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Cluster patterns in Landau and leading singularities
via the amplituhedron

Omer Giirdogan and Matteo Parisi

Abstract. We advance the exploration of cluster-algebraic patterns in the building blocks of
scattering amplitudes in N = 4 super Yang-Mills theory. In particular, we conjecture that,
given a maximal cut of a loop amplitude, Landau singularities and poles of each Yangian invari-
ant appearing in any representation of the corresponding leading singularities can be found
together in a cluster. We check these adjacencies for all one-loop amplitudes up to 9 points.
Along the way, we also prove that all (rational) N2MHV Yangian invariants are cluster adja-
cent, confirming original conjectures.

1. Introduction

Constructing scattering amplitudes from the knowledge of their singularities, i.e., their
poles and branch-cut structure, is an approach with a long history [30], which has
proven to be particularly effective for scattering amplitudes in N = 4 super Yang—
Mills theory (SYM).

Singularities of scattering amplitudes at tree-level are given by multi-particle fac-
torisation channels, which correspond to Mandelstam invariants, and are construc-
ted from subsets of the momenta of the particles in the scattering process, whereas
loop amplitudes exhibit more complicated singularities, leading to logarithmic diver-
gences. In cases where loop amplitudes are expressed as (multiple) polylogarithms,
the collection of these logarithmic singularities is called the symbol alphabet. When
expressed in terms of momentum twistors, many (all for n < 7, where n is the number
of particles) of these are simply polynomials in the Pliicker coordinates in Gr(4, n).
Moreover, their vanishing loci correspond to special configurations of momentum
twistors in CP3.

On one side, we have seen the emergence of positive geometries [1] as an over-
arching framework to geometrise scattering amplitudes and their analytic structure, at
tree-level and for loop integrands in several theories, among which is &' = 4 SYM.
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In 2013, a full geometric description for tree-level and integrands of loop-level scat-
tering amplitudes in planar &' = 4 SYM was proposed in [8] under the name of
amplituhedron. Other constructions followed a few years later [16,34].

On the other, we have witnessed an increasing appearance of cluster algebra struc-
tures in scattering amplitudes, especially in capturing singularities of (integrated) loop
amplitudes in &' = 4 SYM. This started in 2013 with the conjecture made by Golden
et al. in [33] that the symbol letters of six- and seven-particle loop amplitudes are
A-coordinates of the Gr(4, n) cluster algebra. A few years later, in [24] it was conjec-
tured that these letters satisfy remarkable cluster properties, called cluster adjacency.
In terms of the symbol, they dictate which letters can appear consecutively. Moreover,
shortly after these adjacencies were also observed at tree-level, in connection with
symbol entries [25] (see also [43] for a recent work on the cluster adjacency of one-
loop amplitudes). The guidance of cluster algebras has unlocked the possibility of
developing a powerful bootstrap programme which allowed to perform computations
that otherwise would have been beyond reach [14, 15, 18-23,27, 28]. At the same
time, they shed more light on the mathematical structures describing singularities of
scattering amplitudes and motivate the existence of a possible geometric origin.

One manifestation of the cluster-algebraic phenomena is an observation that build-
ing blocks of a BCFW representation of the tree-level amplitude, which are Yangian
invariants, are cluster adjacent [25]. In other words, all poles of each of them are
expressed by a collection of #-coordinates of the Gr(4, n) cluster algebra that can be
found together in a common cluster. Moreover, this conjecture was generalised in [42],
for all (rational) Yangian invariants of &' = 4 SYM. In geometric terms, poles of
(rational) Yangian invariants are codimension-one boundaries of the so-called gener-
alised triangles of the amplituhedron [39,40]. Furthermore, different representations
of scattering amplitudes, obtained from identities among Yangian invariants, corres-
pond to different triangulations of the same geometric space, i.e., the amplituhedron.

One of the first steps towards an amplituhedronic understanding of cluster phe-
nomena was taken in [39], where a toy model for tree-level cluster adjacency of
N =4 SYM was considered. It was proved that Yangian invariants of the m = 2
amplituhedron are cluster adjacent with respect to the well-known Gr(2,n) >~ A,_3
cluster algebra. The m = 2 amplituhedron is often considered as a toy model for the
physical m = 4 case, moreover it also governs the geometry of one-loop MHV integ-
rands [5] and it has some relevance for the NMHYV ones as well [37]. By exploiting the
geometry of the m = 2 amplituhedron, an explicit expression of all Yangian invariants
was provided in [39], where cluster adjacency of their poles is manifest.

The interest in understanding how cluster algebras encode the analytic proper-
ties of scattering amplitudes led physicists to explore the connection between cluster
algebras and the positive tropical Grassmannian, originally introduced in [50]. See
for examples [6, 26, 35], for applications in &' = 4 SYM. Remarkably, the very same



Cluster patterns in Landau and leading singularities via the amplituhedron 301

positive tropical Grassmannian has been found to regulate the combinatorics of trian-
gulations (and, more generally, subdivisions) of the m = 2 amplituhedron [40]. This
raises the question of whether there is a deeper connection between the latter object
and cluster algebras themselves.

A remarkable instance of how geometry encodes singularities of scattering amp-
litudes in &' = 4 SYM is the fact that all leading singularities of the theory, at any
loop order, can be computed by a contour integral over the space of k-planes in n
dimensions, called Grassmannian [3,44]. Leading singularities are the singularities
of the integrand of a loop amplitude with maximal codimension in loop momenta.
The geometrisation was pushed even further via [2] and, a year after, the authors
of [8] defined the loop amplituhedron, whose boundaries encode singularities of the
integrand, among which are the leading singularities corresponding to maximal cuts.

The application of this geometric approach to Landau singularities [17,47,48] is
another example of its utility to obtain a better understanding of the structure of singu-
larities of scattering amplitudes. The Landau analysis allows to connect singularities
of the integrand, described geometrically from boundaries of loop amplituhedra, to
the ones of the integrated amplitudes. Among all Landau singularities, there are in
general many spurious ones coming from summing over Feynman diagrams. On the
other hand, the amplituhedron can tell which are the true singularities of the integrand,
and therefore select the true Landau singularities of the loop amplitude.

In this work, using an amplituhedron-based approach to encode building blocks
of scattering amplitudes in &' = 4 SYM, i.e., Yangian invariants and leading singu-
larities, we explore cluster patterns between the latter and Landau singularities.

We first review the preliminary concepts appearing in our work in Section 2.
In particular, we review the notion of cluster adjacency in Section 2.1 and state its
known various incarnations; then, in Section 2.2, we introduce the concepts of leading
singularities and the (loop) amplituhedron, and how one can obtain the former from
special boundaries of the latter; in Section 2.3, we present the definition of Landau
singularities and how the loop amplituhedron can select the non-spurious ones; for
both leading and Landau singularities we present in the respective sections examples
at one-loop which will be relevant for our work.

In Section 3, we will prove cluster adjacency for all (rational) N*MHV Yangian
invariants. In particular, we introduce the geometric method used to determine the
actual poles of Yangian invariants in terms of cluster variables, and we present the
results in Section 3.1; finally, in Section 3.2, we prove that Yangian invariants of the
four-mass box type violate cluster adjacency.

In Section 4, we present the main conjecture of our paper: cluster adjacency
between leading and Landau singularities, which we abbreviate as “LL-cluster adja-
cency”’. We first introduce how to find all Yangian invariants which can be used to
represent a given leading singularity from the geometry of the loop amplituhedron. We
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then present our checks and proofs about these adjacencies in Sections 4.1 and 4.2 for
all one-loop amplitudes up to 9 points for the NMHV and N2MHYV cases, respectively.
In Section 4.1.5, we show the one-loop NMHYV 7-point amplitude in a representation
which is uniquely fixed by LL-cluster adjacency. Finally, in Section 5, we end with
conclusions and directions for future works.

2. Cluster algebras, singularities and geometry

2.1. Cluster adjacency

We begin by reviewing the notion of cluster adjacency for singularities of scattering
amplitudes in planar & = 4 SYM. These are observations about the appearance of
singularities of the amplitudes in relation to how they are encoded in a corresponding
Gr(4,n) cluster algebra.

The mathematics literature on cluster algebras, e.g., [31,32,49], provides an excel-
lent introduction to the concept. Aspects of cluster algebras of Grassmannian-type
in the context of scattering amplitudes have been explained in detail in [24, 25, 33].
We will therefore introduce only the cluster-terminology which will be employed in
stating our results.

One way of representing clusters of Gr(4, n) cluster algebras are quiver diagrams.
These have 3(n — 5) distinct nodes, called A-coordinates, that are in general poly-
nomials in the Pliicker coordinates of Gr(4, n). When n is greater than 8, there are
infinitely-many clusters and therefore infinitely-many «+-coordinates. Remarkably, all
known rational singularities of BDS-like normalised amplitudes are #-coordinates of
Gr(4, n) cluster algebras [33].

Each cluster in a given cluster algebra can be obtained from any other cluster
by (sequences of) mutations. A mutation, expressed in terms of #A-coordinates, is an
operation which replaces a chosen node of the quiver with a new value, as well as
locally changing the connectivity of the quiver diagram. Two #-coordinates are said
to be cluster adjacent if there exists a cluster in which they appear together.

As a toy model, one can consider Gr(2, n) cluster algebra where clusters corres-
pond to triangulations of an n-gon and the #-coordinates correspond to the chords of
this triangulation. Mutations act as flipping the chord inside the quadrilateral that
they are the diagonal of. In this case, cluster adjacent coordinates correspond to
non-crossing chords. Two coordinates are not cluster adjacent if and only if the cor-
responding chords cross, i.e., they mutate into each other.

The Gr(4, n) cluster algebras are more complicated and allows for other adjacency
situations. In particular, pairs of Gr(4, n) #A-coordinates can never appear in a cluster
together even though there is no mutation that relates to them. Therefore there is no
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known simple geometric picture from which one can infer (collective) adjacencies of
sets of these variables.

There are various different but related cluster adjacency statements for scattering
amplitudes in &' = 4 SYM.

Adjacency of symbol letters. Two #A-coordinates appear next to each other in the sym-
bol of a BDS-like normalised amplitude only if there is a cluster that contains both of
them [24]. For all known integrable words with physical initial entries, this require-
ment appears to be equivalent to the extended Steinmann conditions of [13,45].

Poles of tree BCFW amplitudes. In [25], it is conjectured that BCFW representations
of tree amplitudes in & = 4 SYM are linear combinations of terms whose poles
are mutually cluster adjacent in a strict sense. Moreover, it was observed in several
examples that it is possible to find a cluster in the relevant cluster algebra which
contains all poles of each BCFW term.

The simplest case of this statement is for NMHYV tree amplitudes,' which are sums
of R-invariants,

An1 = Z Riiit1j+1.
1<i<j<n
The cluster adjacency for R-invariants was proved in [25] through a procedure in
which one starts from the initial cluster of Gr(4, 6) and arrives at a cluster containing
the poles of Ry;;+1;+1 through a sequence of (partial) cyclic rotations.

This observation, in particular the simple proof of the cluster adjacency of R-
invariants, motivates the question of how far this property extends. In [42], it was con-
jectured that all (rational) Yangian invariants satisfy such cluster adjacency properties.
It is also natural to ask whether this is a mathematical property of Yangian invariants
or whether it is an extra physical constraint that BCFW terms are expected to satisfy.

Rational Yangian invariants. The natural question of whether the manifestation of
cluster adjacency in BCFW terms extends to more general Yangian invariants was
asked in [25]. The authors of [42] conjectured that the question has indeed an affirm-
ative answer for rational Yangian invariants, providing a lot evidence with the use of
Sklyanin brackets.

R-invariants and NMHYV final entries. Finally, the fourth statement of cluster adja-
cency concerns NMHV loop amplitudes, which are sums of iterated integrals whose
coefficients are R-invariants. Schematically they have the form

=>‘\>,(1L1) = Z Ryct,..200i ® -+ ® ¢iyy s

Qi seeesi2 L

"'We will denote tree-level NFMHYV rn-point amplitudes by 4, k-
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where the index « enumerates all relevant R-invariants, L is the loop order, and
the indices i; enumerate letters, the rational ones of which are A-coordinates of the
Gr(4, n) cluster algebra.

The observation which holds for all known such amplitudes is that the final entries
of the symbols of the polylogarithms multiplying the R-invariants are cluster adjacent
to all of the poles of the R-invariant that multiplies them.

It is also worth remembering that in general one needs to write out the amplitude
with a redundant set of R-invariants that satisfy linear 6-term identities in order to
make manifest this cluster adjacency property.

2.2. Leading singularities from the amplituhedron

We review here the concept of leading singularities. In particular, we show how lead-
ing singularities for &' = 4 SYM can be computed more geometrically via a Grass-
mannian approach and via the loop amplituhedron.

Leading singularities. The concept of leading singularities was originally introduced
within the Analytic Bootstrap Programme in the 1960’s [30]. At the beginning of this
century, with the advent of novel on-shell techniques such as generalised unitarity, the
concept of leading singularities was broadly employed and exploited in computation
of scattering amplitudes, in particular in &' = 4 SYM [11].

Loop amplitudes in planar N = 4 SYM are computed from integrands, which
are rational functions of external kinematics and loop momenta, by integration over
particular real-contours in the 4L-dimensional loop momentum space. However, in
general this contour is known not to preserve the symmetries of the theory and leads,
for example, to IR-divergences. In this regard, it might seem natural to choose com-
plex contours corresponding to computing residues of the integrand. Leading singu-
larities are then the residues of the integrand computed around tori encircling the
loci where a maximal set of internal propagators (e.g., four for one-loop) go on-
shell.

Given a one-loop n-point scattering amplitude 4(1,...,n) and a partition € of
{1,...,n} into 4 disjoint subsets /1, ..., I4, then the leading singularity of the amp-
litude is defined as

4 4
[ T1 @*nadt*€a3(6) T Aalttaad Lot tar s,

a=1 a=1

where the index a is mod 4, the integral over £ is localised over the solutions of
the delta function and the integral over the Grassmann coordinates’ 7, amounts to

2See [4] for a good review on N = 4 SYM and its conventions.
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sum over all possible internal states flowing between the different sub-amplitudes
{A1, ..., #Aq}. Since the four internal propagators are forced to vanish by the delta
function, the internal particles can be taken on-shell. Therefore, leading singularities
are in general simply the products of tree-amplitudes, summed over all the internal
particles which can be exchanged, and integrated over the on-shell phase space of
each.

Leading singularities from the Grassmannian. In [3], leading singularities were pro-
posed as the complete set of IR-finite quantities that contains all the information
needed to compute the S-matrix of & = 4 SYM. Beautifully, both in momentum
space and in momentum twistor space [44], all leading singularities of the theory,
at any loop order, can be computed by a contour integral over the space of k-planes
in n dimensions, called Grassmannian and denoted by Gr(k, n). Here k is the helicity
sector of the amplitude. Remarkably, in [2], it was shown that only the “positive” part
Gr (k,n) of this space, called the positive Grassmannian [41,46], is relevant for scat-
tering amplitudes. Moreover, the integration contour providing leading singularities is
performed on some of its positroid cells, in terms of which the positive Grassmannian
has a beautiful stratification.

All positroid cells are in bijection with various nice combinatorial objects, includ-
ing equivalence classes of reduced plabic graphs, also known as on-shell diagrams in
the context of scattering amplitudes. A comprehensive summary about on-shell dia-
grams, their classification, evaluation, and relations was described in [2]. Formulae
for one-loop leading singularities for &' = 4 SYM in momentum twistor variables
were reported in [10] being used on-shell diagrams and will be used in an example in
Section 2.2.1.

The loop amplituhedron. In 2013, the geometrisation of scattering amplitudes from
polytopes a la Hodges [36] and from the positive Grassmannians came together in
Arkani-Hamed and Trnka’s work [8]. They introduced a novel mathematical object
called the amplituhedron. Its canonical form gives all tree-level and the integrand of
loop-level scattering amplitudes in planar &' = 4 SYM. Its boundaries geometrically
encode all the singularities of the latter.

Let us fix a totally positive matrix Z € M4 (n, k + 4), i.e., all its maximal minors
are positive. Let us consider Y € Gr(k, k + 4) and L lines £® € Gr(2,4 + k), [ =
1,..., L, called loop momenta, in the four-dimensional complement of Y. Then the
loop amplituhedron Aflle is the set’ of (Y, £M, ..., £®) such that

y=Cc-z, £O=pD.z 1=1,...,L, (2.1

3With abuse of notation, we will denote by A;le both the amplituhedron and the corres-
ponding amplitude. It will be clear from the context which one we will be referring to.
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where C € Gr(k,n), DY) € Gr(2,n) is in the four-dimensional complement of C and
such that all the (k + 2s) X n matrices

C

@)
D: 0<s<L, 2.2)

D (@s)

are fotally positive, i.e., all they their maximal minors are positive.

An alternative definition of the loop amplituhedron based on sign flips and in-
equalities was introduced in [7] and conjectured to be equivalent to the definition
given above. The canonical form of the loop amplituhedron A;le encodes the integ-
rand of the L-loop N¥MHV n-point amplitude.

Let us now introduce some notation which will be useful in the following. Let us
denote determinants of the (4+ k) x (44 k) matrices obtained by stacking together Y
and rows of Z specified by the indices i, j, [, s by

.. A Ap
(Yijls):=eq..acpeY]' .. .Y *2PzCzPZE, (2.3)

and analogously for brackets of the type (Y £@i j). As explained in [7], one can go
from the space of bosonised momentum twistors, where £(!) and Z; live, to the space
of physical momentum twistors* in 3 by projecting them through Y . Therefore, one
can identify the brackets

{abcd)=(Yabcd),

where the left-hand side are brackets in momentum twistors and the right-hand side
are brackets defined in (2.3). In the following, with abuse of notation, we will some-
time denote both cases by {a b ¢ d) and the meaning will be clear from the context.

Yangian invariants from the amplituhedron. For L = 0, i.e., tree-level, the definition
of loop amplituhedron in (2.1) reproduces the definition of the tree amplituhedron [8].
This is the set of Y € Gr(k, k 4+ 4) such that

Y=C-Z, 2.4)

where C € Gry (k,n) and Z is the fixed totally positive n x (k 4+ 4) matrix defined
above. The tree amplituhedron is therefore the image of the map Z induced by the
fixed matrix Z from the positive Grassmannian Gr4 (k, n) to another Grassmannian
Gr(k,k +4),ie., Z:C+ C-Z =Y.This map is not injective, since the dimension

4For conventions on momentum twistors, which we will denote by z;, in a similar context,
we refer the reader to, e.g., [42].
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of the amplituhedron is 4k, whereas the dimension of Gr4 (k, n) is k(n — k), which
is in general higher.

Let us consider positroid cells in Gry (k, n) which have the same dimension as
the amplituhedron, i.e., 4k, and have a full-dimensional image in the amplituhed-
ron. This is equivalent to considering 4k-dimensional cells which, within the physics
community, are said to have “kinematic support”, and were studied and classified in
the context of the positive Grassmannians [2]. These cells are the same appearing
as integration contours of the Grassmannian integral formulae in momentum twis-
tors [44]. Given a 4k-dimensional cell S in Gry (k, n) with kinematic support, if we
perform such integral over S, we obtain a building block ¥s for leading singularit-
ies of N = 4 SYM (hence all tree-level amplitudes as well), which is referred to as’
NAEMHV n-particle Yangian invariant. In this work, with a slight abuse of termino-
logy, we will also refer to the image of S in the amplituhedron as Yangian invariant,
and denote it by Y. It will be clear from the context which one we will be referring to.

For example, for NMHYV amplitudes, Yangian invariants are called R-invariants,
which can be compactly expressed as

§914((1234) x5 + cyclic)
1234)(2345)(1345)(1245)(1235)

where the brackets are in momentum twistors and are simply

Ri2345 = <

(ijkl)=eapcpzi'zf z¢ 2.
and y; are the Grassmann variables used to express amplitudes in &' = 4 SYM in
super-momentum twistors. Similarly, by R; we will denote the analogous R-invariant
with momentum twistor listed in 7.

Among 4k-dimensional cells with kinematic support corresponding to Yangian
invariants, there are cells which are mapped injectively into the amplituhedron. The
image of such cells in the amplituhedron are referred to as generalised triangles
in [39,40]. Generalised triangles are elements of triangulations of the amplituhedron.
Cells corresponding to generalised triangles have intersection number one, see [2] for
more details, and their corresponding Yangian invariants® are the building blocks for
tree-level scattering amplitudes. Whereas, 4k-dimensional cells with kinematic sup-
port, but with intersection number higher than one, are not mapped injectively into
the amplituhedron: points in the image have a finite number (greater than one) of pre-
images in the cell. Yangian invariants associated with this type of cells do not enter

>In [29], it was indeed shown that the integral enjoys an infinite-dimensional symmetry,
which is the Yangian of psu(2, 2|2), and is simply called the Yangian in literature on scattering
amplitudes. This symmetry is the hallmark of integrability of ;' = 4 SYM.

®Yangian invariants of this type were called rational in [42].
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representations of scattering amplitudes at tree-level but are relevant for their lead-
ing singularities. These Yangian invariants can be written as a sum of terms which in
general are algebraic (e.g., contain square roots), but the sum is still rational. See Sec-
tion 3.2 for a relevant example.

Leading singularities from the amplituhedron. Let us now consider the boundaries
of the loop amplituhedron and understand how they are related to leading singular-
ities. It is known that the boundaries of the tree amplituhedron are on the vanishing

locus of
(Yipii+1j11+1)=0, ..., (Yigig+1jzja+1)=0 2.5)
for some d > 0 and all indices (considered cyclically) in {1, ..., n}. In order to

make connection with leading singularities, we will not focus on this tree-level type
of boundaries. Instead, we will consider boundaries where (¥, £0, ..., £@)) sat-
isfy on-shell conditions, which we define to be a subset of the following condi-
tions:

(Y& ig i +1)=0, (YEEIgb2)=0 (2.6)

for Iy, 51,52 € {1,..., £} and iy € {1,...,n}, and Y does not lic on any of the
tree-level type boundaries given by the equations in (2.5). Each set € of on-shell
conditions has a certain number of solutions {£}r, where we denoted by £ the
corresponding collection of L lines (£*D L ex D)y, Following the terminology
of [48], boundaries of the type (2.6) are called &£-boundaries and the connected com-
ponents associated to each different solution of the same on-shell condition are called
branches. If it exists, we denote by B[€, £*] the boundaries of the loop amplituhed-
ron, which are £-boundaries determined by the set of on-shell conditions € and are
in the branch corresponding to the solution £*. In [48], it was showed that, once we
fix € and £*, there exists a minimum’ k., such that the loop amplituhedron A;L,z
has the boundaries B[€, £*] for all k > ky;y.

Finally, we will focus on the £-boundaries that are relevant for leading singularit-
ies, which correspond to maximal cuts. If € is a set of on-shell conditions, then € is a
maximal cut if it is maximal by inclusion, i.e., we cannot add more on-shell conditions
to € with Y not being on tree-level type boundaries of equation (2.5). In particular,
an £-boundary associated to a maximal cut has codimension 4L and the solutions in
each branch have loop momenta localised in the points {&£*}.

7Using parity, which is a symmetry of scattering amplitudes and of the amplituhedron, one
can also establish an upper bound as k < n — ki, — 4, where ki, is the minimal value of k for
which the parity-conjugated branch appears.
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For a maximal cut €, boundaries B[€, £*] of the loop amplituhedron correspond
to leading singularities of the amplitude AflL,z In particular, as one can extract tree-
level amplitudes +, x from the canonical form of the tree amplituhedron, one can
extract the leading singularities LeS[€, £*] from the canonical form of the codimen-
sion-4 L boundaries B[€, £*] of the loop amplituhedron.

It is known that all leading singularities of an amplitude A;L]Z can be expressed as
a sum of n-particle N¥MHV Yangian invariants, i.e., for a certain leading singularity
LeS, there is a collection of 4k-dimensional cells {S,} in Gry (k, n) with kinematic
support such that

Les =Y ¥s,. 27)

This is just a rephrasing of the conjecture that the Grassmannian integral representa-
tion of scattering amplitudes provides leading singularities if integrated over proper
contours, such as the one® provided by the above collection of cells {S,}. The sum
in (2.7) is the geometrical equivalent of “triangulating” the boundary of the loop amp-
lituhedron, corresponding to the leading singularity, with the collection of Yangian
invariants {¥Yg,}. As different representations of a scattering amplitude 4, i (tree-
level or loop integrand) are just different ways to triangulate the amplituhedron (tree
or loop), different representations of a leading singularity LeS as sum of Yangian
invariants correspond to different triangulations of the corresponding boundary of the
loop amplituhedron.

In Section 4, we will exploit the geometric definition of the loop amplituhedron
to compute all Yangian invariants which can be part of a triangulation of a given
boundary of the loop amplituhedron, i.e., all Yangian invariants which can be used to
express a given leading singularity. Moreover, we will see how this connects to the
Landau analysis in the next section.

2.2.1. Leading singularities at one-loop. In this section, we will provide an illus-
trative example on how to compute leading singularities from the Grassmannian for
one-loop NMHY, following [10] (in particular, see Table 3). We will consider only
some maximal cuts which will be relevant for our analysis. We will briefly comment
on the N?MHYV case, and we will employ a different strategy based on the amplituhed-
ron described in Section 3.

Givenacut € = {I4,..., I4} for the loop amplitude ,A»fll}c, on-shell diagrams with
tree sub-amplitudes 4, x, (/1) ® -+ ® Ay, k,(14), such that

4 4
Zka:k—z, Zna=n+8, (2.8)
a=1 a=1

8With suited orientation of each cell.
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correspond to leading singularities of A(Lk D Here we denoted sub- amphtudes by

An (1), where k/, with 0 < k" < n — 4, is its NK'MHV helicity sector,” n’ the
number of legs, and I’ denotes the indices the external particles contained.

Leading singularities for NMHYV one-loop. Let us now list the types of leading sin-
gularities which can appear at NMHV at one-loop. By equation (2.8), we must have

ki+ky+ks+ks=1-2=-1.

Since we can have k, = —1 only when one of the sub-amplitude is a 3-point amp-
litude, otherwise k, are positive, then we must have at least a 3-point subamplitude
to satisfy equation (2.8). Given a subamplitude A, x/(I’), in the following we will
omit the dependence of the sub-amplitudes on n’ and we will use ... for some or
all indices in I’. They can be easily inferred from the context. All indices will be
cyclicallyorderedi <i +1<j<j+1<k<k+1.

(1) The two-mass easy box ‘6’5 is a maximal cut with the following on-shell con-
ditions:

(Li—1,i)=(Lii+1)=(Lj—1,j)=(Lj.j+1)=0. (2.9

There are two possible on-shell diagrams contributing to this cut, whose lead-
ing singularities are
LeS[A_1(7) ® #Ao(...) ® A_1(j) ® A1(...)] = Axvnv (/... 1),
LeS[A_1() ® A1(...) ® A-1(J) ® sAo(...)] = Axmav(i..... J).

(2) The two-mass hard box ‘65 is a maximal cut with the following on-shell
conditions:
(Li—1,i)y=(Li,i+1)=(Li+1,i +2)
=(£j,j+1)=0. (2.10)

There are two possible on-shell diagrams contributing to this cut, whose lead-
ing singularities are

LeS[A_1(i) ® Ao(i +1) @ Ao(...,J) ® Ao(...)] = Riit1it2,),j+1.
LeS[Ao(i) ® A_1(i +1) ® Ao(....J) ® Ao(...)] = Ri—1,i,i+1,j,j+1-

9For n = 3, we also admit k¥’ = —1, which corresponds to MHV, i.e., a whifte vertex.
Moreover, note that Ag(...) = 1, since we are in the momentum twistor space.
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(3) The three-mass box C;ji is a maximal cut with the following on-shell condi-
tions:

(i —1i)y=(Lii+1)=(Lj.j+1)=(Ekk+1)=0. (2.11)

There is only one on-shell diagrams contributing to this cut, whose leading
singularity is

LeS[A-1(7) ® Ao(....J) ® Ao(....k) ® Ao(...)] = Rijjt1kk+1-

Leading singularities for N>MHV one-loop. For N>MHV at one-loop, we have all
cuts of the type appearing at NMHYV, and in addition the four-mass box cut appears
from 8 points. This is associated to leading singularities which contains non-rational
Yangian invariants, and, by Landau analysis, to algebraic singularities of the loop
amplitude. We leave these cases for explorations in future works.

N2MHYV leading singularities are in general expressed as

Rr-Ry. R;-Anvav(J), @Rr-Ry, (2.12)

where I, J are lists of twistors (in general, expressed as intersection of lines or planes
defined from z;), Ry are R-invariants with twistors in the list /, and ¢ is an extra
function, not relevant for our purposes. Nevertheless, as discussed in (2.7) all of them
are just combinations of N2MHYV Yangian invariants. For the purpose of the paper,
we are not interested in representations of leading singularities like (2.12), but we
will focus on their underline geometry. In particular, we are interested on the full list
{¥Y,} of Yangian invariants which can be used to express a given leading singularity.
In Section 4, we will explain a way to obtain such list directly from the geometry of
the loop amplituhedron.

2.3. Landau singularities from the amplituhedron

We will briefly review how the Landau analysis can be used to infer singularities
of the integral, from the poles of the integrand. First, we will review the original
definition in terms of Feynman diagrams and then following [48] we will review the
role amplituhedron plays in this analysis.

Landau singularities. The concept of Landau singularities was originally introduced
in 1959, when Landau stated a set of equations, called Landau equations, whose solu-
tions parametrises the locus in the space of kinematic data, where a given Feynman
integral has branch points [38].

Given a Feynman integral / contributing to an L loop scattering amplitude in D
spacetime dimensions, we can always bring it to the following form by using Feynman
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parametrisation:

- N({la}. {pr}) .

= | | D S SCYLR YL PPy g Z (a2 —m?

! c/ _ 47t Au—l DV (a:{gi}) — w4 0D 213
a=1 i=1

where c is just constant which does not enter our analysis, the integration is performed
over the simplex A,_j,i.e., o1 + -+, = land @; > 0, g; is the momentum flow-
ing along the corresponding propagator i, { p, } are the momenta of external particles,
and M is a function of the kinematic data. It is known that the physical amplitude
from (2.13) is obtained by performing the integral over a particular contour defined
by the i ¢ prescription in the propagators. However, in order to understand the analytic
continuation outside the physical sheet in the space of kinematic, one has to study
arbitrary contours.

The Landau analysis establishes that the integral / in (2.13) can develop singular-
ities when the following equations admit a solution

Z aiq; = 0 for all loops and «; (ql-2 — mlz) =0 Vi. (2.14)

1 €loop

In order to capture the analytic structure of / away from the physical sheet, one
allows solutions of the following equations with «; and £, away from the physical
contour as well. When some of the ¢; are different than zero, the second case in equa-
tion (2.14) corresponds to putting some internal propagators on-shell, and these will
be related to “cuts”. In the following, we will be interested only when solutions exist
on codimension-one subspaces of the external kinematic space, i.e., when they are
parametrised by the vanishing locus of a certain function of external kinematic.

We notice that the power of this method seems to be affected by two major
inconveniences. Firstly, this analysis does not know about the numerator -/ in equa-
tion (2.13), which can change the structure of singularities of the denominator, or
even cancel some of them. Secondly, even when the numerator does not affect the
singularities, singularities of individual Feynman integrals might not survive the sum-
mation to remain singularities of the full amplitude. In summary, the Landau analysis,
even if predicts all potential singularities of the amplitude, in general, it predicts many
“spurious” singularities as well, which are not actual singularities of the amplitude.

In [17], it was suggested that one can circumvent these issues by directly appealing
to the geometry of the amplituhedron.

Landau singularities form the loop amplituhedron. Given a Landau singularity cor-
responding to setting to zero a certain number of internal propagators, i.e., a cut, this
is an actual singularity of the amplitude if the cut corresponds to a boundary of the
loop amplituhedron.
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In order to make the connection with the amplituhedron more explicitly, as shown
in [48], one can re-write the Landau equation in momentum twistors. If a cut € is
a collection of constraints of the type

fi(£.z) =0, (2.15)

where &£ collectively denotes the momentum twistors associated to loops £0, ...,
£@) and {z} are momentum twistors encoding the kinematic data of external parti-
cles. Then the Landau equations for this set of on-shell constraints include the above
equations together with a set of equations of the type

d

afi (L£(B),z
j=1 Ps
where the B’s are 4L coordinates used to parametrise £, ..., £@). This latter

equations are often referred to as Kirchhoff conditions. We observe that the Landau
equations are d + 4L equations in d + 4L — 1 variables (since we can always rescale
all the a’s in the Kirchhoff equations). Therefore, one might expect that they do not
admit solutions for general kinematics. For the purpose of this analysis, one is then
interested in knowing what the codimension-one loci in kinematic space of z’s are,
for which Landau equations admit solutions (with «’s not all zero). Let such loci be
the vanishing set of the function

N
LaS[€. £*)(z) = [ Ja:(z) =0,
t=1
where € is the cut associated to the Landau equations (2.15), £* is one branch of
solutions of the on-shell conditions we are considering, and a;(z) are certain polyno-
mials of Pliicker coordinates of z (i.e., brackets in momentum twistors, see p. 307).
In the following, we will refer to LaS[€, £*] as the Landau singularity associated to
the cut € in the branch £*. With a slight abuse of terminology, we will also refer to
ai,...,apn as corresponding Landau singularities.
Finally, a given Landau singularity LaS[€, £*] is a true singularity of the amp-
litude Aff]z if the loop amplituhedron has a boundary of the type B[€, £*], see [17].
In summary, on one hand, the Landau analysis can connect the geometry of bound-
aries of the amplituhedron to the location of singularities of integrated amplitudes.
On the other, the amplituhedron can tell which are the true singularities of the integ-
rand, and therefore select the true Landau singularities, among the spurious ones
coming from summing over Feynman diagrams.

2.3.1. Landau singularities at one-loop. We report below the Landau singularities
corresponding to some maximal cuts that will be relevant for our analysis. These can
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be found in [48, Table 1]. We also report the points where the loop momenta localise
on different cuts. In particular, for a maximal cut €, there are two solutions £7, £3
(parity conjugate to each other), each of which can be expressed in term of momentum
twistors of external kinematic as

£F=D[e. L]z, (2.16)

where D[€, £] is a 2 x n matrix depending on Pliickers coordinates of z, where z
is the n x 4 matrix whose rows are the momentum twistors of the external kinemat-
ics z;. In the following, only the non-zero columns of D will be displayed explicitly.
Moreover, we consider cyclically ordered indicesi <i + 1< j <j+ 1<k <k +1.

(1) The two-mass hard box cut ?i’if in equation (2.9) has in general two solutions:
£ =Gj), L=inj,

the first is valid for 0 < k < n — 6 and the second for 2 < k <n — 4. The

corresponding matrices are'’

i i—1 i i+1

eE g =(1 O) eE g = (lij) —(i—1LJ) 0).
Pl (0 1) Pl (0 —(i +1.7) i)

For this cut and both of the branches,'' we have the following Landau singu-
larities:
LaS[€}, £1](z) = LaS[E7, £3]1(z) = (i) (i ).
(2) The two-mass easy box cut ‘6’5 in equation (2.10) has in general two solu-
tions:
Y=l NG+, £=inG+1,jj+1).

They are both valid for 1 < k < n — 5. The corresponding matrices are

i i+1 i+2
* 1 0 0
pegen=(0 0t )
0 —(,i+2,j,j+1) (.i+1l.jj+1)
i—1 i i+1 (2.17)
0 0 1
D[Ei?’x;]:( .. . . . . )
—(,i+ 1L, j+){i-1i+1,j,j+1) 0

0They are of course determined up to GL(2) (and up to adding rows of C, see Defini-

tion 2.1).
Tn general, we can have different Landau singularities for different branches of the same

cut. However, this does not happen at one loop [48].
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For this cut, we have the following Landau singularities:

Las[ef. £1](z) = LaS[€/f . £3](2) = (i.i + 1. j.j +1).  (2.18)

(3) The three-mass easy box €;ji in equation (2.11) has in general 2 solutions:
X1 =Gjj +)N@kk+1), &£ = (i NGj+1),inkk+1)).

The first is valid for 1 < k < n — 6 and the second for 2 < k < n — 5. The
corresponding matrices are

i i+1 7
q_ (1 0 0
D€ ax = ’
[ ijk 1] (0 (i, j k. k+1) —(i,j+ 1,k k+ 1))
j j+1 k ke
D gt = (—Fi+D 50 )
[Cijic. £3] ( 0 0 —(i.k+1) (i.k)

For this cut, we have the following Landau singularities:
LaS[C;jk, £7](z) = LaS[Cjic. £3](2) = (i (i = 1.i + 1)(j.j + D(k.k +1)).

Our notation for twistor brackets throughout the paper follows closely the
literature, e.g., [48].

3. Cluster adjacency in Yangian invariants

We start unpacking cluster phenomena in the context of singularities of scattering
amplitudes in &' = 4 SYM. In this section, we focus on tree-level singularities, i.e.,
on poles of Yangian invariants (see Section 2.2).

In [25], it was conjectured that, given a Yangian invariant ¥ appearing in a BCFW
representation of the tree-level amplitude 4, x, then all its poles are cluster adjacent,
i.e., they are given by some collection of #A-coordinates of the Gr(4, n) cluster algebra
that can be found together in a common cluster. In [42], the conjecture was generalised
for all rational Yangian invariants of & = 4 SYM, where rationality in this context
means intersection number one in the terminology of [2,9].

In particular, in [25] cluster adjacency between Yangian invariants was checked up
to 8-point N2MHYV by looking at Yangian invariants appearing into a specific repres-
entation of the amplitude. This is not an exhaustive check since, starting from 8-point
N2MHYV, one in general finds Yangian invariants which are not related by cyclic sym-
metry to any of the Yangian invariants appearing in a fixed representation. Whereas



O. Giirdogan and M. Parisi 316

in [42], pair-wise cluster adjacency between poles of Yangian invariants was checked
for all £ < 2 and many k = 3 Yangian invariants, by employing Sklyanin Poisson
brackets.

In this section, we prove that all (rational) N>*MHV Yangian invariants with are
cluster adjacent by explicit calculation of the relevant clusters. Moreover, we provide
explicitly the list of their actual poles in terms of polynomial in Pliickers of momentum
twistors which are #-coordinates of the Gr(4,n) cluster algebra in the files yik2n_.m.

Poles of Yangian invariants from the amplituhedron. All Yangian invariants for k = 2
were fully classified in [2]. However, the advantage of presenting Yangian invari-
ants written as products of R-invariants (with, in some cases, auxiliary multiplicative
rational functions) is shadowed by a drawback. In this way, the actual poles of the
Yangian invariant are not always exposed: their numerator might indeed cancel some
poles in the denominator. Moreover, the relation between these poles and A-cluster
coordinates of Gr(4, n) is not manifest either.

We will now explain how to improve on both aspects using a geometric approach
from the amplituhedron, which automatically detects only actual poles of a Yangian
invariant. Moreover, given an J-cluster coordinate, it can easily tell whether it is
a pole of a given Yangian invariant, without computing its full expression.

We recall from Section 2.2 that, given a 4k-dimensional cell S of Gry(k, n)
with kinematic support, the Yangian invariant Y is its full-dimensional image in the
amplituhedron and ¥y is the corresponding function of (super-)momentum twistors
obtained from the Grassmannian integral formula. Then there is a bijection between
(actual) poles of ¥g and codimension-one boundaries of Ys. Geometrically, these
boundaries are simply described as the image of some of the boundaries of the cell §
into the amplituhedron. In details, let 3S@ be one (4k — 1)-dimensional cell in the
boundary of the cell S that has a full-dimensional image'” (i.e., 4k — 1) into the
amplituhedron. Then the image of 35 ) is a boundary of Y5. Moreover, being of codi-
mension one, this boundary in the amplituhedron lies on an hyper-surface determined
by the vanishing locus of a function

P((YZi, Zi, Ziy Zi,)) = O,

which depends on the brackets defined in equation (2.3). By projecting to momentum
twistor space, the corresponding pole of ¥g will be at

P((Zi12i22i32i4>) = 0.

12Even if a cell S has kinematic support, in general, it has some boundaries whose dimension
might be dropped when mapping into the amplituhedron. One has to disregard such boundaries,
as they do not contribute to the codimension-one boundary of Y.
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Vice-versa, if we start with a polynomial'® P((z;, zi,zizi,)) in Pliickers, e.g.,
an sA-cluster coordinate, then we can claim it is a pole of a given Yangian invari-
ant Yg if
0, VC eas?,

PUYZi, Ziy Zis ZiDy—c.p =

where we parametrised Y as in definition (2.4), i.e., Y = C - Z, with C any repres-
entative of a point in 35 @. In this way, we can detect (actual) poles of every Yangian
invariant purely from the geometry of the amplituhedron. In order to handle positroid
cells in the Grassmannian, we used the MATHEMATICA package positroids.m [9].

3.1. Cluster adjacency in all (rational) N> MHYV Yangian invariants

In this section, we report all poles of each N2 MHV Yangian invariant explicitly ex-
pressed as A-cluster coordinates and explore their cluster properties.

n = 6. There is only one Yangian invariant and all its poles correspond to frozen vari-
ables {(i,i + 1,1 + 2,i + 3)}ie[6]- Therefore, this Yangian invariant satisfies cluster
adjacency trivially.

In the following, we will write (i) := (i,i + 1,i 4+ 2,i + 3), which will be frozen
variables in the Gr(4, n)cluster algebra. Note that the definition of (i) is depends on 7.
Nevertheless, we suppress this information to avoid notational clutter.

n =7. There are only 3 Yangian invariants {¥Y, }4[3], up to cyclic symmetry. Only the
Yangian invariants number 2, 3 are of the new type which appear at n = 7, whereas ¥
is just a relabelling of the type n = 6. We list here the poles of each of them in terms
of polynomial of brackets of momentum twistors:

Y1 = {(26). (2367). (37). (2), (3). (4)}.
0%, = {(14), (5(67)(12)(34)). (3(45)(67)(12)). (1), (47), (2), (3). (4)},
0Y3 = {(3471), (7(12)(34)(56)), (27), (3467), (1), (47), (3), (37), (4)}.

As expected, all the poles are cluster variables of Gr(4, 7) and we checked they are
cluster adjacent.

n = 8. There are 24 Yangian invariants up to cyclic symmetry; 4 of them are of n = 6
type, 14 are of n = 7 type. There are only 6 new types which appear for n = 8.
We provide a full list of these Yangian invariants in an ancillary file, yik2n8.m, and
the labels we use to denote them below refer to this list.

13We assume the polynomials are irreducible in the Pliicker variables.



O. Giirdogan and M. Parisi 318

In this case, we observe explicitly that writing k = 2 Yangian invariants in terms of
products of R-invariants might obscure the actual poles. Let us consider the Yangian
invariant ¥;1, which can be written as

Y11 = R12345R678,(123)n(45),5- (3.1)
If we write the poles explicitly, we can see that some factorise
((123) N (45)567) = (1235)(4567),

where (1235) is also a pole of Rj2345 and will therefore seem to appear as a double
pole in (3.1). Since we appeal purely to the geometry of the amplituhedron, we will
only see the actual poles of the Yangian invariants, and in this case {1235) is not
an actual pole. In the following, we will write Yangian invariants which show this
phenomenon explicitly, otherwise, we will write their poles as unions of 10 poles of 2
R-invariants:

Y12 = 0R1 3 (45)n7,8 Y IR4567s, (3.2)
0Y15 = 0Rg1234 U 0R4s5678, (3.3)
Y16 = R 234 5n(78) U IR4s678, (3.4

Y11 = {(14), (1245), (123(45) N 7), (1), (4578), (2), (58), (4), (5)}, (3.5)
%13 = {(6(13)(45)(78)). (6(12)(45)(78)). (123,5 N (78)). (47),
(123(45) N 7), (58), (6(23)(45)(78), (4), (5)}. (3.6)
3Y24 = {{1(34)(56)(78)), (7). (6(12)(34)(78)), (3(12)(56)(78)), (1),
(8(12)(34)(56)), (5(12)(34)(78)). (3). {2(34)(56)(78)).
(7(12)(34)(56)). (5). (4(12)(56)(78)) } (3.7

All of these Yangian invariants, including those of four-mass box type, have poles
that are polynomial in momentum twistor brackets. These polynomials are all cluster
variables of Gr(4, 8).

We verified that cluster variables corresponding to all the poles of these Yangian
invariants are cluster adjacent with a single exception. Namely, the Yangian invariant
Y»4, which corresponds to the four-mass box, contains non-cluster adjacent poles.
We will comment on this in Section 3.2.

The Gr(4, n) cluster algebras are infinite for » > 8 but recent understanding [6,26,
35] suggest natural truncations of these in terms of positive tropical Grassmannians
or their generalisations. For n = 8 there have been three such constructions, by con-
sidering all tropicalised Pliicker coordinates, only a parity-invariant subset thereof, or
the parity completion of the set of Pliicker coordinates. These, as polytopes, have 274,
260 and 548 vertices, respectively.
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One may also wonder if and which of the proposed truncations of the infinite
cluster algebras via tropical fans do accommodate the adjacencies we found for 8-
point N?2MHV Yangian invariants. We find that all Yangian invariants, except ¥,4, are
also cluster adjacent in the more restrictive sense of tropical fans. In particular, the
corresponding g-vectors of their unfrozen poles always form a cone of the tropical
fan with 274 vertices, obtained by tropicalising the maximal parity-invariant subset of
the Pliicker coordinates.

n = 9. There are 108 Yangian invariants up to cyclic symmetry; 10 of them are
of n = 6 type, 56 are of n = 7 type, and 38 are of n = 8 type. There are only 4 new
types which appear for n = 9. We report below the boundaries in terms of brackets of
momentum twistors for these 4 types:

0Y45 = 0R 12349 U 0Rs56789, (3.8a)
0Y46 = 0R1234,(567)n(89) U OR56789, (3.8b)
0Y48 = OR1234,(56)n(789) U IR56789, (3.8c)

0101 ={(562N8),(462N8),(452N8),
(235N8),(135N8),(125N38),
(892N5),(792N5),(782N5)}, (3.8d)

where the labels refer to the list in the ancillary file yik2n9.m, where we give a full
list of these Yangian invariants (up to cyclic rotations). All 108 of these objects are
cluster adjacent in Gr(4, 9), except the two, which are of the n = 8 four-mass box
type.

We also present the cluster that contains the poles of a Yangian invariant which
is particularly interesting, namely Y101 in (3.8d). Informally, it is called the spurion,
since it does not contain any physical pole. Therefore, it cannot appear in any of the
BCFW representations of the amplitude #g . Nevertheless, from the perspective of
the amplituhedron, it is a generalised triangle and can be part of a triangulation, giving
a representation of g » not obtainable with standard BCFW.

This cluster has the quiver diagram displayed in Figure 1, where we abbreviated
the relevant #-coordinates as

a; =(562N8), a,=(462N8), a3 = (452N38),
as = (235N8), as=(135N8), as=(125N3),
a7 =(892N5), ag=(792N5), a9 =(782N5),

while the remaining irrelevant ones are

s1 = (1456), s, = (1237), 53 = (4789).
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S N
\a6 al/

Figure 1. Quiver diagram for a Gr(4, 9) showing cluster adjacency of the poles of Y191 for
n=09.

These three irrelevant 4 coordinates can be freely mutated and therefore one may say
that this Yangian invariant corresponds to a cube in the cluster polytope. Note also
the Z3 symmetry of the spurion is reflected in this cluster.

n = 10. There are 395 Yangian invariants up to cyclic symmetry; 22 of them are
of n = 6 type, 168 are of n = 7 type, 174 are of n = 8 type, 30 are of n = 9 type and
only 1 is of n = 10. As observed in [2], there are no new types of Yangian invariants
beyond n = 10. This comes immediately from the fact that Yangian invariants cor-
respond to 4k-dimensional cells in Gry (k, n), whose number of types is bounded for
fixed k. The only new type of Yangian invariant for n = 10 is very simple:

0Y1 = 0R12345 U 0Re789,10-

In Figure 2, we represent a cluster in Gr(4, 10) cluster algebra which contains all poles
of ¥Y;. We observe that all poles of Ry345 are in the left-most position, whereas all
the poles of Re739,10 are in the right-most position.

With this, we proved cluster adjacency for all N°MHV Yangian invariants corres-
ponding to generalised triangles. Moreover, we observe that Yangian invariants of the
four-mass box type, which are not generalised triangles, do not satisfy cluster adja-
cency. The corresponding cluster algebras are infinite, and one may wonder how one
can check this conclusively. We comment on this in the next section.
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Figure 2. The cluster in Gr(4, 10) demonstrating the adjacency of the Yangian invariant ¥ for
n = 10.

3.2. Four-mass box Yangian invariants

The n = 8 Yangian invariant ¥, corresponds to a four-mass box cut. These types of
Yangian invariants fall in the category of Yangian invariants with intersection num-
ber higher than one, see Section 2.2 and they have always been excluded in cluster
adjacency analysis, e.g., in [42].

In particular, for the case of Y¥,4, points in the amplituhedron have 2 pre-images in
the associated cell S»4 in Gry (k, n). From an algebraic perspective, this corresponds
to the fact that ¥4 can be expressed as the sum of two contributions:

You = Y5 + Y53,

each of which contains square-roots, however the sum is of course rational. Moreover,
the boundaries of ¥»4 will only correspond to the actual poles of the sum in equa-
tion (3.2). We reported these poles in equation (3.7) and checked that they are not
cluster adjacent.'* The infinite nature of the Gr(4, 8) cluster algebra might make it
difficult to perform exhaustive checks, especially when the poles may not be mutation
pairs.'> Nevertheless, we explain below how one proves that this Yangian invariant is
not cluster adjacent.

4Tnvariant Y54, as other Yangian invariants with intersection number higher than one, can
be rewritten as a sum of other rational Yangian invariants, each of which we showed to satisfy

cluster adjacency.
13See Section 2.1 for the terminology.
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We can easily find a cluster containing only two of the poles of this Yangian
invariant, e.g.,
(6(12)(34)(78)).  (8(12)(34)(56)). (3.9

Then, by freezing these two nodes and mutating them in all other directions, we
can start exploring the “face” corresponding to these and ask whether we are able
to generate any of the other poles of this Yangian invariant. This turns out to be
infinite. However, after a relatively small number of mutations, one finds that all
mutations are exhausted apart from those corresponding to the 1-dimensional infinite
sub-affine- A, sequences. Each mutation in these sequences produces Pliicker polyno-
mials of increasing degree, exhausting the possibility of generating any of the poles
of equation (3.7). One might wonder'® whether these mutations cover all possible
clusters containing the two letters (3.9) we began with. The answer is positive thanks
to [12, Theorem 6.2]. This indeed guarantees that for any skew-symmetrisable cluster
algebra, the seeds whose clusters contain a given collection #-coordinates form a con-
nected subgraph of the exchange graph of the cluster algebra.

4. Patterns in leading and Landau singularities

In this section, we state the main conjecture of this work. We enhance the tree-level
cluster adjacency of Yangian invariants explored in Section 3 to include information of
loop-level singularities, i.e., Landau singularities. In particular, we provide evidence
that all poles of a Yangian invariant in a given cut and the corresponding Landau
singularity can be found together in a cluster.

Cluster adjacency seems to know about compatibility between different singularit-
ies or, equivalently, between boundaries. We have seen at tree-level how the collection
of poles of a Yangian invariant (or, equivalently, of their boundaries) corresponds to
cluster variables in a common cluster. One can naturally extend this compatibility,
thinking of a Yangian invariant as being located “inside” a given leading singularity.
Algebraically, this means that it can be used as an addend to express the leading singu-
larity. Geometrically, this means literally that the Yangian is inside the codimension-
4L boundary of the loop amplituhedron which corresponds to the maximal cut giving
the leading singularity, as explained in Section 2.2. By Landau analysis, we have seen
how this boundary of the loop amplituhedron (equivalently, the leading singularity)
is accessed by the integrated amplitude having a branch points in the correspond-
ing Landau singularity. Vice-versa, given a Landau singularity which corresponds to
branch points of the integrated amplitude, by “reverse” Landau analysis we can list

16We are grateful to Andrew McLeod for raising this question.
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the maximal cuts of the integrand which are responsible for these singularities. The
leading singularities of these maximal cuts will be then expressed in terms of Yangian
invariants, which themselves have certain poles. Cluster algebras seem to tell us that
we can find the Landau singularity and all the poles of a given Yangian as above in
a common cluster.

Let us state our conjecture more explicitly. Given a maximal cut € of an L-loop
n-point N°MHV amplitude and a branch of its solutions £*, let LaS[€, £*] be the
corresponding Landau singularity and let LeS[€, £*] be the corresponding leading
singularity, as defined in Sections 2.2 and 2.3. Let us express them as

LaS[€, £*](2) = l_[a,(z) LeS[C, £*] = )" ¥,

where {a1(z)....,ay(z)} and the poles of the n-point N°MHV Yangian invariants ¥;
are A-coordinates of the Gr(4, n) cluster algebra. Then we conjecture:

Conjecture 4.1. {Y;,ay,...,an} are cluster adjacent, i.e., all the poles of ¥; and
ai,...,ay can be found in a common cluster of the Gr(4, n) cluster algebra.

This refers to any Yangian invariant ¥ that can be used to represent the given
leading singularity LeS.

We will refer to the cluster adjacency predicted by this conjecture as the LL-cluster
adjacency (i.e., leading and Landau singularities cluster adjacency). In this paper, we
checked for all amplitudes up to one-loop and 9-point (both NMHV and N?2MHV)
ones that LL-cluster adjacency (4.1) holds true. We leave the checks for higher loops
or points for future work.

Yangian invariants from the loop amplituhedron. For an L-loop n-point N*MHV
amplitude, let € be a maximal cut and £* one branch of its solutions. Then we can
directly use the definition of the loop amplituhedron to determine whether a given
Yangian invariant ¥ can be used to express the corresponding leading singularity
LeS[€, £*]. In geometric terms, this means that the Yangian invariant ¥ is inside
the codimension-4 L boundary B[€, £*] of the loop amplituhedron Aff‘lz
As mentioned in equation (2.16), on the maximal cut € and on the branch of solu-
tions £*, the loop momentum twistors are localised in terms of twistors of external
kinematic,
£D" = DO (23, 2iy21323)) -2, 1 =1,..., L, 4.1

where D®™ are 2 x n matrices depending on Pliickers coordinates of z, where z
is the n X 4 matrix whose rows are the momentum twistors of the external kine-
matics z;.
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On the amplituhedron side, on the boundary B[€, £*], the loop momentum twis-
tors are localised as

* *
D" =DV ((v24,2,21,2:,))-Z, 1=1,...,L,

where DO are the same as in equation (4.1), however their dependence on brack-
ets (z;,zi,2iyZi,) of momentum twistors has been uplifted in the amplituhedron into
adependence on (YZ; Z;,Z;, Z;,).

Let S be a 4k-dimensional cell in Gry (k, n) with kinematic support. Then a Yan-
gian invariant Y belongs to the boundary B[€, £*]if the positivity conditions in (2.2)
are satisfied, i.e.,

C

N
DU y_c.z
0<s<L, 4.2)

. *.
D& y_c.z

are totally positive matrices for all representative matrices C in the cell S. In (4.2),
D(i“)*|y=c.z denotes the matrix which depends on (YZ;,Z;,Z;,Z;,), with Y in
the image of the cell S, i.e., Y = C - Z. As in previous sections, in order to handle
positroid cells in the positive Grassmannian, we use the MATHEMATICA package
positroids.m.

Using this procedure, by scanning over all 4k-dimensional cells (with kinematic
support) in Gry (k,n), we get a list {S;}; such that {Y, }; are all the Yangian invari-
ants in the boundary B[€, £*]. Finally, this means that we obtain the list of Yangian
invariants {¥s, }; which can appear as summands to represent the leading singularity

LeS[€E, £*].

4.1. LL-cluster adjacency for one-loop NMHV

Let us consider the case of one-loop n-point NMHYV amplitudes and state the expected
LL-cluster adjacencies by matching Yangian invariants in representations of a lead-
ing singularity with the corresponding Landau singularities associated to the same
maximal cut. We note that our studies focus on the non-trivial cases when Landau
singularities are not only products of frozen variables, which are the ones presented
in Section 2.3. We will refer to Section 2.2 for the corresponding leading singularities.

The Landau singularity for the two easy-mass box cut ‘Ci}]? is given by the product
of the cluster variables (i j) and (i j ). Whereas the leading singularities for the cut ‘65
are Axmuv (i, ..., j) and Anvuav(J, ..., 1), it is straightforward to see that the R-
invariants which can appear in a representation of these leading singularities are
just the ones of the type Ry, with I a 5-element subset of the set {j,...,i} or
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of {i,..., j}. The two-mass hard box cut ‘65 has a Landau singularity which is
just the cluster variable {(i,i + 1, j, j + 1), whereas its leading singularities are
Ri 1,iv1,j,j+1 and R;;y1i42,5,j+1. Since (i,i +1,j,j + 1) is already a pole
of both the latter two R-invariants, LL-cluster adjacency is trivially satisfied in this
case. Finally, the three-mass box €;j; has an associated Landau singularity which is
(ii =11 +1)(jj + 1)(kk + 1)) and the leading singularity is R; ; j 41,k k+1-

In summary, the LL-cluster adjacency for all points one-loop NMHYV relies on the
following conjecture:

Conjecture 4.2. In the Gr(4,n) cluster algebra, there are always clusters containing
the following lists of A-coordinates:

(ORs 67 G e ({j,..s.,i})’ ({i"'s"j})’

VR j+ ikt (1 — 1i + D(jj + D(kk + D)},

4.3)

where OR j denotes the list of all poles of the R-invariant Ry, andi <i +1 < j <
J + 1<k <k+ 1are cyclically ordered indices in {1, ...,n}.

While we provide an all-n proof of the second type of adjacencies (4.3) in Sec-
tion 4.1.4, in the following we report checks of the LL-cluster adjacencies up to
9 points, with corresponding cluster mutations, as explained in Appendix A.

4.1.1. LL-cluster adjacency for one-loop 7-point NMHYV. Up to cyclic shifts, for
n = 1 there are only 3 types of R-invariants:

(12), (13), (14), (i1,...,ip—5):= R[n]/{il,u-,infs}‘

The adjacencies between Landau and leading singularities read:

(12) is CA with (37), (37),
(13) is CA with (2(13)(45)(67)).

Both the adjacencies are manifested in the cluster polytope by the presence of a sub-
polytope made out of clusters that contain all active poles of the Yangian invariants
and the Landau singularities. The R-invariant (12) has three active poles, and together
with the Landau singularity, these correspond to four #-coordinates. The remaining
two degrees of freedom correspond to a pentagonal face of the cluster polytope, i.e.,
an A, subalgebra.

The pentagons that correspond to {(12), (1367)} and {(12), (2347)} share an edge,
i.e., the subpolytope of two cluster that contain the poles of (12) as well as both the
parity-conjugate Landau singularities. This will be a recurring feature for higher n:
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.R T, L.andau . Mutation sequence Subalgebra
invariant singularity
(123) (38)(38) (1,59,1,2,8,1,2,57,12,423,1,5,6) Ds
< )( ) (194’7759951’5,831,495) D4
(124) <3 )(8 ) (2,6,5,8,9,4,5,4,7,3,1,2,4) A3
(125) (38)(83) (2,5,8,6,9,1,2,4,54,7,3,1,4) Ap x Ay
(126) (38)(38) (2,5,8,2,4,6,2,4,5,9,1,2,1,7,1,3) Ay x Aq
(127) (38)(38) (2,5,8,5,7,9,6,1,2,5,1,2,4,1,2,3) A3
(8(71)(34)(56)) (7,8,9,2,6,1,2,5,4,7,1,2) Dy
(147) (8(71)(23)(56)) (2,3,6,7,8,9,2,5,4,7) A X A1 X Ay

Table 1. Checks of the cluster adjacencies of n = 8 R-invariants and NMHV Landau singularit-
ies. The mutation sequences describe a cluster starting from the initial cluster. See Appendix A
for labelling conventions. The subalgebras donate the residual freedom of mutations, which
leave the collective set of poles invariant.

When the Landau analysis predicts the product of two parity-conjugate Pliicker coor-
dinates, there is a cluster that contains both of them as well as the Yangian invariant.
We will omit the parity-conjugate singularity to keep notation short.

The R-invariant (13) has 4 active poles, and together with the Landau singularity
(2(13)(45)(67)), this adjacency corresponds to a line segment.

4.1.2. LL-cluster adjacency for one-loop 8-point NMHY. There are 7 cyclically
inequivalent R-invariants in this case, and we find that all associated Landau singu-
larities are cluster adjacent. In Table 1, we provide the checks for the cases that are
not implied by the n = 7 case. We also omit the cases where the Landau singularity
is a pole of the NMHYV invariant.

For example, the cluster adjacency statements that

(123) is CA with (48), (48),
(124) is CA with (3(24)(56)(78))

follow from the adjacencies of (12) to (37) and of (13) to (2(13)(45)(67)). We also
omit everywhere Landau singularities that are poles of the Yangian invariants, trivially
satisfying the cluster adjacency based on that of Yangian invariants.

4.1.3. LL-cluster adjacency for one-loop 9-point NMHYV. There are 14 R-invari-
ants up to cyclic symmetry. The adjacencies we need to check along with their veri-
fications are listed in Table 2. We note that the cluster adjacencies between Landau
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(2345) (3456)

NS

(4(35)(12)(67))
(4567) (1234)

\ /' »
(3457)

(2467) (1246)

4

(1467) (1247)
AN ]
(1267)

4

(1567) (1237)

Figure 3. The quiver diagram of a Gr(4, 7) cluster containing the poles of the R-invariant
R12467 and the A-coordinate (4(23)(12)(67)). This cluster is enough to prove the LL-cluster
adjacency for all one-loop NMHV amplitudes.

singularities and leading singularities at n = 7 and n = 8 are embedded in n = 9,
as we should expect.

4.1.4. An all-n proof. It is straightforward to prove that the Landau singularities
(i —1i +1)(jj +1)(kk + 1)) are cluster adjacent to the poles of the R-invariants
R; j j+1kk+1 in the strict sense, i.e., there exists a cluster that contains both this
Landau singularity and all the poles of the said R-invariant in any Gr(4, n) cluster
algebra, with n sufficiently large to accommodate the former. Without loss of gener-
ality, we can fix j = | and assume k + 1 < i — 1. All other cases are related to this
case by cyclic symmetries.

We will show this by explicitly constructing such a cluster closely following [25],
where the cluster adjacency of any R-invariant was proved based on partial rotations.

We first find a cluster that contains the poles of Rjz467 and (4(23)(12)(67)) in
the Gr(4,7) cluster algebra. This cluster can be obtained after a sequence of mutations,
which we shall denote by X¢. The resulting cluster has the quiver diagram displayed
in Figure 3.

The cluster we aim to find is just a relabelling of the cluster above, and this can
be achieved through partial cyclic rotations. In particular, we need to find a sequence
of rotations that maps the labels of (1,2,3,4,5,6)to (k,k +1,i —1,i,i +1,1,2).
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.R o I:andau. Mutation sequence Subalgebra
invariant  singularity
(1234) (14)(41) (4,7,10) E;
(1235) (14)(14) (2,1,4,4,10) Es
(39)(93) (2,1,4,4,10,11,12) E;
(1236) (41)(14) (3,6,9,10,11,12,1,2,1,3) E;
(39)(93) (3,6,9,10,11,12,1,6,1) Es
(1237) (41)(14) (7,1,2,1,3,6) E¢
(39)(93) (7,1,3,1) Es
(1238) (41)(14) (1,2,3,5,10) Ds
(39)(93) (1,2,3,5,11,7,10,12) Esg
(49)(94) (1,2,3,5,7,10) D¢
(9(81)(45)(67))  (1,2,3,5,6,5) Es
(1278) (96)(69) (5,1,2,4,7,8,5,10,2,52,7,8,10) E¢
(39)(93) (5,1,2,4,7,8,5,10,2,8) Ee
(9(81)(34)(56))  (5,1,2,4,7,8,5,10,2,5) E;
(1246) (39)(93) (2,5,7,8,1,3,6) Az x Ay
(1247) (39)(93) (3,4,6,8,9,1,5,1) Az x Ay x Ay
(3(24)(56)(89)> (3’43678’95176) D6 X A]
(1248) (39)(93) (2,6,7,4,5,89,12,2,52,6,7,9) D¢ x A;
(1267) (85)(58) (2,5,6,1,3,1,2) As x Ay
(1257) (39)(93) (3,6,7,8,9,1,6,1) Az X Az X Ay
(1258) (39)(93) (3,4,5,6,1) Az x Ay x A;
(1268) (39)(93) (2,5,8,7,10,1,3) As

Table 2. Checks of the cluster adjacencies of n = 9 R-invariants and NMHV Landau singularit-

ies. The mutation sequences describe a cluster starting from the initial cluster. See Appendix A

for labelling conventions. The subalgebras donate the residual freedom of mutations, which
leave the collective set of poles invariant.
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These rotations are

2|44
(1,2,3,4,5,6,7) —— (k + 3,k +4,1,2,3,4,5)

=3lit1 . .

—— (k,k+1,i—1,i,i +1,1,2),
where r|,, denotes r rotations in the Gr(4, m) algebra. In [25], it was explained how
to find a mutation sequence that realises such a transformation, and we denote this
sequence by X7 . For negative r, it is understood that the mutation sequence is applied
in reverse.

If we then apply the mutation sequence ¢ to the appropriately relabelled cluster,

in other words, if we mutate the Gr(4, n) initial cluster into the sequence

-3 -2
212k a0,

we obtain a cluster which contains all the poles of the R-invariant Ry k+1; as well
as the letter (i (i — 1i 4+ 1)(12)(k k + 1)).

4.1.5. An amplitude in a manifestly LL-cluster adjacent form. In [25], it was
argued that to make the adjacency of the final entries of symbols with the R-invariants
of NMHYV loop amplitudes, one has to expand the symbol of the amplitude over the
full set of R-invariants, which satisfy linear six-term relations between them. This way
of writing the amplitude is certainly not unique due to these identities, and cluster
adjacency between the R-invariants and the final entries can be made manifest in
a number of ways.

We can suggest our observation of the cluster adjacency of Landau singularities
and R-invariants as a further constraint on the final entry condition. More precisely,
we can rule out any final entry — R-invariant pairs that are not related to each other
through LL-cluster adjacency.

It turns out that the one-loop NMHYV amplitude can be uniquely fixed in a form in
which it obeys the adjacency discussed above,

A]fgs_like’(l) =—(13)[a11 R as2 + a13 ® aez]

+(I4)[-a11 ®ai1 +a11 @ais +a1a @ ai —ais @ aisl
+ (12)[a11 ® a1s —ai1 @ azx —ay ® asz +ap ars
—app ®ax —ap ®as —2a15 ®dais
+a1s ® ax + ars ® azy] + cyclic,
where the notation a;; for the symbol letters follows the literature on 7-point amp-
litudes.
It would be interesting to show that any one-loop NMHYV amplitude can be written

in such a way. Then one may speculate whether this leads to a final entry condition
for a given MHV degree and loop order.
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4.2. LL-cluster adjacency for one-loop N>MHV

We now use results from Section 3, in particular the lists of poles of (rational) N>MHV
Yangian invariants expressed as cluster coordinates, to test LL-cluster adjacency at
one-loop for N°MHV amplitudes. Moreover, for a given cut, we use positivity as
in equation (4.2) to get the full list of N2MHV Yangian invariants which appear in
a representation of the corresponding leading singularity. For example, if we consider
the two-mass hard box cut ‘C’g and the branch as in equation (2.17), then for 8 points,
we find a list of six N> MHYV Yangian invariants, whereas for n = 9 and the same cut
and branch, we find that there are 21. Each of these N> MHV Yangian invariants has
poles which can be found in the same cluster together with the Landau singularity of
the corresponding cut in equation (2.18), i.e., (1256).

n = 7. This case is related to the n = 7 NMHYV case discussed above through parity
conjugation. Up to cyclic shifts, for n = 7 there are only 3 types of Yangian invariants
Y1,2,3, which are parity conjugates of (12), (13) and (14), respectively. Their poles
have been explicitly presented in Section 3.1.

For these Yangian invariants, we only have the following associated Landau sin-
gularity that is not implied by a case worked out earlier in the paper:

Yangian Landau

invariant  singularity
Y (36), (63) 3) A
Y> (4(12)(35)(67))  (6,54,1,2) A

Mutation sequence Subalgebra

where, as before, the mutation sequences describe a cluster proving the cluster adja-
cency.

n = 8. There are 24 Yangian invariants up to cyclic symmetry. We see that for some of
the Landau singularity — Yangian invariant pairs, cluster adjacency is implied either
by checks for n = 6 and n = 7 or by the cluster adjacency of the Yangian invari-
ant itself when the Landau singularity is a pole of the former. The remaining cases
are listed in the table below together with the clusters that contain of all said sin-
gularities:

Yangian Landau

invariant  singularity
Y, (1378) (2,5,8,6,9,1,2,4,5,1,4,7) Az X Ay
) (8(71)(23)(56)) (7,8,9,3,6,2,5,7,1,4) Az x Ay
Y14 (7(68)(23)(45)) (1,5,9,3,5,6,1,2,3,4,5,4,8,7) A; x A;
Y13 (8(71)(23)(45)) (7,8,9,4,5,6,3,1,2,7,8,1,47) A; x Ay

Mutation sequence Subalgebra
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We have also checked the cluster adjacency properties for Landau singularities
and Yangian invariants of N2MHV n = 9 one-loop amplitudes. These considerations
are too lengthy to present here and we refer to the ancillary file LLCAk2n9 . m.

5. Conclusions and outlook

Cluster phenomena have become increasingly relevant in understanding singularities
of scattering amplitudes. The remarkable observation that building blocks of scatter-
ing amplitudes in planar &' = 4 SYM satisfy a property called cluster adjacency,
provided both paths to understand their deep mathematical structures and tools to per-
form computations which otherwise would be beyond reach. At tree-level, scattering
amplitudes are rational functions whose singularity structure is encoded in the loc-
ation of its poles. They can be expressed as sums of Yangian invariants, which have
their own singularities, some of which are “spurious” as they do not appear in the final
amplitude. Nevertheless, collections of all poles of each Yangian invariant which can
appear in a representation of tree-level scattering amplitudes seem themselves to be
part of a beautiful mathematical story.

In this paper, we argued for an enhancement of the phenomenon of cluster adja-
cency of Yangian invariants to include singularities of loop amplitudes in N = 4
SYM. In particular, via an amplituhedron-based approach, we observed a new mani-
festation of cluster adjacency for leading and Landau singularities, which we called
“LL-cluster adjacency” for brevity. Given a maximal cut of a loop amplitude, the cor-
responding Landau singularities are found in the same cluster as the poles of each
Yangian invariant which can appear in a representation of the leading singularity
related to the cut. Moreover, we checked LL-cluster adjacencies for all one-loop amp-
litudes, both NMHV and N>MHYV, up to 9 points. Interestingly, one-loop NMHV
7-point amplitude are uniquely fixed by LL-cluster adjacencies, once these are inter-
preted as a final-entry conditions. On the way, we proved that all N2MHV Yangian
invariants corresponding to generalised triangles are cluster adjacent, confirming the
conjectures of [25,42]. We also show that, for Yangian invariants of the four-mass box
type, the poles of the rational sum of their algebraic terms violate cluster adjacency.

Studies of cluster adjacency of Yangian invariants [39,42] motivate the question
of whether this phenomenon should be regarded as a built-in mathematical feature of
Yangian invariants that is by their definition, or whether it is a physical constraint.
While cluster adjacency may be a mathematical fact for rational Yangian invari-
ants, the inclusion of Landau singularities is certainly a new, “physical” information,
just like extended-Steinmann conditions on symbol letters. Our observation calls for
a geometric understanding that unifies all the related incarnations of cluster adjacency
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and makes manifest how the more physical ones are implied by the mathematical ones
and vice versa.

At each loop L and helicity sector k, LL-cluster adjacencies provide a natural
set of pairings between Yangian invariants and symbol letters of the corresponding
Landau singularities. This set is in general much smaller than the full set of adja-
cencies obtained from Gr(4, n) cluster algebras, which is loop- and helicity-agnostic.
It would be interesting to see if LL-cluster adjacencies could be interpreted as refined
set one can use to contain amplitudes at fixed loop order and MHV degree, instead
of relying on the full cluster algebra. We provided an example of how this principle
can be interpreted as a final-entry condition and fix the n = 7 one-loop amplitude.
Such a principle would be even more restrictive than the recently proposed trunca-
tions of infinite cluster algebras [6,26, 35], but without further examples with higher
multiplicity and loop order, it is merely a wishful speculation.

On this regard, extending our analysis to non-rational Yangian invariants and
Landau singularities corresponding to algebraic letters could be natural direction to
pursue. There have been many promising results on how to understand algebraic
letters in a cluster algebra fashion with the help of tropical positive Grassmanni-
ans [6, 26, 35]. However, a full understanding of Gr(4, n) infinite cluster algebras
is still missing, e.g., notions of “adjacencies” involving algebraic letters have still to
be defined.

Our work is in the direction of making steps towards answering the long-standing
question of how the cluster structure of integrands in & = 4 SYM is related to
the cluster structure of the integrated amplitudes. The manifestation of the physical
information carried by LL-cluster adjacencies which relates leading singularities with
Landau singularities shows further evidence that cluster phenomena know about the
mathematical structure encoding (the singularities of) loop amplitudes.

A. Initial clusters and the encoding of mutations

To prove the cluster adjacency properties we claim the hold, we present clusters con-
taining these poles as the results of a sequence of mutations starting from the initial
cluster.

We enumerate the active nodes of the initial cluster, starting from (1235) going
downwards and continuing in the second column starting with (1236), numbered 4.
In Figure 4, we remind the reader the initial cluster for Gr(4,n) and describe this way
of labelling the nodes. Clearly, the mutation sequence that relates two clusters is not
unique.
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(1234)
\(‘1235)H(1236) S (123n)

\

(1}45‘)H\(1256)\ o (12n—1n)

RN

(1.}45)4(1456) [{ln—2n—1n)]
AN

(2_}45) 3456\ ((n—3n—2n—1n)]

Figure 4. Initial cluster for Gr(4, n) and a numbering of its nodes to encode mutation sequences.
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