (1PI) in field theory (see Sec-
tion 3.1).

2.5. Zeroes and shuffles

If a matroid M is connected, Lemma 2.16 shows that there exist points ¢ € ® # @ for
which the integral (1.13) converges (Proposition 2.9). Since the integrand is posit-
ive, the corresponding values of the Hepp bound # (M, 6) > 0 are also positive. In
particular, the rational function J¢ (M, a) from (2.5) is non-zero.

For disconnected M, the Mellin integral does not make sense (® = ). In this
case, the Hepp bound is the zero function:

Theorem 2.19. The rational function J¢ (M, @) defined in (2.5) is identically zero on
the space {wz;(G) = 0} if and only if the matroid M is disconnected.

Corollary 2.20. The Hepp bound of a loopless matroid (forest) is constant. For a
single edge, (M, a1) = 1, and (M, a) = 0 for |M| > 2 edges. This generalizes
Example 2.7.

The vanishing J/ (M, a) = 0 of (2.8) in zero dimensions is thus a general fact:

Corollary 2.21. If M has at least two edges, then its Hepp bound vanishes at d = 0.
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Proof. In zero dimensions, w(y) = }_,¢, @ is blind to the structure of the graph and
the same as if M were a forest. ]

To prove Theorem 2.19, we exploit a property of the rational functions

1
Y(S1,...,5N) := e Q(sy,...,s 2.11
HO1 o) 1= e S € Q) (21D
that furnish the summand of (2.5). If A°w = (Afw, ..., A{w) denotes the incre-
ments

Ag (k) ife(M7)=EL(M? ),
T = o(M{) - (M) = { T voare
agky — 5 TLMT) =1+ L(M]_))
of the superficial degree of convergence, then the Hepp bound is ) 7(A%w). This
sum vanishes for the 2-forest in Example 2.7 due to s; + s, = 0 and the factorization
1 S1 + 52

v . 1
A(s1,82) + x(s2,81) = — + — = . ()
S1 \Y) 5152

To state and generalize such identities, it is convenient to extend (2.11) linearly and to
view it as a function y: Z (S) — Q(S) on the space of all finite linear combinations

7(S)=2e@ PZis.....5)

k>151,....,5¢k €S

of words (s1,...,s) inthe letters S = {a.,a, — %: 1 <e<N}. Weset y({)) := 0 for
the empty word k = 0. The left side of (*) can now be written as y({s1,52) + (52,51)).

Definition 2.22. The (1, m)-shuffles &, ,, are those permutations o € ©,,, that
maintain the order among the first n elements and also among the last 2 elements such
thato™!(1) <--- <o Y(n)ando~'(n + 1) <--- <o~ (n + m). The shuffle product
of two words is {s1, ..., $n) W (Snt1. -+ Snbm) = Dge@y m (So(1)s - -+ So(ntm))-

Lemma 2.23. Foraword w = (s1,...,S), let |w| :=s1 + - - - + s denote the sum of
its letters. If v and w are two non-empty words with |v| + |w| = 0, then ¥ (v LW w) = 0.

Proof of Theorem 2.19. The loop number of a direct sum M = A @ B is additive. For
any submatroid y € M, we have £(y) = £(y N A) 4+ £(y N B) and therefore also

o(y) = w(y N A) + o(y N B).

So, if the edge o' (k) of a permutation o of M belongs to A, then the increment A7 @
depends only on the set M7 N A. Let {i; < - <ip} = o~ 1(A) denote the places
where A appears in o, and write « = (0(i1),...,0(in)) € ©4 for the total order



E. Panzer 48

induced on A. In the same way, o determines a permutation 8 = (0 (j1),...,0(jm)) €
©pg. Then

A;-’ka)zA‘,:a) (forl <k <n) and A;-’ka):Aga) (forl <k <m)

show that the increment word A°w is an (n, m)-shuffle of the increments A%*w and
APow. Summing over all @ and 8, and applying y, we conclude that

HM.a) =) j(Aw)=>" Y j(A0wAfe)=0

ge@yy aeGy feCGp

due to (M) = 0 and Lemma 2.23. This shows that disconnectedness is sufficient to
ensure J (M, a) = 0. For connected M, however, J (M, ) cannot be identically zero,
because it takes positive values on ®, which is a non-empty set due to Lemma 2.16.

[
Observe that y(sq,...,sy) does not depend on the last letter sy. We define the
linear map y:Z (S) — Q(S) by adding one more denominator to (2.11),
1
x(S1,...,8) = € Q(s1,...,5%) (2.12)

Sl(Sl +S2)...(S1 + .- +Sk)
for all £ > 1 and setting y(()) := 1 for the empty word. We think of y as the residue
of y when all letters sum to zero, and we will frequently use the relations
K1, osk) = X051, s Sk—1) = (51 4+ + s x(s1, -, 5%)-
1 1 1

They translate () into y((s1) L (s2)) = e T neiTs) S onn x(s1) x(s2),
and the generalization of this identity to all shuffle products will be very useful.

Proposition 2.24. The map x is multiplicative. For arbitrary words a and b,
x(awb) = x(a)x(). (2.13)

Proof. The claim is trivial when a or b are the empty word, so we proceed by induc-
tion on the lengths of the words. For letters o and S, the shuffle product solves the
recursion ax LU b = (ax L b)B + (a W bB)a, because the final letter must be either
a or B. Thus,

x(@wbp) + ylaab) _ x(@)x(bp) + x(aa)x(b)
la| + a + |b] + B la| +a + |b| + B

x(aa L bp) =

where |a| denotes the sum of all letters in a. The second step invokes the claim for
shorter words than on the left. Now, expand y(ax) = (|a| + ) x(a) and x(bB) =

(6] + B x(B). .
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Proof of Lemma 2.23. The general identity
X(a wb) = (laf + |b]) x(a) x(b)

of rational functions in the letters of @ and b follows from (2.13). Take the limit
la] + |b] — 0. [

Remark 2.25. The property (2.13) is called symmetral in the language of moulds [33,
Example 3.2 and Section A.3], and the proof above was given in [43, Lemme I1.38].
Parke—Taylor factors fulfil a closely related identity [4, equation (3.15)] underlying
the Kleiss—Kuijf relations [51,79], see [85, Section 4.1]. The special case

x({s1) W {sy)) = 1/(s1...82)
is used in the factorization of infrared divergences, see [93, equation (6.75)].

As a further application of the multiplicativity of y, we compute the Hepp bound
of all uniform matroids for arbitrary indices. This generalizes Example 2.13 and (2.8).
Let

S{51,...,8,) i= (=D)"{sp,...,51)
denote the antipode of the shuffle algebra, with S(Sw) = w and S(v W w) = (Sv) (Sw).

Lemma 2.26. When the letters of a word w sum to zero,

w| = 0, then y(w) =
—x(Sw). More explicitly, under the constraint that s; + --- + s, = 0, we have the
identity

FG1, . sn) = —(=D"#(Sns . 051) = (=D y(sn,....50). (2.14)
Proof. The recursion Sw=—w — Z;ll (S1,--+,8%) W S{Sk+1,--.,8,) for the anti-
pode is well known. The shuffle products cancel due to Lemma 2.23. ]

Proposition 2.27. The Hepp bound of a uniform matroid U, with rank 0 <r <n can
be computed as a sum over all subsets of size r. Let

ay = E a. and a’ :=1—[ae;

ecy ecy
then )
HWUT a) = y . (2.15)
" VCE;-,n}ay n6¢y(% —ac)
lyl=r

Proof. Recall that every flag M2 has the same rank sequence, and the increments are

Ao = (ac'(l)7 e lo(r), Ao(r+1) — %7 <oy lo(n) — %)
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Consider any submatroid y of U, with r elements; note that y = U/ is a forest with
w(y) = ay. The flags through y = M? = {o(1),...,o(r)} are in bijection with pairs
of permutations (oy, 0'|a\,) of y and its complement. The sum of all these pairs
adds

Y HA%w) = x(LL(ae)) - ay - q((ay)[LL{ae — £)])
oMZ =y ey ety
to the Hepp bound. The first term on the right is 1/a¥ by (2.13). With (2.14) we
rewrite the last term as (—1)" " y(We¢y (@e — %)) and apply the multiplicativity once
more. [

In the special case of cycles U~! =~ M(C,), the sum goes over edge com-
plements y = {1,...,n}\ {e}. Since 0 = w(C,) = a, + a. — d/2, the summand
simplifies to 1/a¥ and we recover (2.8). Analogously, the Hepp bound of a bond
U} =~ M(D,) becomes

d)2

(d/2—ay)...(d/2—an)’ (2.16)

J(Dy,d) =

2.6. Poles and factorizations

Lemma 2.28. The singularities of the Hepp bound of a matroid M are a subset of
the hyperplanes {w(y) = 0} where @ # y S M. All poles are simple.

Proof. If M is a forest, then there are no poles due to Corollary 2.20, so let £(M ) > 0.
By Definition 2.4 the first claim is obvious. For all summands o of (2.5), the linear
map

CV s (ay,....an) = (@M?),....0(M§_,),d) e CN

has inverse a, () = (M) —w(M7_)) + %(((M,f) — (M} _))), where (M) =
t(My) =0fork =1and w(Mg) = 0atk = N. All factors in the denominator of
the summand o are therefore independent coordinates on C¥ . |

Most of these potential poles are actually absent due to cancellations in (2.5). The
residues can be expressed in terms of sub- and quotient matroids.

Definition 2.29. The quotient (contraction) of a matroid M by a subset y C M is
the matroid M/y on the complement Ejs/, = Epr \ y such that every 6 € E)py/, has
corank

Cryy(8) = LS Uy) —L(y). 2.17)

Example 2.30. Given a graph G and a subgraph y, the quotient graph G/ y is obtained
by contracting each connected component of y to a single vertex (see Figure 5). This
construction computes the matroid quotient: M(G)/M(y) = M(G/y).
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@34 \

Figure 5. A subgraph y C G with three non-trivial connected components. In the quotient, these
components correspond to the highlighted vertices.

Proposition 2.31. Given a connected matroid M and a submatroid @ # y S M, let
dy = (ae)eey denote only those indices that belong to y, and write dyc = (de)egy
for the rest such that d = (dy, dyc). Then the residue of the Hepp bound at w(y) = 0
factorizes:

}igzsoe'r’f(M Ay, dyc) = H(y,dy)H(M]y, dye). (2.18)

w(y

Proof. Note that |M| > 2, so we must have £(M) > 1 for M to be connected. The
linear function £(M)w(y) = d - ¢ of a has exactly two different coefficients, ¢, =
L(M) — L(y) for e € y and c, = —€(y) when e ¢ y. Only one other submatroid
yields the same partition, namely the complement y¢ = M \ y. But w(y) and w(y°)
are linearly independent, since

M —ty)  —ty)
det( L) M) - L)

because {(M) = £(y) + £(y°) would imply that M = y @ y€ is disconnected. It
follows that a summand o in (2.5) is singular on w(y) = 0 only if its flag goes through

) = L(M)[LM) — L(y) — L(y©)] # 0

y = M atk = |y|. So, @ := 0|1,k is a permutation of y, and we can view f :=
Ol{k+1,..,N} as a permutation of the quotient Q := M /y. We can therefore write

N—k—1

Res J(M.d)= Res (Zx( “v)) (V)( > l—[

o(y)=0 BeGo 1_150(7/)"‘(0(Q ))

because we have o(M} ;) = w(y) + a)(Qf) due to (2.17). The sum over o gives
H(y,dy), and similarly we get #(Q,dp) from the sum over 8, since w(y) = 0 on
the pole. ]

Remark 2.32. Formula (2.18) is wrong for disconnected matroids. The forest G =]
has a subgraph y = {1} = «— with quotient {2} 2= +—e. The right-hand side of (2.18)
gives 1 for the residue of #(G,a) = 0 at w(y) = a; = 0. This contradiction arises
because also the subgraph y = {2} gives vanishing w({2}) = 0 on w(y) = 0, since
0=w(G) =a; + as.
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Corollary 2.33. If M is a connected matroid with at least two edges, and e € M,
then

Res()%(M,ﬁ,ae) = JH(M/e,a) and Reds/ H(M,d,a.) = H(M\ e,a).
Ae= ae=d/2
(2.19)

Proof. Since M is connected, e is not a self-loop and thus w({e}) = a.. This proves
the first claim, because # ({e},a.) = 1. Similarly, e cannot be a bridge, so we must
have £(M \ e) = £{(M) — 1 and therefore (M \ ¢) = (M) + d/2 — a.. Now, use
w(M) = 0. [

This yields another proof of one half of Theorem 2.19, namely that, if M is con-
nected, then J¢ (M, a) is not the zero function. We use the following fact:

Lemma 2.34 ([114, Claim 6.5]). If a connected matroid M and an edge e € M are
given, then at least one of M \ e and M /e is also connected.

Corollary 2.35. If M is a connected matroid with at least one edge, then
H(M,a) # 0.

Proof. The case |M| = 1 of a single edge is #(M,a;) = 1 # 0. We proceed by
induction over the number of edges. Suppose |M| > 2 and pick any e € M. If M /e
is connected, then we know by induction that J¢ (M /e,a) # 0. If M \ e is connected,
we may similarly assume that J(M \ e, d) # 0. In both cases, (2.19) shows that
the Hepp bound of M cannot be the zero function, because it has a non-vanishing
residue. ]

Corollary 2.36. The Hepp bound of a connected matroid M has a pole on the hyper-
surface w(y) = 0 if, and only if, both y and its quotient M|y are connected.

Proof. Apply Theorem 2.19 to the right-hand side of (2.18). ]

Together with Lemma 2.28, this completely characterizes the poles of the Hepp
bound:

Definition 2.37. Given a connected matroid M, a singularity of M is a non-empty
submatroid y € M such that y and M/y are connected. We denote them as the set

Sy ={0#y < M:yand M/y are connected}. (2.20)

Corollary 2.38. The Hepp bound of a connected matroid M is a non-zero rational
Sfunction with simple poles, precisely on the hypersurfaces w(y) = 0 fory € Sp.
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Example 2.39. All submatroids and quotients of U, are themselves uniform: if
y € Ur hask = |y| < r elements, then y = UF = (U})®*;if k > r, theny = UJ.
The respective quotients are U /U =~ U’ ¥ and U} /Ul = U? | =~ (UD)®h),
So, only individual edges {e} and their complements {¢} = {1,...,n} \ {e} are sin-
gular, such that

Syr = {{e},{e}czlfefn} if weassume 2 <r <n — 2.

The 2n residues on a, = 0 and a, = d/2 in (2.19) are therefore non-zero, and these
poles of # (U], a) align perfectly with the denominators in the formula (2.15). In the
case r = n — 1 of cycles U ™! =~ M(C,), the edge complements Cy, \ {e} = P, are

paths and therefore disconnected as matroids, {}° = U~ = (U})®®~D. Therefore,

SU’;[—I ={{e}:1 <e<n}

shows that #¢(C,, @) only has the poles on a, = 0, as is obvious from (2.8). For a
bond U} = M(D,), edges have disconnected quotients U, / {e} = (U?)®"~D and
Sy 1 consists only of the n complements {¢}. Indeed, we only see poles at a, = d /2
in (2.16).

The precise knowledge of the singularities of the Hepp bound also tells us the
facets of the convergence cone ® from (2.7). If wz;(y) > O for all singular y € Sy,
then the Hepp bound is finite for these indices a. Approaching the boundary d® where
the Mellin integral (1.13) diverges therefore implies that w;(y) — 0 for at least one
singular y.

Corollary 2.40. The convergence domain of a connected matroid M is equal to the
following intersection of half-spaces, and none of these inequalities is redundant:

® =@ eR:w;(y) > 0} <RV, (2.21)

YESM

This amounts to a well-known description of matroid polytopes (Corollary 6.11).

2.7. Other matroid invariants

As explained in Remark 2.3, we can recover a connected matroid M from J# (M, a).
In principle, every invariant of M can therefore be calculated from its Hepp bound; but
in practice it may not be obvious how to achieve this efficiently. It seems worthwhile,
then, to identify the aspects of the function J¢ (M, @) that are encoded in other matroid
invariants, and to exhibit their connection as explicitly as possible. We merely sketch
a glimpse here and limit our discussion to the invariants of Crapo and Derksen.
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Recall that the increments of the superficial degree of convergence associate a sum

QM) = Aw € Lla,.a, — %:e € M)

O’G@M

of words with letters of the form a, and a, — d/2 to every matroid. To obtain the
Hepp bound, we apply the map y or y from (2.11) and (2.12) to this sum,

HM.a) = Res x(@(M)) = HEM)luia=o-

If we set all indices to a, = 1, then the words in (M) contain only two letters, (1)
and (1 — d/2). This specializes at d = 2 to the invariant studied by Derksen [53],

g (M) = > (tk(M).tk(Mg) — tk(MY)....) € Z (0.1) (2.22)

O‘E@M

which is universal for valuative matroid invariants [54] with values in Q. It thus
determines several other matroid invariants, like the Tutte polynomial [42], how-
ever it cannot distinguish all non-isomorphic matroids [53, Example 3.5]. It is thus
impossible to reconstruct the full Hepp bound function #¢ (M, a) from § (M), but,
whenever defined, we find the special value (M) at unit indices a, = 1.

Example 2.41. Every order on the uniform matroid U, yields the same rank sequence:

g =n!(l,....1,0,...,0).
S—— ——

r n—r

Example 2.42. Consider the complete graph K4. The first 3 edges y = {0 (1),0(2),
0(3)} of any permutation o € G either form one of the 4 triangles y =~ C3, or one of
the |'J'K4{ = 16 spanning trees. The corresponding rank increments are (1, 1,0, 1,0, 0)
and (1,1, 1,0,0,0), respectively. Each of these appears 3! - 3! times for each fixed y,
because the edges of y and its complement may be permuted arbitrarily, and we con-
clude

ﬁ(@) — 144(1,1,0,1,0,0) + 576 (1,1,1,0,0,0).

Lemma 2.43. If the Hepp bound (2.5) is defined for unit indices, then it can be
obtained as H (M) = h(§ (M)) from Derksen’s invariant, via a linear map h defined
on words as

h({ry,....rm where 2 :=
l:[ 2 Zl<]<k(1 ) 2

Proof. With rp = tk(M}7) —rk(M[_,) we get

"
ZZ:l(l — k)

e(M;g):k—I'k(M;g):k_(rl_;’_+rk),

such that o(M7) = k — £ Y°5_ (1 =) in (2.5). n
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Example 2.44. From A(1,1,0,1,0,0) = 1/4and 4(1,1,1,0,0,0) = 1/12 we infer
that £ (K4) = h(§ (K4)) = 144/4 + 576/12 = 84 as claimed in (1.9).

Crapo [40] defined a non-negative integer 8 (M) € Z > for every matroid M as

B (M) = (=) M~ rk(y). (2.23)

yeM

This is the coefficient of x in the Tutte polynomial Tz (x, y) and it also appears as
the first coefficient of Speyer’s invariant [108]. Some of its remarkable properties are:

1. when M has at least two edges, then 8 (M) = 0 precisely when M is discon-
nected;

2. if M has at least two edges and M * denotes its dual, then 8 (M*) = 8 (M);

3. for a 2-sum (see Definition 4.8), B(A .®s B) = B (A) B (B) is multiplicat-
ive [31].

We already saw that the Hepp bound shares the same vanishing property, and Section 4
proves that it also behaves in the same way for duals and 2-sums. This very close
analogy suggests that Crapo’s invariant is a special value of the Hepp bound, and
indeed it is.

Lemma 2.45. The Hepp bound of a connected matroid M on N > 2 edges vanishes to
first order on the hyperplane {ay + -+ + any = 0} where d = 0. Concretely, assume
that w(y) — Zeey ae 7 0 stays non-zero in the limit d — O, for all non-empty y & M.
Then

d/

H(M,d) = ﬁ(—l)“m+1 B(M)+0OW? as d—0. (2.24)

Proof. Since a,, := Zeey ae # 0, we may expand 1/w(y) = 1/a, + %K(y)/a)z, +
©(d?) for small d. The Hepp bound (2.5) thus becomes

# . d & LEMey)
H(M,a) = ZX((ZU(I),... ,aU(N)){l + E Z a—’;} + (9(d2).
oeByy k=1 My

Because ofa; +---+ay = %E(M) and (2.13), the first summand in braces gives

d
Z(%(l) + -t ag) x@oys - - - do(n)) = EE(M)X(QH) W...w{an))

O’E@M
_d_w
 2ay...an’
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We group the remaining summands in braces by the submatroid M;’. To obtain
M} =y, the first k = |y| elements of o must form a permutation 7 of y, and the
remaining N — k edges p permute the complement M \ y. All these contributions
can thus be written as

d y
EK(V) Z x(@zqy, - dek)) Z X(ay,apy, - - dp(N—k))-

€@y, PEG A\

The sum over 7 is a shuffle product and equals 1/(] [ ,,, a.) according to (2.13). For t,

ecy

we use the antipode (2.14) to rewrite the summand as (— 1)V =% y(apv—k)s - - - > dp(1))
and see a shuffle product again. Collecting all contributions, we obtain
- d/2 _
H(M,d) = _dz > =DV ey) + 0@,
ay...dn
DFyM
With tk(y) = |y| — £(y), we recognize Crapo’s definition (2.23). ]

Example 2.46. From (2.8) and (2.16), we see that cycles and bonds have beta invari-
ant 8 (M(Cp)) = B (M(Dy)) = 1. More generally, note that 8 (M) = 1 if and only
if M 1is series—parallel [40, Proposition 8].

In Definition 4.1 we introduce a variation J (M, a) of the Hepp bound, that eval-
uates at d = 0 precisely to (—1)*®)+18 (M). We can derive the above facts 1.
through 3. for Crapo’s invariant from the corresponding symmetries of the Hepp
bound J (M, @).

However, this argument does not apply to completion (see Remark 4.27), and
Crapo’s invariant violates this symmetry. For example, the graphs from Figure 1 give

ﬂ(<>) —446= ﬁ(@) (2.25)

These are computed with the contraction-deletion formula

B(M)=p(M/e)+ B (M\e),

the values

which applies whenever e is neither a self-loop nor a bridge [40, Theorem I].

3. Flag formulas

The formula (2.5) has N! summands, one for each flag @ # y; € --- € yy = G of

subgraphs yx = G7. This is very inefficient and hides the structure and simplicity of
results like (2.8). Below we will partition all flags into families of subsets that are
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e /

K\ {e} = \, Ka\fv) =1 j L Ka\dle. f} = \,

Figure 6. The three types of bridgeless subgraphs of K4 are highlighted (solid edges).

easily summed, and thereby derive expressions for the Hepp bound with much fewer
terms.

In Section 3.1 we give a formula summing over flags of bridgeless matroids,
which is particularly efficient for small loop number £ and for example gives (2.8)
on the nose as a single term. It yields an algorithm that computes the Hepp bound
in O(N*2) steps. Dually, flags of flats are most efficient for small ranks, see Sec-
tion 3.2.

On the level of the integral (1.5), the flag formulas correspond to a decomposition
of the integration domain into fewer sectors, that each combine many individual Hepp
sectors. In Section 5 we apply these sectors to the period itself to get improved bounds.

3.1. Bridges and ears

Definition 3.1. A circuit C € M of a matroid is a minimal dependent set, and we
write €z for the set of all circuits. An edge e € Ejy is called a bridge (also coloop
and isthmus) if it is not contained in any circuit; equivalently, if it is contained in
every basis. We say that a matroid M is bridgeless (or 1pi) when it does not have any
bridges.

Each bridge e corresponds to a direct summand M |, = U11 of M = (M \e) &
M |.. Connected matroids are thus always bridgeless, except for M =~ U]' = M(+—).
Our use of ‘Ipi’ as a synonym for bridgeless stems from particle physics, where
graphs G with bridgeless matroids M = M(G) play a special role and are called
1-particle irreducible, see [16, Section 5.8] and [72]. Note that in our terminology,
1pi does not require connectedness in any sense: direct sums of bridgeless matroids
remain bridgeless.

A bridge e is characterized by the equivalent conditions tk(M \ e) = tk(M) — 1
and £(M \ e) = £(M), and hence a bridgeless matroid is a minimal subset for its loop
number:

M is bridgeless <= {(M \ e) < £(M) holds forall e € Eypy.
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Let br(M) C Ejs denote the set of all bridges of M. Its complement cyc(M ) is the
largest bridgeless submatroid of M and it consists of the union of all circuits:

cyc(M) := M \br(M) = | ] C. (3.1)
Ce€yy

Bridgeless graphs enter the study of Feynman periods through the desingularization
of graph hypersurfaces, where they are referred to as motic graphs in [25, Defini-
tion 3.1] and core graphs in [11]. They label singular loci and after blowing-up, the
flags (maximal chains) of bridgeless graphs correspond to the deepest strata of the
boundary divisor [10, Lemma 7.4]. It is therefore not surprising that they can also
organize the Hepp bound:

Proposition 3.2. For a connected matroid M on N edges with { = £(M) > 1 loops,
let

?Aflpi ={0=y0<Cy1 S-S yr = M:each yg is bridgeless with £(y;) = k}

vy

denote the set of flags of bridgeless submatroids of M. For any nested subsets § C
Yy S M, leta,;s = Zeey\s ae denote the sum of the indices of the additional edges
iny. Then

. 1 Ay /yo -+ Ayp/yo—
J€(M,a) _ Y1/Yo YelVe l‘ (3'2)
aj...ay Z]pi o(y1)...o(ye—1)
YeE€S )

Example 3.3. Consider the complete graph K4 = @ on four vertices, with unit
indices a; = --- = a¢ = 1 and thus in d = 4 dimensions. The only bridgeless sub-
graphs are:

*  six edge complements Ky \ {e} = «]>» with two loops and w(<[>») =5— % -2 =1,

 four triangles A\ = K4 \ {v} with w(/\\) = 1 from removing a vertex, and

o three squares [ | = K4 \ {e, f} with w(["]) = 2 by deleting two non-adjacent
edges.

These are illustrated in Figure 6, and we can form |37 Iéii} = 18 different flags. They
come in two types, and their contributions to the Hepp bound # (K4) =84 =6-12 +
2. 6are

. % =6foreachofthe12ﬂagsAc<I>C®’ and
. % = 2 for each of the 6 flags [ ] C «[>» C (L.

Remark 3.4. Every biconnected graph admits a flag of biconnected (hence bridge-
less) graphs [118, Theorem 19], as in the example above. Such flags are called open
ear decompositions, and this notion generalizes to connected matroids. However, the
sum (3.2) will typically involve more general bridgeless flags, as in Figure 7 (y5 is
separable).
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as) > we)
a-( P el >

Figure 7. In the order o of the edges of the depicted graph G, the loop number increases at
i1 =4,i> = 6and i3 = 7. The associated flag is y{ C y§ C y§ = G.

Q
I
o(2)

a(1)

Proof of Proposition 3.2. Each permutation 0 € &)y defines a bridgeless flag as fol-
lows (see Figure 7): Leti; < - < iy denote the positions of edges that add a loop:

M) =1+44(M;;_ ) foreveryl <k <{.
The corresponding bridgeless subsets yy = cyc(Mi‘Z) C Mi‘l’C give rise to a map

Fy:Gy — Ff, o (7 S-S 90,

-

and we ask which permutations o lie in the preimage of a given bridgeless flag
Ve € ?Af[pi. The last edge e = 6(N) € S := M \ M’ must belong to the comple-
ment of M’ := yy_1, and all remaining edges S \ {e} are bridges of M \ e. Those
may appear in any order and at arbitrary positions in o, without changing the asso-
ciated bridgeless flag. So, if we write ¢’ for the order of the edges of M’ as they
appear in o and we fix some t € &y with Fy/(7) =y, :=(y1 S -+ S M), then

the set {0 € ©pr: 0" = 7 and 6(N) = e} is in bijection with the shuffles of 7 and the
elements of S \ {e}. The sum over these o is

D)y =Y Y y(Aww L af)

Frr(0)=ve Fryr(v)=y), e€S e#feS
am/m’ 1 vz
= A'w
as w(M’) Z_ ) 1 (Afw)
FM/(‘E)—)/.

with a5 = [l.cs @e, where we used the multiplicativity (2.13). This reduces the sum
over o € FATII()/.) to the preimages 7 € Fy,!(yl) of the truncated flag y. of length
£ — 1, and iteration of this rule eventually leads to (3.2). ]

The length of the bridgeless flags is given by the loop number £, and hence the
formula (3.2) tends to be particularly efficient for small £. In particular, the case
M=U 1{,\’ ~1 >~ M(Cy) of a single loop results in a unique flag and gives directly
the result (2.8).
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1
DaGi. j.k) = Kz =

Figure 8. The family D3 (i, j, k) of all biconnected two-loop graphs, the complete bipartite
graph K3 3 and its depletion K3 3 = K3,3 \ e by one edge.

Example 3.5. The two-loop graphs D3 (i, j, k) from Figure 8 consist of three paths
with i, j and k edges between shared endpoints. Their only bridgeless subgraphs are
the three cycles C; y, C; 1« and C; ; that are left over after deleting the edges of one
of the paths. Hence, the sum in (3.2) has merely three terms, and for unit indices we
obtain

i(j+k) Jji +k) k(i + )

J{D .’ .’k — *
(Ds3(i, j.k)) jH+k—d/2 i+k—-d/2 i+j—d/2

(3.3)

In more interesting cases, however, the number of bridgeless flags can become
huge. Fix a basis b € 8)s and consider an order t of its complement Eys \ b =
{r(1),...,t(0)}. Let C{ denote the unique circuit contained in b U {7 (k)}, then y; :=
Cf U---U (Y is bridgeless for each 1 < k < ¢, with £(y;) = k loops, and so we
obtain a bridgeless flag y{ € ?Allpi. Since {z(k)} = y¢ \ (y4_, U b), this construction
yields an injection &y <— ¥ Allpi and we conclude that every matroid has |¥ Allpi| > (!
bridgeless flags.

But it is not necessary to explicitly enumerate the flags, due to the recursive struc-
ture of (3.2). Summing only over the penultimate element y = y,_; of the flag, we
see that .

I (M, d) = 3 amy #a(y.a) (G.4)

a’’ o
bridgeless yCM (V)
with £(y)=L(M)—1

where the subscript in #;(y) indicates that this Hepp bound is to be computed in the
dimension d determined by w(M) = 0. This gives a result different from the actual
Hepp bound # (y) of y by itself, since the latter imposes another dimension where

w(y) = 0.

Remark 3.6. We may expand y in equation (3.4) into its connected components,
similar to (3.11).
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Example 3.7. The smallest non-graphic regular matroid is called Rjq, see [104]. It
has rank 5 and may be represented by the 10 vectors

@ +8 +al<i<j<k<5 CF3

over the field F, = Z/27Z with two elements. The complement of every edge e is
isomorphic to the graphic matroid R \ e = M (K3,3) of the complete bipartite graph
K3, 3. With unit indices, w(R19) = 0 in d = 4 dimensions, and hence the Hepp bound
of R]O is

H4(K3,3)
o(K33)

%4(K3_,3)

H(R19) = 10-
(Ri) = 10 o)

=10 H4(K33)=10-9- =45 H4(K33)
in terms of the graph K3 3 = K33 \ e depicted in Figure 8. It has two bridgeless sub-

graphs of the form D3(2,2,2) = <3 and four subgraphs isomorphic to D3(3,1,3) =

£, hence

Ha () '%4(@)_4‘24_4.&/2:42

w(€3) e 3

according to (3.3) and we conclude that J(R1o) = 45 - 42 = 1890.

Ha(K33) =2-2- +4-1

Remark 3.8. The recursion underlying (3.4) can also be applied to the Derksen
invariant. Indeed, the proof of Proposition 3.2 readily demonstrates that § (M) is
completely determined by the lattice I}JIH of its bridgeless submatroids, and we have

gM)y= Y |M/y]!-[§ (y)w ()M 0). (3.5)
bridgeless y CM
Ly)=t(M)—-1
From an algorithmic point of view, this method to compute the Hepp bound can
be implemented as a traversal of the Hasse diagram of the lattice

éﬁjl‘fl’i ={0 Cy C Ep:yislpi}

of bridgeless submatroids. Starting from its maximum, which is M itself, this lattice
can be explored efficiently in a top-down approach as follows.

Given a bridgeless matroid y, we call two edges e and f equivalent if e is a bridge
of y \ {f}, in other words, if tk(y \ {e, f}) < rk(y). This is an equivalence relation,
and we can compute the corresponding partition £, = S7 U --- U S into equivalence
classes S; using less than |)/|2 calls to the rank function. The bridgeless submatroids
of y with loop number £(y) — 1, that is the maximal elements below y in éﬁllf}i, are
precisely the complements y \ S;. So, the recursion (3.4) has k < |y| summands.
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Corollary 3.9. Let K = |§£11‘3i| < 2N Then the Hepp bound of M can be computed
in O(K - N?) many steps, provided that the K values of #4(y,a) can be stored in
memory.

We stress that the lattice éﬁjllf;i grows slowly from the top down: each element y
has at most |y| children in the Hasse diagram. In contrast, there is no such bound
in the bottom-up direction. For example, the number of circuits (sets directly above
@ e éClll,];i) in a connected matroid can be exponentially large (take cycles in complete

graphs).

Corollary 3.10. Every connected matroid with N elements and £ loops has at most
N(N —1)...(N — £+ 1) bridgeless flags. Consequently, the Hepp bound of matroids
with bounded loop number is computable in polynomial time in N .

More formally, if the matroid is given by its rank function as an oracle, then
O(N*+2) oracle calls are sufficient to determine the Hepp bound. By Corollary 6.8,
this gives a polynomial time algorithm for the calculation of the volume of the polar
of the matroid polytope. For matroids polytopes themselves, such a result is well
known [50].

3.2. Flats and cuts

Definition 3.11. A subset y C Ejs of a matroid is called a flat (or closed) if it is
maximal for its rank, so that rk(y U e) > rk(y) for every e € Eps\y. The set of flats
of M forms a lattice l’ﬁj‘, and the span or closure of a subset y of Ejy is the unique
minimal flat span(y) that contains y. The flats y with rk(y) = rk(M) — 1 are called
hyperplanes (also copoints), and the complements M \ y of hyperplanes are the cocir-
cuits.

In the case of graphic matroids, a flat is a subgraph y C G such that each con-
nected component § of y is (vertex-)induced, saying that § contains all edges of G
that have both endpoints in §. The hyperplanes y of a connected graph G consist of
precisely two components and correspond to vertex bipartitions Vg = S U T (cuts)
for which both parts S, T # @ induce connected subgraphs. Hence, hyperplane com-
plements (circuits) G \ y are the minimal edge-cuts, also called bonds [111, 112].
For 3-connected G, the vertex complements G \ v are precisely the connected hyper-
planes [96, Theorem 1].

Example 3.12. The wheel graph W,, with n = £(W,,) spokes and loops has essentially
two types of minimal cuts, see Figure 9: either the hub is dissected from the entire rim
cycle C,, or a path Py on k vertices in the rim gets separated from a fan F,_.
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W+ C7U P

P3 U Fy

Figure 9. Some cuts of the wheel with seven spokes. The dashed edges are cut and separate the
wheel into two parts, indicated by differently drawn vertices.

The minimal element of éﬁlﬂ\j‘ is the unique flat of rank zero, namely the set span(@)
which consists of the self-loops of M. For M connected with rank at least one, this is
the empty set. In this case, the set of flags (maximal chains) of flats is

?A‘}a‘ ={0=y0Cy1 S S Vx(m) = M:each yy is a flat with rk(yx) = k}.

=

These flags are known to encode a matroid in a very interesting way and have received
more attention than the bridgeless case [17, 68]. Our following observation that the
flags of flats directly determine the Hepp bound is very much in the spirit of [15, 68].

Remark 3.13. In the position space theory of Feynman integrals [7,9], flats of Feyn-
man graphs are called saturated graphs and used to define an arrangement of linear
spaces that are blown up to obtain a wonderful compactification.

Proposition 3.14. For a connected matroid M on N edges with rankr = k(M) > 1,

. 1 a* a* ...a*
WG = e P s
aj...ay at o(y1) ...o(yr-1)
YeEF i

where a3 s = Y eey\s do denotes the sum of the dual indices a; := % —a. of all

edges of y that are not already in § C y (see also Section 4.1).

Proof. Given an order 0 € @y, consider the positions i; < --- < i, of the edges which
increase the rank: rk(Ml.i) =1+ rk(Mi‘;_1 ). The flats y¢ := span(Mii) form a flag

rVﬂ‘
() G- Sy e Tyt

and we like to sum over all permutations o that produce a given, fixed flag y, € ¥, A‘}m.
Since M has no self-loops, note i; = 1 so A°w starts with {a.) for e := o(1). To
satisfy y{ = y1, we must have e € y;. The remaining edges f € y; \ e each add a
loop and increment the superficial degree of convergence by ay — %. Their positions
in o do not affect the flag yJ. So, if we fix the order T = opr\,, of the edges not in
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y1 and write u for the subsequence of A%® given by their increments, then the sum
over such o contributes

> illae)(ww LU fay =) = 3 x(suw L slay - g)).

ecy fere ecy fevi\e

Here we reversed the order of arguments using (2.14) and passed from y to y, which
drops the final letter S{a.) = —({a.). Exploiting the multiplicativity (2.13), this is

*

= (Sw) () Y H X(o(y)u nf
€V1

€€y fey \e

where we inserted the final letter (w(y;)) in order to balance the word and apply (2.14)
once more. This argument iterates and proves the claim: At the next step, we consider
the first letter of u = (a1))u’ and sum over 7(1) € y, \ y1, writing

L i) + ar’) = —— (i)

(o)) amyu’) = w(y1)

o(y1)

to then apply the analogous steps as above. |

The formula (3.6) is most efficient for matroids of low rank. For bonds Unl, it gives
asingle term (d/2)/ [ ], a;, which reproduces (2.16). Dually to Section 3.1, the lattice
of flats grows slowly from the bottom up: each flat y € Iﬂa‘ is covered by at most
|M \ y| flats, namely span(y U e;),...,span(y Uey) where M \ y = {eq,...,er}.

Corollary 3.15. A connected matroid on N elements with rank r has no more than
N(N —1)...(N —r + 1) flags of flats. The Hepp bound of matroids with bounded
rank can be computed in polynomial time in N .

For computations it is convenient to exploit the recursive structure of (3.6). Let
us denote by Jfgat(M , @) the result of this formula in a fixed dimension d, lifting
the constraint w(M) = 0. Since the penultimate element y,_; of a flag of flats is a
hyperplane,

)3 Hi'(r.@) iy '
w()/) He¢y a;

If M = A® B isadirect sum, its flats e U § € éﬁffg; p = L0 x 2% are pairs of flats
a, B of the summands. Consequently, the flags ¥, A‘}at are in bijection with the shuffles

KM, a) = (3.7)

hyperplane y CM

of flags in r'/fdt with flags in r'lgat. The multiplicativity (2.13) then shows that

Hy'(A® B.a) _ Hg'(A.a) Hy"(B.d)
®(A ® B) w(A) »(B)

(3.8)
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n d f3 fa f5 fe H(Kn)
3 6 3 3
4 4 3 14 84
10 265 5.37.53
>3 3 1= e
6 3 3 10 139 312 210.32.5.13
f3=3
8n—18
f4: 2_3
_ 5(n—2)(25n—172)
f5 = Zgm=3)rn—
fo = 3(n—2)(361n3—323n2+948n—900)
6= 2(n—3)2(n—4)(n1—5)

Table 1. The Hepp bounds of complete graphs with up to n = 6 vertices.

Example 3.16. For a forest y > U} >~ (U]')®", the formula (3.6) is easily evaluated
to
J{’ga‘(y, a) 1
o(y)  ai...an
using either (3.7) or (3.8). The hyperplanes of the cycle M = M(Cy,) = U~! are
precisely the forests y = M \ {e, f} obtained by deleting any pair of edges. So,
by (3.7),

where w(y) = ay + -+ + ay, 3.9

a+a

I (Cpd) = Y (]_[ ) - Z Y ar. (3.10)

l<e<f<n k;éef f o de fe

Note that the sum over f gives @(C,) + a, such that the double sum can be written
as
§+o(Cr) +o(C) X, 55

So, we recover (2.8) in the dimension where w(Cy) = 0.

Corollary 3.17. Let M denote a matroid of rank tk(M) > 1, and given any sub-
matroid y C M, write y = y1 @ -+ @ Vi for its k = k() connected components.
Then

a* k(y) e}fﬂat()/k El’)
J0 (M, G) = M/y a 77 (3.11)
4 2 He¢ya;k1—[=1 (k)

hyperplane y CM

Example 3.18. The complete graph K, has £(K,) = ("3!) loops and for unit indices

we find o(K,) = — 2 (m31). Every cut consists of two smaller complete graphs
2 y

hence (3.11) yields a quadratlc recursion. We can state it as follows. Set d = .= and
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P2|_|F4 FQUP3|—|F1

Figure 10. Some cuts of the fan with 6 spokes and the corresponding block decomposition.

define

. _ kfir Jie—i
foi=1 and fi:= a)(Kk ) Z a)(K)—a)(Kk 3 for3 <k <n,

then #(K,) = (n — 1)!(% — 1)~HK») . We give the results for small 7 in Table 1.

We use the recursion (3.11) also to compute the Hepp bounds of all wheels. Recall
that for graphs, the sum over hyperplanes y is a sum over minimal cuts, and the
product over k runs over the biconnected components (blocks) of y. The computa-
tion is tractable because a wheel has only few connected flats (induced biconnected
subgraphs).

Proposition 3.19. The Hepp bounds of the wheel graphs with unit indices are

4n qn—1 Z (2n _ 2k) (Zk)k o foreveryn =3, (3.12)

e%(VVn) =

and they grow asymptotically like J(W,) ~ g «/7 for large n. Their generating
function

W(z) = ZJ(’(W )z" = 8423 + 572z% 4 132405 4 3546326 4+ 9(27)

n=3
has the form
2 2
W(z) = —Z — 4z — 142> —4z%log(1 —z) + - . (3.13)
—z V(1 =92)(1-2)3

Proof. For unit indices, the wheel W, is defined in dimension d = 4 and thus a, =
a. = 1 for all 2n edges. As illustrated in Figure 9, for a wheel the recursion (3.11)
gives

KNG

T (Wn) = n= e+ n];(k + DH (Fai). (*)



Hepp’s bound for Feynman graphs and matroids 67

where the first factor of n is the size of the cut (all spokes) and the factor n in front
of the sum over k accounts for the different copies of the fan F,_; with n — k spokes
obtained by rotations. Note that the paths Py in the rim give the trivial contribution
FI(Pr)/w(Py) = 1 from (3.9), and every fan has w(F,—x) = 1. Let us write

. Jfﬂa‘(C) nin—1) , z3(4-32) )
C(z) .—'12:3 () ; p— " = 1—2)7 —2z%log(1 — 2)

for the generating function of the cycles according to (3.10), and

F(z) =Y H](Fp)z"
n>1
for the generating series of the fans. Then the recurrence () can be written as
z(3—-2z2)
(1-2)?
where the factor in front of F(z) is Y po, (k + 2)z*. To determine F(z), consider the
cuts of a fan as illustrated in Figure 10 and apply (3.11) to obtain the recurrence

W(z) = Z%(G(z) LT gy 23, ) ()

n—1
HISED) =+ 230~k DI
k=1
+ Dk = j + HHFE ) H (Fmi),
1<j<k<n

where the first term stems from dissecting the rim P, from the hub, the middle sum
cuts off a smaller fan Fj from a path P,_j in the rim, and the double sum enumerates
the cuts that carve out a path in the rim from spoke j to spoke k, chopping off two
smaller fans Fj_; and F,_. For the generating function J(z), this recursion reads

z 2z(2—1z2) z(3—-2z2)

2
CEEER T (e

. . _ /= )3 .
Inserting the solution J(z) = 1226(55’22)2 — (22(932_)(212)2) into () confirms (3.13),

and we obtain (3.12) using the binomial series. The asymptotics for large n can be

J(z) =

computed with standard methods, see [62]. [

Remark 3.20. If all indices a, = 1 are equal, the partition of all permutations accord-
ing to the first flat y = span({o(1)}), as described in the proof of Proposition 3.14,
amounts to a recursion for the Derksen invariant of the form

(M) ="yt (W[0)" T g (M/y)). (3.14)
yexﬂdt
k(y)=1
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We conclude that § (M) is completely determined by the lattice of flats of M, because
the flats iﬁj‘/y >~ {§ € £1:5 D y} of a quotient M/y are precisely those flats § of
M that contain y. This dual to Remark 3.8 was observed in [15, Section 3].

Example 3.21. Starting from the 3- and 4-bonds § (¢3) = 6(1,0,0) and § (&) =
24(1,0,0,0), and using (0) L1J (1,0,0) = (0,1,0,0) + 3(1,0,0,0), the recursion (3.14)

gives
S(AN) =[S +2-2- (O wI()]

=96(1,1,0,0,0) + 24(1,0,1,0,0).

Inserting this into § ((X)) = 6 (1) - & (A confirms the result from Example 2.42.

3.3. Cyclic flats

In the preceding two sections, we partitioned the total orders of the edges according to
the corresponding flags y. of bridgeless or flat matroids. The corresponding iterated
quotients are cycles yx/yk—1 = U1 or bonds yx/yk—1 = U} on n = |yx/yi—1|
elements, respectively.

Combining both approaches, we can give a formula in terms of only those sub-
matroids that are simultaneously cyclic (bridgeless) and flat. These form the lattice

Zy = L0 N2 (3.15)

of cyclic flats, and in fact this lattice, together with the rank function, determines the
matroid [14,32]. Note that the closure span(y) € Zjs of any bridgeless y € £ as
well as the interior cyc(y) € Zp of any flat y € £ are cyclic flats.

Proposition 3.22. The Hepp bound of a connected matroid M fulfils the recursion
HIZ,a)

Jfgat(M’ Zi) = Z (Z)

M#ZEZM

p(M/Z,d) (3.16)

over cyclic flats Z & M, in terms of a sum over independent hyperplanes of Q =

M/Z:
. . 1 1
p(Q.a):= > “Q/H( I a_>( I1 a_*)' (3.17)
hyperplane HCQ ecH ¢ ecQ\H ¢
with £(H)=0

Proof. Given a hyperplane y of M, let Z := cyc(y) € Zjs denote the cyclic flat that
is the interior of y. The bridges B := y \ Z of y form an independent set such that
y = Z @ B is adirect sum. Using (3.9) and (3.8), we find

0D _ PG L
o) 0 @) b
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Together with (3.7), this proves (3.16). Note that H := y/Z is an independent hyper-
plane of Q = M/Z,s0p(M/Z, Ei) defined in (3.17) correctly collects the contribu-
tions from all hyperplanes y that give rise to the same interior Z = cyc(y). |

Note that (3.16) sums over all cyclic flats Z — in contrast to (3.11) or (3.4), where
the rank or loop number are fixed. Correspondingly, iterating the recursion (3.16)
expresses the Hepp bound in terms of all chains of cyclic flats, not just the maximal
ones:

D S AT R /7S R

H(M,a) = o(Z)w(Z3) ... o0(Zk_1)

k>1 0#Z,C~CZx=M
VAT ARV SV

Remark 3.23. Since M is connected and thus 1pi, every quotient Q = M/ Z is also
1pi. Therefore, if Q =~ A @ B is disconnected, both A and B must have at least one
loop: £(A),£(B) > 1. But a hyperplane H of A & B must contain all of A or all

of B, and thus H cannot be independent. This shows that p (Q, Zl) = 0 unless Q is
connected.

Example 3.24. The only cyclic flats of the complete graph K4 = @ are @, the four
triangles, and K4 itself. For a triangle Z = {i, j, k} =~ /\, we can write (3.10) as

HI(Z,a) 1 a; +a; + ag
= + ALY
w(Z) aiajag w(Z) af = aj ak

The corresponding quotient Q = K4/ Z =~ @ is a bond with the unique hyperplane @,
and (3.17) gives simply p(Q,d) = % where {u,v,w} = K4\ Z are the
complementary edges. Note that the numerator is a;, + a; + a;, = % —w(Q) =
% +w(Z) =a; +aj +ardueto 0 = w(Ky) = o(Z) + w(K4/Z). The only other
contribution to (3.16) is p(K4, d) from Z = @, which amounts to summing over the

three pairs H = {i, j} = ]] of non-adjacent edges. In total, we get

R az az aK4/Z
H(Kq,a) =
(Ky,a) NZ Haena(w(z)+z e) NZ 1 a [1 a2
A=ZCKy ecZ e¢Z e€Z lI=ZCky ecZ etZ
(3.19)

Remark 3.25. In the case of unit indices a, = 1 = a} in d = 4 dimensions, the
factor (3.17) becomes just p (Q) = (£(Q) + 1) - |{independent hyperplanes of Q}].
The count of independent hyperplanes can be retrieved from the lattice Z¢ of cyclic
flats and their ranks, as worked out in detail in [15, Section 7].

We can repeat the above discussion starting with bridgeless flags instead of flags

r"P

of flats. Given ys € ¥,, , we can set Z; := span(y;) € Zp and remove duplicates to
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obtain a chain of cyclic flats. The final formula has the same form as (3.18), only the
numerator is altered by replacing the factors p (Q, Zz) with the sum

5.3 =Yac([1)( 1 o)
cco ecec e ecO\C de
over spanning circuits (indeed, note that y; is a spanning circuit of Z;). These are
precisely the circuits of rank rk(C) = rk(Q), equivalently the circuits with |C| =
rk(Q) + 1 elements, and they are also called Hamiltonian circuits. For unit indices
a., = 1in d = 4 dimensions, we conclude

0(Q) = (tk(Q) + 1) - |{Hamiltonian circuits of Q}|.

The two resulting formulas (3.18) for (M, a) in terms of chains of cyclic flats,
one with p’s and the other with 0’s in the numerator, can be obtained from each other
by duality as in Section 4.1. Namely, the complement of a Hamiltonian circuit is an
independent hyperplane of the dual [18, Theorem 3].

Example 3.26. The uniform matroid M = U, has only two cyclic flats Zyr = {0, M },
such that #(M,d) = p (M.d) = p (M. a). As every subset H C M of size |[H| =
r — 1 is an independent hyperplane and every C C M with |C| = r + 1 is a Hamilto-
nian circuit,

.o ac ay

HU, a) = ~ = -
§ |C|=Xr:+l (HeEC aE)(He¢C ae) |H§—l (HeEH ae)(He¢H ae)
(3.20)

Note that Lemma 2.27 gives yet another formula for this function.

4. Symmetries

Different graphs (or matroids) may integrate to the same period. There is no complete
combinatorial description of all such pairs of graphs, but several families of identities
are known. The simplest of these period relations are:

1. duality: a planar graph and its dual have the same period;
2. product: the period factorizes for graphs with a 2-separation.

These hold for arbitrary indices and extend to all matroids; proofs are straightforward
in Schwinger parameters. In contrast, the following symmetries are only defined for
graphs and furthermore subject to constraints on the indices:

3. Fourier split [71]: duality may be applied to one side of a 3-separation;
4. completion [22]: if G is regular, then & (G \v) is the same for all vertices v;

5. twist [99]. a double transposition along a 4-separation keeps J (G \v) invariant.
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The Fourier split generalises the uniqueness relations [74-76] and we include a proof
in Schwinger parameters. For completion and twist, all known proofs [99] exploit
the representation (4.4) of the period in position space. Completion and twist are not
restricted to regular graphs, but require indices such that each vertex is conformal
(Definition 4.16).

In this section we demonstrate that the Hepp bound respects all of the above sym-
metries and fulfils exact analogues of the corresponding identities for periods.

The product, completion and twist identities are most succinctly stated for arbit-
rary indices if we use a slight variation of the Hepp bound.

Definition 4.1. The position space Hepp bound J (M, a) of amatroid M on N edges

1S
*

~ . ar...ax . R
H (M,a) = ﬁ%(M,a) where a; = %—ae. 4.1)

In d = 4 dimensions with unit indices a, = 1 on all edges, # (M) = 29 (M)
differ only by a factor of 2. Also recall #(M,a)|;—o = 0 from Corollary 2.21, so the
denominator in (4.1) does not create a further pole. Instead, Lemma 2.45 shows that

H(M,a) — (1) ¥+18 Ary ford — 0. 4.2)
Example 4.2. For cycles and bonds (Figure 3), the results (2.8) and (2.16) translate
to
~ . A~ . aj .. .a}‘v
H(Dy,a) =1 and H(Cy,a) = ——. 4.3)
ay...anN

The motivation for Definition 4.1 is that the period (2.1) is not exactly a Feyn-
man integral. The Mellin integral lacks a prefactor [[, 1/I'(a.) to become the actual
Feynman integral in momentum space [88]. A Fourier transform turns this into the
integral

o= (11 [T T m—tmr):

v;éO,le e={v,w}€Eg

over position vectors Z, € R4 associated with each vertex, similar to [101, Defini-
tion 3.1]. Two arbitrary vertices (labelled 0 and 1) get fixed positions: 0 and a unit
vector €. The Fourier transform introduces further I"-functions [90], and the precise
relation is

_Td/2
[(a})...T'(ay)
The replacement I'(s) — 1/s observed in Example 2.2 suggests that (4.1) is the cor-

P (G, a) P(G,a). (4.5)

rect tropical analogue of the Feynman integral in position space. Indeed, the tropical
limit
H(G,a) = lim P (G, ea) (4.6)
e—0
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Figure 11. A planar graph G, a planar embedding of the same graph, the dual indicated by
dashed lines, and another (non-planar) drawing of this dual graph G *.

follows from (2.2). The symmetries of the Hepp bound are therefore implied by the
symmetries of periods as functions of the indices d. We give independent proofs that
reduce completion and twist to a purely combinatorial classification of the poles of the
rational functions J¢ (G, 5), combined with the factorization (2.18) of their residues.

Note that, in contrast to the Hepp bound #(G) = 290 (G), the period ind = 4
dimensions with unit indices a, = 1 is unchanged in position space: P (G) = P (G).

4.1. Duality

Every matroid M (with corank function £) has a dual matroid M* (see [89]) on the
same ground set £ = Ejps = E 7+, but with the corank function £*: 2F Z >0 defined
by

C(y) =UE\y) + |yl - LE). 4.7
Example 4.3. The dual of the uniform matroid U] is U;}}™".
Example 4.4. For planar graphs G, choose a planar drawing. Construct the planar

dual G* by assigning a vertex to each face and connecting neighboring faces with
edges, as in Figure 11. Then the cycle matroid M(G™) is the dual of M(G).

Proposition 4.5. Let M denote any matroid and set a := % — ae for each edge.
Then
H(M*,a) = H(M,a*). 4.8)

Proof. The superficial degree of convergence of a subset y C E in the dual matroid
is

0a(r") =Y e — Lyl — M) + LM\y) = =3l + M) — Le(M\y)

ecy ecy
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according to (4.7). The case y = E shows that wz(M*) = —wz;+ (M) both vanish in
the same dimension. Substitute %K(M ) = .epm @, inthe equation above to conclude
that w; (y*) = wz« (M \y). The contribution to (M *, a) from any flag y; S ---

yn in (2.5) therefore matches precisely the contribution of the complementary flag
E\yn—1 S --- S E\y1 € E to the Hepp bound # (M, a*). ]

s

Example 4.6. The cycles C,, and the bonds D, in Figure 3 are duals of each other,
and indeed their Hepp bounds (2.8) and (2.16) are related by (4.8).

Remark 4.7. We can read (4.7) as £*(y) = tk(M) — rk(M \ y). It follows that the
bridgeless subsets of M * are precisely the complements of flats in M and vice-versa.
Hence, under duality, the bridgeless flag formula (3.2) becomes the sum (3.6) over
flags of flats.

The identity (4.8) is also very easy to prove with the Mellin integral. The bases of
the dual are the complements By« = {E \ T: T € By} of the bases of M, such that

Wiy () = max [ = (]_[xe> max I XL = (l_[xe‘)\p]t\r/[((l/xe)eeM)-
ecT

eeM e¢T € eeM
4.9)

The inversion of the Schwinger parameters x, — 1/x, thus transforms the integrands
of #(M*,a) and J#(M,a*) in (1.13) into each other. This proves (4.8), and upon
replacing W' with W, the same argument also shows that

P(M*,d) = P(M,a*) (4.10)

This well-known relation for periods is called Fourier identity in [99], because it cor-
responds to a Fourier transform in the position space integral (4.4).

4.2. Products and 2-sums

Definition 4.8. Suppose we are given two connected matroids A and B, each with
at least 3 elements. Let further e € A and f € B denote a choice of edges. Then the
2-sum M = A ,®y B is the matroid on the disjoint union Epy = E4\e U Eg\ f with
bases

By ={SuT: SeBpeandT € Bp;rorS € Byjeand T € Bp\r}. (4.11)

We illustrate the 2-sum for graphical matroids in Figure 12. It amounts to taking
the disjoint union of A\e and B\ f, followed by the identification v ~ v’ and w ~
w’ of the endpoints of ¢ = {v,w} and f = {v’,w’'}. As the figure shows, we can
flip one side (v <> w’) and thus obtain two different graphs with the same cycle
matroid [110,119].



E. Panzer 74

M @e ®r M|f = M

Figure 12. The 2-sum of two graphs.

Example 4.9 (Figure 13). The 2-sum M @ U,i‘+1 with a cycle UI§+1 >~ M(Ck41)
replaces e in M by a path with k edges. This is called a series operation. A parallel
operation is the 2-sum M .y Uk1 41 With a bond, which replaces e by k parallel

edges.

From (4.11) we see that the rank of a 2-sum is rk(M) = rk(A) + rk(B) — 1, and
thus
L(Ae®f B) = L(A) +U(B) — 1. (4.12)

Suppose we have assigned indices d to S:= A\e C M and indices btoT:= B\fcM.
They determine the dimension d where w(M) = 0. If we set a, := % — w(S), then

w(A) = o(S) + w(4/S) = o(S) +a.— % =0

and similarly we get w(B) = 0 for by := % — w(T). Note that by = o(S) and a, =
w(T), because (4.12) shows that o(M) = w(S) + o(T) — %.

Proposition 4.10. Givena2-sum M = A, @y B, let a andg denote variables indexed
by the edges in A\e and B\ f, respectively. Set a, := w(B\ f) and by := w(A\e).
Then

H(M.a.b) = H(A.d.a.) - H(B.b.by). (4.13)

Proof. By our definition, A and B are connected, and it follows that M is connected.
As an identity of rational functions, it suffices to prove (4.13) locally, so we may
assume that the indices lie in the convergence cone of the Mellin integral (1.13).

Let ¢y 1= llfg\e and ¢4 1= W} /e Such that WY = max {x.V4, ¢4}. We can write

HA R e / ma)]" xéeldx, _dn / Q(@)

I ] @0 ) max e da/ga D T aea; | yacger
pA\e 0 PA\e A TA

(4.14)
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where a) = 4 _ 4,, by performing the integral over A := x4 /¢4 as in Example 2.2:

2
Aae=1d —/lxae—ldwr]ow—dﬂ—ldx— L, 1 _dp
(max {A,1})4/2 a, d/2—a. aeal’
0 0 1

Set also Y := ‘Ilg\f and ¢p = \I/;;/f, then according to (4.11), we can write the

tropical matroid polynomial of the 2-sum as

WY, = max {Ya¢p. pa¥p} = Yadp max {1, 1}

in terms of the coordinate A := (¢4/v¥4)(¥/$p) on PM . Combining A with the
forgetful maps x — y := [X;]iea\e and x — z := [x;];ep\ s, We obtain a change of
variables

PM _, pAle  pB\S « Rso, x+= (y,z,1). (%)

Since ¢4 and 4 are homogeneous of degrees £(A) and £(A) — 1, respectively, A is
homogeneous of degree one in the variables y. Consequently, () is invertible with

A $4(y)¥B(2)

x(y,z,A) = | ———yiz| e PM for A (y,z):= 020
[)V(J”Z) ] Va(y)¢r(z)

Under this rescaling, ¥4(x) = ¥4(y)(A/A)44\) and the volume form (2.6) is of

degree ZieA\e a. = w(A\e) + %K(A\e) in y. With by = w(A\e), the integrand

factorizes as

Q@b _ Q@ (L, Q(b) (L) Abr=1da
(W D72~ ya0)PPNga()) " p@ P \yp(2)) T (max (1A

The integrals over z € PB\/ and A produce precisely # (B, b ,byr) by the equivalent
of (4.14) for B. Since by = % —a, = a}, the integral of the first term over y gives
JH(A,d,a.) times a} ;/(d/2), again using (4.14). We have thus shown that

H(M.,a,b) = a}H(Ad.ac)-bjH(B.b.by) 2/d,
which becomes the claim (4.13) in position space (4.1). [ ]

Example 4.11. Recall that #(K4) = 84 and e (K4) = 42 for unit indices in d = 4
dimensions. All 2-sums of K4 with itself are isomorphic, and we find that

fe(@) = ﬁ(@e@f @) = ﬁ(@)z = 1764
J€<<>) = 3528,

and
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00 G0

Figure 13. Series and parallel operations on edge e, illustrated for graphical matroids.

Corollary 4.12 (series—parallel reductions). Ifthe matroid S = M @3 U3 is obtained
from M by replacing an edge e with two edges 1 and 2 in series (Figure 13), then

ap +az

H(S,a1,a2,d) = H(M,ay + ay,a). (4.15)

aas

If P =M .®3 U31 is obtained from M by replacing e with a pair of parallel edges,
then

H(P.,ay,az,d) =

J€(M ay +ax — £,d). (4.16)

Tas
142
In particular, the Hepp bound in position space is invariant under parallel operations:

H(P,ay,ar,d) = (M a;+a,—2 2.d). 4.17)
Proof. Apply Proposition 4.10 to B = U$ or B = U, and use (4.3). n

Corollary 4.13. Crapo’s invariant of a 2-sumis B(A.®r B) = B (A) B (B) [31], and
series—parallel operations do not affect Crapo’s invariant [40, Propositions 4 and 5].

Proof. We use (4.2) and apply the limit d — 0 to (4.13). Because of tk(M) — 1 =
rk(A) — 1 + 1k(B) — 1 from (4.12), this proves the first claim. The series—parallel
invariance is the special case B = M(Cy) or B = M(D,,), with 8 (B) = 1 due to
Example 2.46. ]

The product (4.13) is the exact analogue of the well-known relation [24, Proposi-
tion 40]
P(A.®f B.a,b) =P(A,ad.a.)- P(B.b,byr) (4.18)

for the period in position space. It can be proven in the same way as above; the only
difference arises because Wpr = W1\.Vp/r + W4/, ¥p\ s is a sum and not the max-
imum. Hence, the A-integrals become Euler beta functions, and the analogue of (4.14)
reads

P(A.G.ap) = F(vle)F(a’*)/ Q@

e ae )
P2y I v v

The product formulas suggest a unique factorization for matroids with respect
to 2-sums, and indeed this was achieved in [48]. We review this result and related
terminology.
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Definition 4.14. A (Tutte) k-separation of a matroid M is a partition Epy = S U T
of its edges such that | S|, |T| > k and rk(S) + k(7)) < k(M) + k — 1. We say that
M is n-connected if it has no k-separation where 1 < k < n.

With this definition, every matroid is 1-connected, and what is called a connected
matroid according to Definition 2.15 is called 2-connected with respect to Defini-
tion 4.14. For a connected graph G, a k-separation of M(G) is an edge partition
with |S|,|T| = k such that S and T meet in at most k vertices [47, Theorem 3].
So, Definition 2.17 describes the special case of 1-separations, and Figure 12 shows

’

2-separations.

In [48], 2-separations are called splits, and a matroid is called prime if it is 3-con-
nected. Every 2-sum decomposition M == A .®r B implies the existence of a split
with § = A\e and T = B\ f. Conversely, every split arises in this way and implies
a decomposition of M into minors A and B of M. Therefore, a prime matroid admits
no 2-sum decomposition.

It follows that a connected matroid is decomposable by 2-sums into prime
matroids. Apart from the order of performing the splits, this decomposition is almost
unique. The only ambiguity arises from cycles Cy 4 = Cyq1 Dy Cn1, and sim-
ilarly bonds, which allow several decompositions. The unique factorization result
is [48, Theorem 18]:

Theorem 4.15. Every connected matroid has a unique minimal 2-sum decomposition
into bonds, cycles, and 3-connected matroids.

The Hepp bound implements this decomposition as an actual factorization of
rational functions. Cycles and bonds (4.3) have only linear factors in the numerator
and denominator, which may be partitioned in several ways. In contrast, the numerator
of # (M, a) for a 3-connected matroid does not seem to factorize.

4.3. Completion

The completion symmetry is the invariance of the integral (4.4) in position space
under a conformal transformation Z ~ Z/||Z||2. It is very useful in particle physics
as it equates the periods of many non-isomorphic graphs [22, Section 5]. Completion
applies only to graphs and requires that, at each vertex, the dual indices sum up to the
dimension.

Definition 4.16. Leta,; = % — a. denote the dual indices. The excess at a vertex v is

Sy i=d—> a} (4.19)

e:vee
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where the sum runs over all edges incident to v. We call v conformal if §, = 0, and
a conformal graph is a graph G together with indices a such that all vertices are
conformal.

Example 4.17. Every k-regular graph with k > 3 and unit indices a, = 1 on all edges
is conformal in d = 2k /(k — 2) dimensions. For k = 4, this dimension is d = 4.

Example 4.18. For any graph G with logarithmic indices, its completion [99, 101] is
a conformal graph H with one additional vertex “oco” such that G = H \oo. To make
v € Vg with §, # 0 conformal, H has an edge e from v to oo with a, := d /2 — §,.
The new vertex oo is conformal by virtue of oo = —@(G) = 0 from (4.20) below.

We can express the convergence degree of a subgraph in terms of excesses. Let
G[S] denote the subgraph of G that is induced by the vertex set S C V. It contains
precisely those edges of G which have both endpoints in S.

Lemma 4.19. Suppose that y = G[S] C G is a connected induced subgraph. Let
C C Eg denote the edges with precisely one endpoint in S. Then

w(y) = %(Z Sot+ > ag - d). (4.20)

veS ecC

Proof. The sum ), ¢ D ,.,c. 45 counts edges in y twice and edges in C once.
Hence,

Y S —dIS|+ Y al=-2) al=—dly|+2) a.=2w(y)+d () -y

vES eeC ecy ecy

and we conclude using (2.3). [ ]

In particular, a conformal graph has w(G) = —d /2 and is not logarithmic unless
d = 0. However, the complement G \v of any vertex in a conformal graph is always
logarithmic with w(G\v) = —§,/2 = 0. We can therefore consider the periods of
such complements.

Theorem 4.20. If G is conformal, then JS(G\U, a) is the same for all vertices v.

The proof for positive integer dimensions in [99, Definition and Theorem 2.2]
applies the inversion Z > Z/ || z]|? to the vertex coordinates in position space (4.4). In
non-integer dimensions, these integrals over Z € R? can be defined using dimensional
regularization as explained for example in detail in [36]. The inversion proof then still
applies.

We will prove the same invariance for the Hepp bound. Recall that the Mellin
integrals (1.13) and (2.1) have poles. The equalities £(G\v,d) = £(G\w, @) of
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a a
1 a» 3 a1 as
Ka= )as .%l Kq\v =
L ]
an

as

(a1 + a2)(a1 + az)(az + az)
ajazas

H(Ks\v,d) =

Figure 14. The complete graph K4 with the most general conformal indices.

Theorem 4.20 are to be understood as identities of meromorphic functions on the
vector space
(a:8, =0} c C!9
ueVag

of conformal indices on G. This space has dimension |G| — [Vg| + 1 = £(G), because
one of the constraints determines the dimension d. Even though a complement G \v
has fewer edges than G, we still write a to denote its indices and to suggest that the
indices of G\w are determined (through conformality in G) by the indices of G\v.

Theorem 4.21. For any two vertices v, w of a biconnected graph G, the Hepp bounds
H(G\v,a) = #(G\w, a) agree as rational functions on the space of conformal
indices.

Corollary 4.22. If G is regular and G\v, G\w are p-log, then # (G\v) = H(G\w).

Example 4.23. The complete graph K4 is conformal precisely when the indices a, =
ay of all non-adjacent edge pairs {e, f} coincide. The conformal indices thus define
a rainbow coloring, where every vertex touches exactly one edge of each index (see
Figure 14). All complements give the same cycle C3, so Theorem 4.21 is trivial for
G = K4.

To prove the theorem, we first reduce it to the case of complete graphs K. If G
has n vertices, define indices ¢ on K}, as follows. The edge between vertices i and j
receives
o =% —cji=al +--+a}, (4.21)

ij €k

where ey, ..., e, € Eg denote all edges in G between i and j (there may be none,
one, or several such edges). This assignment ensures that ¢ are conformal indices
for K. So, if we know J# (K, \v.¢) = H# (K, \w, ¢), then the theorem for G follows
from the identity

FH(G\v,d) = H(K,\v.7) (4.22)
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Figure 15. An induced subgraph y = G[S] S G\vinthecasesw ¢ Sandw € S.

and its analogue for w. We already saw in (4.17) that several parallel edges (k > 2) can
be replaced by a single edge with the dual index (4.21). Nothing changes for edges
with k = 1, so (4.22) is clear once we recognize that adding an edge with weight
cij = d/2 in the case k = 0 has no effect on the Hepp bound. Indeed, due to the
factors a} in (4.1), the pole for deletion of an edge in (2.19) amounts to the finite limit

H(GUley,d,d/2) = 1ir2/2fe(c; U{e}.d,ar) = H(G,a).

Lemma 4.24. For a biconnected graph G, the poles of the Hepp bound Je (G, a)
in position space are in bijection with subsets S S Vg of |S| = 2 vertices with the
property that the induced subgraph y = G|[S] and its quotient G/y are biconnected.

Proof. According to Corollary 2.38 and Lemma 2.18, the poles of # (G, @) are iden-
tified with subgraphs y such that y and G/y are nonseparable. If y is not induced,
every edge e € G\y with both endpoints in y becomes a self-loop in the quotient
G/y. To avoid a separation, G/y = Q can only consist of one self-loop on its own, so
y = G\e is an edge complement. But the corresponding poles at w(G\e) = a; = 0
are cancelled in position space by the numerators in (4.1). So, only induced y con-
tribute poles to J (G, @). [

In a complete graph G = K, all induced y = G[S] and their quotients are bicon-
nected, so 7 (Ky,a) has precisely 2" —n — 2 poles, one for each subset S S {1, ...,n}
with | S| > 2. To identify poles in other graphs, it may be useful that the quotient
G/G|[S] is biconnected if and only if the complement G\S = G[V\S] is a connec-
ted graph.
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Proof of Theorem 4.21. We perform an induction over the number n of vertices of G.
The start at n = 3 is simple: all vertex complements of K3 = /\ are single edges
K3\v =~ «— with the same Hepp bound J?(Dl,ﬁ) = 1 from (4.3).

Now, consider the complete graph G = K,,4+; and suppose that we already estab-
lished the theorem for all graphs with < n vertices. Call v = n + 1 such that one
has G\v = K,,. Recall from Example 4.18 that the indices on K}, are unconstrained
and parametrize the entire space of conformal indices on G, so JH (K, @) has simple
poles in bijection with subsets S < {1,...,n} of size |S| > 2. In position space, the
factorization (2.18) reads

JRes (K@) = §[H(.@) - H(Kn/y.@)lotm)=o ®
and we first consider the case y = G[S] with w ¢ S (see Figure 15). Then y is also
a subgraph of G\w, and we set H := G/y such that K,,/y = H\v. The excess of
the vertex u representing y in H is —2w(y) due to (4.20). So, on the hyperplane
w(y) = 0, the graph H is itself conformal. Since H has at most n vertices, we know
by induction that JA(’(H\U, a) = J?(H\w, a). But H\w = (G\w)/y, so we learn

Res J(G\v,d) = Res H(G\w,a)
w(y)=0 w(y)=0
by comparing (ff) with its analogue for G\w instead of G\v = K. Now, suppose
that w € S, then y = G[S] is not anymore a subgraph of G\w. To see the pole,
set y’ := G[T] for the complement T := {1,...,n + 1} \ S and note that w(y) =
oY) = (Q_,ec ai —d)/2 by (4.20), where C are the edges between S and 7. The
residue formula gives

Res H#(G\w,d) = Res H(G\w,d)= L[H(y.a) H(G\w/V,@)]ww)=o-
w(y)=0 o(y)=0

(b)
This time, we delete from H = G/y the vertex u that represents y, to conclude
by induction and H\u = G\S = G[T] = y' that #(G\v/y,d) = H(H\v,d) =
H(y',a). Similarly, set H' := G/y’ such that H'\u' = G\T = G[S] = y for the ver-
tex u’ that is y’ in H’. By induction, we find that H(G\w/y',a) = H(H'\w,ad) =
J (y, @) and conclude that (1) and (b) coincide.

In summary, we have shown that both Hepp bounds J(G\v,d) and # (G \w, @)
have the exact same residues on all poles. Therefore, their difference

A= H(G\v,ad) — J(G\w,ad)

is a rational function without poles, thus a polynomial. We also know that A is homo-
geneous of degree zero, so it must in fact be a constant rational number A € Q. To
show that A = 0, we specialize to unit indices a, = 1 on all edges as in Example 4.17,
then we get trivially that J?(G\v) = J?(K,,) = j@(G\w). ]
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_ 2(asa +as +ag)—ay —azx—as

ass

3
2(a1 +az +ae) —az —as —as

ass = 3
2(a2 + a3z +as) —ay —as —ag

ays = 3

Figure 16. Two uncompletions of K5 and the relationship of their indices.

The case with 4 vertices is almost trivial as discussed in Example 4.23, but already
for n = 5 the completion relation gives an involved identity of rational functions.

Example 4.25. The graph K4 = K5\5 with arbitrary indices a1, . . ., a¢ is logarithmic
in dimension d = 2(a; + --- + ag)/3. The completion in Example 4.18 determines
the indices of the edges connected to vertex 5 = oo such that K5 is conformal. With
the labels as in Figure 16, the excess at vertex 4 is §4 = a1 + a» + a3 — d/2 and
therefore

d 2a4+2as+2a¢—aj—ar—a
a45=5—5v4= 4 5 36 1—a2 3=LL)(K4\4).

Similarly, we find a3s and a;s as given in Figure 16. The identity J(Ks\5,d) =
J(K5\2,a) is an explicit functional equation for the Hepp bound (3.19) of Ky,

H(K4,ay,a2,a3,a4,as,a¢) = H(Ky,ay,a45,a3,a3s,as,a1s).

Remark 4.26. We only get non-zero Hepp bounds from conformal graphs that are
3-vertex-connected. For suppose that G can be disconnected by deleting two vertices
v and w (this implies a vertical 2-separation [47]). Then G\v has an articulation
point w and is therefore not biconnected, so H (G\v,a) = 0. If G is conformal, this
implies that the Hepp bounds of all vertex complements G \u vanish, even those that
are biconnected. In these cases, the corresponding Hepp bound function Je (G\u,a)
vanishes on the solution space to the conformality constraints. For example,

#LH), g = (i) = (ppi) = (L) =0
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aARA

Figure 17. A 4-separation with a choice of a double transposition and the resulting twist.

Remark 4.27. The completion symmetry Je (G\v, a) = Je (G\w, a) does not
descend to Crapo’s invariant, see the counterexample in (2.25). We cannot apply for-
mula (4.2) for the limit d — 0, because the restriction to conformal indices forces
some subgraphs to diverge at d = 0. It follows from (4.20) that the complement G\ /
of any set I C Vg of independent (non-adjacent) vertices is divergent, violating the
premise of Lemma 2.45.

4.4. Twist

Whenever a conformal graph can be disconnected by deleting 2 or 3 vertices, the
Hepp bounds Je (G\v, a) are forced to vanish (Remark 4.26) or they factorize by Pro-
position 4.10. If G is 4-vertex-connected, no such simplification applies, but the twist
from [99, Section 2.6] provides identities between different graphs with a 4-separa-
tion.

Definition 4.28. Suppose a graph G has an edge bipartition Eg = S U T into two
subgraphs with precisely four vertices {p, g, r,s} in common (see Figure 17). The
graph obtained by a double transposition p <> g and r <> s on T (or S) is called a
twist of G.

A single graph can have a lot of twists. Even for a fixed intersection set {p, ¢, r, s},
we can consider three different double transpositions, and whenever there are edges
with both ends in {p,q,r, s}, we may distribute those edges arbitrarily among S
and T. Note that the construction of a twist G’ from G gives a bijection of the edges
Eqg = Eg.

Theorem 4.29. Consider a graph G and a twist G’ with indices a that are conformal
for G and G'. Then the periods £ (G\v,a) = P(G'\w, a) coincide for all vertices
v, W.

This is an identity of meromorphic functions on the vector space of indices a that
make both graphs G and G’ conformal at the same time. We can specialize the indices
to particular values, provided those stay away from singularities.
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/
Gia

Figure 18. The most general twist p <> g, r <> s of a graph with four vertices.

Corollary 4.30. Suppose that Gy and G, are p-log with unit indices. If their comple-
tions are twists of each other, then P (G1) = P(G2).

A proof in d = 4 dimensions is given in [99, Theorem 2.2]. With (4.4) in dimen-
sional regularization [36], the invariance [101, equation (1.18)] of graphical functions
under double transposition shows that Theorem 4.29 holds for arbitrary dimensions,
see the paragraph after [101, Theorem 3.20]. We demonstrate the analogue for the
Hepp bound.

Theorem 4.31. Suppose that G' is a twist of G. Then the rational functions
H(G\v, a) and J(G'\w, a) coincide on the space of indices a that are conformal
for both G and G'.

For the proof, we follow the strategy used above to establish completion invari-
ance. We fill in missing edges with both ends in S or 7" by giving them the index d /2,
and we replace parallel edges within S or 7" by a single edge. It thus suffices to con-
sider the case where S =~ K, and T =~ K, are complete, simple graphs on n,m > 4
vertices.

The corresponding graphs G =~ G’ are isomorphic to the quotient G, ,, of the
disjoint union K, U K,, by the identification of four vertex pairs. Any two of these
shared vertices Q = {p, q, r, s} are connected by precisely two edges in G, », one
coming from S and the other coming from 7.

Example 4.32. The graph G4 4 has only the four separating vertices and twelve
edges. With the labels in Figure 18, the twist identity between G4,4\q and G} ,\¢q
claims that

d
2
=H(N\a+e—L b+ f-2Lct+e-9) (%)
This is wrong for generic indices, but the conformality §, = 0in G4 4 in GQ’ 4 enforces

a+c+ f4+a+c+f=2d=a+c+f+b+ci+e



)
O &k Sl

Figure 19. The left shows the subgraphs G[X] and G[Y]in G and in the twist G/, when {p, ¢} C
X and {r,s} € Y.Inthe case {p,r} € X and {g, s} C Y on the right, the twist p <> g, r <> s
swaps the parts Ty and Ty .

—

and therefore @ + f = b + é. Similarly, we find @ + b = & + f from the constraints
3, = 0. We conclude thata = e and b = f', hence (*) is clearly true.

Proof of Theorem 4.31. As for completion, we perform an induction over the number
of vertices of G. The minimum of 4 vertices is Example 4.32. In the induction step, it
suffices to consider G = Gy, ,, withn + m — 4 > 5 vertices, and we may assume that
the twist identity is already proven for all graphs with fewer than n + m — 4 vertices.

The function Fg(a) := J (G\v,a) is independent of v by Theorem 4.20. Accord-
ing to Lemma 4.24, the poles of Fg correspond to vertex bipartitions Vg = X U Y
where |X|,|Y| > 2. Let y := G[X] and recall from (2.18) that the corresponding
residue is

Res Fg(a) = 43 (y,d)Fgy(@). (+)
(y)=0

Let X denote the part of the partition that contains p. If X intersects Q := {p,q,r, s}
only in p, then removing p disconnects y if X\ Q contains vertices on both sides S
and T of the 4-separation. For a non-zero residue we must have y € S ory C T.
In this situation, y =~ y’ := G'[X] is a subgraph of both G and G’. Furthermore, the
quotient G'/y’ is a twist of G/y, so we know that Fg/, = Fg//, by induction. It
then follows from () that Fg and Fg’ have the same residue at w(y) = 0.

If |X N Q| = 3, then we can apply the symmetric argument to Y to show that
the residues of Fg and Fg/ at w(y) = 0 coincide; recall that w(G[X]) = w(G[Y])
by (4.20).

The case X 2 Q means Y N Q = @, and we proceed in the same way. Connec-
tedness of Y implies that Y € S or Y C T, and G[Y] = G'[Y] are literally the same
graphs.

It remains to compare the residues when [ X N Q| = |Y N Q| = 2. Compute Fg/,
by deleting the special vertex corresponding to y, so we can rewrite () symmetrically
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as

=y i > 7 -
w(Gf[lg]S)zo Fg(a) = 5H(G[X],a)#H(G[Y].a). €9

If X N Q ={p,q},then G[X] and G’[X] differ only by turning around one of the two
sides Sy :=y N S and Tx := y N T (Figure 19). This operation shown on the right in
Figure 12 does not change the cycle matroid [119]. Hence, the Hepp bounds of G[X]
and G'[X] agree, similarly for Y. So, again, Fg and Fg’ have the same residue.

Finally, consider the case where X N Q = {p,r}and Y N Q = {q, s}, illustrated
on the right in Figure 19. Set Sy := S N G[Y] and Ty := T N G[Y] and write Sy
for the graph Sy with one extra edge e between ¢ and s; similarly Sy is Sx with an
extra edge e connecting p and r. Define T){ and T}ff analogously. Then (i) becomes
the product

s Fo @) = 49 (Sg,a)H (T .a)H (S, a)H (T ,a)

by applying (4.13) to G[X] = S§ ®f T){ and G[Y] = Sy .®r T{. We get the same
product as the residue of the twist Fgr at w(G'[X’]) = 0 if we set

=(XNVs)u ¥ NVp\Q) and Y := (Y NVs)U(X NVr\Q),

because then G'[X'] = S5 Py T; and G'[Y'] = Sy .®f T){ (see Figure 19). This
shows that Fg and Fg’ have the same residue at w(G[X]) = 0, because w(G[X]) =
o(G'[X']). Note that the cut edges C = Cs LI Ct connecting G[X | with G[Y] decom-
pose into the cut Cg = C N S joining Sy with Sy and the cut C7 = C N T between
Tx and Ty . The same cut edges separate G'[X’] from G’[Y’], so by (4.20) we get

o(G'[X']) = %( 3 ar - d) — w(G[X]).
eeC

In conclusion, we have shown that Fg — Fg’ has no poles, so it must be a constant
rational number just as in the proof of Theorem 4.21. Now, pick the particular values

* _ _d_ *_L d(1_n=4 _m=4
de = 77> f_m and ah - (1 n— m—l)

uniformly for all edges e € S = K, and f € T = K,,, with at most one end in Q, and
the 12 edges h with both ends in Q = {p, ¢, r,s}. These indices are conformal and
convergent: if [ X N Q| =2and [ X NVs| =2+ k and |X N Vr| =2+, we find
that

w(G[X]):%(k(n4k)+l(m4l)+ +2n 4+§Z 4;-)>0

n—1 3n—1

because k < |Vs\Q| =n —4 and [ < m — 4. In the case with |[X N Q] <1 and
say X C Vg, we get o(G[X]) = %];—j(n —1—k) > 0 where k := |X| and thus
2<k<n-3.
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Y Y 00 w B
u o
G4 = o G*= = u=H4
B w v 14

Figure 21. The triangle G#, star G and dual H of an externally planar graph G.

We may therefore evaluate F and Fg- at the indices a defined above. By con-
struction, the indices on G’ =~ G = G, are the same and therefore Fg(a) = Fg/(a)
is trivial. ]

Example 4.33. The vertex complements G\p and G’\p of a twist pair differ by
replacing one side of a 3-separation along {q,r,s}, see Figure 20 for an explicit
example. The twists where T has this particular shape are studied as magic identities
in [57].

4.5. Fourier split and uniqueness

The recently described Fourier split [71] is a vast generalization of the old ‘unique-
ness’ relations [74-76]. It takes the planar dual on one side of a 3-separation.

Definition 4.34. Given a graph G with three marked vertices {u, v, w}, the star over
G is the graph G* obtained by adding a vertex ‘0o’ with edges o = uoo, B = voo
and y = woo as in Figure 21. The triangle over G is the graph G* created by adding
three edges o = vw, B = wu and y = uv to G. We call G externally planar if G* is
planar, and then a dual of G is an externally planar graph H such that H* = (G*)*.

Example 4.35. The star G = X, with terminals {u, v, w} is externally planar with
G* = {3 and dual (G*)* = A = H* for H = /\. So, as externally planar graphs,
the star X, and the triangle /\ are dual to each other.

A marked graph G is externally planar if and only if it admits a planar embedding
such that u, v and w lie on the exterior face. The construction of a dual H is illustrated
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Figure 22. Fourier split G’ of G along a 3-separation S Ll T'.

in Figure 21. Note that the marked vertices of H are in a well-defined sense ‘opposite’
to those of G. For example, the vertex u in H corresponds to the face vwoo in G*.

Definition 4.36. Suppose that the graph G has an edge bipartition Eg = S U T that
meets in precisely three vertices {u, v, w}, and that S is externally planar with dual
S’. The corresponding Fourier split is the graph obtained by gluing S’ and T along
{u,v, w}.

The Fourier split is shown schematically in Figure 22; see [71, Figure 3] for an
explicit example. We assume that S and 7 are connected, such that £(G) = £(S) +
(T) + 2 and

0=w(G)=w(S)+ o) —d.

When both S and T have the same degree of convergence w(S) = w(T) = d/2, the
Fourier split identity [71, Theorem 2.8] relates the periods of G and its Fourier split.

Theorem 4.37. Let G’ denote a Fourier split of G for a bipartition Eg=S U T.
Write a and b for the indices on T and S, respectively. Then P(G',a,b)=P(G,a*,b)
holds on the space of indices such that w(S) = w(T).

Example 4.38. A 3-valent vertex p is called unique [76] if the dual indices at p sum
to d (we call this conformal, §,, = 0, in Definition 4.16). The three edges S between
p and its neighbors {u, v, w} form one side of a 3-separation with w(S) = d/2, so
the period is unchanged if we replace the star S by a triangle with the dual indices.
This special case of a Fourier split amounts to a star-triangle (A — Y') transformation
G — G’ and the corresponding identities are known as uniqueness relations [74-76).

The proof in [71, Theorem 2.8] uses duality for graphical functions [66]. Our
derivation below stays entirely in Schwinger parameters, and it adapts easily to the
Hepp bound.
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Proof of Theorem 4.37. 1f we expand the graph polynomial of S* as a function of the
parameters of the additional three edges {«, 8, ¥}, we get [24, Example 32]

Ver = (@B +ay + By)¥s + (B + y) D
+( + y)P5 + (o + )P + Ps (4.23)

in terms of spanning forest polynomials [30]. For example, @5 = > 5[], S\F Xelsa
sum over all spanning forests F' of S with precisely three connected components, each
containing one of the marked vertices. We only use that ® 5 is homogeneous of degree
o(S) + 2 and that ®, ®F, ¢ are homogeneous of degree w(S) + 1. Similarly, we
have

Wsa = afy¥s +a(f + y) P + Bla + )5 + y(a + f)OY + (e + B + y)Ps

with the same spanning forest polynomials [24, Example 33]. Let A :=af + ay + By
and set z, := A/x, for e € S. Consider the dual H of S such that (H*)* = S4, then

Ve Goa foy) = 27O ([ 26 ) Woa (Rt ) ()

ecS

follows from duality (4.9) and comparison with (4.23). Specialize to o := &% /W,
B := ®% /Wy and y := ®F /Wr. Itis shown in [30, Proposition 22] that «ff + ay +
By = Aisthen equal to A = &7/ W7, Therefore, (4.23) specializes to

\PT\IJS,L =\I—'SCDT+Q>1§ ’;-1-(1)'; %—1—@%@%
+ DT + OGPT + PGP} + gy,

This expression is equal to Wg, see [30, Theorem 23]. We can thus write () as

iy (2, 5) = PO ( I1 ze)q/G (. 7) (4.24)

ecS

where y = (ye)eer denotes the Schwinger parameters of the edges in 7', X = (x¢)ees
are the parameters of S and z, = A/x.. The Fourier split identity follows directly
from (4.24) by the change of variables X — Z in the Mellin integral (2.1), because

)La)(S) dj/2
S l_[ ae _ — l_[Zd/Z e
[‘I’G(X [W6 (%, )19 W6 G 392 |4
Theorem 4.39. Let G’ denote a Fourier split of G for a bipartition Eg =S U T. Write
G and b for the indices on T and S, respectively. Then J¢(G',a, I;) = H(G,a*, g)
holds on the space of indices such that w(S) = w(T).
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Proof. Multiply (4.24) by ‘Ill}(T)H to clear denominators, then we obtain the identity

Ur () O or (1) O w6 . ) = ([]2) o (P22, 29D wr(5) - 5)

ToZs|
eesS

of polynomials in the variables y and Z. Each monomial in ¥ and Z appears with the
same coefficient on the left and on the right, and spanning forest polynomials have
only positive coefficients. So, the maximum monomial that appears on either side is
equal to

- - s o 4. (5) 4.(5) o =
YO OGO E5) = ([]2) V6 (H2 - TR 950)- 7).

ARy
eesS

where ®7. denotes the maximum monomial of ®7. Set A" := @7/ W} and change
the definition of Z to z, := A"/x,, then we can write this tropical version of (4.24) as

ANEOTIYE (3 5) = (l—[ ze>l11‘(r;(5é, ¥).

ecS

Changing variables X — Z in the Mellin integral (1.13) as before proves the theorem.
]

Example 4.40. Consider the complete graph K4 with labels as in Figure 16. Its Hepp
bound (3.19) simplifies on the hyperplanes where a vertex or a triangle becomes
unique. For example, on the subspace H = {é: a) +as+as=d/ 2} we can replace
the triangle {1, 3, 5} by a unique star. The series (4.15) reduces G’ = &3 to the dipole
D, from (2.16):

H(Kq,d)|lg = H(C3,a7,a2,a3, 44,05, a6) |0
d/2(ay + as)(aj + ag)(aZ + az)

atarajasalaes(ay —as)(az —ae)(as —az)’

5. ¢* theory

The inequality & (G) < #(G) from (1.6) was the initial motivation to study the Hepp
bound. In this section we investigate this relation and discuss improved bounds.

For simplicity we will only consider p-log graphs in d = 4 dimensions with unit
indices a, = 1 on each edge, that is, graphs G such that
* |Eg|=24(G)and

* |y| > 2£(y) for every subgraph @ # y € G.
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These graphs are particularly interesting, since their periods contribute to the beta
function of scalar field theories in 4 dimensions of space-time. The best understood
case is scalar ¢* theory [78,80,102], which consists of graphs with degree at most four
at each vertex. More than a thousand periods of these ¢*-graphs are known [91,102].

5.1. Period correlation

Every p-log ¢*-graph G is a vertex complement G = H \v in a 4-regular graph H = G,
called the completion of G (Example 4.18). Graphs with the same completion have the
same period and Hepp bound, see Section 4.3. We call a 4-regular graph H primitive if
its vertex complements are p-log, so that P (H \v) and # (H \v) are finite (and inde-
pendent of v). This condition is equivalent to H being cyclically 6-edge-connected,
that is, the only 4-edge cuts of H are those separating off a single vertex [99, Propos-
ition 2.1].

The primitive 4-regular graphs H = P, are enumerated in [99], where £ =
£(G) =L(H\v) =£(H) — 3 refers to the loop number of the uncompleted graphs. For
example, P31 = Ks represents the graph K4 = @ with 3 loops from (1.3) and (1.9).
With the recursion (3.4) we computed the Hepp bounds of all primitives with £ < 11
loops. Periods are only known completely through 7 loops [91]. Table 2 summarizes
the comparison.

For completed graphs H, the product (4.13) from a 2-separation of H\v corres-
ponds to a 3-separation of H [99, Section 2.5]. So, the entry P31 - P3,; in Table 2
corresponds to Example 4.11. The only identities between different completed graphs
up to 7 loops are two dualities, which connect the planar uncompletions of Py 4 and
P77, as well as the planar uncompletions of P75 and P7 19. The latter duality is
shown in Figure 11, where G = P75\9 and G* = P7,10\v for any v (P7,1¢ is vertex
transitive).

Table 2 shows that the Hepp bound is much larger than the period, in fact by
several orders of magnitude at higher loop orders (see Section 5.3 for improvements).
Apart from an overall scale, however, the relative variations of the Hepp bound follow
the period surprisingly closely. This is illustrated at 7 loops in Figure 2. To compare
different loop orders, we use logarithmic coordinates. Recall that Je (G) = #H(G)/2,
so we set

In(#(G)/2) InP(G)
£G) = ( , )

LG)—1 LG)—1
because £(G) — 1 is additive under 2-sums (4.12). This choice of variables linearizes
the product (4.13): if G = G .®y G2 is a 2-sum, then the point

§(G) = A§(G1) + (1 —1)§(G2)
lies on the straight line between £(G1) and £(G,) at A = (£(G1) — 1)/ (4(G) — 1).



E. Panzer 92

WGy G P(G) H(G) WGy G P(G)  H(G)
1 P11 1 2 7 Py, 5277 190952
3 P3g 7.2 84 Py Py 430.1 163592
4 P4y, 20.7 572 P31 Ps5 400.9 155484
5 P <6 3700 P75 380.9 149426
Pry-Pyy 520 3528 P3q1-P31-P3qp 3752 148176

P73 336.1 136114

6 Pg.1 163.3 26220 {P7.4, P77} 294.0 123260
P3q1-Pyq  149.6 24024 P76 273.5 116860

Pe .2 132.2 21912 {P7’5, P7.10} 254.8 110864

Pe.3 107.7 18828 P7o 216.9 98568
P6,4 1.5 13968 P7!11 200.4 92984

Prg 183.0 87088

Table 2. The periods and Hepp bounds for all primitive completed ¢*-graphs with up to 7 loops,
as illustrated in Figure 2. The graphs P74 and P7 7 are Fourier dual and thus share the same
period and Hepp bound; similarly for P7 s and P7 10.

Figure 23 of all known periods up to 11 loops contains more than a thousand
points and demonstrates the persistence of the correlation and its uniformity across
loop orders.

In P
10 jn—l p Po 1 5
: 3.1 5
P P7’1 \' = \ Pll 1
6.1 "
105} Ps 1P4,1 }#\} N Pro.1
P~ \ﬁw P12
1.00 |- \w}\
0.05 Ps.3 Pgo
T P
P Pg 24 R 6;2
0.90 |
6.4 ’M“‘\ In(#/2)
0.85 _l T  P8.29 \ \ \ | &1
“1.76 1.80 1.84 1.88 1.92 1.96

Figure 23. ¢* periods from [91] and their Hepp bounds (products not included). Graphs with 6
and 8 loops are highlighted with orange diamonds and blue circles.

Remark 5.1. Despite the strong correlation evident in Figure 2 and Figure 23, we
cannot strengthen Conjecture 1.2 to the equivalence £ (G1) < P(G,y) < H(G1) <
H (G,) of inequalities. In other words, the plots are not monotone — though one needs
to zoom in closely to notice this. For example, in [91] we find that

5548.00 ~ fP(Pl()Ag\U) < ?(P10,255\U) ~ 5549.93,
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= B B D

Pg 30 Pg 31 Pg 35 Pg 36

Figure 24. The smallest ¢* primitives with unexplained Hepp bound equalities.

but
32743060 = J€(P10,48\v) > %(Plo,zss\v) = 32740360.

5.2. Unexplained identities

The first examples of equal Hepp bounds in ¢* theory that do not follow from any
known symmetry are J(Pg30\v) = H(Ps36\v) and H (Pg 31\v) = H(Pg,35\V)
as stated in (1.8). These four graphs are depicted in Figure 24 and structurally rather
different:

graph G Aut(@ ) triangles ancestor uncompletions c¢2(G)
Pg 30 7/27 4 P711 5 —Z3
P8,31 Z/ZZ XZ/2Z 3 P7’8 7 —Zp
Pg 35 Dy 4 Pg 35 2 —Z3
Pg 36 Ds 5 Pg 36 2 —Zz3

Both Pg 30 and Pg 31 have a double triangle and are thus descendants of P71 and
P55, respectively, in the terminology of [99]. Their Hepp bound partners Pg 35 and
Pg 36 have no double triangles and larger, dihedral symmetry groups: Pg 35 arises by
attaching two vertices to the circulant C ﬁ 4 and Pg 36 features a cyclic arrangement of
five triangles.

Apart from the equality of Hepp bounds, it is notable that also the c,-invariants
and the permanents coincide within both pairs of graphs. In particular, the latter
indicates a strong relationship of these pairs, because the permanent is a very rich
invariant — except for relations following from the four symmetries of [99], the per-
manents of two different graphs coincide only in very few cases [45, Appendix A].

We are thus led to Conjecture 1.2, motivated by the expectation that all these
identities are not accidents but rather a consequence of some underlying combinatorial
relationship of the graphs, like the symmetries in Section 4. This structure remains to
be identified, but we hope that a mechanism explaining equality of Hepp bounds,
permanents and ¢, invariants might also force the periods to be equal.

All data from [91] is compatible with Conjecture 1.2 and further corroborated
by [71]. We computed the Hepp bounds for all primitive ¢# graphs with £ < 11 loops,
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oL Hepp Fourier Fourier unexplained
£  primitives = ) . ) o
bounds & twist split identities
7 11 = 9 + 2 + 0 + 0
8 41 = 29 + 10 + 0 + 2
9 190 = 129  + 55 + 1 + 5
10 1182 = 776 + 346 + 13 4+ 47
11 8687 = 6030 + 2411 + 55 4+ 191

Table 3. Tally of known and unexplained identities of Hepp bounds of ¢* graphs.

and whenever two graphs share the same Hepp bound and their periods are known,
then the periods indeed coincide. The same holds for the known ¢, invariants [71,91]
and the permanents computed in [45]. Note that this is necessary for Conjecture 1.2
to be viable, because it is conjectured that graphs with equal period have the same ¢,
invariant [27, Conjecture 5] and the same permanent [46, Conjecture 1].

Out of the four graphs in Figure 24, only Pg 31 could be computed in [91]. The
number of unknown 8-loop ¢* periods would drop from 8 in [91] to 6 if the conjec-
tures

P(Ps30\v) = P(Ps36\v) and P(Ps31\v) = P(Ps35\v)

were to be verified. At higher loop orders, there are many more period relations that
would follow through Conjecture 1.2 from unexplained identities of Hepp bounds.
The summary in Table 3 starts out with the number of irreducible primitives, i.e.,
completed primitive ¢* graphs that do not have a three-vertex cut. In this setup of [99],
product relations are absent and the completion symmetry is automatically taken care
of.

The number of different Hepp bounds (third column) is smaller, because different
completion classes can evaluate to the same Hepp bound. The bulk of these identities
is explained by the twist and Fourier relations from [99], and a few more identit-
ies follow from the Fourier split discussed in [71]. From 8 loops onwards, there are
leftover identities of Hepp bounds that are not explained by any of these symmetries
(last column), the first examples of which are (1.8).

5.3. Improved bounds

The wheel graphs W, illustrate the huge gap between the Hepp bound and the period.
According to Proposition 3.19, their Hepp bounds grow by a factor of 9 per loop,
whereas the periods only gain a factor of 4 per loop [21]:

> 202 41
pory = (% 2 F)eer-a~ 2=
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To improve the bound, we can drop the numerator |y1|...|G/y¢—1| in (3.2) that sums
over flags y; € --- € y¢ = G of bridgeless subgraphs (see Corollary 5.6). This follows
from an approximation of the graph polynomial Wg by products of one-loop graphs,
within the sector associated to the flag,

JD;p’ ={0 <maxx, < max X, <---< max Xe} C RN 5.1
€€yl e€y2/n e€G/y—
Theorem 5.2. The period P(G) < Hioe (G) is bounded by
Cly1l€ly2\r1l - - - CIG\ye—1l
Hiog (G) 1= . (5.2)
¢ Zl o) ... o(ye-1)
y.epr

where the positive reals ¢, € R are defined for all integers n > 1 by

dx;...dx,
—_—— (1 — i). 5.3
(Xl 4+ e 4 xn)2 ( lrgiaﬁxn X,) (5-3)
[0,1]"

Example 5.3. With Table 4, the flags of K4 from Example 3.3 give the bound

Hiog (Ks) = 12"3162;'1 + 6&;61;1 — 72103 —961n2 ~ 12.56.
Proof. For any subgraph y C G, the spanning trees 7 € Jg with the property that
F =y N T is a spanning forest of y are easily seen to stand in bijection with pairs

(F,T') of spanning forests F of y and spanning trees T’ of the quotient G/y [25,
Proposition 2.2]. Applied to a bridgeless flag y. € ?G with £ = £(G) elements, this
gives an injection

Ty X Tyajyy X X T/yey = TG0 (Trro. ., Te) > Ty U U Ty

covering precisely those spanning trees T € T such that 7 N yy is a spanning forest
of g, for each 1 < k < £. In terms of the graph polynomials, this gives the inequality

Ve = Wy, Wy, yp -+ Y6 yess G4

which goes back to [10, Proposition 3.5] and is crucial for the desingularization of
Feynman integrals [25,103]. The quotients yj /yx— are cycles, such that ¥, /,,, | =
> eeyi\yi_; Ye» and we can therefore estimate the period integral over the flag sec-
tor (5.1) by

z o0
Q Q
/\p —/—2]_[ dARS(Ar — max  xe)
G
O

€E€Vk/Vik—1
Ipi 1pi
‘1)1/0 ‘:D)/o

g |d/\k
=< / l_[Aka Tt l_[C|Vk/J/k 1l

0<A1<-~~<Ag=1 k=1 k k=1
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n 1 2 3 4 5

¢p 1 1 6In2-3In3 36In3-56In2 360In2—135n3—12mn5
~ 0.863 ~ 0.734 ~ 0.630

Table 4. The coefficients (5.3) that appear in the numerator of the improved bound (5.2).

by changing variables to x, = Agy. for e € y;. The iterated integral over the Aj’s
generates the product 1—115;—:11 (Jve| — 2k) = e— —1 w(yx) in the denominator of (5.2).
]

We can relabel the maximal Schwinger parameter in (5.3) to be x1, so that

dx,...dx,
chp=n . 5.5
" / (1+ X2 4+ + xp)? )

[O,I]nfl

For small n, these integrals are listed in Table 4. For large n, they grow asymptot-
ically like ¢, ~ 4/n + O (n™2), but we will not use this. From n > 3, they involve
logarithms,
1 " n k
= —c —DF 2 Ink, 5.6
. (n_3)!kz_z(k)( ) (5.6)

which follows in the limit p — —3 from the elementary integral (for non-integral p)

n/dxe 1+ZX’)0+1 T+ ] o Cyas .

e=27 1C{2,...n}

Remark 5.4. The improved bound #,, (G) does not respect any of the period sym-
metries exactly. For example, the two uncompletions in Figure 1 differ slightly:

J(’log(@) = 6(c6+3cs5+9cs+6c3+10c3+7c3c4)

~ 156.63 # Jelog(@) ~ 156.54.

Lemma 5.5. The sequence c; defined in (5.3) starts with c; = ¢, = 1 and is strictly
decreasing thereafter. In particular, ¢, < 1 for all n.

Proof. Let y; := x1 +---+ Xj—1 + Xi 11 + - - - + Xy, then the convexity of x > x 2
implies
1o\ 2 1 & 2 m—1,\2/1 (n—l)
(L) =) = (5 G ="

i=1 i=1 i=1 =1 yl
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G P(G) H(G) Haen (G) G P(G) H(G) Hien (G)
P11 1 2 1 Ps.1 168.3 26220 909.5
P31 7.2 84 15 P3.1-Pyq  149.6 24024 852
P4 20.7 572 59 Ps» 1322 21912 795.5
Ps.1 55.6 3702 224 £ 6.3 1232 izgzg 223'5
P31-P3q 520 3528 216 6.4 :

Table 5. Comparison of the Hepp bound and its improvement (5.7) for £ < 6 loops.

Now, set x; := 1 and integrate over x», ..., X,, then using (5.5) we find that

n

(n—1)2 dxy...dx, (n—1)? Cn—
Cn = 2 Z / 2 yiz = (Cn—l + : ) ()

n2 n—3

=101

Here we exploited that each of the n — 1 summands with i > 1 just integrates to cr;’:ll ,
C

=1 according to (5.3)

n
n—3

whereas the first summand with i = 1 contributes the term
and

1

/ dx, ... dx, / "l dr / dy>...dyn 501 )
— _ — max y;),
(x2 + -+ xp)? 21 (2 4+ yn)? 2zizn

[0,1]”_1 0 [0,1]”_1

upon changing variables to f := maxa<;<, X; and x; = ty;. From (x) then we see that

o n?—5n+2

— <1
Cn—1 n%(n —3)

for all n > 5, and the remaining relations c4 < c¢3 < ¢, are demonstrated in Table 4. m

Corollary 5.6. The period P(G) < Hgen (G) is bounded by the rational number

1
o(y1) ... o(yec)-1) <@

Hoen (G) 1= ) (5.7)

Ve e?cl;pl

This slightly bigger, but rational bound follows from (5.2) because the products of

¢ in the numerators are < 1. For Example 3.3, #gen (K4) = 12 - ﬁ +6- ﬁ =15
is much closer to #(K4) = 7.2 than #(K4) = 84. More comparisons are given in

Table 5.
In contrast to #,, (G ), the rational bound Hen (G) does respect completion sym-
metry Hgen (G\V) = Hygen (G\w), and the same proof as for Theorem 4.21 applies.
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But the other symmetries fail. Duality is violated by the pair (P7,5\9)* = P7,10\v
from Figure 11:

Haen (P7,5\9) = 252 # 2517 = Haen (P7,10\0) .
For the twist from Figure 20, we find the values
Haen (P7,4\p) = 19835 o 3483 = j4 (P77\p).,

and there is no product relation between 225 = Hyen (K4)* and the 2-sum

Jt’den({}») = Jeden(®e@f @) —216.

Remark 5.7. An analogous improvement applies to the formula (3.6) expressing the
Hepp bound as a sum over flags of flats (induced subgraphs). The integration sector
is then

i)gft:={0<minxe< mn x, <---< min x.}CRY,

€€yl ecy>/y1 eeM/yr—
and we arrive at the improved rational bound ' (G) > £(G) given by
1
Fh(G) = € Q.
den Zﬂmw(yl) - 0(Y(G)-1)
Ye€EF G

For planar graphs, Remark 4.7 shows
%51:[: (G) = %den (G*) s

but otherwise the improved bounds are unrelated. The bound J(feif (G) violates all

symmetries, even completion:

g (@) =218 #£ 216 = J (@) = Hyen (@) = Hyen (@)

Proposition 5.8. The improved Hepp bounds of the wheel graphs with n loops are

-3 2 I _ 5n+1/2
Jeden(wn)=3()§;;(wn)= MJF Z(Zn 2k) (2k)k-5”—k

2m-2) =\ n—k J\k W
Proof. Note that W,* = W, is self-dual. For the improved bound J#{ (W), the

numerator a, Iy disappears from the recursion (3.11). With this modification, the cal-
culation as in the proof of Proposition 3.19 produces the generating function

> 0 z23(z =2) s z
2, Haen (W) 2" = 55 42" loell =)+ e
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The numerator |y;|...|G/y¢_1| in the flag formula (3.2) is at most 2¢, because
the factors add to |Eg| = 2. The improved bound is therefore at least Hgen (G) >
Jf(G)/Ze, so the gain of 5/9 per loop in the ratio Hgen (Wy,) /H (W,) is almost as
good as possible.

Up to the overall scale, the improved bounds show a very similar correlation as in
Figure 23 (see Table 5). The most notable difference is that a single period branches
into several data points with slightly different abscissa, due to the violation of sym-
metries.

6. Polyhedral geometry

In the spirit of tropical geometry, let us change variables from the Schwinger para-
meters x; = e~ to their logarithms y; = —log x;. Then [[;¢7 x; = exp(=) - érc)
in terms of the characteristic vector érc = ), .1 & € RN of the complement T°¢ of
any spanning tree 7. In the affine chart x; = 1, the Hepp bound integrand from (1.13)
then becomes

Q(a) [ . . d 58 )] d d
—_— =eXp|l—y-ada—— max (—Yy -egc .
(WE)4/2 15 =1 Pl 2 TeTg Yrere) | 92 IN

Definition 6.1. The exponent defines a continuous, piecewise linear function

RY 5§ > 0;(7) = -d+ 5 max (- - &re), (6.1)
G
where, as always, % = % is fixed by the constraint wz(G) = 0.” In particular,

locally this function is a homogeneous bilinear form in y and a.

Corollary 6.2. The Hepp bound integral (1.13) can be written as’

H(G,d) = / e a0 g(y;)dV 3. 6.2)
RN

As the notation suggests, Definition 6.1 generalizes the superficial degree of con-

vergence (2.4). For the characteristic vector €, = Y, ., & of a subgraph y C G, we

iey
observe
—&, -ére =y NT|—|y| =«(y) —k(y NT)—L(y)

2In the (uninteresting) case £(G) = |T¢| = 0, we get é7c = 0 and thus w;(¥) = ¥ - a.
3Instead of {y; = 0}, we can restrict to an arbitrary hyperplane {)7 D= 0} aslongas vy +
ety =1
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N2

Figure 25. The Newton polytope (line segment) and its polar (shaded unbounded region) for
the bubble graph Cr = Q The figure to the left shows unit indices a1 = a» = 1, the other
depicts @ = (1.5,0.5).

by (2.3) and £(y N T') = 0. Here we consider both y and y N T as graphs on the same
set of vertices, so the number of connected components x(y N T) is at least x(y).
Consequently,

02y =8~ S + 5 s () =k 0T = 0sr) (63

indeed coincides with (2.4) and the maximum is attained precisely on all those trees
T for which T N y is a spanning forest of y. Assuming d > 0, (6.1) is a maximum
of linear forms, and hence w; () is a convex function of y. It describes two convex
polyhedra [69]:

Definition 6.3. We define the Newton polytope Ng(a) and its polar NG (a) as

NG (@) :=d — % conviere: T € Tg} C RY (6.4)
and
NG@) = (\{F:7 - (@— Lére) <1} c RV, (6.5)
TeTg

where conv{¥y, ..., Uy} = {d7_; Ail;: > i—; A; = land all A; > 0} is the convex
hull. We abbreviate the case of unit indices as Ng := Ng(1l,...,1) and N :=
No(l,....1).

Remark 6.4. Every vector d — %E'Tc is a vertex of Ng () and lies in the hyperplane
orthogonal to the diagonal vector 1 := (1,...,1) = ég, because 1-8rc = £(G) as
discussed above and 1 - d — —K(G) = w(G) = 0. Hence, the dimension of Ng () is
at most N — 1. It also implies that the function (6.1) is invariant under translations by
1, that is wz(y + Al) = w;(¥) for all real A. Hence, N (a) contains the line R - 1.In
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prj:‘:0 JVU42 = Nl(;f N{ys =0} =

Figure 26. The orthogonal projection of the Newton polytope of the matroid U, 42 to the plane
{y4 = 0}, see Example 6.6. Its polar is shown on the right.

summary,

Ng(@) C{5:7-1=0} c RV (6.6)
and
NE@) = NS@) +R-1. (6.7)

Example 6.5. The cycle Cy with N edges {1,..., N} has one spanning tree T =
Cy \ i for each edge i, which contributes the monomial x; to W¢c, = ZIN=1 X;.
Hence

Ney(@) =d—(ay+---+an)convi{g:1 <i < N}

is an affine image of the standard simplex. For the bubble C, = ¢ } it is the line
segment

Ne(anaz) = cony {(51). (2)) = (()i—ar <2 <ar} C B2

illustrated in Figure 25. Its polar is the unbounded region
o L1 1 5
Ney(ar, az) = {y:—— =yi—»n= —} C R
an al

The terminology in Definition 6.3 reflects that the convex hull conv{érc: T € Tg}
of the exponents of the monomials in Wg is called the Newton polytope of V. Note
that Ng (@) is just the translate by @ of this polytope, after scaling it by —%. Similarly,
we can think of an affine transformation of the polytope conv{ér: T € T}, which
is called the spanning tree polytope [35] of G or more generally the matroid poly-
tope [61] of M(G). Indeed, the entire discussion in this section extends to arbitrary
matroids by replacing the spanning trees 7 = 8B ((g) With the bases 8y, throughout.
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Example 6.6. The uniform matroid U has (‘5) = 6 bases of the form {7, j} with
1 <i < j <4, which form the vertices of an octahedron, see Figure 26. For unit
indices a; = --- = a4 = 1, we find d = 4 and the associated polytope is explicitly

eV

Remark 6.7. Matroid polytopes belong to the class of 0-1-polytopes [121], and Npg
is an affine image of such. In particular, when all indices a, = 1 are unity and the
dimension equals 4, like in Theorem 1.3, then the vertices of N, are a subset of the
cube {—1, I}N.

The piecewise linear function (6.1) characterizes the polytopes Ny (@) and Ny, (d@)
as

wz(y) = _max (y-Z) and Ny (a) = {y:wz(y) < 1}. (6.8)
ZeENp (a
In particular, w;(7) is also known as the support function of Nys(a), see [69]. It is
well known that the exponential integral (6.2) of the support function is the volume of
the polar polytope, see for example [84] and the references therein:

Corollary 6.8. Let M denote a connected matroid on Epy = {1,..., N} and pick
any element i € Epy. For all indices a such that Ny, (a) N {y; = 0} is bounded, we
have

H(M,a) = (N —1)! - Vol(Ny(a) N {y; = 0}). (6.9)

Proof. The restriction w;(¥)|y, —o is the support function of the projection of Ny (d)
onto the subspace {y; = 0} = R¥~! orthogonal to &;. The polar of this projection
is Ny (a) N {y; = 0}, and we can apply the formula discussed below equation (2)
in [84]. [

Example 6.9. For the bubble graph in Figure 25, the projection of N (a1, a2) onto
11
L 1

ar’ aj

y» = 0is the line segment [—ay, a;]. Its polar is Né(al,az) N{y, =0} =[—

1 1 _ Sy . .
and has volume ar + G = H (3, a), in agreement with Example 2.2.

We learn that the Hepp bound integrals (1.13) and (6.2) converge precisely when
the polyhedron N, (d) N {y; = 0} is bounded. Equivalently, the orthogonal projec-
tion of Ny (d) onto {y; = 0} = RV =1 must contain the origin in its interior. This
requires that the dimension of Ny C {) - 1= 0} € RY is N — 1 (as big as possible).

Lemma 6.10 ([63, Corollary 3.10] and [61, Proposition 2.4]). For a matroid M on
Ey ={1,..., N}, the dimension of the polytope Nyg (@) C RY is equal to N — ik (M).

For a disconnected matroid, the polar is thus never bounded. But if M is connec-
ted, then the projection of Ny onto {y; = 0} has full dimension N — 1. In this case,
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there exist translations @ which put the origin inside, and then the polar is bounded.
Explicitly, we see that 0 € Ny (@) precisely when d € % conv{érc: T € By}, accord-
ing to (6.4).

Corollary 6.11. For a connected matroid M, the domain ® C RN of absolute con-
vergence of the integrals (1.13) and (6.2) is not empty. It is the interior of the cone

® = Rsg -conv{ere: T € By ).

It follows that the definitions of the Hepp bound by integrals (1.13) and (6.2),
flags (2.5) and volumes (6.9) are completely equivalent.

1. If M is connected, then inside the region ®, the integral is finite and equal to
the polar volume and the Hepp bound. This local information fixes the Hepp
bound uniquely as a rational function by analytic continuation.

2. If M is not connected, the polar volume and the integral do not converge for
any indices a, and the combinatorial formula gives zero.

6.1. Singularities, facets, and vertices

The geometry explains the origin of the singularities of the Hepp bound. First, recall
that every vertex v = a — %Erc of the Newton polytope Ny (a) lies in the half-spaces

hy == 1{V:& -J < wz(y)} CRY
associated to every non-empty subset y & M, due to
& U =w;(y) = (k(y NT) — k() < wz(y)

from (6.3). Consequently, the Newton polytope is contained in the intersection of all
these half-spaces. The boundary hyperplanes 04, slice off the faces

Fy = Ny (@) N{y:éy -y = wz(y)}

from Njs (). When d approaches the boundary 9® C | J,{d@: wz(y) = 0} of the con-
vergence cone, then the origin lands on some such face F), so that the projected polar
becomes unbounded.

The poles of the Hepp bound are therefore in bijection with the facets (faces
of codimension one) of ® = ﬂy {w(y) > 0} and Ny (a). Hence, Corollary 2.38
describes precisely those submatroids y C M for which the hyperplanes {y: w(y) =0}
and 0h,, support facets of ® and Ny (a), respectively. This gives an alternative deriv-
ation of the well-known facet description of matroid polytopes:
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Lemma 6.12 ([61, Proposition 2.6] and [63, Corollary 3.14]). Given a connected
matroid M, the facets of the polytope Ny are in bijection with the submatroids & #
vy S M such that y and the quotient M|y are both connected.

We denote these submatroids in (2.20) as $;7. The Newton polytope is therefore
Ny @) = [[F:8y - F < wz(»)} N {F:1-5 =0} (6.10)
YESM

and none of these constraints is redundant. From these facets we read off the vertices
of the polar, making the divergences of the Hepp bound on w;(y) — 0 for y € Sys
apparent:

Corollary 6.13. The polar of the Newton polytope of a connected matroid M is

N (@) :R-T+conv{ Ly esM} 6.11)

a(y)

and no y € Syy is redundant. Each such y labels a vertex of the intersection

€y —éy('
wz(y) wg ()
Example 6.14. The uniform matroid U, 42 has precisely 8 singular submatroids y €
S vz the singletons {e} and their complements (Example 2.39). For unit indices, they

all have w(y) = 1 and we can read off the vertices of the polar in Figure 26 directly
from (6.12):
RS
0 ’
0
4}

1 0 0 -1
3y b= =eom{ (). (3).(8). ()
{1y {2y {3} 4y {23,

NS (@) N i =0}=conv({ :ig_fyesM}u{ :ieyesM}). 6.12)

._./ N

This rhombohedron extends the cross-polytope conv{4¢;, =€, €3} with volume
4/3 by two tetrahedra 4 conv{€éy, €,, €3, €; + €, + €3} which each have volume 1/3.
So, the total volume is 2 and we find #(U2) = 3!-2 = 12 from (6.9) in agreement
with (2.10).

Remark 6.15. The Newton polytope differs from the Feynman polytope defined
in [25], which has many more facets. They are labelled by all ‘motic’ (bridgeless)
subgraphs of the given graph G, whereas only very few of those belong to Sg.

6.2. Factorization

The facet F,, defined above for a submatroid y € Sy contains precisely those vertices

a % érc of Ny (a) such that y N T is a basis of y, see (6.3). In this case we see

<

=a—
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that 7 \ y is a basis of M/y, and hence the vertices of F), are in bijection with the
Cartesian product B, x Bj/,. The corresponding factorization

SNM(a) D F, ~ eNy X eNM/y (6.13)

is the geometric incarnation of the algebraic relation Wy, = W, W5/, mod I, where
[ is the ideal generated by monomials of degree £() + 1 in the variables {a.: e € y}.
We exploited this relation in (5.4), and it is absolutely fundamental in the study of
Feynman amplitudes and graph polynomials [10, 25,26, 103].

Regarding the Hepp bound, we see from (6.11) that the divergence at w;(y) — 0
comes from a pyramid with the runaway apex €,/wz(y). Its volume comes from
the piece of the integral (6.2) where y ranges over the cone R~¢F),. The factoriza-
tion (6.13) thus leads to a product formula for the residue, namely (2.18).

6.3. Computations

The calculation of the volume of a convex polytope is a difficult, but very well-studied
problem. In small dimensions, we can resort to exact algorithms like 1rs [6]. We
tested this program on all ¢* periods with at most 7 loops. Taking the vertex descrip-
tion (6.12) as input, 1rs determines the facets and computes the volume. In all cases,
these facets match precisely the spanning trees according to (6.5), and the volume
reproduces the Hepp bound computed by (3.2) in line with (6.9). We found cddr+ [64]
to be more efficient for the transformation between facets and vertices, but it does not
provide a volume computation.

Such exact volume determinations are very time consuming and in our tests only
practical up to around 15 dimensions (graphs with 16 edges). Not surprisingly, a direct
combinatorial recursion like (3.4) is much more efficient. Our implementation of this
method succeeded for graphs with 30 edges. The Hepp bound thus provides a dataset
of polytopes in a large number of dimensions with exactly known volumes, which
might be useful as a benchmark for general volume computation algorithms.

We are not aware of previous work on the polar volume of matroids, but the
volume of the matroid polytope itself has been studied in the literature. For example,
a combinatorial formula was given in [2] using the theory of generalized permuto-
hedra [94]. For fixed rank or corank, the volume of a matroid polytope can be com-
puted in polynomial time [50]. Our Corollary 3.10 is the same statement about the
volume of the polar.

Recently, it has become feasible to approximate volumes of polytopes in very
high dimension, using rapidly mixing random walks. At least three implementations
of such methods are readily available [39, 60, 65]. These techniques open up the fas-
cinating possibility to study properties of very large graphs and matroids, which might


http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.inf.ethz.ch/personal/fukudak/cdd_home/
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p
G P74\r P74\q P74\t P74\p P74\s <
17| 1137 1166 1168 1197 1248  Pra=q&!
ISg| 66 64 69 69 81 XA
r S

Table 6. Facet and vertex counts of N for different uncompletions of the graph P7 4.

give insights into the asymptotic behaviour of the perturbation series of quantum field
theory.

Remark 6.16. Completion invariance identifies the volumes of combinatorially dis-
tinct polytopes. The graph from [99] in Table 6 has five non-isomorphic uncomple-
tions G = P7,4\v and each of them has a different number of spanning trees (facets
of Ng). Table 6 also shows the number of divergent subgraphs (vertices of V). By
Theorem 4.21, the volumes 13! - Vol(Ng N {y; = 0}) = H(G) = 123260 of these
five different polar polytopes are all the same. The volumes of the Newton polytopes
Ng, however, are all distinct.
In contrast, the duality (4.8) amounts to a simple reflection: N5, = —Ng.

6.4. Shape

We saw in Example 2.39 that uniform matroids U,] have only 2n vertices and huge
number of bases, namely (’}) Their polars ‘Nl;,{ are similar to the cross-polytopes
conv {:l:él, e :I:En}, which also have 2n vertices, and the maximal number 2" of
facets.

For p-log graphs G in 4 dimensions (n = |G| = 2/{), like the ¢* graphs con-
sidered above, we find experimentally a roughly similar behaviour. The number of
spanning trees grows exponentially with 7; this follows from [86]. Therefore, N has
an exponentially large number of facets. The number |Sg| of vertices of N7, in con-
trast, appears to grow very slowly in comparison. For the zigzag graphs from [23], for
example, one can show that |Sg| is quadratic in 7.

The similarity between N and the cross-polytope is particularly pertinent in
regards of the volumes. We see from (6.5) that +¢€; € Ng forall 1 <k < n. These
correspond to single edge subgraphs and their complements. It follows that N N
{yn = 0} contains the cross-polytope of dimension n — 1 = 2¢ — 1, which implies
the lower bound

H(G) > (n— 1)!- Vol(conv{+8&;, ..., +8,_1}) = 2", (6.14)
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In fact, we get a slightly better lower bound # (Uzee) according to Remark 2.14. How-
ever, the important point to note is that # (G) grows at least exponentially with 7.

Note that NS has an insphere of radius 1//n: The vectors Vr := ér — érc €
{—1,1}" solve (V7 /n) = 1 by (6.5) and they have norm ||V | = 4/n. The volume
of this sphere grows like (1/+/n)"/T'(1 + n/2) ~ 1/n! for large n, up to exponential
factors. With the prefactor (n — 1)! in (6.9), we see that the volume of the cross-
polytope and the insphere are of comparable magnitude.

The Hepp bound could however be much larger than (6.14). Since the vertices
+¢€ have distance 1 from the origin, the circumsphere of N has radius 1 and thus
its volume exceeds that of the insphere by a factor of (/n)" ~ v/n!.

It was proven in [49] that the periods of ¢* graphs grow only exponentially, and
by (1.6) this implies an exponential upper bound on J (G) as well. We conclude that
the volume of N is concentrated near the insphere.

Remark 6.17. The polytopes Ng are typically not simple and far from simplicial. A
facet F), = Ng N{y:€, -y = w(y)} corresponding to a singular subgraph y € S¢ is
bounded by |‘Ty| - |Tg/y| vertices, and a vertex Vr belongs to all facets F), such that
y N T spans y.

Example 6.18. The complete graph K4 has 16 singular subgraphs: 6 singletons {e},
their complements K \e = -<I> and four triangles = /. The vertex V7 of Nk, cor-
responding to a star 7 = I _lies on 9 facets: the three edges e € T, the complements
K4\ f of the three edges f ¢ T, and 3 of the triangles. In the case of a path T = \g,
the vertex v7 lies on 8 facets, because it only supports 2 triangles. Conversely, the
4-dimensional facets F), have 9 vertices if y = /\; in this case, F), =~ N A X JV@ is
a product of simplices. The other facets F, = Npa, and Fg,\, = JV_<I>_ have 8 vertices
each.

6.5. Tree decomposition

The facets of the polar N are in bijection with the spanning trees 7" of the graph G,
according to (6.5). For unit indices in 4 dimensions, these facets are concretely

Fr:=NgN{y:y-(ér —erc) = 1}.

They induce a decomposition N5 = UTE?G conV({a} U Fr) into pyramids with dis-
joint interiors. The volume of such a pyramid corresponds in (6.2) to the integral over
the region where w(y) = y - (é — érc). In Schwinger parameters (1.13), this is the

Dr = {)?:nxe > er forall T’ e Tg} = Ui)

(]
e¢T e¢T’ 0:Te=T

sector
(6.15)
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where the maximum monomial W (X) = [[,¢7 Xe is given by 7. Each D7 subsumes
many Hepp sectors D, as determined by Lemma 2.8. The pyramid decomposition
corresponds thus to the partition UTGTG Dr of the integration domain in (1.13), such
that

J(G) = _JH(T CG) where J(T CG):= / (6.16)
TeTG He¢T e

Lemma 6.19. Given a spanning tree T € Jg and an edge e ¢ T, let P} C T denote
the unique path in T that connects the endpoints of e. Then T ’s contribution to # (G)
is

Q
H(T C G) = / Moy maxor k€ P8} (6.17)

Proof. From Kruskal’s greedy algorithm (Lemma 2.8), we see that

Dr = {¥:x, > max{xg:k € Pf} foralle ¢ T}.
The integrals of dx,/x2 over all e ¢ T therefore yield the claim. ]

Example 6.20. Consider the star 7 = {2,4,6} = /I\ C @ in G = K4 with the labels
of Figure 16. Each edge e ¢ T is connected in T by two edges: P} = {2,6}, P3 =
{2,4} and P> = {4, 6}. The corresponding projective integral

Q
Jf(/L. C ®) = / max{x,, x4} max{x,, x¢} max{xs, X¢} -
PT

is easily evaluated by setting 1 = max {x», x4, X¢} to obtain 6 times the affine integral
Jo<xp<xy<xg=1 1/Xa = 1. Forthe path T = {2,4,5} = L we find P} = {4,5} and
note that P} = T has three edges. Therefore, the projective integral is smaller and we
find

Q
(\g < ®) / max{xz, X4} max{xz, X4, X5} max{xq, Xs}
PT

As K4 has 4 stars and 12 paths as spanning trees, its Hepp boundis 4 -6 + 12 -5 = 84.

Remark 6.21. The contribution # (7T C G) depends not only on 7', but also on G
and on the embedding of T into G. It is possible, however, to give an intrinsic upper
bound on (T C G) that only depends on 7. Such a bound is constructed in [49,
Appendix B] and shown to grow only exponentially with the size of the tree.
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Remark 6.22. Tree contributions (6.17) to the Hepp bound are not to be confused
with constructive tree weights w(G, T') considered in [95]. The latter sum to 1 and
count the fraction of Hepp sectors O, where T = T, gives the maximal monomial
I1 e¢T Xe of Wi. These weights also have an integral representation [95, Theorem 2.1]

1
w(G,T) = (H/dxi) nmin{xk:k € P7},

ieT | e¢T

but in Example 6.20 this results in w(K4, 1) = 1/15 and w(K4,\g) = 11/180.

6.6. Period correlation

For p-log graphs with unit indices in d = 4 dimensions, the support function (6.1) is

(V) = Y here Vr := é7 — égc = & — €x. 6.18

) max j-Vr  where vy ér —ér Zek Zek (6.18)
keT k¢T

Integrating over the norm A := || y || in (6.2) gives

o0
/AN—Ze—*wdA = (N =2)l/o™ !,
0

SO
Q
H(G) = (N —2)! — 6.19
R .19
SN=In{y;=0}
is an integral over the N — 2-dimensional sphere S¥~! N {y; = 0} = SV=2. The
period has a very similar representation that explains the correlation.

Lemma 6.23. The period of a p-log graph G with N edges in 4 dimensions is equal
to

Q N
PG =-2 [ =) (620)

SN=In{y; =0}

where p(¥) = p(AY) for all A > 0 takes values between 1/ |Tg |2 and 1, and is defined
by

o0(3) =/%{ Zexp(%%)}_zdl. (6.21)

0 TeTg
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Proof. Substitute x; = exp(—Ayg/w(3)) into (2.1), this gives (6.20). For the lower
bound on p()), note that the exponents are at most A/2, because y - vy < w(y)
by (6.18), 50

[N . .
06) = [ Gy (el exo /217 = 176172
0

Furthermore, the spanning tree 7' that dominates for a given value of y contributes a
summand with y - V7 = w(y), which gives the upper bound p(y) < 1. ]

By comparison with (6.19), the bounds 1/ |7g|> < p(¥) < 1 imply the rela-
tions (1.6). The corresponding lower bound P(G) > 2V=1/|T|? from (6.14) can
be improved easily:

Lemma 6.24. The period of a p-log graph in d = 4 is at least P(G) = 4V =1/ |76 |2

Proof. Contraction and deletion of an edge show that Vg = x1Wg\; + Wg/1. There-

fore,

o0

/ 4 _ 4

J ‘I’G\l Yo — (‘PG\1 +¥61)? Wiy =1
by the arithmetic-geometric mean inequality. Repeating this estimate for the remain-
ingedges 2,..., N — 1 and setting xy = 1 proves the claim, since WG |y, =..=xy=1 =
|96 [

As discussed in Section 6.4, the exponential upper bound on periods (and hence
on the Hepp bounds) from [49] implies that the integral (6.19) is dominated by the
contributions from regions where w(y) is large, that is, where y is close to one of the
spanning tree directions V7.

Within a tree sector D, the function w(y) = y - V7 is linear. Together with the
well-known log-concavity of matroid polynomials [1, 87], it can be shown that the
function p(¥) is also log-concave within each tree sector. Consequently, it is minim-
ized at the vertices (6.11) of the polar N:

PG)
#(G)

mln p(Ey/w(¥)).

More importantly, the log-concavity implies that p(y) has a unique maximum in
each tree sector; far away from the vertices and thus closer to the centre V7 of the cor-
responding facet of N . As explained above, this region dominates the integral (6.19).

The arguments above give an intuition and qualitative explanation for the correla-
tion between K (G) and & (G). Developing these ideas further, it should be possible
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to give a rigorous quantitative formulation and proof of the correlations observed in
Figure 23.

7. Outlook

We explored the first properties of the Hepp bound and illustrated its rich structure,
connecting algebraic, combinatorial and geometric aspects. Many interesting ques-
tions remain, including:

1. What is the reason behind the unexplained relations like (1.8)? Are the corres-
ponding periods identical as predicted by Conjecture 1.27?

2. Which p-log matroids maximize the Hepp bound? In line with [29, Conjec-
ture 1], we conjecture that the zig-zag graphs give the largest Hepp bounds
among primitive ¢* graphs. What are the maximizers in other classes of graphs
and matroids?

3. What is the computational complexity of the Hepp bound? Many techniques
have been proposed to compute matroid polytope volumes, see for example
[115]; can these be applied to compute also the polar volumes more efficiently?

4. How can one prove the strong correlation between the period and the Hepp
bound? Can it be improved to provide even better approximations for periods?

5. How can one extract other matroid invariants from J¢ (M, d) as in Section 2.7?

The Hepp bound # (M) with unit indices is not defined when M has a divergent
submatroid y & M such that |y| /£(y) = |M| /£(M). This can be remedied as fol-
lows. Lift the restriction to w(M) = 0, and consider instead the dimension d as a free
parameter. Then extend the summands in (2.5) by the missing N th denominator, and

|
Ja(M) :ang(Mf)...w(Mg,) € Q@)

is a well-defined rational function of d, with poles of the form d = 2 |y| /£(y). The
residue at w(M) = 0 would be the Hepp bound, were it not for the higher order of
that pole due to the presence of a divergence. Note that f; (M) = y(P(M)) in terms
of the map ®(M) defined in Section 2.7. In fact, ®(M) is a multiplicative map of
Hopf algebras, and with (2.13), also fz(M) is multiplicative. See [41, 98] for the
Hopf algebra of matroids.

The standard Hopf-algebraic renormalization techniques [26, 37] can therefore
be applied, and one obtains a renormalized character f d+ (M) without a pole in the
dimension of choice. One also obtains a counterterm f;~ (M), which is subject to
renormalization group exponentiation [38]. The Hepp bound may then be defined as
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the corresponding contribution to the beta function. These analogies lead to a variant
of perturbative quantum field theory where all Feynman integrals can be computed in
rational terms. This theory will be explored in detail elsewhere.

The Hepp—period correlation may provide a new route to numerical approxima-
tions of more general Feynman integrals with kinematic dependence.
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