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Topological quantum field theory and

polynomial identities for graphs on the torus

Paul Fendley and Vyacheslav Krushkal

Abstract. We establish a relation between the trace evaluation in SO.3/ topological quantum

field theory and evaluations of a topological Tutte polynomial. As an application, a generaliza-

tion of the Tutte golden identity is proved for graphs on the torus.

1. Introduction

The Witten–Reshetikhin–Turaev topological quantum field theory (TQFT) associates

invariants to ribbon graphs in 3-manifolds. A part of this theory is an invariant of

graphs on surfaces: given a graph G � †, the trace evaluation is the invariant asso-

ciated to the embedding G � † � ¹�º � † � S1. We study the trace evaluation for

SO.3/ TQFTs.

For planar graphs, the SO.3/ quantum evaluation is known to equal the flow poly-

nomial FG.Q/, or equivalently the chromatic polynomial �G�.Q/ of the dual graph.

The parameter Q is related to level of the TQFT, as reviewed in Section 2. In [11] we

showed that this quantum-topological approach gives a conceptually and calculation-

ally useful framework for analyzing the relations satisfied by the chromatic and flow

polynomials of planar graphs. In particular, we gave a proof in this setting of the Tutte

golden identity [25]: given a planar triangulation T ,

�T .� C 2/ D .� C 2/�3 V.T /�10.�T .� C 1//2; (1.1)

where V.T / is the number of vertices of the triangulation, and the graph parameters

both involve the golden ratio � D 1C
p

5
2

. The dual formulation in terms of the flow

polynomial states that for a planar cubic graph G, FG.� C 2/ D �E .FG.� C 1//2:

In [11] we also showed that the golden identity may be thought of as a consequence of

level-rank duality between the SO.3/4 and the SO.4/3 TQFTs, and the isomorphism
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so.4/ Š so.3/ � so.3/. (Consequences of SO level-rank duality for link polynomials

have also been studied in [21].)

The main purpose of this paper is to formulate an extension of the results on

TQFT and polynomial invariants to graphs on the torus; in particular we prove a

generalization of the golden identity. Some of the motivation for this work has its

origins in lattice models in statistical mechanics, where it has long been known (see,

e.g., [10, 23]) that when deriving identities for partition functions on the torus, one

must typically sum over “twisted” sectors. Twisted sectors are more complicated ana-

logues of the spin structures (cf. [7]) familiar in field theories involving fermions.

Such sectors are described naturally in TQFT, as for example can be seen in the study

of lattice topological defects [1,2]. We show how the golden identity is generalised to

the torus precisely by considering such sums over analogous sectors. In a forthcom-

ing paper [13] we will elaborate further on the connections to statistical mechanics,

in particular on the relation with the Pasquier height model [23].

The chromatic and flow polynomials are 1-variable specializations of the Tutte

polynomial, known in statistical mechanics as the partition function of the Potts model.

Relations between the SO.3/ quantum evaluation of planar graphs, the chromatic

and flow polynomial, and the Potts model are discussed in detail in [12]. From the

TQFT perspective, the case of graphs embedded in the plane (or equivalently in the

2-sphere S2) is very special in that the TQFT vector space associated to S2 is C. For

surfaces † of higher genus, they are vector spaces (of dimension given by the Verlinde

formula) which are part of the rich structure given by the .2 C 1/-dimensional TQFT.

Multi-curves, and more generally graphs embedded in †, act as “curve operators” on

the TQFT vector space, and our goal is to analyze the trace of these operators.

For the SO.3/ TQFT, this invariant of graphs on surfaces satisfies the contraction-

deletion rule, familiar from the study of the Tutte polynomial. A non-trivial feature

on surfaces of higher genus is that the “loop value” depends on whether the loop is

trivial (bounds a disk) in the surface, or whether it wraps non-trivially around the

surface. In the latter case, the invariant is not multiplicative under adding/removing a

loop, as opposed to the planar case. This behavior is familiar in generalizations of the

Tutte polynomial which encode the topological information of the graph embedding

in a surface. The study of such “topological” graph polynomials was pioneered by

Bollobás and Riordan [6]; a more general version was introduced in [18]. To express

the SO.3/ trace evaluation for graphs on the torus we need a further extension of the

polynomial, defined in Section 3. In Theorem 4.4 we show that the quantum invari-

ant equals a sum of values of the polynomial, where the sum is parametrized by labels

corresponding to the TQFT level. Here individual summands (evaluations of the topo-

logical Tutte polynomial) correspond to TQFT sectors.

The identity (1.1) for the chromatic polynomial and its analogue for the flow poly-

nomial in general do not hold for non-planar graphs. In fact, it is conjectured [3] that
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the golden identity for the flow polynomial characterizes planarity of cubic graphs.

Our result (Theorem 5.1) involves invariants of graphs derived from TQFT, or equi-

valently evaluations of graph polynomials, and it recovers the original Tutte’s identity

for planar graphs.

A different “quantum” version of the golden identity, for the Yamada polyno-

mial of ribbon cubic graphs in R3, was established in [4]. It is an extension of the

Tutte identity from the flow polynomial of planar graphs to the Yamada polynomial

of spatial graphs, which may be thought of as elements of the skein module of S2 (iso-

morphic to C). Our result manifestly involves graphs on the torus and the elements

they represent in the associated TQFT vector spaces. We expect that an extension of

our results holds on surfaces of genus > 1 as well, although computational details on

surfaces of higher genus are substantially more involved.

To date, the study of topological Tutte polynomials of graphs on surfaces has

been carried out primarily in the context of topological combinatorics. While there

are applications to quantum invariants of links (cf. [8, 20]) and to noncommutative

quantum field theory [17], to our knowledge the results of this paper provide the first

direct relation between TQFT and evaluations of graph polynomials on surfaces.

We emphasize that the relation between evaluations of the topological flow poly-

nomial and the TQFT trace, the main result of this paper, is specific to values of

the graph polynomial corresponding to roots of unity. This is a new feature on the

torus – recall that in the planar case the SO.3/ quantum evaluation (or “loop evalu-

ation,” cf. [11, Lemma 2.5]) of planar graphs holds for any value of the parameter.

It is worth noting that the results of this paper apply to a topological flow polyno-

mial for graphs in a fixed surface, the torus (see [18] and Section 3 below). This con-

text is different from that of the Bollobás–Riordan polynomial [6] of ribbon graphs:

the underlying surface in the ribbon graph setting (and the topological invariants asso-

ciated to it) depend on a specific graph, and in particular the surface may change when

the contraction-deletion rule is applied. Thus, our results do not have an immediate

analogue for the Bollobás–Riordan polynomial.

After briefly reviewing background information on TQFT in Section 2, we define

the relevant topological Tutte polynomial for graphs on the torus in Section 3. The

relation between TQFT trace and evaluation of the graph polynomial is stated and

proved in Section 4. The generalization of the golden identity for graphs on the torus

is established in Section 5.
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2. Background on TQFT

We start with a brief introduction to the Temperley–Lieb algebra and the Jones–Wenzl

projectors [15, 28]; the reader is referred to [11] for a more detailed discussion, and

to [16] for an introduction to the calculus of quantum spin networks.

The Temperley–Lieb algebra in degree n, TLn, is an algebra over CŒd � generated

by 1; E1; : : : ; En�1 with the relations [24]

E2
i D Ei ; Ei Ei˙1Ei D

1

d2
Ei ; Ei Ej D Ej Ei for ji � j j > 1: (2.1)

The construction of TQFTs relies on setting the indeterminate d to a special value

d D 2 cos �
lC2

where l is a positive integer called the level.

The elements of TLn may be represented pictorially as linear combinations of

1-dimensional submanifolds in a rectangle R, where the submanifolds are considered

equivalent if they are isotopic relative to the boundary. Each submanifold meets both

the top and the bottom of the rectangle in exactly n points. The multiplication then

corresponds to vertical stacking of rectangles. The generators of TL3 are illustrated in

Figure 1.

1 D E1 D
1
d

E2 D
1
d

Figure 1. Generators of TL3.

In this setting, the relation E2
i D Ei implies that the element in TLn corresponding

to a picture in R with a simple closed curve C is equivalent to the element with the

curve C deleted and multiplied by d .

To fix the notation, recall the definition of quantum integers Œn�, and the evaluation

of the n-colored unknot, �n:

Œn� D
A2n � A�2n

A2 � A�2
; �n D Œn C 1�:

We will interchangeably use the parameters q; A, as well as the loop value d and

a graph parameter Q, related as follows:

q D A4; d D A2 C A�2; Q D d2 : (2.2)

The Jones–Wenzl projectors pn 2 TLn are certain idempotent elements of the

Temperley–Lieb algebra, underlying the construction of SU.2/ topological quantum
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field theories and quantum spin networks. The second Jones–Wenzl projector p2 D

1 � E1 is illustrated on the left in equation (2.4). A recursive formula [16] giving the

rest is

pn D pn�1 �
d �n�2

�n�1

pn�1 En�1 pn�1: (2.3)

This recursion relation is illustrated in Figure 2. A defining feature of the projectors is

that they are “killed by turnbacks,” that is Eipn D pnEi D 0 for each i D 1; : : : ;n � 1.

At values corresponding to q a root of unity: specifically d D 2 cos.�/;� D �j=n C 1,

the trace of pn also equals zero. In other words, for these values of the parameter

pn is in the trace radical of the Temperley–Lieb algebra; for more details see [11,

Sections 2 and 5.2]. The 4th projector p4 plays a crucial role in the proof of the Tutte

golden identity, as explained in [11] and in Section 5.1 of this paper.

pn D n 2

n 1

pn 1

pn 1

pn 1

Figure 2. A recursive formula for the Jones–Wenzl projectors.

2.1. SU.2/ TQFTs

We use the construction of SU.2/ Witten–Reshetikhin–Turaev TQFTs, given in [5].

Given a closed orientable surface †, the SU.2/, level r � 2 TQFT vector space will

be denoted Vr .†/, where A D e2�i=4r . (Note that in the TQFT literature the notation

V2r is sometimes used instead. Also note that, in the physics literature, labels are often

divided by 2 and called “spin,” so that odd and even labels correspond to half-integer

and integer spins respectively.)

The main focus of this paper is on the torus case, † D T , and in this case the

notation Vr WD Vr .T / will be used throughout the paper. Consider T as the boundary

of the solid torus H . Vr has a basis ¹e0; : : : ; er�2º, where ej corresponds to the core

curve of H , labeled by the j -th projector pj . This basis will be used in the evaluation

of the trace in Section 4.1.

The discussion in the rest of this section applies to surfaces † of any genus.

A curve 
 in † acts as a linear operator on Vr.†/, so associated to 
 is an element of

V �
r .†/ ˝ Vr.†/. Given a graph G � †, we consider it as an SU.2/ quantum spin net-

work in † by turning each edge into a “double line.” Namely, as in [11] we label edges

by the second Jones–Wenzl projector, up to an overall normalization. Concretely, each
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edge e of G is replaced with a linear combination of curves as indicated in (2.4), and

the curves are connected without crossings on the surface near each vertex.

ˆ ˆ
D

1

d

e

d (2.4)

In this map, a factor d .k�2/=2 is associated to each k-valent vertex, so that for example

the 4-valent vertex in (2.4) is multiplied by d . The overall factor for a graph G

is the product of the factors d .k.V /�2/=2 over all vertices V of G. Therefore, the

total exponent equals half the sum of valencies over all vertices, minus the number

of vertices, i.e., minus the Euler characteristic of G. (This count does not involve

faces – so this is the Euler characteristic of the graph G, and not of the underlying

surface †.) Using this map ˆ, the graph is mapped to a linear combination of mul-

ticurves in the surface †. We thus may consider graphs G on the torus as elements

ˆ.G/ 2 Hom.Vr ; Vr/.

To illustrate the calculation of ˆ.G/, consider a simple example where the graph

G consists of a single vertex and a single edge which forms a non-trivial loop on the

torus, as shown in Figure 3. (Calculations for more general graphs on the torus are

given in Sections 4.1 and 4.3.)

ˆ

j
G

Dj j j
1

d

Figure 3. Example of an evaluation of ˆ.

Note that the calculation in Figure 3 is specific to the chosen basis. That is, in this

calculation the solid torus bounded by T is chosen so that the loop given by G bounds

a compression disk in it; in particular, the core of the solid torus intersects this disk

in a single point. Other loops on the torus will have different evaluations with respect

to this basis. The focus in this paper (explained in more detail in Section 4) is on the

trace of ˆ.G/ which of course is basis independent.

Applying ˆ in this example amounts to replacing the edge of the graph with the

2nd projector, which equals the linear combination of the two terms shown in the

figure. The first term has two parallel, non-trivial 1-labeled (or “spin 1=2”) loops,

while the last term has a single trivial loop on the torus.



TQFT and polynomial identities for graphs on the torus 283

To determine the action of non-trivial loops, recall a basic calculation for the

colored Hopf link

m
n n

D
Œ.m C 1/.n C

Œn C

(2.5)

Thus, ˆ.G/ with respect to the basis ¹e0; : : : ; er�2º, of Vr is given by the diagonal

matrix with the .j; j /-th entry given by
�

Œ2.j C1/�
Œj C1�

�2
� 1. It is worth noting that in this

special case formula (2.5) could be applied directly to G, considered as a 2-labelled

loop, giving the diagonal entry Œ3.j C1/�
Œj C1�

which matches the calculation above using ˆ.

Returning to the general discussion of graphs on the torus, given a graph G � T ,

consider the following local relations (1)–(3), illustrated in Figures 4 and 5.

e

Figure 4. Relation (1).

(1) If e is an edge of a graph G which is not a loop, then G D G=e � Gne, as

illustrated in Figure 4.

(2) If G contains an edge e which is a trivial loop, that is a trivial loop that bounds

a disk in T , then G D .Q � 1/ Gne, as in Figure 5. (In particular, this relation applies

if e is a trivial loop not connected to the rest of the graph.)

(3) If G contains a 1-valent vertex as in Figure 5, then G D 0.

e D .Q 1/ e

Figure 5. Relations (2) and (3).

Replacing the edge labeled e in each figure with the linear combination of curves,

defined by the second JW projector, one checks that the relations (1)–(3) hold for

ˆ.G/ in Hom.Vr ; Vr /, where the parameters A; Q are related as in (2.2), and the

value of A in the definition of Vr is e2�i=4r .
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Remark 2.2. In the planar case, the map gives a homomorphism from the chromatic
algebra C

Q
n , defined in [11], to the Temperley–Lieb algebra TLd

2n, with the paramet-

ers related by Q D d2. This map is used to show [11, Lemma 2.5] that for planar

graphs G, up to a normalization the quantum evaluation equals the flow polynomial

of G or equivalently the chromatic polynomial of the dual graph G�. Indeed, rela-

tions (1)–(3) are sufficient for evaluating any graph in the plane, and these relations

are precisely the defining relation for the chromatic polynomial (of the dual graph). On

the torus, or any other surface of higher genus, the “evaluation” is not an element of

C but rather an element of the higher-dimensional TQFT vector space Hom.Vr ; Vr/.

A crucial feature underlying the construction of TQFTs is that for each r , in addi-
tion to (1)–(3) there is another local relation corresponding to the vanishing of the

corresponding Jones–Wenzl projector. For example, consider the case r D 5, import-

ant in the proof of the golden identity below. In this case, graphs G� †, considered as

elements of the vector space Hom.V5.†/; V5.†//, satisfy the local relation in (2.6).

D C

GX GI GE

(2.6)

This relation (discovered in the setting of the chromatic polynomial of planar graphs

by Tutte [26]) corresponds to the 4th JW projector, see [11, Section 2] for more details.

Remark 2.3. In fact, the Turaev–Viro SU.2/ TQFT associated to a surface †, iso-

morphic to Hom.Vr.†/;Vr.†//, can be defined as the vector space spanned by multi-

curves on †, modulo the local relations given by “d -isotopy” and the vanishing of

the JW projector. (See [14, Theorem 3.14 and Section 7.2].) The SO.3/ theory may

be built by considering the “even labels” subspace spanned by graphs modulo rela-

tions (1)–(3) above, and the JW projector.

3. Polynomial invariants of graphs on surfaces

Let H be a graph embedded in the torus T . Let n.H/ denote the nullity of H , that is

the rank of the first homology group H1.H I Z/. The rank1 r.H � T / of the image of

the map i�W H1.H I Z/ ! H1.T I Z/ Š Z
2, induced by the inclusion H � T , is either

1Note that this topological rank notion reflects information about the embedding of the

graph in the torus, and it is different from other notions of rank considered in graph theory.
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0, 1 or 2. Consider the following homological invariants:

s.H/ WD

´

1 if r.H � T / D 2 (i.e., H1.H/ ! H1.T / is surjective),

0 otherwise:
(3.1)

s?.H/ WD

´

1 if r.H � T / D 0 (i.e., H1.H/ ! H1.T / is the zero map),

0 otherwise.
(3.2)

Let c.H/ be the number of rank 0 connected components of H , that is the number of

connected components H .i/ such that r.H .i/ � T / D 0.

In case r.H � T / D 1, let Nc.H/ be the number of “essential” components of H ,

i.e., the number of components H .i/ such that H1.H .i// ! H1.T / is non-trivial.

(Note that for each such component, the image of the map on homology is the same

rank 1 subgroup of H1.T /.) If r.H � T / is 0 or 2, Nc.H/ is defined to be zero.

Consider the following polynomial, encoding the homological information of the

embedding of a graph G in the torus, defined by the state sum

zPG.X; Y; W; A; B/ WD
X

H�G

.�1/E.G/�E.H/X c.H/Y n.H/W Nc.H/As.H/Bs?.H/; (3.3)

where the summation is taken over all spanning subgraphs of G, E.G/ denotes the

number of edges of G, and .�1/E.G/�E.H/ provides a convenient normalization. Note

that our convention for the sign and the variables differs from the usual convention

for the Tutte polynomial. The usual proof (cf. [18, Lemma 2.2]) shows that this poly-

nomial satisfies the contraction-deletion relation zPG D zP
G=e

� zPGXe for non-loop

edges. (Note that, as in [18], the graphs G; G=e; G X e are considered as subsets of a

fixed surface. Throughout this paper the surface is the torus T .)

Remark. The polynomials defined in [6, 18] are specializations of zP in the case of

graphs embedded in the torus.

To establish a relation with the trace evaluation in TQFT, consider the specializa-

tion of zP obtained by setting X D B D 1:

PG.Y; W; A/ WD
X

H�G

.�1/E.G/�E.H/Y n.H/W Nc.H/As.H/: (3.4)

This is a generalization of the flow polynomial, including variables W and A which

reflect the topological information of how the graph G wraps around the torus. In

particular, if G is homologically trivial on the torus (the rank r.G � T / is zero),

PG.Y;W;A/ recovers the flow polynomial FG.Y /. We thus name PG the “topological

flow polynomial.”

Three key examples are illustrated in Figure 6. For the graph consisting of k dis-

joint, trivial loops on the torus in Figure 6 (a), the polynomial P D .Y � 1/k . For the
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Figure 6

graph consisting of k non-trivial loops in Figure 6 (b), P D .Y W � 1/k . The calcu-

lation is simple; for example the subgraphs H are

C C2

and so here the polynomial is

D Y 2W 2 � 2Y W C 1 D .Y W � 1/2: (3.5)

Finally, the polynomial of the graph in Figure 6 (c) is computed as follows:

C C C

D AY 2 � 2Y W C 1: (3.6)

3.1. Duality

The chromatic and flow polynomials �; F are 1-variable specializations of the Tutte

polynomial, satisfying the relation FG.Q/ D Q�1�G�.Q/, where G is a planar graph

and G� is its dual. We can extend this duality to the torus by defining the “topological

chromatic polynomial.” Namely, we specialize zPG in (3.3) to

CG.X; U; B/ WD
X

H�G

.�1/E.H/X c.H/U Nc.H/Bs?.H/: (3.7)

When r.H � T / D 0, CG.X;U;B/ is the chromatic polynomial �G.X/. Analogously

to the proof of [18, Theorem 3.1], one shows that for a cellulation G � T (i.e., when
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each face of the embedding is a 2-cell),

PG.Y; W; A/ D CG�.Y; Y W; AY /; (3.8)

where G� � T is the dual graph. This topological chromatic polynomial is thus dual

to the topological flow polynomial PG from (3.4).

4. TQFT trace as an evaluation of a graph polynomial

4.1. TQFT trace

Given an odd r and a multi-curve 
 � T , the trace of 
 is defined as Zr.T � S1; 
/,

the quantum invariant of the banded link 
 in the 3-manifold T � S1 [5, 1.2]. Con-

cretely, it may be calculated as the trace of the curve operator in Hom.Vr ; Vr / with

respect to the basis discussed in Section 2. This basis is given by the core circle of

a fixed solid torus H , bounded by T , labeled with an integer 0 � j � r � 2. For a

graph G � T , the trace is defined by mapping G to a linear combination of multic-

urves using ˆ in (2.4) and then computing the trace of ˆ.G/.

While one could work with the full SU.2/ TQFT vector space Vr , the invariants

of graphs obtained by putting the 2nd Jones–Wenzl projector on the edges, as in (2.4),

naturally fit in the context of the SO.3/ theory. This corresponds to taking the sub-

space xVr of Vr , spanned by even labels. For the remainder of the paper, trr .G/ will

be evaluated as the trace of G considered as an operator in Hom. xVr ; xVr/. A basis

of xVr is given by the core circle ej of a solid torus bounded by T , labeled with an

even integer 0 � j � r � 2. The result of G applied to a basis element ej may be

computed by pushing G (considered as a quantum spin network with edges labeled

by 2) into the solid torus and re-expressing the result as a linear combination of ¹ej º

using the recoupling theory [16]. In the examples below the trace will be computed

using the expansion ˆ.G/ of G in terms of multi-curves; the multi-curves in ques-

tion will act diagonally on xVr with respect to the basis ¹ej ; 0 � j � r � 2; j evenº.

We emphasize that while multi-curves (consisting of “spin 1=2 loops,” or in the usual

TQFT terminology loops labelled 1) are elements of SU.2/ and not SO.3/ theory, the

configurations of multi-loops considered below preserve the subspace xV5, and they

provide a convenient evaluation method.

We give several sample calculations of the trace tr5, used in the proof below. First

consider k trivial loops (labelled 1) on the torus. The usual d -isotopy relation states

that removing a loop gives a factor d D �, so tr5 equals �k times the trace of the

empty diagram. Since the dimension of the space (spanned by the core of the solid

torus with labels 0 and 2) is 2, the result is 2�k . The trace evaluation of the graph
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consisting of k trivial loops (Figure 6 (a)) equals 2.d2 � 1/k , which (precisely at this

root of unity!) also equals 2�k .

Now, consider non-trivial (spin 1=2) loops on the torus in (4.1). Using (2.5), the

action on xV5 is seen to be diagonal:

j D
hsin.2.j C 1/�=5/

sin..j C 1/�=5/

ik

j ; j D 0; 2. (4.1)

Therefore, the trace of k non-trivial loops with label 1 on the torus equals

tr5 D
hsin.2�=5/

sin.�=5/

ik

C
hsin.6�=5/

sin.3�=5/

ik

D �k C .���1/k: (4.2)

The analogous calculation for the graph consisting of k non-trivial loops on the

torus (or “spin 1 loops”) gives

D
hsin.3�=5/

sin.�=5/

ik

C
hsin.9�=5/

sin.3�=5/

ik

D �k C .���1/k: (4.3)

The answer is again the same as for spin 1=2 loops precisely at the 5th root of unity.

Note that the SO.3/ trace is invariant under modular transformations of the torus,

so (4.3) gives the trace of any k non-trivial, spin 1 loops on the torus. The situation is

a bit more subtle with spin 1=2 loops: the calculations in (4.1), (4.2) work specifically

for non-trivial loops which bound disks intersecting the core of the solid torus once.

A single spin 1=2 loop which wraps in some other way around the torus and acts as a

curve operator V5 ! V5, does not have to preserve the subspace xV5. Nevertheless, an

even number of non-trivial curves preserve xV5, and moreover the evaluation (4.2) for

k even is in fact modular invariant: using (2.4), a pair of parallel spin 1=2 loops may

be expressed as a spin 1 loop plus a scalar multiple of a trivial loop. This property will

be used in the following section to evaluate the trace of graphs on the torus in terms

of surround loops.
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Remark 4.2. There are two equivalent ways of computing the trace in (4.3): one

using the formula (2.5) directly, or alternatively the 2nd JW projectors can be expan-

ded into linear combinations of spin 1=2 loops, reducing the calculation to (4.2).

Finally, the trace of the graph in Figure 7 is obtained by expanding both second

projectors, and applying (4.2).

tr5 D d tr5

D d tr5 � tr5

� tr5 C
1

d
tr5

D 2�2 � 2
�

�2 C
� 1

�

�2�

C 2 D 2 �
2

�2

Figure 7. The factor d in the top line comes from the normalization of the map ˆ (Figure 2.4).

At the 5th root of unity d D �. Both first and last terms in the bottom line have a trivial loop,

evaluating to d , and the factor 2 corresponds to the trace of the empty diagram. The two middle

terms are evaluated according to (4.2).

4.3. Trace and graph evaluations

Definition 4.1. Given a graph G � T , consider

R5.G/ WD PG.�2; 1; ��2/ C PG.�2; ��4; ��2/ (4.4)

The two summands in the definition of R5.G/ are given by evaluations of the

polynomial PG in (3.4). In both cases, Y D �2 and A D ��2. Note that the first

summand corresponds to Y W D �2, and the second one to Y W D ��2.

Theorem 4.2. Given any graph G � T , the SO.3/ TQFT trace evaluation tr5.G/

equals R5.G/.
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This result is the TQFT version on the torus, at Q D � C 1 corresponding to

q D e2�i=5 (see (2.2)) of the loop evaluation of the flow polynomial of planar graphs.

It is interesting to note that the loop evaluation in the planar case holds for any value

of the parameter (cf. [11, Lemma 2.5]), while the statement on the torus makes sense

only at roots of unity (Theorems 4.2, 4.4) where TQFTs are defined.

Proof of Theorem 4.2. We begin the proof by comparing calculations of tr5.G/ and

R5.G/ for the graphs in Figure 6, using results of Sections 3 and 4.1.

(a) G consists of k trivial loops, Figure 6 (a).

tr5.G/ D 2.d2 � 1/k D 2�k ; R5.G/ D .Y � 1/k C .Y � 1/k:

The factor 2 in the expression for tr5.G/ comes from the dimension 2 of the vector

space spanned by the even labels 0; 2. Since Y D �2, the two expressions coincide.

(b) k non-trivial loops, Figure 6 (b). According to (4.3), tr5.G/ D �k C .���1/k:

By (3.5), R5.G/ D .Y W � 1/kjY W D�2 C .Y W � 1/kjY W D��2 : Individual terms

match: .�2 � 1/k C .��2 � 1/k D �k C .���1/k:

(c) The graph in Figure 6 (c). The TQFT calculation in Figure 7 gives tr5.G/ D

2�2 � 2.�2 C . 1
�

/2/ C 2: By (3.6), PG.Y;W;A/ D AY 2 � 2Y W C 1. The two evalu-

ations of PG , contributing to R5.G/, give �2 � 2�2 C 1 and �2 � 2. 1
�

/2 C 1, adding

up to the expression for tr5.G/:

The proof of Theorem 4.2 for an arbitrary graph G � T is obtained by expanding

the second JW projectors for all edges. The resulting summands for the TQFT trace

are in 1-1 correspondence with spanning subgraph H � G. To be precise, given a

spanning subgraph H , in this correspondence the first term in the expansion (2.4) of

the 2nd projector is taken for each edge e in H , and the second term is taken for each

edge e in G X H . The resulting loop configuration, called the surround loops, is the

boundary of a regular neighborhood of H on the surface. Each individual term in the

trace evaluation equals the sum of two entries, corresponding to the two labels 0; 2,

and we show next that these entries precisely match the corresponding terms in the

expansions PG.�2; 1; ��2/, PG.�2; ��4; ��2/.

For each spanning subgraph H there are three cases, analogous to the examples

(a)–(c) above.

(A) H is homologically trivial on the torus: H1.H/ ! H1.T / is the zero map.

The exponents of the variables W and A in (3.4) are zero in this case. The proof that

loop evaluation in TQFT equals the summand in the definition of the graph polyno-

mial (3.4) is thus identical to the planar case [11, Lemma 2.5]. Both quantities in the

statement of the theorem have a factor 2: for tr5.G/ this is because dim. xV5/ D 2; for

R5.G/ the factor is the result of adding two identical summands in (4.4).
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(B) The image of H1.H/ ! H1.T / has rank 1. In this case s.H/ D 0. Recall that

Nc.H/ denotes the number of connected components H .i/ of H such that H1.H .i// !

H1.T / of rank 1 for each i . The term in the expansion of R5.G/ corresponding to H

is

.�1/E.G/�E.H/�2 n.H/Œ1Nc.H/ C ��4Nc.H/�

D .�1/E.G/�E.H/�2.n.H/�Nc.H//Œ�2Nc.H/ C ��2Nc.H/�:

Each H .i/ has two surround loops which are non-trivial on the torus. In the cal-

culation of tr5.G/, these Nc.H/ non-trivial loops give a factor �2Nc.H/ C ��2Nc.H/,

matching the factor in square brackets in the calculation of R5.G/ above.

The last step is to check that the remaining factor .�1/E.G/�E.H/�2.n.H/�Nc.H//

above corresponds to the normalization and the trivial surround loops in the trace

evaluation. As explained after (2.4), the normalization factor in the definition of ˆ

is dE.G/�V.G/. Moreover, each edge in G X H gives rise to an additional factor

�d�1 coming from the second term of the JW projector. This gives the desired

sign .�1/E.G/�E.H/. Thus, the overall normalization factor corresponding to H is

dE.H/�V.H/, where d D �. In addition, each trivial surround loop of H gives a factor

� in the trace evaluation. An Euler characteristic count gives the equality

E.H/ � V.H/ C number of trivial loops D 2.n.H/ � Nc.H//;

concluding the proof in case B.

(C ) H1.H/ ! H1.T / is surjective, so s.H/ D 1 and Nc.H/ D 0. This case is sim-

ilar to (A) since all surround loops are trivial on the torus. Because of the homological

assumption, there are two fewer surround loops than in the planar case, expected from

the nullity n.H/. In the TQFT evaluation this undercount gives a factor d�2. This

factor precisely matches the factor As.H/ D A D ��2 in (3.4).

Recall that the vanishing of the Jones–Wenzl projector is built into the definition

of the TQFT vector space at the corresponding root of unity, so the 4-th JW projector

gives a local relation in xV5.

Corollary 4.3. The graph evaluation R5.G/ satisfies the local relation (2.6), cor-
responding to the 4-th Jones–Wenzl projector. More precisely, given three graphs
GX ; GI ; GE on the torus, locally related as shown in (2.6),

�R5.GX / D R5.GI / C R5.GE /:

More generally, given G � T and odd r , consider

Rr .G/ WD

r�2
X

j D0; j even

PG.d2; Wj;r ; d�2/; (4.5)
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where d D q1=2 C q�1=2 is the TQFT loop value corresponding to the root of unity

q D e2�i=r , and Wj;r is defined by

Y Wj;r � 1 D
sin.2.j C 1/�=r/

sin..j C 1/�=r/
:

The proof of the following result is directly analogous to that of Theorem 4.2,

with TQFT sectors precisely corresponding to the summands in (4.5):

Theorem 4.4. The SO.3/ TQFT trace evaluation of G at q D e2�i=r equals Rr.G/.

Remark 4.4. A generalization of the polynomial P for links L in T � Œ0;1� (along the

lines of [18, Section 6]) gives a similar expression for the SU.2/ trace of L. A polyno-

mial PL for more general links in a surface † times the circle was formulated in [19].

It is an interesting question whether the polynomial of [19] can be defined for ribbon

graphs in † � S1, and whether our results extend to this setting.

5. Golden identity for graphs on the torus

Using TQFT methods developed above, in this section we formulate and prove an

extension of the Tutte golden identity for graphs on the torus.

5.1. Proof of the Tutte golden identity (1.1) for planar graphs

We start by summarizing the ideas underlying the proof in the planar case. Follow-

ing [11], we prove here the golden identity for the flow polynomial of cubic planar

graphs G: FG.� C 2/ D �E .FG.� C 1//2: The version of the contraction-deletion

rule for cubic graphs reads

. (5.1)

Using induction on the number of edges, it suffices to show that if three of the graphs

in (5.1) for FG.� C 2/ satisfy the golden identity, then the fourth one does as well.

Given a cubic graph G, consider �E .FG.� C 1//2. It is convenient to formally depict,

as in (5.2), two identical copies of G, each one evaluated at � C 1, with an overall

factor �E D �3V=2.

.3=2 3
‰ ‰

(5.2)
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Here E and V denote the number of edges and vertices, respectively, of G. This

doubling of lines is not that in the map ˆ using the projector p2, but rather it indicates

that the map ‰ takes G to the pair .G; G/. Note that for G D circle, Fcircle.� C 2/ D

� C 1. The corresponding value for ‰(circle) is �2 D � C 1, indeed the same.

The strategy is to check that the evaluation �E .FG.� C 1//2 satisfies the rela-

tion (5.1) as a consequence of the additional local relation at Q D � C 1. This

additional relation is the graph version (2.6) of the 4th Jones–Wenzl projector. Using

the contraction-deletion rule, one checks that (2.6) is equivalent to each of the two

relations shown in Figure 8.

Figure 8. Local relations for the flow polynomial at Q D � C 1, equivalent to Tutte’s rela-

tion (2.6).

Consider the image of (5.1) under ‰:

3 3
. (5.3)

Applying the relation on the left in Figure 8 to both copies of the graph on the left

in (5.3) yields Figure 9. The resulting expression on the right is invariant under 90

degree rotation, so must also be equal to the graph on the right of (5.3). Thus, (5.3)

holds, showing that the evaluation �E .FG.� C 1//2 satisfies the contraction-deletion

relation (5.1). This concludes the proof of the golden identity for the flow polynomial

of planar cubic graphs.

5.2. Extension to graphs on the torus

The expression (4.5) is defined for odd r . We generalize it with the following sum of

evaluations of the graph polynomial PG in (3.4):

R10.G/ WD PG.Y; W1; A/ C PG.Y; W2; A/ C 2PG.Y; W3; A/; (5.4)
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3

Figure 9

where Y D � C 2, A D .2.� C 2//�1, and the values Wj , j D 1; 2; 3, are defined by

Y W1 D � C 2; Y W2 D 1 C ��2; Y W3 D 0:

The choice of these values may be thought of as a choice of particular sectors of the

SO.3/ TQFT vector space of the torus at q D e2�i=10. (Our forthcoming work, relating

these results to lattice models on the torus, will give further evidence for why this is

a relevant invariant at this root of unity.) The value of R10.G/ for G a trivial loop

on the torus equals 4.Y � 1/ D 4�2. Using (3.5), the value of R10.G/ for the graph

consisting of a single non-trivial loop is seen to be �2 C ��2 � 2.

We are in a position to state the main result of this section.

Theorem 5.1. Let G � T be a cubic graph. Then

R10.G/ D �E R5.G/2; (5.5)

where E is the number of edges of G.

Proof. As usual, we allow cubic graphs with disjoint loops; such loops do not count

towards E. The version of the contraction-deletion relation for cubic graphs is shown

in (5.1). The proof in the planar case (see Section 5.1) showed that if three of the

graphs in (5.1) satisfy the golden identity, then the fourth one satisfies it as well. This

fact holds for the identity (5.5) for graphs on the torus as well. Indeed, (5.1) holds for

R10.G/ since it is defined as the sum (5.4) of polynomials satisfying the contraction-

deletion rule. And (5.1) holds for �E R5.G/2 for the same reason as in Section 5.1,

since by Corollary 4.3 R5.G/ obeys the local relation corresponding to the 4th JW

projector.

For cubic graphs G which are homologically trivial on the torus (r.G �T /D0

in the notation of Section 3), the proof of (5.5) follows from the planar case in

Section 5.1 since the polynomial PG in (3.4) equals the flow poynomial FG . (For

example, calculations in Section 3 show that in the special case of the graph consist-

ing of k trivial loops, R5.G/ D 2�k , and R10.G/ D 4�2k D R5.G/2.)
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Next, consider the case of cubic graphs G of rank r.G � T / D 2. Consider a

minimal cubic graph G of this type, shown in (5.6), where the square with opposite

sides identified is the usual representation of the torus. A direct calculation using (3.4),

or alternatively using the contraction-deletion rule to reduce this to calculations above,

shows R5.G/ D R10.G/ D ��3, proving (5.5) in this case:

(5.6)

The proof in general for rank 2 cubic graphs is by induction on the number of

edges. It is proved in [9] that any two triangulations of the torus with the same number

of vertices are related by diagonal flips, up to equivalence given by diffeomorphisms.

(This was extended in [22] to pseudo-triangulations of surfaces of any genus, where

an embedding � � T is a pseudo-triangulation if each face is a three-edged 2-cell,

possibly with multiple edges and loops.) Formulated in terms of dual cubic graphs,

two cellular embeddings of cubic graphs (or in other words rank 2 graphs) on the torus

are related by the I � H move:

(5.7)

The relation (5.1) accomplishes the I � H move, while also introducing graphs with

fewer edges. The theorem has been checked for a minimal cubic graph in (5.6), and the

inductive step is achieved by a local modification (5.8), which increases the number

of edges and preserves (5.5):

(5.8)

Finally, consider cubic graphs of rank 1 (that is, r.G � T / D 1), or equivalently

graphs on the cylinder. The fact that triangulations of the sphere with the same num-

ber of vertices are related by diagonal flips dates back to [27]. Using (5.1) and (5.8)

as above, the proof in the rank 1 case therefore follows from the calculation for

G consisting of k non-trivial loops on the torus. In this case, using (3.5) one has

R5.G/ D �k C .���1/k and R10.G/ D �2k C ��2k C 2.�1/k D R5.G/2.

Remark 5.3. Theorem 5.1 is an extension of the golden identity for the flow poly-

nomial of planar cubic graphs. The focus of this paper is on the “topological flow
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polynomial” PG , since it is related to the TQFT trace evaluation, as stated in The-

orem 4.4. It is worth noting that an analogue of the invariants R5.G/; R10.G/ may be

defined using the polynomial CG in place of PG . Using the duality relation (3.8), the

identity (5.5) then gives rise to an extension of the original Tutte golden identity (1.1)

for the “topological chromatic polynomial” CG of triangulations of the torus.
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