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A study in GR;�0.2 ; 6/: from the geometric case book

of Wilson loop diagrams and SYM N D 4

Susama Agarwala and Siân Zee Fryer

Abstract. We study the geometry underlying the Wilson loop diagram approach to calculating
scattering amplitudes in Supersymmetric Yang Mills (SYM) N D 4. In particular, we study the
smallest non-trivial multi-propagator case, consisting of 2 propagators on 6 vertices. We do this
by translating the integrals of the theory to the combinatorics of the positive geometry each
diagram represents, specifically identifying the positroid cells defined by each diagram and the
homology of the subcomplex they collectively generate in GR;�0.2; 6/. We verify the conjec-
ture that the spurious singularities of the volume functional do all cancel on the codimension 1
boundaries of these cells, in this case. We also show that how the spurious singularities cancel
is actually much more complicated than previously understood. The direct calculation laid out
in this paper identifies many intricacies and artifacts of the geometry of Wilson loop diagram
that need further study.

1. Introduction

In this paper, we consider the geometric underpinnings of the scattering amplitudes of
SYM N D 4 theory. Recently, the amplituhedron established an association between
the SYM N D 4 theory and polytopes in the positive Grassmannians [12]. There, the
on shell scattering amplitudes in SYM N D 4 are computed using BCFW diagrams.
Conjecturally, the amplituhedron is tiled by the image (under multiplication by Z) of
the 4k-dimensional cells of GR;�0.k;n/ that correspond to the BCFW diagrams in the
physical theory [12, 22]. There is a large body of work connecting BCFW diagrams
to plabic graphs (see [21, 22] and [10, Chapter 4]), and from there to a stratification
by positroid cells of a subspace of GR;�0.k; n/ (see [28]).

Another approach to understanding the amplitudes of SYM N D 4 theory is via
the study of MHV amplitudes. This is the approach taken in this paper, where the
MHV amplitudes are represented by Wilson loop diagrams. In both these cases the
scattering amplitudes are given in terms of volumes of polytopes. The actual volume
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is a function of the external particle data, here represented by a matrix Z. Unlike the
BCFW diagrams, the Wilson loop gives the entire scattering amplitude [8]. The cal-
culations done in this paper consider N kMHV diagrams in twistor space [13, 14, 24]
which we call Wilson loop diagrams. These are the equivalent of Feynman diagrams
for the theory in the twistor space setting.

One of the ultimate goals of this program is to understand the geometry underlying
the Wilson loop diagrams, and the space they are mapped to by the external data
matrices Z, just as in the amplituhedron. Because of their common origin, one would
expect to find that the geometries of these two closely related representations of the
same physical theory would be very similar. However, this is proving significantly
difficult to show. For instance, in [16, 19] the authors detail explicit difficulties in
relating the geometry defined by the Wilson loop diagrams to the amplituhedron.
This paper lays a foundation for exploring how these two geometries are related by
systematically understanding the structure of the CW complex in GR;�0.k;n/ defined
by the Wilson loop diagrams (those corresponding to N kMHV diagrams on n points).

For instance, one of the biggest difference between the Wilson loop diagrams and
the BCFW setting is the dimension of the geometric spaces they represent. Specific-
ally, BCFW diagrams define 4k-dimensional subspaces of the positive Grassmannian
GR;�0.k;n/. Here, we show that for k D 2 and n D 6, the Wilson loop diagrams define
a 6-dimensional subspace of GR;�0.k; n/, or conjecturally, a 3k-dimensional sub-
space of the positive Grassmannian. Subsequent work has verified this conjecture [4,
23], and shown that if one includes the gauge vector that is necessary in the N kMHV
calculations (but not in the BCFW computations), one gets a 4k-dimensional sub-
spaces of the full Grassmannian GR.k; n C 1/, see [6].

As a renormalizable theory, the N kMHV integrals of SYM N D 4 has two types
of singularities: physical singularities, or infrared singularities, and the spurious sin-
gularities, which should cancel in the sum of the integrals [20]. In this paper, we
show that this cancellation occurs on the boundary of the positive geometry, i.e., in
the 6-dimensional cells in GR;�0.2; 6/. Furthermore, we show that the folklore con-
jecture that these cancellations can be read off from the diagramatics of the Wilson
loop diagrams is false. In particular, there are multiple diagrams that correspond to the
same positroid geometry [3, 7], yet all of their integrals are needed in order to ensure
the cancellation of spurious poles; some pairs of Wilson loop diagrams share a bound-
ary, even if this is not apparent from the diagramatics; many of the cancellations are
not pairwise cancellations, but come from a combination (in this case) of three integ-
rals being added together; there are boundaries of the positive geometry that are not
necessary for the cancellation of spurious singularities. It is this last observation in
particular, which does not exist in the k D 1 case, that makes the understanding of
cohomology of the positive geometry of Wilson loop diagrams difficult. While sub-
sequent work has shown that the codimension one spurious singularities do, in fact,
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vanish on the boundaries of the 3k positroid cells in GR;�0.k; n/ (see [5]), under-
standing which boundaries these singularities correspond to, and thus a more general
understanding of the cohomology of this space is still elusive.

In this paper our goals are twofold. The first goal is to explicitly compute the
details of a small and concrete example, namely the case k D 2, n D 6, the smallest
multi-propagator interaction in this theory. In doing this calculation, we discover a
multitude of intricate interactions that both leads to interesting mathematical ques-
tions and makes the generalization of the results of this paper difficult. Contempor-
aneous to the development of this paper, others have computed the full details of the
cancellation of spurious singularities in the case of k D 1, n � 5 worked out, see [19].
The second goal is to survey some of the general theory of Wilson loop diagrams,
Feynman integrals, and the applications of tools from total positivity (e.g., Le dia-
grams, vertex-disjoint path systems) to these questions in a way that is accessible to
both mathematicians and physicists.

The main results of this paper are as follow. First, by applying the techniques
of total positivity, we verify that all admissible N 2MHV diagrams on 6 points yield
positroid cells of dimension 6 (= 3k). A complete list of the these positroids is given
in Table 1. With this data in hand, we are able to obtain a complete description of the
physically-interesting boundaries of the Wilson loop diagrams (the “boundary dia-
grams”) in terms of the positroid cell structure on GR;�0.2; 6/ (see Section 4.11 for
precise definitions):

Proposition 1.1 (Proposition 4.15). B is a 5-dimensional positroid cell parametrized

by the boundary diagram @p;v.W / of some admissible Wilson loop diagram W and

corresponds to a simple pole of the associated integral 	 .W /.Z�/, if and only if B

lies on the boundary of 6-dimensional positroid cells in GR;�0.2;6/ that are paramet-

rized by at least two distinct Wilson loop diagrams.

Note that one needs at least two different diagrams, not two different positroid
cells. Furthermore, the number two is a lower bound. That is, boundaries may be
shared by multiple diagrams and cells. Furthermore, not every 5-dimensional positroid
in GR;�0.2; 6/ corresponds to a cell parametrized by a boundary diagram. This can be
seen by direct computation (in this “small” case, there are only 50 cells of dimension
5 to consider), or by computing the homology of the space W.2; 6/ generated by the
cells corresponding to the Wilson loop diagrams:

Theorem 1.2 (Theorem 4.20). The homology groups of W.2; 6/ are as follows:

Hi .W.2; 6// D

´
R if i 2 0; 5I

0 else:
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As noted above, it is conjectured that the singularities appearing in the com-
putation of the scattering amplitude should all cancel out on the codimension one
boundaries of the cells associated to Wilson loop diagrams. In Section 5, we verify
this for k D 2, n D 6, as summarized in the following theorem.

Theorem 1.3 (Theorem 5.1). Let W be an admissible Wilson loop diagram with 2

propagators and 6 external particles. Let †0 be any 5-dimensional boundary of the

6-dimensional cell †.W / associated to W . Then
X

@p;v.W 0/D†0

W 0 admiss

Res
�p;v.W 0/!0

	 .W 0/.Z�/ D 0: (1)

In particular, the direct calculations of this paper reveal intricacies and obstacles
that will carry forward as one adds more propagators and interacting particles. The
CW structure of W.2; 6/ is far more complicated than can be easily inferred from
the Wilson loop diagrams themselves, and can only be truly studied with the help of
tools from total positivity such as Le diagrams. In order to implement a general proof
that the codimension one singularities cancel for general k and n, one needs further
classification and understanding of the properties of the factors of the polynomial that
appears in the denominator of I.W /. For further discussion of this, see Section 6.

This paper is organized as follows. In Section 2, we define Wilson loop diagrams
from a purely combinatorial point of view. We outline the tools and results that we use
from the theory of total positivity, including positroid cells, Le diagrams, and vertex-
disjoint path systems. Finally, we show how to identify the positroid cell associated
to a given Wilson loop diagram. In Section 3, we recall the integrals associated to
Wilson loop diagrams and give a brief discussion of how these integrals correspond
to the holomorphic Wilson loop. We also include a worked example of evaluating the
integral associated to a Wilson loop to illustrate the computations involved, and to
motivate later sections.

In Section 4, we consider the specifics of N 2MHV diagrams on 6 points, and
give a full description of the positroid cells they define. In Section 4.3, we show
that the conjectured graphical device for identifying and comparing boundaries of
the positroid cells associated to Wilson loop diagrams is (Graphical Prompt 4.11) is
not sufficient to understand the full boundary structure of said cells. In Example 4.14
we give an explicit example of where the Graphical Prompt fails. Also, Example 4.5
identifies a boundary of a Wilson loop diagram cell that is shared by positroid cells
with no corresponding Wilson loop diagram. We use these facts to compute the homo-
logy of the CW complex generated by the N 2MHV and Wilson loop diagrams on 6

points and the NMHV diagrams on n � 5 point.
In Section 5, we show that all singularities of the integrals associated to N 2MHV

Wilson loop diagrams on 6 points cancel in the sum over all diagrams. Furthermore,
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the cancellations for these diagrams all occur, as expected, on the codimension one
boundaries of the cells. This behavior has been conjectured for general k and n, but
had not previously been verified even for k D 2, n D 6 due to the difficulties in identi-
fying all shared codimension one boundaries from the Wilson loop diagrams alone.

Section 6 summarizes the observations about the structure of the general geometry
of Wilson loop diagrams uncovered by the calculations in this paper. These observa-
tions need to be better understood in order to generalize the result of this paper to
general k and n. Some of the necessary steps of this generalization have been com-
pleted in subsequent work, as outlined in this section.

2. Wilson loop diagrams

This section is an introduction to the combinatorics of Wilson loop diagrams for math-
ematicians. As such, we omit the derivation of the diagrams and associated integrals,
and the precise definitions of the physical objects involved (see existing literature [1]),
and focus on the diagrams themselves as combinatorial objects.

In Section 2.1, we establish the notation and conventions used in this paper. Sec-
tion 2.2 describes the diagramatics of the Wilson loop diagrams themselves,
Section 2.3 provides an overview of total positivity and some related combinator-
ial objects, and Sections 2.4 and 2.5 make precise the relationship between Wilson
loop diagrams and total positivity.

2.1. Notation

Let MR.k; n/ denote the set of all k � n real matrices, and MR;C.k; n/ the subset of
those matrices whose maximal (i.e., k � k) minors are strictly positive.

We represent the Grassmannian GR.k; n/ as the set of all full rank k � n real
matrices modulo the left action of GLk.R/; intuitively, these are k � n matrices with
linearly independent rows, where two matrices are “the same” if we can get from one
to the other by performing row operations.

Definition 2.1. A point in GR.k; n/ is called totally non-negative if it can be repres-
ented by a matrix whose maximal minors (i.e., its k � k minors) are all nonn-egative.
Denote the set of all totally non-negative points by GR;�0.k; n/.

Let Œn� denote the interval ¹1; 2; : : : ; nº, and

�
Œn�

k

�
D ¹I � Œn� j jI j D kº
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the set of all k-subsets of Œn�. Clearly
�

Œn�
k

�
is in bijection with the set of possible

maximal minors of a k � n matrix. We write �I for the minor with columns indexed
by I , or �I .A/ for the value of the minor evaluated on a specific matrix A.

Each individual Wilson loop diagram encodes one piece of the calculation whose
sum yields the scattering amplitude. The result of this calculation depends on the
external data associated to each particle in the interaction.

Definition 2.2. An external particle of a Wilson loop diagram is denoted Z 2 R
4Ck .

Write Zj to denote the j -th component of Z and Z� to denote the projection of the
section Z onto its twistor component, i.e., onto the first four coordinates.

An n point Wilson loop diagram has n external particles and a gauge vector, and
we collect this external data in a matrix as follows.

Definition 2.3. Write Z for the n � .k C 4/ matrix whose rows consist of the n vec-
tors Z1; Z2; : : : ; Zn associated to the external particles. We restrict our attention to
collections of particles in general position, and demand that the external data form
matrices with positive maximal minors. In other works, Z 2 MR;C.n; 4 C k/. We
may choose a gauge vector Z� that is a point in a zero section of the line bundle of
external particles. Denote by Z� 2 MR.n C 1; 4 C k/ the matrix obtained by pre-
pending Z� above the first row of Z.

We refer to these matrices Z� as the matrices of external data. A standard conven-
tion throughout this paper is that objects with a star subscript include the gauge vector
data, while those without a star subscript omit the gauge vector from consideration.
As described in the introduction, there are often reasons for including or omitting the
gauge from our calculations.

We also define a notation for certain 4 � 4 determinants which play an important
role in calculations:

habcd i D det.Z�
a Z

�

b
Z�

c Z
�

d
/;

i.e., the determinant of the 4 � 4 matrix whose rows correspond to the external particles
Za, Zb, Zc , and Zd , each projected to their first four coordinates.

2.2. Wilson loop diagrams

We now discuss the Wilson loop diagrams combinatorially.

Definition 2.4. A Wilson loop diagram is a convex n-gon (n � 4) with k internal
(wavy) lines called MHV propagators, each of which connects a pair of distinct poly-
gon edges. See Figure 1 for an example of a Wilson loop diagram.

The vertices of the boundary polygon correspond to the external particles involved
in the represented interaction. The location of the propagator endpoint on the polygon
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W D

�
1

2

3

4 5

6

7

8

Figure 1. A Wilson loop diagram with 8 vertices and 3 propagators.

edge is not significant; if several propagators share an edge, by convention we arrange
them in order to minimize the number of crossings.

Note that we have not yet put any restrictions on the behaviour of the propagat-
ors, e.g., excluding diagrams with crossing propagators. The underlying physics will
impose certain conditions on the propagators; this is described in Section 2.4 below.

By labeling the vertices of the polygon, we obtain the following equivalent defin-
ition of a Wilson loop diagram:

Definition 2.5. A Wilson loop diagram (WLD) is comprised of a cyclically ordered
set .S;</ � Œn� and a set of k pairs of elements of S . For ease of reference, we impose
the following convention on the propagators:

P D ¹.i1; j1/; : : : .ik; jk/ j ir ; jr 2 S I ir <1 jr for all rº;

where <1 denotes the total order induced from < by choosing some element of S

(usually 1) to be the “first” element. We write W D .P ; S/ for the Wilson loop dia-
gram, or (for simplicity) W D .P ; n/ when S D Œn�.

The set S labels the boundary vertices of a convex n-gon, starting at the marked
vertex and moving counterclockwise. This induces a labeling of the edges, where the
i -th edge connects vertices i and i C 1 (or the successor of i , if S ¤ Œn�). The ordered
pair .ir ; jr/ 2 P corresponds to the propagator connecting edges ir and jr .

For example, the diagram in Figure 1 can also be written as W D .¹.2; 4/; .4; 7/;

.5; 7/º; 8/.

Definition 2.6. 1. Given a propagator p 2 P , the support of p is the set

Vp D ¹ip; ip C 1; jp; jp C 1º;

i.e., the endpoints of the two boundary edges that the propagator touches.
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2. Given a set of propagators Q � P , define VQ D
S

q2Q Vq to be the support
of Q.

3. For a set of vertices V � Œn�, write Prop.V / D ¹p 2 P j V \ Vp ¤ ;º for the
subset of propagators supported by V .

Definition 2.7. If W D .P ; n/ is a Wilson loop diagram, and Q � P a non-empty
subset of its propagators, the subdiagram of W associated to Q is WQ D .Q; VQ/.

For ease of reference later, we impose an (arbitrary) naming convention for the
propagators. Namely, given a Wilson loop diagram W with k propagators, label the
propagators as p1; : : : ; pk , in the order they are first encountered while walking
counterclockwise around W from the marked vertex. We use this convention unless
indicated otherwise.

We now associate two matrices to each Wilson loop diagram, based on the order-
ing convention above. All work in this paper can be done under any other ordering
convention.

Definition 2.8. Define a k � n matrix C.W / by placing indeterminates cb;a in some
of its entries and 0s elsewhere, as follows:

C.W /b;a D

´
cb;a if a 2 Vpb

I

0 else.

We will also want to consider the matrix C�.W / obtained by prepending a column of
1s to C.W /; in order to maintain column labeling consistency, we label the columns
of C�.W / from 0 to n. In other words,

C�.W /b;a D

8
ˆ̂<
ˆ̂:

1 if a D 0I

cb;a if a 2 Vpb
I

0 else.

In both matrices, the entries cb;a are real indeterminates.

Example 2.9. For the Wilson loop diagram W D .¹.2; 4/; .4; 7/; .5; 7/º; 8/ in Fig-
ure 1, the associated matrices C.W / and C�.W / are

C.W / D

0
B@

0 c1;2 c1;3 c1;4 c1;5 0 0 0

0 0 0 c2;4 c2;5 0 c2;7 c2;8

0 0 0 0 c3;5 c3;6 c3;7 c3;8

1
CA ;

C�.W / D

0
B@

1 0 c1;2 c1;3 c1;4 c1;5 0 0 0

1 0 0 0 c2;4 c2;5 0 c2;7 c2;8

1 0 0 0 0 c3;5 c3;6 c3;7 c3;8

1
CA :
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2.3. Positroids and Le diagrams

In recent years, the study of totally non-negative matrices and their associated combin-
atorics has emerged as an extremely useful tool for the study of scattering amplitudes
in SYM N D 4; see for example [7, 12, 21]. In this section we give a short introduc-
tion to this non-negative viewpoint, and outline the key definitions and techniques we
make use of in this paper.

For the purposes of this paper, a representable matroid is any collection B �
�

Œn�
k

�

which can be “represented” by an element of GR.k; n/, i.e., there exists some A 2

GR.k; n/ such that for all B 2
�

Œn�
k

�
,

�B.A/ ¤ 0 () B 2 B:

Following the language of matroid theory, we will refer to the elements of B as the
bases of the matroid.

Definition 2.10. A positroid is a representable matroid B which can be represented
by an element of GR;�0.k; n/.

This definition induces a stratification of GR;�0.k;n/ into positroid cells: for each
positroid B, define

�B D ¹A 2 GR;�0.k; n/ j �B.A/ ¤ 0 if and only if B 2 Bº;

i.e., the set of points in GR;�0.k; n/ which represent B.
These definitions were introduced the foundational 2006 preprint [28] by Post-

nikov. The positroid stratification of GR;�0.k; n/ defines a CW complex such that
the boundary of each cell is homeomorphic to a sphere [30, Theorem 1.1]. In other
words, GR;�0.k; n/ is homeomorphic to a closed ball [17], the positroids partition
GR;�0.k; n/ into convex open cells of dimension 0 � d � k.n � k/, the closure of a
cell of dimension d is the union of that cell with finitely many cells of dimension
� d � 1, and explicit attaching maps have been constructed; see, e.g., [29, The-
orem 6.2].

Remark 2.11. If we are only interested in which postroid cells lie on the boundary
of a given cell, and not in the precise attaching map data, we may consider the face
poset of this complex instead. Specifically: the positroid cell �B0 is contained in the
boundary of the cell �B if and only if the there is an inclusion B

0 � B of the bases.

Positroids have many nice combinatorial properties, see for example [9, 17, 28].
While the matrices in this paper are small enough that it is easy to compute their
minors by hand (and we will often use this method when considering the cell complex
structure), examining long lists of bases is often unilluminating. We therefore intro-
duce Le diagrams (Definition 2.12) as a convenient method of labeling the positroid
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cells, and describe the method of vertex-disjoint path systems (Theorem 2.14) for
passing between the list of bases defining a positroid and its Le diagram.

Definition 2.12. A Le diagram is a Young diagram where each box contains either a
C or a 0 symbol, subject to the rule that if a box contains a 0 then at least one of the
following holds:

• every box to its left (in the same row) also contains a 0; or

• every box above it (in the same column) also contains a 0.

For example,

C 0 C 0

C 0 C C

C 0 C C

0 0

C C C C

C C C

are all Le diagrams, while

C C C C

C 0 C

0 C

C 0

are not.
The positroids in GR;�0.k; n/ are in bijection with the Le diagrams that fit inside

a k � .n � k/ rectangle, i.e., have at most k rows and at most n � k columns [28,
Theorem 6.5].

Remark 2.13. The dimension of a positroid cell is simply the dimension of the open
ball it is homeomorphic to. Given a positroid cell, its dimension can easily be read
from the corresponding Le diagram: it is precisely the number of C squares appearing
in the Le diagram.

There is also an algorithm to reconstruct the set B of non-zero minors from the Le
diagram, as we now describe. Given a Le diagram L, construct its associated graph
�.L/ as follows.

1. Label each step along the southeast border of L with the numbers 1; 2; : : : ; n.
(Note that if L has fewer than k rows, or fewer than .n � k/ columns, some of
these steps will lie on the bounding rectangle; see Figure 2.)

2. Place a vertex in each C square of L, and an additional vertex next to each row
and column label.

3. Join any two consecutive vertices in the same row with an arrow directed left-
wards, and any two consecutive vertices in the same column with an arrow
directed downwards.

See Figure 2 for an example. It follows directly from the Le property that �.L/ is
planar, i.e., two arrows can only meet at a vertex.



A study in GR;�0.2; 6/ 169

L D
C 0 C 0

C 0 C C

0 C

, �.L/ D

� �

� � �

�

1
2

3

45
6

78

Figure 2. Constructing �.L/ from L in GR;�0.3; 8/.

Write S for the set of source vertices in the diagram (i.e., the vertices attached to
row labels), and T for the set of target vertices (column labels). A path in �.L/ is any
path from a vertex s 2 S to a vertex t 2 T along these directed arrows, as first defined
in [28, Section 6]. Two paths are called vertex-disjoint if they do not have any vertices
in common.

Let I D ¹i1; : : : ; irº be a subset of the row labels, and J D ¹j1; : : : ; jr º a subset
of the column vertices. A vertex-disjoint path system for .I;J / is a collection of paths

i1 ! j1; i2 ! j2; : : : ; ir ! jr ;

which are pairwise vertex-disjoint.

Theorem 2.14. Let L be a Le diagram specifying a cell in GR;�0.k;n/, and construct

its graph �.L/ as above. Then B is a basis for the positroid corresponding to L if

and only if jBj D k and .SnB; T \ B/ admits a vertex-disjoint path system.

Proof. Combine [15, Theorem 5.6] and [18, Theorem 4.2].

Note that in earlier work, [28, Section 6], the author defines a boundary meas-
ure that translates between Le diagrams and networks parameterizing GR;�0.kn/,
and [31] gives a formula to compute the associated Plücker coordinates via vertex
disjoint oriented cycles. While this is an equivalent way to determine the bases asso-
ciated to a Le diagram, it is a distinct algorithm from that we use in this paper.

Example 2.15. For the Le diagram in Figure 2, we have S D ¹2; 3; 6º and T D ¹1; 4;

5; 7; 8º. Then for example, B D ¹4; 5; 6º is a basis for this positroid, since

SnB D ¹2; 3º; T \ B D ¹4; 5º;

and there is a vertex-disjoint path system 2 ! 5, 3 ! 4 in �.L/. On the other hand,
¹3; 4; 5º is not a basis, since there is no vertex-disjoint path system from ¹2; 6º to
¹4; 5º in �.L/.
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Notation 2.16. We will often drop the set notation for bases where this will not cause
any confusion, i.e., write 456 for ¹4; 5; 6º.

For small examples in particular, vertex-disjoint path systems provide an effective
way of listing all of the bases of a positroid without writing down an explicit matrix
belonging to that positroid. Conversely, given a list of bases for a positroid, we can
use Theorem 2.14 to reconstruct the corresponding Le diagram; this allows us to start
with a Wilson Loop diagram and construct its Le diagram via the matrix C.W /.

Recall that the cell structure on the positroids of GR;�0.k;n/ can be seen in its face
poset (ordered by inclusion). It is important to emphasize that these inclusions cannot

always be read directly from the Le diagrams, as the following example demonstrates.

Example 2.17. In GR;�0.2; 4/, consider

A1 D

�
1 0 0 �a

0 1 0 b

�
; A2 D

�
1 0 �c �˛c

0 1 d ˛d

�
; a; b; c; d; ˛ > 0

A1 belongs to the positroid �B1
with B1 D ¹12; 14; 24º, while A2 belongs to �B2

with B2 D ¹12;13;14;23;24º. So we certainly have B1 � B2, but there is no obvious
relation between the Le diagrams:

L.�B1
/ D

C 0

C 0
; L.�B2

/ D
0 C

C C
:

Thus, we use Le diagrams as a convenient method of labeling positroids and cal-
culating their dimension, and lists of bases when examining the cell structure.

2.4. Admissible Wilson loop diagrams

Thus far, we have not put any conditions on the behavior of the Wilson loop diagrams.
It turns out that restricting our attention to the physically interesting ones (the admiss-

ible diagrams, Definition 2.19) yields matrices which also have interesting positivity
conditions.

Fix a matrix of external data Z�, as described in Section 2.1. By Cramer’s rule,
each matrix C.W / defines a unique kernel of the matrix Z

�
� . In [7], the first author

and Amat show that solving the equation

C�.W / � Z
�
� D 0 (2)

for the entries cb;a of C�.W / yields expressions that can be written in terms of certain
minors of Z

�
� , as we now describe. (The significance of equation (2) is discussed

following Theorem 2.20.)
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Definition 2.18. For a propagator pb D .ib;jb/, and supporting vertex a 2 Vpb
, define

�b;a to be the determinant formed by replacing the vector Z
�
a in the determinant

hib .ib C 1/ jb .jb C 1/i with the gauge vector Z
�
� , i.e.,

�b;a D hZ
�
ib

: : : Z�
�

cZ�
a : : : Z

�
jbC1i:

Let C�.W /.Z�/ be the matrix obtained from C�.W / by replacing each cb;a with

�b;a

hib .ib C 1/ jb .jb C 1/i
; 1 � b � k; a 2 Vpb

: (3)

It follows from Cramer’s rule that C�.W /.Z�/ � Z
�
� D 0 [7, (4)]. Thus, C�.W /.Z�/ is

exactly the matrix that solves equation (2), for fixed external data Z�. See Example 3.3
for a worked example of computing C�.W /.Z�/.

We are interested in Wilson loop diagrams that define positroid cells in the correct
Grassmannian, i.e., in GR;�0.k; n/. To this end, we give the following definition.

Definition 2.19. A Wilson loop diagram W D .P ;n/ is called admissible if it satisfies
the following conditions:

1. n � jP j C 4;

2. there does not exist a (non-empty) subset of propagators Q � P such that
jVQj < jQj C 3;

3. W has no crossing propagators.

It is more illuminating to see examples of Wilson loop diagrams which fail to be
admissible; some examples are listed in Figure 3.

Figure 3. Examples of diagrams which fail to be admissible.

The following result makes precise the relationship between the matrices associ-
ated to admissible Wilson loop diagrams and total positivity.

Theorem 2.20 ([7, Theorems 1.14 and 3.41]). Let W be an admissible Wilson loop

diagram with k propagators on n vertices, and Z� a matrix of external data. Then

1. C�.W /.Z�/ is a matrix of full rank for any choice of external data Z�, i.e., it

lies in GR.k; n C 1/;

2. C.W / defines a positroid (in the sense of Definition 2.10).
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Each admissible Wilson loop diagram thus corresponds to a subspace of GR.k;

n C 1/: the space parametrized by the matrix C�.W / (recall Definition 2.8).
Write W�.k; n/ � GR.k; n C 1/ for the subspace of GR.k; n C 1/ parametrized

by all of the admissible Wilson loop diagrams. Any matrix of external data Z� induces
a projection map from W�.k; n/ to a subspace of GR;�0.k; k C 4/:

Z�W W�.k; n/ ! GR;�0.k; k C 4/;

C�.W / 7! C�.W / � Z�:

The integrals associated to the admissible Wilson loop diagrams (introduced in Sec-
tion 3) define volumes on the spaces of the form C�.W / � Z�, and it is these volumes
which yield the scattering amplitude. The volume associated to the space C�.W / � Z�

is defined by evaluating a rational function at the hyperplane that satisfies (2).
However, in this paper we focus not on the image Z�.W�.k;n// but on the positive

geometry of the space parametrized by the Wilson loop diagrams C.W /. In later
sections, we show that many of the problems that arise in evaluating and interpreting
the integrals can be resolved by close inspection of this preimage.

Remark 2.21. The space Z�.W�.k; n// is conjectured to be the amplituhedron. See
also [16] for a connection between W�.k; n/ and a geometric space called the amp-
lituhedron squared.

For the rest of this paper, we consider admissible Wilson loop diagrams only.

2.5. Wilson loop diagrams and positroids

In this paper, we are interested in the geometry defined by the admissible Wilson loop
diagrams. In other words, we wish to study the subspace of GR;�0.k; n/ paramet-
rized by matrices of the form C.W /, making use of the CW structure coming from
the positroid stratification of GR;�0.k; n/. The underlying physical justification for
taking this approach is given in Section 3; for now, we simply note that the volume
forms associated to individual Wilson loop diagrams have singularities which are con-
jectured to cancel out in the final sum, and in order to verify this conjecture it suffices
to study their behavior on the boundaries of the positroids appearing in Theorem 2.20.

In this section we introduce the definitions and notation which will allow us to
make precise the object whose geometry we need to understand. In Sections 4 and 5,
we verify that the singularities do indeed all cancel out in the case k D 2, n D 6.

Definition 2.22. Let W be an admissible Wilson loop diagram, and B.W / the bases
set of the positroid defined by C.W /. Define †.W / to be the corresponding closure
of the positroid cell in GR;�0.k; n/, i.e.,

†.W / D ¹A 2 GR;�0.k; n/ j �I .A/ ¤ 0 () I 2 B.W /º:
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Definition 2.23. Define W.k; n/ to be the subspace of GR;�0.k; n/ consisting of the
union of the closures of the positroid cells associated to admissible diagrams, i.e.,

W.k; n/ D
[

W admiss.
n verts, k props

†.W /:

For the remainder of this paper, we restrict our attention to the geometry of the
space W.k; n/.

It is important to note that the map from admissible Wilson loop diagrams to
positroid cells is not injective. It is certainly well defined: by Theorem 2.20, restricting
our domain to admissible diagrams ensures that we do always land in a positroid cell,
but it is still possible for two different admissible Wilson loop diagrams to give rise
to the same positroid cell. As such, the number of positroid cells involved in the
definition of W.k; n/ is strictly fewer than the number of possible admissible Wilson
loop diagrams with k propagators and n vertices.

In order to identify precisely when this happens, we recall the notation introduced
in [7].

Definition 2.24. If W is an admissible Wilson loop diagram with a non-empty set of
propagators Q � P such that

jVQj D jQj C 3;

then .Q; VQ/ is an exact subdiagram of W .

This allows us to define an equivalence relation on admissible Wilson loop dia-
grams.

Definition 2.25. Two admissible diagrams W D .P ; n/ and W 0 D .P 0; n/ are equi-
valent if

1. there exists Q � P \ P
0 such that we can write

P D Q t R and P
0 D Q t R0I

2. VR D VR0 ;

3. the subdiagrams .R; VR/ and .R0; VR/ are both unions of exact subdiagrams.

In other words, two admissible diagrams W and W 0 are equivalent if they dif-
fer only by unions of exact subdiagrams supported on the same set of vertices. See
Figure 4 for an example of equivalent diagrams.

Theorem 2.26 ([7, Theorem 1.18]). If W D .P ; n/ and W 0 D .P 0; n/ are two equi-

valent admissible Wilson loop diagrams, then C.W / and C.W 0/ define the same

positroid.
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Figure 4. An example of two equivalent diagrams with 3 propagators on 8 vertices.

3. Feynman integrals of WLDs

In this section we give more details on the physical interpretation of Wilson loop
diagrams and their associated data, in order to motivate the computations of later
sections.

A holomorphic Wilson loop at n points (which we do not define here) is closely
related to the n point scattering amplitude of supersymmetric Yang Mills Theory
(SYM N D 4), see [8]. These Wilson loops Wk;n are given as sums of Feynman
diagrams, which in this setting are the Wilson loop diagrams defined in Section 2.2.
These diagrams represent interactions in SYM N D 4; a diagram with n external
vertices and k MHV propagators represents a N kMHV interaction.

Inspired by the work on the amplituhedron, which interprets the n point N kMHV
on shell scattering amplitude as the volume of a (4k-dimensional) subspace of
GR;�0.k; k C 4/ called the amplituhedron, we study the n point N kMHV scatter-
ing amplitude as a (different) volume of the subspace Z�.W�.k; n// � GR;�0.k;

k C 4/. We work under the expectation that the Z�.W�.k; n// is closely related to the
amplituhedron. This point of view is different from work done to associate Wilson
loop diagrams and the holomorphic Wilson loop to the amplituhedron squared [16].
Namely, in this paper, we are interested in the geometry of the 3k-dimensional sub-
space W.k; n/ � GR;�0.k; n/ in Definition 2.23.

Note that the amplitude itself is defined on W�.k; n/; this is described in Sec-
tions 3.1 and 3.2 below. However, as seen in Theorem 2.20, the positive structure
of the Wilson loop diagrams is encapsulated by the subspace sections W.k; n/ �

GR;�0.k; n/. In Sections 4.3 and 5 below, we examine whether all necessary cancel-
lations to make the theory finite can be verified by considering only the positroid tiling
of W.k; n/. We verify this in the case of GR;�0.2; 6/ (Theorem 5.1), and conjecture
that it holds for general k and n.
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3.1. Relating Wilson loops and Wilson loop diagrams

The diagrams we focus on arise from a reformulation of Wilson loops in twistor
space [24]. In particular, the equivalent object to a Feynman diagram in this set-
ting is the Wilson loop diagram (WLD). Recall from Section 2.1 that the vertices
of the external convex polygon of a WLD correspond to the external particles of an
interaction, which we represent as a matrix Z 2 MR;C.n; k C 4/ with the i -th row
(denoted Zi ) corresponding to the i -th vertex. We also consider one additional vector
Z� 2 R

4Ck , which represents a choice of gauge.
Before proceeding, it is worth noting that while twistor space is complex, through-

out this paper (and the literature) one speaks of positivity in Grassmannians. This
is accomplished via a simplification called bosonization, first introduced by Arkani-
Hamed [12], and expounded in [16]. Instead of representing the n external Fermionic
particles as sections of a complex line bundle over a complex twistor space, we work
with a projection, or bosonification, onto a k-dimensional real vector bundle over a
4-dimensional real space-time. That is, we associate to each external particle a vector
Zi 2 R

4Ck , which represents a bosonized Fermion.
Each Zi is a section of a k-dimensional real vector bundle over twistor space; the

first 4 components Z
�
i corresponding to the real momentum data in twistor space, and

the last k components corresponding to the bosonized Fermionic data. Without loss
of generality, we may choose Z� to be the 0 section in this bundle., i.e., such that the
final k entries of Z� are 0.

Each propagator depicted in the Wilson loop diagram corresponds to an MHV
propagator of the overall interaction. If the propagator p corresponds to the b-th row
of the matrix C�.W /, then it is represented by the vector

Yb D C�.W /b � Z� 2 R
4Ck: (4)

Just as a scattering amplitude is given as a sum of Feynman integrals, the holo-
morphic Wilson loop Wk;n.Z/ is given as a sum of certain integrals 	 .W /.Z�/

associated to Wilson loop diagrams W (see equation (7) below). Given a matrix of
external data Z� satisfying the conditions of Definition 2.3, the integral I.W /.Z�/

assigns a volume to the space C�.W / � Z�. The Wilson loop is then given by

Wk;n.Z/ D
X

W admis.
n point NkMHV diag.

	 .W /.Z�/: (5)

For more on the relation between Wilson loop diagrams and traditional Feynman dia-
grams, see [1]. In particular, the diagrams we consider in this paper correspond to
tree level amplitudes (no internal loops). The analysis in this paper can be extended
to loop level, but we restrict ourselves to tree level interactions here.
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There is one important subtlety to interpreting the holomorphic Wilson loop geo-
metrically as in (5). If two Wilson loop diagrams are equivalent, then they define the
same positroid cell, i.e., †.W / D †.W 0/. The spaces C�.W / and C�.W 0/ are there-
fore also equal. If one were to rewrite the expression in (5) as a sum over distinct
subspaces of W�.k; n/, one would need to sum over volume functionals associated to
each subspace:

vol C�.W / D
X

W 0 s.t.
W 0�W

	 .W 0/: (6)

Combining (5) and (6) gives

Wk;n D
X

C�.W /�W�.k;n/

X

W 0 s.t.
W 0�W

	 .W 0/:

In order to study the Wilson loop Wk;n, we need to know exactly which positroids
lie in W.k; n/ (the outer summation), how many equivalent diagrams are associated
to each positroid (the inner summation), and of course how to compute the integral
	 .W / for each WLD W .

3.2. From the Wilson loop diagram W to the integral 	 .W /

Let W D .P ;n/ be an admissible Wilson loop diagram with jP j D k propagators, and
recall the notation for the external data Z� given in Section 2.1 above. The integral
	 .W / is a functional associated to the space parametrized by C�.W /: evaluating it
on a choice of data Z� yields (a component of) the Wilson loop for that particular
external data. We define 	 .W / as a function of Z� as follows [1, 24]:

	 .W /.Z�/ D

Z

R4k

Qk
bD1

Q
a2Vpb

d cb;a

R.W /
ı4kj4k.C�.W / � Z�/; (7)

where the cb;a are the entries of the matrix C.W /, and ı4kj4k and R.W / are given in
Definitions 3.1 and 3.2 respectively. An example of the computation of 	 .W /.Z�/ is
given in Example 3.3 below.

Definition 3.1. The notation ı4kj4k is related to the Dirac delta function defined on a
vector with both bosonic and Fermion components. Explicitly, we have

ı4kj4k.C�.W / � Z�/ D

kY

bD1

.Y 4Cb
b

/4ı4.Y
�

b
/; (8)

where Yb are the vectors defined in (4), Y 4Cb
b

is the (4 C b)-th entry of Yb , and Y
�

b
is

the projection of Yb to its first four entries (as described in Section 2.1).
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In order to define the denominator R.W /, recall that the vertex labeling of W

induces a labeling of the edges, where edge i connects vertex i and i C 1. For each
propagator p D .i; j / in P , define its edge support set to be Ep D ¹i; j º. As with the
vertex sets, we extend this to any subset Q � P by setting EQ D

S
p2Q Ep .

Definition 3.2. If ¹q1 : : : qsº is the set of propagators incident to the edge i , ordered
such that q1 is the counterclockwise most (closest to the vertex i ) and qs the clockwise
most (closest to the vertex i C 1), define

Ri .W / D cq1;iC1cqs ;i

s�1Y

mD1

.cqm;i cqmC1;iC1 � cqmC1;icqm;iC1/:

Note that if i only supports one propagator, then s D 1 and Ri .W / D cp;i cp;iC1. The
denominator R.W / is then defined by

R.W / D
Y

e2EP

Re.W /:

Evaluating 	 .W / corresponds to performing the Dirac delta functions ı4.Y
�

b
/ and

evaluating the expression Qk
bD1.Y 4Cb

b
/4

R.W /

at the corresponding points. By (8) this means we should evaluate it at the solution of
the system of equations

C�.W / � Z
�
� D 0:

(This process is sometimes called localizing the integral at the delta function.)
Since we have an explicit description for the hyperplane on which this occurs

(recall equation (3)) we can compute the integral (7) in terms of Z� as follows.
We first consider the denominator, writing R.W /.Z�/ to denote the localization

of R.W / at a given choice of external data Z�. For each edge i of W , we have

Ri .W /.Z�/ D
�q1;iC1�qs;i

Qs�1
mD1.�qm;i �qmC1;iC1 � �qmC1;i�qm;iC1/

Qk
mD1hiqm

iqmC1
jqm

jqmC1
i2

;

where �b;a is as in Definition 2.18. Combining this for all edges as above, we obtain

R.W /.Z�/ D
Y

e2EP

Re.W /.Z�/:

Note that R.W /.Z�/ is a degree 0 rational function in the determinants �b;a and
hipb

ipbC1jpb
jpbC1i. The physical singularities of the theory occur when

hipb
ipbC1jpb

jpbC1i D 0: (9)
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The simple poles of 	 .W /.Z�/ that occur when either �b;a D 0 or �b;a�c;aC1 �

�c;a�b;aC1 D 0 are the spurious singularities of the theory, and are expected to cancel
in the sum in equation (5). There are circumstances under which the various factors
of R.W /.Z�/ are not distinct, in which case I.W /.Z�/ has poles of higher degree.
In this paper, we only consider the simple poles; see Remark 4.10.

In order to examine the numerator of 	 .W /.Z�/, recall from (4) that given a
Wilson loop diagram W D .P ; n/ with pb D .i; j / 2 P corresponding to b-th row
of C�.W /, we have

Y b
p D cb;iZ

4Cb
i C cb;iC1Z4Cb

iC1 C cb;j Z4Cb
j C cb;j C1Z4Cb

j C1 :

We note that because of the symmetries in the bosonization process, the integral 	 .W /

is invariant the symmetric group Sk acting on the rows of C�.W /.
After localization, we obtain

F b
p WD .Y b

p /4 D
1

hi.i C 1/j.j C 1/i4
.�b;iZ

4Cb
i C �b;iC1Z4Cb

iC1

C �b;j Z4Cb
j C �b;j C1Z4Cb

j C1 /4: (10)

In other words, the integral 	 .W / evaluates to

	 .W /.Z�/ D

Qk
bD1 F b

p

R.W /.Z�/
: (11)

Since SYM N D 4 is a finite theory [8, 27], the scattering amplitudes (and thus
the holomorphic Wilson loops Wk;n) are finite. However, as seen above, the integrals
	 .W /.Z�/ have spurious poles. In order for these poles to cancel, they must appear
on the boundaries of the cells †.W / and cancel exactly in the induced tiling. This
is parallel to the cancellation of poles associated to the BCFW integrals in the amp-
lituhedron calculation [12]. In Section 5 we explicitly show this cancellation for the
case k D 2, n D 6.

3.3. Example: computing 	 .W / for a Wilson loop diagram with k D 3, n D 8

Before proceeding with the more geometric aspects of these Wilson loop diagrams,
we give an example of the integrals and rational functions involved. As we only con-
sider the case of N 2MHV diagrams, this is a more complicated example than any we
consider in the paper, but we include it for give a fuller flavour of the calculations
involved. For more example calculations see [19]. In particular, provides a general
formula for 	 .W / with k D 1 and n � 5.
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Example 3.3. Consider the following diagram:

W D

�1

2

3

4 5

6

7

8

From Definition 2.8, we have

C�.W / D

2
64

1 c1;1 c1;2 c1;3 0 0 0 0 c1;8

1 0 c2;2 c2;3 0 0 c2;6 c2;7 0

1 0 c3;2 c3;3 c3;4 c3;5 0 0 0

3
75 :

Then by the algorithm in Definition 3.2, we obtain

R.W / D c1;3.c1;2c2;3 � c2;2c1;3/.c2;2c3;3 � c3;2c2;3/c3;2c3;4c3;5c2;6c2;7c1;1c1;8:

Localizing the integral against the product of delta functions
Q3

bD1 ı4.Y
�

b
/ as in

Definition 3.1 gives

C�.W /.Z/

D

2
64

1 h238�i
h2381i

h�381i
h2381i

h2�81i
h2381i

0 0 0 0 h23�1i
h2381i

1 0 h�367i
h2367i

h2�67i
h2367i

0 0 h23�7i
h2367i

h236�i
h2367i

0

1 0 h�345i
h2345i

h2�45i
h2345i

h23�5i
h2345i

h234�i
h2345i

0 0 0

3
75 :

By choosing a Z� with 0 Fermionic components (i.e., with 0 in the final k entries)
and assuming that the vectors Z

�
i are in general position (i.e., that the determinants

not involving Z
�
� are all non-zero), we may evaluate this integral to be

	 .W /.Z�/ D
Z1

N1

D
Z1

N1

;

where

Z1 WD .h�381iZ5
2 C h2 � 81iZ5

3 C h23 � 1iZ5
8 C h238�iZ5

1/4

� .h�367iZ6
2 C h2 � 67iZ6

3 C h23 � 7iZ6
6 C h236�iZ6

7/4

� .h�345iZ7
2 C h2 � 45iZ7

3 C h23 � 5iZ7
4 C h234�iZ7

5/4;

N1 WD h2 � 81i.h�281ih2 � 67i � h�367ih2 � 81i/

� .h�367ih2 � 45i � h�345ih2 � 67i/

� h�345ih23 � 5ih234�ih23 � 7ih236�ih238�ih23 � 1i;
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and

Z2 WD .�1;2Z5
2 C �1;3Z5

3 C �1;8Z5
8 C �1;1Z5

1/4

� .�2;2Z6
2 C �2;3Z6

3 C �2;6Z6
6 C �2;7Z6

7/4

� .�3;2Z7
2 C �3;3Z7

3 C �3;4Z7
4 C �3;5Z7

5/4;

N2 WD �1;3.�1;2�2;3 � �2;2�1;3/.�2;2�3;3 � �3;2�2;3/

� �3;2�3;4�3;5�2;6 �2;7�1;1�1;8:

Notice that this integral has only 10 spurious poles singularities, two of which are
defined by the more complicated expressions

.�1;2�2;3 � �2;2�1;3/ and .�2;2�3;3 � �3;2�2;3/:

If we had instead considered a diagram that did not have propagators sharing a
terminal edge, we would have found 12 (i.e., 4k) spurious poles, each given by a
single �b;a.

4. The geometry of Wilson loop diagrams representing N 2MHV

diagrams at 6 points

We now restrict our attention to the space W.2; 6/, which is tiled by cells associated
to admissible Wilson loop diagrams with 6 vertices and 2 propagators. The aim of this
section is to examine the W.2;6/ case in detail, computing the Le diagrams associated
to each WLD, their codimension 1 boundaries, and the homology of the subcom-
plex in GR;�0.2; 6/ whose top-dimensional cells are precisely those in W.2; 6/. The
case of W.1; � 5/ is discussed in [19, Section 3]. Each diagram corresponds to a
3-dimensional positroid cell in GR;�0.1; � 5/ where all the spurious singularities of
the integral 	 .W /.Z�/ (from equation (7)) cancel on the codimension 1 boundaries
shared between the cells.

By computing all possible codimension 1 boundaries shared by pairs of cells in
W.2;6/, we also show that the standard diagramatic tool used by physicists to identify
shared boundaries of Wilson loop diagrams is insufficient even in this small case, as
it does not “see” many of the shared boundaries. This suggests that the combinatorial
approach to studying Wilson loop diagrams is a fruitful one.

For simplicity and clarity, we omit the computations underlying the data in this
section, but note that they can easily be reconstructed using the vertex-disjoint path
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system approach described in Section 2.3.1 For an algorithm to derive these Le dia-
grams directly from the Wilson loop diagrams, see [4, Algorithm 3.7].

4.1. The Le diagrams associated to Wilson loop diagrams in W .2 ; 6/

In Table 1 we list the 21 admissible Wilson loop diagrams with 2 propagators on 6
vertices, along with the Le diagram of their associated positroid. We also give each
WLD a name (V�, P�, or E�) in order to easily refer to them later. Notice that the
rotational symmetry of the Wilson loop diagrams is reflected in the Le diagrams.

Recall from (6) that

volZ�
.C�.W / � Z�/ D

X

W 0�W

I.W 0/.Z�/:

That is, the volume of the space parametrized by matrices C�.W / of a Wilson Loop
diagram W is given by a sum of integrals associated to all diagrams equivalent to W

(including W itself). If W contains an exact subdiagram, then this equivalence class
may contain more than one diagram, and thus the volume may involve more than one
integral.

Example 4.1. From Table 1, we see that there is an equivalence between each pair of
Wilson loop diagrams Ei;L and Ei;R. Indeed, Ei;L and Ei;R both have two propagat-
ors, supported in each case on the set VP D Œ6� n ¹iº, and these propagators form
an exact subdiagram (see Definition 2.24). By Definition 2.25 we therefore have
Ei;L � Ei;R, and hence by Theorem 2.26 they have the same associated positroid.

In the case of N 2MHV diagrams at 6 points, these are the only non-trivial equi-
valence classes. These are also the only diagrams that contain exact subdiagrams.

Remark 4.2. There are also six 6-dimensional positroid cells in GR;�0.2; 6/ that do
not correspond to any Wilson loop diagram. They are listed in Figure 5.

4.2. The geometry of W .2 ; 6/

The spurious singularities of the integrals 	 .W /.Z�/ in equation (7) are conjectured
to cancel on the codimension 1 boundaries shared between pairs of cells associated to
Wilson loop diagrams. In this section, we use the technology described in Section 2
to establish exactly which cells in W.2; 6/ share codimension 1 boundaries in the CW
complex of GR;�0.2; 6/.

1The Python code used by the authors to perform these computations is available as an
auxiliary file to this paper on arXiv.
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WLD Le diagram WLD Le diagram

V1
0 C 0 C

C C C C
E1;L E1;R

C C C

C C C

V2
C 0 C C

0 C C C
E2;L E2;R

C C C 0

C C C

V3
0 C C C

C C C
E3;L E3;R

C C C 0

C C C 0

V4
C C C 0

0 C C C
E4;L E4;R

C C 0 C

C C 0 C

V5
C C 0 C

C C C
E5;L E5;R

C 0 C C

C 0 C C

V6
C 0 C 0

C C C C
E6;L E6;R

0 C C C

0 C C C

P1
0 C C 0

C C C C

P2
C C 0 C

0 C C C

P3
C 0 C C

C C C

Table 1. All Wilson loop diagrams with k D 2 and n D 6, and their associated Le diagrams.

In this small and easily computable setting, identifying a shared boundary pro-
ceeds as follows. Given two Le diagrams L1 and L2, each representing positroid
cells of dimension d , we can first obtain their bases sets B1 and B2 via the method
of vertex-disjoint path systems. Then the cells corresponding to L1 and L2 share a
d � 1 dimension boundary if and only if there is a Le diagram L3 with bases set B3

such that

(1) L3 has exactly d � 1 squares containing a C symbol;

(2) B3 � B2 \ B1.
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N1
C C 0 0

C C C C
N2

C 0 0 C

C C C C
N3

0 0 C C

C C C C

N4
C C C C

0 0 C C
N5

C C C C

0 C C
N6

C C C C

C C

Figure 5. The 6-dimensional positroid cells in GR;�0.2; 6/ that do not correspond to Wilson
loop diagrams. As in Table 1, we assign labels to each cell in order to refer to them later.

We now give several examples to illustrate this method, and to highlight the types
of behavior exhibited by the cells in W.2; 6/.

Example 4.3. Consider the Wilson loop diagrams V1 and E6;R, and their associated
positroid cells:

V1

1

2

3 4

5

6

0 C 0 C

C C C C

BV1
D ¹12; 13; 14; 15; 16; 23; 24; 25; 26; 35; 36; 45; 46º

E6;R

1

2

3 4

5

6

0 C C C

0 C C C

BE6;R
D ¹12; 13; 14; 15; 23; 24; 25; 34; 35; 45º

Drawing on the intuition of vertex-disjoint path systems, it is clear that adding
more zeros to a Le diagram (while continuing to respect the Le condition) corresponds
to constructing a positroid cell lying on the boundary of the original cell. With this
in mind, there is an obvious choice for a codimension 1 boundary shared by V1 and
E6;R, namely

0 C 0 C

0 C C C
:

This Le diagram has the basis set ¹12;13;14;15;23;24;25;35;45º, which is precisely
the intersection of BV1

and BE6;R
.
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Example 4.4. Now consider the Wilson loop diagrams V1 and P1:

1

2

3 4

5

6

V1
0 C 0 C

C C C C

BV1
D ¹12; 13; 14; 15; 16; 23; 24; 25; 26; 35; 36; 45; 46º

P1
0 C C 0

C C C C

BP1
D ¹12; 13; 14; 15; 16; 24; 25; 26; 34; 35; 36; 45; 46º

1

2

3 4

5

6

Once again there is an “obvious” codimension 1 boundary:

0 C 0 0

C C C C
;

with bases ¹12; 13; 14; 15; 16; 25; 26; 35; 36; 45; 46º ¨ BV1
\ BP1

. In fact, V1 and P1

share a second codimension 1 boundary, namely

0 C C 0

C C C 0
;

corresponding to the bases set ¹12; 14; 15; 16; 24; 25; 26; 35; 36; 45; 46º. This is a
manifestation of the same type of behavior highlighted in Example 2.17, and demon-
strates why a simpler approach to identifying lower-dimensional boundary cells (e.g.,
via propagator moves, as in Section 4.3 below, or by constructing Le diagrams “by
eye” as in Example 4.3) is insufficient.

Having identified this unexpected second boundary, it is now easy to see (using
Table 1) that this boundary is also shared by the cell †.E3;�/.

Example 4.5. The 5-dimensional positroid cell corresponding to the Le diagram

0 0 0 C

C C C C

also lies on the boundary of †.V1/ in GR;�0.2; 6/. However, this 5-dimensional cell
does not lie on the boundary of any of the other positroid cells listed in Table 1;
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instead, it shares a boundary (in GR;�0.2; 6/) with the 6-dimensional cells

N2 D
C 0 0 C

C C C C

and

N3 D
0 0 C C

C C C C
:

As per Figure 5, neither of these correspond to Wilson loop diagrams.

Therefore, in Examples 4.3 through 4.5, we see that the behavior of boundaries
between positroid cells in GR;�0.2; 6/ is quite complicated. Certain cells, such as
†.E6;R/ and †.V1/ share one codimension 1 boundary between them. Others, such
as †.V1/ and †.P1/ share two codimension one boundaries between them. Finally,
there are sets of 3 cells that share codimension 1 boundaries with each other, for
instance †.V1/, †.N2/ and †.N3/.

In GR;�0.2; 6/ there are 21 positroid cells of dimension 6 and 50 of dimension 5.
From Table 1 we know that 15 of the 6-dimensional cells in GR;�0.2; 6/ appear in
W.2; 6/. Furthermore, from direct computation we find that 38 of the 5-dimensional
cells of GR;�0.2; 6/ share a boundary with at least two distinct positroid cells associ-
ated to Wilson loop diagrams. A further six of the 5-dimensional cells are boundaries
of cells †.Ei/, and are thus associated to two different Wilson loop diagrams. The
remaining six 5-dimensional cells in GR;�0.2;6/ are each boundaries of precisely one
WLD.

Vi

ViC2 ViC4

NiC3

PiC1

EiC5

EiC4

NiC1 NiC2

EiC3

EiC2

Pi

Ni

Pi

ViC5

ViC3 ViC2

Vi

EiC4

EiC5

EiC1

EiC2NiC2

NiC3

NiC5

Ni

Ei

NiC4

PiC2

ViC1

ViC2ViC3

ViC4

PiC1

NiC3NiC5

Figure 6. Indices of Vi , Ei , and Ni are taken mod 6, and indices of Pi mod 3. A � � � B

indicates that cells A and B share a codimension 1 boundary (represented here by the dot).
Dashed gray lines represent boundaries which involve at most one cell associated to an admiss-
ible Wilson loop diagram. The solid grey lines correspond to boundaries shared with one of the
six 6-dimensional cells of GR;�0.2; 6/ that are not associated to Wilson loop diagrams.
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Instead of attempting to represent all of these codimension 1 boundaries in one
diagram, we describe the shared boundaries of each type of diagram individually; see
Figure 6. For visual clarity, we write W in Figure 6 to represent each positroid cell,
rather than †.W /. Since Ei;L and Ei;R correspond to the same positroid cell, we
suppress the L or R subscript and simply refer to these cells as Ei .

In Section 5, we show that the spurious singularities of the integrals 	 .W /.Z�/

do cancel exactly on the codimension 1 boundaries shared by pairs of cells associated
to Wilson loop diagrams. Figure 6 highlights two types of boundary which will need
extra care.

1. The behavior highlighted in Example 4.5 above: a 5-dimensional positroid cell
in GR;�0.2; 6/ that lies on the boundary of †.Vi / and is shared with no other
Wilson loop diagram. This is represented by the dashed grey lines in Figure 6.

2. The cell labeled � in Figure 6 lies on the boundary of only one cell associated
to a Wilson loop diagram, namely the cell †.Ei;�/, but this cell is associated
to two different Wilson loop diagrams: Ei;R and Ei;L.

4.3. A graphical device for understanding codimension one boundaries

In this section we describe how some of the boundaries in Figure 6 can be seen directly
from the Wilson loop diagrams.

Definition 4.6. Let W D .P ; n/ be an admissible Wilson loop diagram, and p 2

P one of its propagators. For v 2 Vp , the boundary propagator @vp is obtained by
moving the endpoint of p away from vertex v while maintaining the requirement that
no two propagators cross each other, until one of the following occurs:

1. the endpoint of p reaches another vertex, i.e., @vp is supported on Vpnv; or

2. the endpoint of p touches the endpoint of another propagator q.

Define the boundary diagram @p;v.W / to be the diagram obtained from W by
replacing propagator p with @vp. We say that @p;v.W / is degenerate if there is a
subset Q � .P n p/ [ @vp such that jVQj < jQj C 3.

Example 4.7. Consider the Wilson loop diagram V1, i.e.,

�1

2

3 4

5

6
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Consider the propagator p D .1; 5/. By replacing p with @2p and @1p respectively,
we obtain examples of both types of boundary diagrams:

@p;2.V1/ D

�1

2

3 4

5

6

; @p;1.V1/ D

�1

2

3 4

5

6

:

Let q D .1; 3/ be the other propagator in V1. Clearly @p;1.V1/ and @q;2.V1/ are (com-
binatorially) the same diagram; we will not distinguish between them. By considering
all possible boundary propagators for V1, we see that it has 7 distinct boundary dia-
grams.

Example 4.8. Consider the diagram E6;R, which has propagators p D .1; 5/ and
q D .1; 4/. The boundary @p;5.E6;R/ is degenerate, since the set ¹q;@5pº is supported
on only 4 vertices:

@p;5.E6;R/ D

�1

2

3 4

5

6

The diagram @q;3.E6;R/ is also degenerate, leaving E6;R with 5 distinct non-degen-
erate boundary diagrams.

Since the support of a propagator determines which entries of C.W / are non-zero,
we can give an intuitive interpretation of Definition 4.6 in terms of C.W /:

Definition 4.9. Define C.@p;v.W // to be the matrix obtained by applying Defini-
tion 2.8 to the diagram @p;v.W /. In other words, if p is no longer supported on v

in @p;v.W /, then cp;v D 0 in C.@p;v.W //, while if p and q meet in @p;v.W / (both
lying between vertices v and v C 1, say) then cq;v and cq;vC1 are constrained by the
condition that cp;vcq;vC1 � cq;vcp;vC1 D 0 in C.@p;v.W //.

We write �p;v.W / for the minor of C.W / that is set to 0 in C.@p;v.W //; that is,

�p;v.W / D

´
cp;v if p is no longer supported on v in @p;v.W /I

cp;vcq;vC1 � cq;vcp;vC1 if propagators p and q touch in @p;v.W /.
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Using this notation, we can write

C.@p;v.W // D lim
�p;v!0

C.W /:

We call C.@p;v.W // a boundary matrix of C.W /.

Remark 4.10. By construction, these �p;v.W / are exactly the factors of R.W /. In
the case of Wilson loop diagrams with 2 propagators and 6 vertices, we may exhaust-
ively check that the factors of R.W / that correspond to degenerate boundaries are
exactly those that correspond to non-simple poles of I.W /.Z�/.

We are now ready to introduce a graphical device for calculating boundaries of
Wilson loop diagrams.

Graphical prompt 4.11. Let W D .P ; n/ and W 0 D .P 0; n/ be two Wilson loop

diagrams. If there exist two vertex propagators pairs .p; v/ and .p0; v0/, with p 2 P ,

v 2 Vp and p0 2 P
0, v0 2 Vp0 such that

C.@p;v.W // D C.@p0;v0.W 0//;

then the corresponding cells †.W / and †.W 0/ share a codimension 1 boundary in

GR;�0.k; n/.

This is a slightly weaker condition than requiring the boundary diagrams them-
selves to be equal. Certainly it can happen that two boundary diagrams are equal; for
instance, recall the boundary shared between V1 and E6;R from Example 4.3. In this
case, is easy to see that

@.1;5/;6.V1/ D @.1;4/;4.E6;R/;

and hence the corresponding matrices C.@.1;5/;6.V1// and C.@.1;4/;4.E6;R// are equal
as well.

On the other hand, recall the “obvious” boundary between V1 and P1 given in
Example 4.4: while we do have an equality C.@.1;5/;2.V1// D C.@.4;6/;4.P1// at the
level of the matrices, the boundary diagrams @.1;5/;2.V1/ and @.4;6/;4.P1/ are not
equal:

@.1;5/;2.V1/ D

�1

2

3 4

5

6

; @.4;6/;4.P1/ D

�1

2

3 4

5

6

(12)
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However, note that the two boundary diagrams only differ in one propagator, and we
can obtain one from the other by “sliding” the boundary propagator along half the
length of an edge.

Remark 4.12. This “sliding” of the boundary propagator yielding an equivalent dia-
gram is a general phenomenon: if we have two Wilson loop diagrams

W D .Q [ .i; i C 2/; n/ and W 0 D .Q [ .i � 1; i C 1/; n/;

then the boundary diagrams @.i;iC2/;i.W / and @.i�1;iC1/;iC1.W 0/ differ by a half-
edge slide and the boundary matrices are equal.

Graphical Prompt 4.11 was originally proposed as a method of identifying all
shared boundaries between pairs of admissible Wilson loop diagrams. However, direct
computation yields examples of shared boundaries which are not seen by this graph-
ical approach. We give two examples to illustrate this phenomenon: Example 4.13,
which was already known, and Example 4.14, which was only identified by the authors
when they started to systematically apply the tools of total positivity to this question.

Example 4.13. Let p be the propagator .1; 5/. This is a propagator present in both
V1 and V5. Consider the boundary diagrams

@p;2.V1/ D

�1

2

3 4

5

6

; @p;5.V5/ D

�1

2

3 4

5

6

:

The corresponding matrices are

C.@p;2.V1// D

�
�cq;1 �cq;2 0 0 cp;5 cp;6

cq;1 cq;2 cq;3 cq;4 0 0

�

and

C.@p;6.V5// D

�
cp;1 cp;2 0 0 �cr;5 �cr;6

0 0 cr;3 cr;4 cr;5 cr;6

�
;

where �; � 2 R
�. Even though these two boundary matrices are not equal, it is easily

verified that they have the same sets of independent column vectors. Thus they define
the same positroid, and hence the same 5-dimensional cell of GR;�0.2; 6/, corres-
ponding to the Le diagram

0 C 0 C

C C C
:
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Example 4.14. The positroid cells †.V1/ and †.E5;�/ correspond to the Le diagrams

0 C 0 C

C C C C
and C 0 C C

C 0 C C

respectively. Keeping Example 2.17 in mind, we see that they share a 5-dimensional
boundary, namely

C 0 0 C

C 0 C C
: (13)

This can be realized as the cell associated to a boundary diagram for each of the
diagrams V1, E5;L, and E5;R, but in a way that is completely missed by the graphical
representation. The three boundary diagrams which yield the Le diagram in (13) are

@.1;5/;5.V1/ D

�1

2

3 4

5

6

@.1;3/;3.E5;L/ D

�1

2

3 4

5

6

@.2;6/;3.E5;R/ D

�1

2

3 4

5

6

Unlike the example in equation (12), there is no obvious relationship between these
three diagrams.

For physicists, only the study of the boundaries obtained via boundary propag-
ators is of interest: they encode the spurious singularities of the integral 	 .W /. It is
therefore important to have a way of identifying all such boundaries.
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For the case k D 2, n D 6, the following result completely characterizes the shared
boundaries obtained from propagator moves.

Proposition 4.15. B is a 5-dimensional cell in W.2; 6/ satisfying B � †.W / \

†.W 0/ for two distinct Wilson loop diagrams W and W 0 if and only if

1. the cell B can be realized as the cell parametrized by some boundary diagram

@ Op; Ov. yW /, with yW an admissible Wilson loop diagram with 2 propagators on 6

vertices;

2. the minor @ Ov; Op. yW / corresponds to a simple pole of I. yW /.Z�/.

Proof. This is verified by direct calculation, by computing all the 5-dimensional cells
contained in W.2;6/ (as shown in Figure 6) and all the boundary diagrams for admiss-
ible Wilson loop diagrams with 2 propagators on 6 points.

In light of Proposition 4.15, and preliminary computations for higher k and n, we
make the following conjecture.

Conjecture 4.16. B is a .3k � 1/-dimensional cell in W.k;n/ satisfying B�†.W / \

†.W 0/ for two distinct Wilson loop diagrams W and W 0 if and only if

1. the cell B can be realized as the cell parametrized by some boundary diagram

@ Op; Ov. yW /, with yW an admissible Wilson loop diagram with k propagators on n

vertices;

2. the minor @ Ov; Op. yW / corresponds to a simple pole of I. yW /.Z�/.

Remark 4.17. W.2; 6/ is not simply the 6-skeleton of GR;�0.2; 6/. Indeed, each of
the cells †.Vi / admits a boundary in GR;�0.2; 6/ which cannot be realized as a the
cell of a boundary diagram. These are the dashed gray boundaries seen in Figure 6,
which are shared in GR;�0.2; 6/ only with cells that do not correspond to admissible
Wilson loop diagrams.

Remark 4.18. While the diagrams Ei;L and Ei;R both give rise to the same cell, Pro-
position 4.15 indicates that they share a boundary. This is the boundary labeled � in
Figure 6, and it will play an important role in Section 5 when we consider the cancel-
lation of spurious poles on codimension 1 boundaries. However, this 5-dimensional
cell lies on the boundary of the space W.2; 6/, as it is shared by the cells †.Ei;�/ and
†.NiC4/ only.

We conclude this section by providing a different interpretation of Example 4.14
in terms of propagator moves. Indeed, to be able to fully graphically predict the
geometric relationship between this boundary cell and the Wilson loop diagrams it
borders, one needs to step briefly into the world of inadmissible diagrams. We provide
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this as an example of the complexity present in the geometry even in this simple case,
not to advocate including non-admissible diagrams into the theory.

Example 4.19. Consider the non-admissible Wilson loop diagram

W 0 D

�1

2

3 4

5

6

:

Computing the positroid associated with W 0 yields the cell †.E5/. Direct computa-
tion shows that

C.@.1;5/;5.V1// D C.@.2;6/;3.W 0//;

i.e., according to Graphical Prompt 4.11 we would expect V1 and W 0 to share a bound-
ary. Indeed, if we draw the two boundary diagrams we obtain

@.1;5/;5.V1/ D

�1

2

3 4

5

6

�

�1

2

3 4

5

6

D @.2;6/;3.W 0/;

i.e., the two diagrams are related by the same “half-edge slide” propagator move seen
in equation (12).

Diagrams with crossing propagators are meaningless from a physical point of
view, but this suggests they may be a useful tool to study the combinatorics and geo-
metry of Wilson loop diagrams in the future.
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4.4. The homology of W .2 ; 6/

Figure 6 gives an insight into the geometry of the space W.2; 6/. In this section, we
discuss the geometry in more detail and compute the homology of this space. Note
that this is not the cohomology of the amplituhedron. Nor is it the homology of the
larger space W�.2; 6/ that is conjectured to be the preimage of the amplituhedron. We
only consider the positive subspace W.2; 6/ tiled by the positroid cells.

Recall from Section 3 that the Wilson loop diagrams define a subspace W�.2;6/ �

GR.2;7/ parametrized by the matrices C�.W /. The external data Z� 2 M.7;6/ defines
a projection

Z�W GR.2; 7/ ! GR;�0.2; 6/;

that can be restricted onto the subspace W�.2; 6/. The holomorphic Wilson loop

W2;6 D
X

W admis.,
2 props., 6 verts.

	 .W /.Z�/

assigns a volume to the projection Z�.W�.2; 6//.
Recall from Definition 2.23 that

W.2; 6/ D
[

W admis.,
2 props., 6 verts.

†.W /:

The Le diagrams associated to these cells are listed in Table 1. By counting the C

symbols in each Le diagram, we see that W.2; 6/ is a 6-dimensional submanifold of
GR;�0.2; 6/. The following facts about W.2; 6/ follow by direct computation.

1. There are six 6-dimensional cells in GR;�0.2; 6/ that are not part of W.2; 6/.
These are denoted Ni in Figure 5.

2. Also, there are six 5-dimensional cells in GR;�0.2; 6/ lying on the boundaries
between Ni and NiC1 which are also not in W.2; 6/.

3. All other cells of dimension � 5 in GR;�0.2; 6/ are contained in W.2; 6/.

4. The manifold W.2; 6/ is not closed. The boundary of the manifold consists of
exactly the twelve 5-dimensional cells indicated in Figure 6 that are shared by
exactly one cell defined by a Wilson loop diagram and a cell Ni .

While there are several conjectures about the homology of the amplituhedron [11],
there is little know about the preimage of this space before the projection imposed by
the external particle data, either in the BCFW or Wilson loop context. With the data
described above in hand, we are able to compute the homology of W.2; 6/ directly.
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Theorem 4.20. The homology groups of W.2; 6/ are as follows:

Hi .W.2; 6// D

´
R if i 2 0; 5;

0 else:

Proof. This result was obtained by direct computation, using Python and Sympy [25]
to obtain the basis sets for each positroid and to compare each pair of basis sets, and
the Chain Complexes module of the computer algebra system Sage [26] to compute
the homology. The code used by the authors is provided as an auxiliary file on arXiv.

The homology calculation for W.1; � 5/, is more straightforward, and can be
calculated by hand. Namely, every cell corresponding to a diagram in W.2; � 5/

shares at most one boundary with another cell corresponding to another diagram in
set. Furthermore, every codimension one boundary of said cell is a codimension one
boundary of exactly one other such cell.

Theorem 4.21. The homology groups of W.2; n/ with n � 5 are as follows:

Hi.W.1; n// D

´
R if i 2 0; 3

0 else:

Proof. First note the Le diagram associated to any diagram of the form

Wi;j D ..i; j /; n/

has the form

0 : : : 0 C C 0 : : : 0 C if j < n;

C 0 : : : 0 C C 0 : : : 0 if j D n;

where the Le diagram fits inside a 1 � n � 1 box. If j < n there are n � i boxes, with
plusses in the n � j , n � .j C 1/ and n � i boxes, counted from the left. If j D n

there are n � 1 boxes, with plusses in the first, n � i and n � .i C 1/ boxes, counted
from the left. Note, this implies that the cells †.Wi;j / are all 3-dimensional.

Second, note from [19, Section 3] that if j > i C 1 and i > j C 1 in the cyclic
ordering on Œn�, the cell corresponding to the diagram Wi;j D ..i; j /;n/, i.e., †.Wi;j /

shares a boundary with the cells †.W.iC1;j /, †.Wi�1;j /, †.Wi;j C1/ and †.Wi;j �1/.
Otherwise, without loss of generality, assume j D i C 1. This diagram shares a bound-
ary with the cells †.W.iC1;j C1/, †.Wi�1;j /, †.Wi;j C1/ and †.Wi�1;j �1/. Direct
calculation from the Le diagrams above show that these are all the codimension 1
boundaries of each of these cells.
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Since n � 5, for any Wi;j 2 W.1; n/, †.Wi;j / shares exactly one codimension
one boundary with exactly one other cell of the form †.Wl;m/. This fact, along with
the cyclic nature of the boundary sharing means that the cohomology is as desired by
direct calculation.

5. The cancellation of spurious poles

In this section, we return to the question posed in Section 3: verifying that the spurious
singularities of the Wilson loop diagrams with 2 propagators on 6 points cancel in
the holomorphic Wilson loop calculation given in (5). For a direct calculation of the
cancellation of spurious singularities for k D 1 and n � 5, see [19, Section 3].

Recall from Proposition 4.15 that in W.2; 6/

1. the non-degenerate boundaries @p;v.W / correspond to degree one factors of
R.W /.Z�/, that is, spurious poles of 	 .W /.Z�/ (these poles are denoted
�p;v.W /);

2. the limits lim�p;v.W /!0 C.W / correspond exactly to the codimension 1 bound-
aries of †.W / that are shared with some cell †.W 0/ with W 0 ¤ W . (Recall
that while the Wilson loop diagrams W and W 0 are different, their correspond-
ing positroid cells may be the same.)

In this section, we prove the following theorem.

Theorem 5.1. Let W be an admissible Wilson loop diagram in with 2 propagators

and 6 external particles. Let †0 be any 5-dimensional boundary of the 6-dimensional

cell †.W /. Then

X

@p;v.W 0/D†0

W 0 admiss.

Res
�p;v.W 0/!0

	 .W 0/.Z�/ D 0: (14)

In other words, we show that the residues of Res�p;v.W /!0 	 .W /.Z�/ cancel
exactly on the 5-dimensional cells lim�p;v.W /!0 C.W /. A direct corollary of this is
that the sum of the spurious poles cancel in the sum

W2;6 D
X

W admiss.
n verts, k props

	 .W /.Z�/

We begin with an outline of the proof, which is proved in three cases.

Case 1 considers the types of propagators moves described in Section 4.3. In
this simplest case, we consider two Wilson loop Diagrams W D .¹p; qº; 6/ and
W 0 D .¹p0; qº; 6/, where p and p0 are such that C.@p;v.W // D C.@p0;v0.W 0//. For
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a picture of the type of computations considered in this case, see Example 4.4. This
case captures the boundary between Pi and Vi , ViC2, ViC3, or ViC5; the boundaries
between Pi and EiC1;L, EiC2;R, EiC4;L, or EiC5;R; the boundaries between Vi and
Ei�1;R or EiC2;L; and the boundaries between Ei;R and Ei;L indicated in Figure 6.
The fact that †.Ei;R/ D †.Ei;L/ then explains why certain triples of the form †.Pi /,
†.Ej / and †.Vk/ share a common boundary.

Case 2 considers what happens when bringing together two propagators on a
boundary edge. In this case, one is not simply setting a single parameter to 0, but
instead setting a 2 � 2 minor of C.W / to 0. The actual calculation for this case
requires a change of basis in the integral. For a picture of the type of computations
considered in this case, see Example 4.13. This accounts for the three way boundary
between Vi , ViC2 and ViC4 indicated in Figure 6.

Case 3 handles the type of boundary highlighted in Example 4.14. As shown in
that example, there are two spurious poles of 	 .Vi /, namely �.i;i�2/;i�2.Vi/ and
�.i;iC2/;iC2.Vi/, that correspond to a 5-dimensional boundary of the cells †.Ei�2/

and †.Ei�3/ respectively. However, the fact that this boundary sits between these two
cells is missed by Graphical Prompt 4.11, indicating that something more complic-
ated is happening here. For a picture of the type of computations considered in this
case, see Example 4.14.

Proof of Theorem 5.1. Recall from (11) that for W D .¹p; qº; 6/, the integral 	 .W /

localized at Z� is given by

	 .W /.Z�/ D
F 1

p F 2
q

R.W /.Z�/
;

where the F b
p are defined in (10), and R.W /.Z�/ is computed directly after Defini-

tion 3.2. The proof proceeds by considering the three cases outlined above. Inspection
of Figure 6 shows that these cases are exhaustive.

Case 1. In this case, there exist a pair of Wilson loop diagrams W D .¹p; qº; 6/

and W 0 D .¹p0; qº; 6/ such that C.@p;v.W // D C.@p0;v0.W 0//. After localization, we
have �v;p.W / D �p;v and �v0;p0.W 0/ D �p0;v0 . Notice that jVp \ Vp0 j D 3, and that
¹vº D VpnVp0 and ¹v0º D Vp0 nVp . In this case, it follows from the definition of �b;a

that

�p;v D ��p0;v0 :

Also, in the limit �p;v ! 0, we may write Z
�
� as a linear combination of the Z

�
w with

w 2 Vp . That is,

Z�
� D

X

w2Vp Iw¤v

˛wZ�
w ; ˛w 2 R: (15)
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In this limit, for any w 2 Vp \ Vp0 , it follows from (15) that

�p;w D ˛whip.ip C 1/jp.jp C 1/i

and

�p0;w D �˛whip0.ip0 C 1/jp0.jp0 C 1/i:

We can use this to write

lim
�p;v!0

F 1
p D

� X

w2Vp\Vp0

˛wZ�
w

�4

hip.ip C 1/jp.jp C 1/i4:

Similarly,

lim
�p0;v0 !0

F 1
p0 D

� X

w2Vp\Vp0

�˛wZ�
w

�4

hip0.ip0 C 1/jp0.jp0 C 1/i4:

Therefore, after making the above substitutions at the appropriate limits, one sees
exactly that

lim
�p;v!0

.	 .W /.Z�// D � lim
�p0;v0 !0

.	 .W 0/.Z�//:

Case 2. In this case, and the next, one needs to first perform a careful change of
variables before localization. Then one may proceed by calculations in the same vein
as in Case 1. In this case, we consider what happens when bringing two propagat-
ors to meet on an edge, as in the boundary diagram @.i;iC4/;i.Vi / for example. We
begin by rewriting the matrices C�.Vi /, C�.ViC2/ and C�.Vi�2/ such that the minors
�i;.i;iC4/.Vi /, �iC2;.iC2;i/.ViC2/ and �i�2;.i�2;iC2/.Vi�2/ can each be expressed
by a single variable. In other words, we chose ˛; ˛C; ˛�; f; fC and f� to be real
variables such that

C�.Vi / D

�
1 � � � c1;i c1;iC1 � � �

1 � � � ˛c1;i ˛c1;iC1 C fC � � �

�
;

C�.ViC2/ D

�
1 � � � c1;iC2 c1;iC3 � � �

1 � � � ˛Cc1;iC2 ˛Cc1;iC3 C f� � � �

�
;

C�.Vi�2/ D

�
1 � � � c1;i�2 c1;i�1 � � �

1 � � � ˛�c1;i�2 ˛�c1;i�1 C f � � �

�
:

Under this notation, the common 5-dimensional cell, †.Vi / \ †.ViC2/ \ †.Vi�2/,
can be represented by the limit

lim
f !0

C�.Vi / D lim
fC!0

C�.ViC2/ D lim
f�!0

C�.Vi�2/:
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Rewriting the integrals 	 .Vi /.Z�/ under this new parametrization, we obtain

	 .Vi / D

Z
d c1;i�2 d c1;i�1 d c1;i d c1;iC1 d ˛ d f d c2;iC2 d c2;iC3

c1;i�2c1;i�1c1;i c1;iC1 f̨ c2;iC2c2;iC3

ı8j8.C�.Vi / � Z�/;

	 .ViC2/.Z�/ D

Z
d c1;i d c1;iC1 d c1;iC2 d c1;iC3 d ˛C d fC d c2;iC4 d c2;iC5

c1;ic1;iC1c1;iC2c1;iC3˛CfCc2;iC4c2;iC5

ı8j8.C�.ViC2/ � Z�/;

	 .Vi�2/.Z�/ D

Z
d c1;i�2 d c1;i�1 d c1;i d c1;iC1 d c2;i�4 d c2;i�3 d ˛� d f�

c1;i�2c1;i�1c1;ic1;iC1c2;i�2c2;i�3˛�f�

ı8j8.C�.Vi�2/ � Z�/:

In the above calculation, since the respective boundaries send the 2 � 2 minors
�i;.i;iC4/.Vi /, �iC2;.iC2;i/.ViC2/, and �i�2;.i�2;iC2/.Vi�2/ to 0, one cannot employ
the computational trick of (15) to compare F 1

p to F 1
p0 . Therefore, we need to introduce

a change of parametrization of C�.ViC2/ and C�.Vi�2/. Given an appropriate choice
of ordering of the propagators of each diagram,2 define

C
0
�.ViC2/ D

"
�˛C

1�˛C

1
1�˛C

1 0

#
C�.ViC2/: (16)

and

C
0
�.Vi�2/ D

"
1 0

�˛�

1�˛�

1
1�˛�

#
C�.Vi�2/: (17)

Notice that the matrices limfC!0 C 0
�.ViC2/ and limf�!0 C 0

�.Vi�2/ have the same
form as limf !0 C�.Vi /. That is, all three matrices have 0s, 1s and variables in the
same entries.

Let 	 .C 0
�.ViC2// and 	 .C 0

�.Vi�2// be the two integrals 	 .ViC2/ and 	 .Vi�2/

rewritten in terms of the variables entries of C 0
�.ViC2/ and C 0

�.Vi�2/ respectively.
Evaluating these integrals (as in Case 1, or as demonstrated explicitly in Example 3.3),
we get that

lim
fC!0

	 .ViC2/ lim
fC!0

	 .C 0
�.ViC2// D

�1

1 � �2;i=�1;i

lim
f !0

	 .Vi/

2Note that this process requires a choice of ordering on the propagators of Vi . We use the
convention that the propagator .j; j C 2/ defines the second row of the matrix C�.Vj / for
j D i or j D i C 2, while the same propagator defines the first row of the associated matrix
when j D i � 2.
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and

lim
f�!0

	 .Vi�2/ lim
f�!0

	 .C 0
�.Vi�2// D

�2;i=�1;i

1 � �2;i=�1;i

lim
f !0

	 .Vi /:

Therefore, limf !0 	 .Vi/ C limfC!0 	 .ViC2/ C limf�!0 	 .Vi�2/ D 0, as desired.

Case 3. The final case is very similar to the second case, but with a different change of
variables which exploits the fact that †.Ei;R/ D †.Ei;L/. The purpose of this change
of variables is to write 	 .Ei;R/ and 	 .Ei;L/ under a common parametrization of this
cell, and thus associate a single integral to it. We introduce a new matrix C�.Ei /,
given by

C�.Ei / D

�
1 � � � c1;iC1 c1;iC2 c1;iC3 c1;iC4 0 � � �

1 � � � 0 c2;iC2 c2;iC3 c2;iC4 c2;iC5 � � �

�
;

where the cb;a are real variables as usual. Note that this matrix is yet another para-
metrization of the cell †.Ei /. Write

	 .C�.Ei// D

Z

.R4/2

Z3

N3

ı8j8.C�.Ei/ � Z�/;

where

Z3 WD d c1;iC1 d c1;iC2 d c1;iC3 d c1;iC4 d c2;iC2 d c2;iC3 d c2;iC4 d c2;iC5;

N3 WD c1;iC1c2;iC5c2;iC2c1;iC4.c1;iC2c2;iC3 � c2;iC2c1;iC3/

� .c1;iC3c2;iC4 � c1;iC4c2;iC3/:

By direct calculations of the form employed in Case 1, we see that

lim
�1;iC4!0

	 .C�.Ei//.Z�/ D � lim
c.i;iC2/;i !0

	 .ViC2/;

lim
c2;iC2!0

	 .C�.Ei// D � lim
c.iC3;iC5/;i !0

	 .ViC3/:

However, 	 .C�.Ei// is a different integral than either 	 .Ei;R/ or 	 .Ei;L/. The rest
of this proof proceeds by showing that

	 .C�.Ei// D 	 .Ei;R/ C 	 .Ei;L/:

We proceed by a change of variables as in Case 2. We rewrite the integrals 	 .Ei;R/

and 	 .Ei;L/ in terms of the parametrization of †.Ei / given by the matrix C�.Ei /.
As before, we fix an ordering of the propagators in both C�.Ei;R/ and C�.Ei;L/. Let
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the first row of both matrices correspond to the propagator .i C 1; i C 4/. Under this
choice of ordering, write

C
0
�.Ei;R/ D

"
0 1

c2;iC1

c2;iC1�c1;iC1

�c1;iC1

c2;iC1�c1;iC1

#
C�.Ei;R/

and

C
0
�.Ei;L/ D

"
c2;i�1

c2;i�1�c1;i�1

�c1;i�1

c2;i�1�c1;i�1

0 1

#
C�.Ei;L/:

Under these changes of variables, the matrices C
0
�.Ei;R/ and C

0
�.Ei;L/ have the same

form as C�.Ei/. That is, they all have 0s, 1s and variables in the same positions.3

Let 	 .C 0
�.Ei;R// and 	 .C 0

�.Ei;L// be the integrals 	 .Ei;R/ and 	 .Ei;R/ written in
terms of the variables in the parametrization C�.Ei/. By performing the appropriate
changes of variables (as in Case 2), we obtain

	 .C 0
�.Ei;R// C 	 .C 0

�.Ei;L// D 	 .C�.Ei//;

as required.

Corollary 5.2. All spurious poles cancel out in the sum

W2;6 D
X

W admiss.
n verts, k props

	 .W /.Z�/:

Proof. This follows directly from Theorem 5.1.

Remark 5.3. There are 6 cells (each lying on the boundary of a cell of the form
†.Vi /), that do not appear in the calculations of Theorem 5.1 at all. These are pre-
cisely the 5-dimensional cells which cannot be realized as cells associated to boundary
diagrams of Wilson loop diagrams.

6. The intricate structure of cancellation

We conclude with a discussion of some of the structure of the geometry of the Wilson
loop diagrams uncovered by the calculation performed in this paper, and outline the
future work needed to fully understand this structure. Note that the case of k D 1,

3The interested reader is invited to multiply out the expressions for C
0
�.Ei;�/ and verify this

for themselves!
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n � 5, contemporaneously explained in [19], is simpler and does not reveal these
structures.

For instance, in this paper, we show that in there are positroid cells that are asso-
ciated to multiple Wilson loop diagrams, and that, in this case, both these diagrams
are needed in order to perform the calculation of spurious poles. In order to make
further progress on understanding the cancellation of spurious poles, it is necessary to
understand the structure of these postroid cells and characterize the associated Wilson
loop diagram. In [7, Theorem 1.18] the authors give a characterization of which dia-
grams define the same positroid cell. In subsequent work, [3, Theorem 3.25], the
authors show that these are the only diagrams corresponding to the same cells. Fur-
thermore, [3, Corrollary 3.16] counts the number of Wilson loop diagrams associated
to each cell. Without this context, one cannot generalize the phenomenon observed
here that Ei;R and Ei;L both correspond to the same positroid cell (see Table 1). This
is necessary both to generalize the cancellation and the cohomology result.

In this paper, we observe that not all boundaries of Wilson loop diagrams cor-
respond to those given by Graphical Prompt 4.11 as previously conjectured. In order
to understand the boundaries, one needs to develop a means of translating between
the Wilson loop diagrams to the Grassmann necklace and Le diagram of †.W /.
This is done in two stages in subsequent work. First, in [4, Algorithm 3.7] gives an
algorithm to translate a Wilson loop diagram to the correct Grassmann Necklace.
Then, [2, Algorithm 2] translates from Grassmann necklaces to Le diagrams. How-
ever, aside from this algorithm, this algorithm identifies the positroid cell associated
to each Wilson loop diagram. To date, there is no algorithmic manner to identify the
boundaries on which each spurious pole vanishes.

Furthermore, in order to generalize the cancellation of singularities, one first needs
a better understanding of the geometry of the vanishing locus of the polynomial
R.W /. The structure of the polynomial R.W / is understood in subsequent work, [4,
Proposition 5.3], where the authors discover that the polynomial R.W / is the product
of the square free factors of the minors of the matrix C.W / defined by the elements
of the Grassmann necklace of †.W /. This has the advantage of implying that the
factors of R.W / vanish on the boundary of the cells †.W / [5, Proposition 3.11]. In
order to ensure cancellation of singularities on the boundaries, one needs to consider
the vanishing locus of the factors of R.W / on the boundaries. Subsequent work, [5,
Theorem 3.12], shows that, for factors with codimension one vanishing locus, the
vanishing locus is dense in the appropriate boundary. This work also shows that in the
general codimension one cancellation calculation, one only needs to consider contri-
butions of either two or three diagrams for each factor.

While the calculations of this paper are only concerned with the cancellation of
codimension one spurious singularities. However, there are also spurious singularities,
as shown in this paper, that have higher codimension. To date, there are no results
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about the cancellation of higher order singularities. In fact, identifying which factors
of R.W / give rise to higher codimension singularities is only possible due to the
subsequently published work: [23, Theorem 3.2] and [5, Theorem A.8].

In order to compute the cohomology of the geometric subspace of GR;�0.k; n/

defined by general W.k; n/, one needs to know the dimension of the cells †.W /.
Though conjectured to be 3k, this is shown in subsequent work, [23, Theorem 3.2]
or [4, Theorem 4.12].

Finally, one cannot compute a general cohomology of this subspace without under-
standing when the subspace defined by W.k;n/ is an open manifold (e.g., in W.2; 6/)
and when it is not (e.g., W.1;� 5/). In particular, one needs to classify when there are
cells †.W / that have a codimension boundary that is not shared with a cell defined
by another Wilson loop diagrams, as illustrated by the Ni in Figure 6. In [5] there is
some characterization of this phenomenon, but it is by no means complete.
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[25] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
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