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Quantum error-correcting codes and their geometries

Simeon Ball, Aina Centelles, and Felix Huber

Abstract. This is an expository article aiming to introduce the reader to the underlying math-
ematics and geometry of quantum error correction. Information stored on quantum particles is
subject to noise and interference from the environment. Quantum error-correcting codes allow
the negation of these effects in order to successfully restore the original quantum information.
We briefly describe the necessary quantum-mechanical background to be able to understand
how quantum error correction works. We go on to construct quantum codes: firstly qubit sta-
bilizer codes, then qubit non-stabilizer codes, and finally codes with a higher local dimension.
We will delve into the geometry of these codes. This allows one to deduce the parameters of the
code efficiently, deduce the inequivalence between codes that have the same parameters, and
presents a useful tool in deducing the feasibility of certain parameters. We also include sections
on quantum maximum distance separable codes and the quantum MacWilliams identities.
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We have used various sources in the preparation of this article, principally Gottes-
man [8, 9], Glynn et al. [7] and Ketkar et al. [14]. The most original parts of these
notes are Sections 4 and 6. Section 5 is based on Ketkar et al. [14] but massaged so that
appears as a straightforward generalisation of the qubit case of Section 2. Although the
main results of Section 3 are from Glynn et al. [7], in a deviation from their approach,
we have chosen to prove these results without using the F4 trick, which we do not
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consider until later in Section 5.5. The interested reader is referred to the books by
Sakurai [19] and Nielsen and Chuang [16] for standard treatments of quantum mech-
anics and quantum information theory, to the book by Haroche and Raimond [11] for
a thorough treatment of current experiments in quantum mechanics, and to the book
by Aaronson [1] for further connections to mathematics, computer science, physics,
and philosophy. For those uninitiated in quantum mechanics or quantum computing,
we strongly recommend the delightful mnemonic essay on quantum computing by
Matuschak and Nielsen [15].

1. Quantum codes

1.1. Introduction

A qubit is a two-state or two-level quantum-mechanical system. For example, the
intrinsic angular momentum (spin) of an electron is such a system. It can only take two
values when measured in arbitrary spatial direction, say by measuring the electrons
deflection when passing by an inhomogeneous magnetic field. The two corresponding
spin-states are commonly referred to as “spin-up” and “spin-down” states with respect
to that direction. Another example is the polarization of light. Here the two states can
be taken to be vertically and horizontally polarized light; another choice is light that
is left circularly and right circularly polarized. In general, a continuum of different
photon polarizations is possible. Yet only two distinct states are observed when, e.g.,
putting beamsplitters or polarization filters in the path of a light beam.

This raises the question: why are only ever two discrete values corresponding to
two discrete states observed, if electrons and photons can take on a continuum of pos-
sible spin-directions or polarizations? The answer lies with what measurements on
quantum systems reveal. It turns out that for a two-state quantum-mechanical system,
any individual measurements can only ever reveal the answer to a binary question.
In other words, the measurement indicates in which of two mutually exclusive states
the qubit can be found after the measurement. Thus while qubits can take on a con-
tinuity of states and a continuity of measurements can be performed, only two-valued
results can ever be obtained. Thus the notion of a qubit as a quantum bit. We will
not dwell on the strangeness of quantum mechanics further, the interested reader
is referred to discussions of the Stern–Gerlach and double-slit experiments such as
found in the books by Sakurai [19] and Haroche and Raimond [11].1

1For a visualisation of these experiments, see httpW//toutestquantique.fr/en/spin and httpW//
toutestquantique.fr/en/duality.

http://toutestquantique.fr/en/spin
http://toutestquantique.fr/en/duality
http://toutestquantique.fr/en/duality
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In mathematical terms, a qubit is represented by a unit vector in C2. The spin-up
and spin-down (or any other choice of a pair of physically completely distinguishable
states) are represented by an orthonormal basis j0i and j1i. The notation j0i is a short-
hand for the vector Œ 10 �, and j1i stands for Œ 01 �. The two kets j0i and j1i are also known
as the computational basis vectors.

Consider now the state

j i D
1
p
2
.j0i C j1i/ D

1
p
2

"
1

1

#
:

While j i 2 C2 represents a physically unique state, it is, upon measurement in
the spin-up–spin-down direction, found in either of these two directions with equal
probability. Sometimes this situation is referred to as the system being “in two states
simultaneously”. A more accurate description is that the system is “in superposition
of spin-up and spin-down”, or in other words, the system is correctly described as
a linear combination of spin-up and spin-down.

A typical qubit reads
j˛i D ˛0 j0i C ˛1 j1i:

As usual, xz is the complex conjugate of the complex number z. When measured,
the qubit is with probability ˛0˛0 found in state j0i (spin-up) and with probability
˛1˛1 found in state j1i (spin-down). Since the sum of these two probabilities must be
one, we have that for a qubit

˛0˛0 C ˛1˛1 D 1: (1.1)

The “ket” notation j˛i is used for a column vector, whilst the “bra” notation h˛j is
used for a row vector whose coordinates are the complex conjugates of the coordinates
of j˛i. Thus, the “bra” h˛j is a linear form. The inner product or “bra-ket” on C2 is
defined as

h˛jˇi D ˛0ˇ0 C ˛1ˇ1:

The normalisation condition in equation (1.1) then reads as h˛j˛i D 1, and qubits are
represented by complex vectors in C2 of unit length.

A unitary transformation of C2 is given by a non-singular 2 � 2 matrix U which
preserves this inner product, so

hU˛jUˇi D h˛jˇi;

for all h˛j and jˇi. The set of such unitaries forms the special unitary group SU.2/.
In particular,

hU˛jU˛i D h˛j˛i D 1:
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The matrix

U D

 
0 �i

i 0

!
is an example of a unitary transformation since

hU˛jUˇi D .�i˛1 h0j C i˛0 h1j/.�iˇ1 j0i C iˇ0 j1i/

D i˛0.iˇ0/C�i˛1.�iˇ1/ D h˛jˇi:

Note that ¹j0i; j1iº is an orthonormal basis, so

h0j0i D h1j1i D 1 and h0j1i D h1j0i D 0:

The Hermitian conjugate M � of the linear operator M is the operator which sat-
isfies

hM j�i D h jM ��i:

An operator M is Hermitian if M D M �. In matrix terms, this is equivalent to the
conjugate transpose being the same as the matrix itself. For example, 

1 2C i

2 � i 2

!
defines a Hermitian operator on C2.

LetM be a linear operator defined on a complex space with orthonormal basis B .
The trace of M is defined as

tr.M/ D
X
j i2B

h jM j i:

We can easily prove that the trace of an operator does not depend on the basis chosen.
Firstly, note that

tr.MN/ D
X
j i2B

h jMN j i D
X

j i; j�i2B

h jM j�i h�jN j i

and X
j i; j�i2B

h�jN j i h jM j�i D
X
j�i2B

h�jNM j�i D tr.NM/;

hence
tr.PMP�1/ D tr.P�1PM/ D tr.M/:

In matrix terms, the trace is equal to the sum of the elements on the principal di-
agonal.
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The Pauli matrices,

�0 D

 
1 0

0 1

!
; �x D

 
0 1

1 0

!
; �z D

 
1 0

0 �1

!
; �y D

 
0 �i

i 0

!
;

are unitary linear transformations of C2 which form a basis for the space of 2 � 2
matrices. In general, any error (also those which are not unitary) affecting a single
qubit can be written as a linear combination of the Pauli matrices. We sometimes
denote �0, �x , �y , �z simply by I , X , Y , Z, respectively. Note that the Pauli matrices
are both unitary and Hermitian. They are also mutually orthogonal under the Hilbert–
Schmidt inner product

hA;Bi D tr.A�B/:

A measurement or observable is represented by a Hermitian operator. For exam-
ple, the spin-up – spin-down measurement y�z is represented by the Pauli matrix �z .2

The outcome of an individual measurement can only take two values. These cor-
respond to the eigenvalues of �z which are C1 and �1. After the measurement, the
state is then found in the corresponding eigenstate: in j0i if the outcome C1 was
obtained, and in j1i if the outcome �1 was obtained. These occur with probabilities

p0 D jh˛j0ij
2 and p1 D jh˛j1ij

2;

respectively.
An expectation value is obtained by the repeated measurement of identically pre-

pared spin particles. Measuring the spin value of y�z on a qubit

j˛i D ˛o j0i C ˛1 j1i

yields the expectation value

hy�zi D h˛j �z j˛i D tr.�z j˛ih˛j/ D ˛20 � ˛
2
1 :

One can check that this leads to the correct expectation value of

hy�zi D p0 � .C1/C p1 � .�1/ D ˛
2
0 � ˛

2
1 D h˛j �z j˛i:

The above treatment can be generalised. Denote by yA an observable which is
represented by a Hermitian matrix A. Let mi and jmi i be its eigenvalues and corres-
ponding eigenvectors. Measuring an observable yA on a quantum state j˛i yields the
values mi with probability pi D jh˛jmi ij2. The state is found in the corresponding
eigenstates afterwards.

2This direction is commonly referred to as the “z-direction” in the x-y-z axis scheme.
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This leads to the expectation value

h yAi D h˛jA j˛i D tr.A j˛ih˛j/:

The description of multiple quantum systems takes place in the tensor product
space of the individual Hilbert spaces. Thus a system of n qubits is described in the
n-fold tensor product space of the one-qubit spaces. One arrives at the 2n-dimensional
Hilbert space .C2/˝n D C2 ˝ � � � ˝C2 (n times).

A density matrix is used to describe a classical probability distribution (also called
a statistical mixture or statistical ensemble) over quantum states. Suppose that some
source emits the quantum state j�i i with probability pi . One requires that pi � 0 andP
i pi D 1. From the discussion in the previous section, it is clear that the measure-

ment of an observable yA must yield an expectation value of

h yAi D
X
i

pi h�i jA j�i i:

By linearity, this can be rewritten as

h yAi D tr
�
A
X
i

pi j�i ih�i j
�
:

Indeed, the operator

� D

rX
iD1

pi j�i ih�i j

captures all there is to know about a quantum system, and � is known as the density
matrix describing it.

For a complex matrix � to represent a quantum state, it is required that � D ��,
h j � j i � 0 for all j i (positive-semidefinite) and tr.�/ D 1. Compared with clas-
sical probability theory, this corresponds to a real-valued, non-negative, and normal-
ized probability distribution. The density matrix formalism can indeed be seen as
a generalization of classical probability theory, and quantum mechanics can be taken
to be the study of the cone formed by complex positive-semidefinite matrices, and
transformations thereof. This is an analogy to the probability simplex encountered in
classical probability theory.

Now we can state what we left out in the preceding discussion about measure-
ments: consider the case when some eigenvalues of the measurement operator A DP
mi jmi ihmi j are equal, i.e., the spectrum of A is degenerate. What is the probab-

ility for obtaining outcome i and what is the post-measurement state? Let Pj be the
projector onto the eigenspace with eigenvalue mj of A. Then a measurement yields
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outcomemj with probability pj D tr.Pj�/ and the density operator immediately after
the measurement reads

Pj�Pj

tr.Pj�/
:

The time evolution of an isolated qubit is given by a unitary operator in SU(2):

j˛i 7! U.t/ j˛i:

On a closed quantum system of n qubits, the time evolution is given by unitary oper-
ators on Hsystem D .C2/˝n. In the case of a quantum system interacting with its
environment, such unitaries can also act on a larger system

Hsystem ˝Henvironment:

A unitary on such a larger system can be represented on Hsystem in the (non-unique)
operator-sum or Kraus decomposition as

j˛i 7!
X
i

Ki j˛ih˛jK
�
i with the constraint

X
i

K
�
i Ki D 1:

Throughout the paper, 1 will denote the identity map. The operators Ki are also
known as Kraus operators.

More generally, this reads for a density matrix as

� 7!
X
i

Ki�K
�
i with the constraint

X
i

K
�
i Ki D 1:

The above map is also known as a quantum channel or completely positive map and
represents the most general form of physical change a quantum state can undergo.
In the case of a classical (conventional) bit, an error is represented by the bit-flip
0� 1. For qubits, we regard any non-identity unitary transformation or non-identity
quantum channel as an error. We can decompose any unitary or quantum channel in
terms of a matrix basis.

A good choice is the Pauli group: it is generated by all possible tensor products
of the 4 Pauli matrices together with phases ˙1 or ˙i . Observe that �x , �z and �y
anti-commute. That is,

�x�y D ��y�x; �x�z D ��z�x; �y�z D ��z�y

and then
�x�y D i�z; �y�z D i�x; �z�x D i�y :

Thus, the Pauli group Pn is a non-abelian group consisting of the 4n tensor products
of �0, �x , �z and �y , which together with the four phases is a group of size 4nC1.
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A quantum error-correcting code is a linear subspace Q of .C2/
˝n into which

a number of logical qubits can be encoded such that all errors of a certain type can
be detected and/or corrected. The question we ask is thus: given a noisy channel E ,
does there exist a recovery channel R such that every density matrix �, for which
the support of � is contained in Q, can be recovered? In other words, for all density
matrices � with spectral decomposition

� D
X
i

pi j�i i h�i j;

where j�i i 2 Q, we require that

R ı E.�/ D �:

1.2. A 1-qubit error-correcting quantum code

A classical code is a subset of An, where A is a finite set, called the alphabet, and n is
the length of the code. The repetition code is the simplest type of code in which each
element a 2 A is encoded as .a; a; : : : ; a/, an n-tuple of a’s. For example, the binary
repetition code of length 3 is ¹.000/; .111/º and we encode

0 7! 000 and 1 7! 111:

This encoding allows us to correct up to one error by taking a majority decision.
In other words, we decode the codewords

000; 001; 010; 100 as 0 and 111; 011; 110; 101 as 1:

Can we apply the same strategy to obtain a quantum code? Not quite. A quantum
repetition code (on three qubits for example) does not exist, since we cannot map

j˛i 7! j˛i ˝ j˛i ˝ j˛i:

It would contradict the following (no-cloning) theorem.

Theorem 1.1 (No-cloning). There is no linear map which takes j˛i to j˛i ˝ j˛i for
all j˛i 2 .C2/

˝n.

Proof. Suppose there is such a map. Then

j˛i 7! j˛i ˝ j˛i; jˇi 7! jˇi ˝ jˇi:

Such a map however is not linear, as

j˛i C jˇi 7! .j˛i C jˇi/˝ .j˛i C jˇi/ ¤ j˛i ˝ j˛i C jˇi ˝ jˇi:
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However, we could try the following repetition-type code:

˛0 j0i C ˛1 j1i 7! ˛0 j000i C ˛1 j111i:

Above and from now on, we simplify the notation j0i ˝ j0i as j00i, etc.
Suppose now a “bit-flip” �x happens on the second position. This gives

�0 ˝ �x ˝ �0.˛0 j000i C ˛1 j111i/ D ˛0 j010i C ˛1 j101i:

One can correct such an error by majority decision,

˛0 j010i C ˛1 j101i decodes as ˛0 j000i C ˛1 j111i:

One needs a measurement that indicates exactly where the bit-flip has occurred. This
can be done, as will be explained in Example 2.8.

However, we cannot correct a single �z error, since

˛0 j000i � ˛1 j111i

is also a possible state of our code.
Shor [20] was the first to introduce a quantum code which can correct any single-

qubit error. He circumvented this apparent problem by introducing a majority decision
on the signs to correct a �z error.

Example 1.2 (Shor code). The coding space for the Shor code is .C2/˝9, and a qubit
is encoded as

j˛i 7! j˛Li

according to

j0Li D .j000i C j111i/˝ .j000i C j111i/˝ .j000i C j111i/

and
j1Li D .j000i � j111i/˝ .j000i � j111i/˝ .j000i � j111i/:

Hence, by linearity,

˛0 j0i C ˛1 j1i 7! ˛0.j000i C j111i/˝ .j000i C j111i/˝ .j000i C j111i/

C ˛1.j000i � j111i/˝ .j000i � j111i/˝ .j000i � j111i/:

Suppose that we have a �x error (bit-flip) occurring on the 4-th bit. Then the ˛0
term would change to

.j000i C j111i/˝ .j100i C j011i/˝ .j000i C j111i/;
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which we would detect and correct by taking the majority decision as with the clas-
sical error-correcting code, so we decode

j100i C j011i as j000i C j111i:

Now suppose we have a �z error (phase error) occurring on the 7-th bit. Then
the ˛0 term would be

.j000i C j111i/˝ .j000i C j111i/˝ .j000i � j111i/;

which we would detect and correct by taking the majority decision on the signs.
Since �y D i�x�z , we can also correct �y errors, since the two decisions we made

above are independent of each other. Note that the scalar i does not play a role in the
decoding.

1.3. The orthogonal projection onto a subspace

LetQ be a subspace of .C2/
˝n, and letQ? be its orthogonal subspace with respect to

the standard inner product defined on .C2/
˝n
Š C2n

. Any vector j i can be written
(uniquely) as the sum of vectors P j i 2 Q and P? j i 2 Q?. The map

j i ! P j i

is a linear map, called the orthogonal projection onto Q.

Lemma 1.3. If ¹j 1i; j 2i; : : : ; j kiº is an orthonormal basis for Q, then

P D

kX
iD1

j i i h i j:

Proof. For any j 6 k,

P j j i D

kX
iD1

j i i h i j j i D j j i;

so P j i D j i for all j i 2 Q.
Furthermore,

P j i D

kX
iD1

j i i h i j i D 0

for all j i 2 Q?.

Clearly, by definition, P 2 D P . By Lemma 1.3, P is Hermitian since it is the sum
of Hermitian operators. The following lemma implies that this is enough to character-
ise P .
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Lemma 1.4. If P is a linear Hermitian operator for which P 2 D P and whose image
is Q, then P is the orthogonal projection onto Q.

Proof. The operator P is Hermitian, so it is diagonalisable with real eigenvalues.
Since P 2 D P , its eigenvalues are 0 and 1. By the spectral decomposition theorem,

P D

kX
iD1

j i i j i i;

where ¹j 1i; j 2i; : : : ; j kiº is an orthonormal basis for its eigenspace with eigen-
value 1. Since

P j j i D j j i

for all j D 1; : : : ;k, the eigenspace with eigenvalue 1 contains im.P /, the image ofP .
The eigenspace with eigenvalue 0 is im.P /?. Thus, P is the orthogonal projection
onto im.P /.

1.4. Error-detection and correction

For the reliable transmission of an (unknown) quantum system over a noisy channel,
we are now faced with three major challenges:

(1) Measurement disturbance. As explained in Section 1.1, measurements induce
an “update” of the state that is measured. Thus, when obtaining error syn-
dromes in order to understand what error has occurred, the underlying quan-
tum state may be altered.

(2) Continuous set of errors. The set of errors is continuous and not discrete. How
can we distinguish and correct for an error set this large?

(3) No-cloning. Unknown quantum states cannot be copied. Thus an approach of
adding redundancy, as done for a classical repetition code, is bound to fail.

How can these challenges be overcome? Firstly, the syndrome measurements are
chosen such that they stabilise the set of quantum states that consist of the code.
In this way, all code states remain unchanged when extracting the syndromes, while
erroneous states are changed in reversible fashion. Secondly, the linearity of quantum
mechanics implies that when some discrete set of errors can be corrected, then one
can correct all errors which lie in their span. We shall not show a proof of this here,
but one can be found in [9, Theorem 2] and [5]. Lastly, the encoded quantum inform-
ation is distributed amongst many systems and thus “hidden” from any noisy channel.
In this way, the state does not have to be copied and no redundancy is added. This not
only gives rise to the below Knill–Laflamme conditions on error correction, but also
provides an information-theoretic interpretation of quantum error correction.
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In quantum error correction, one is faced with the following task. Let

N .�/ D
X
�

E�.�/E
�
�; where

X
�

E��E� D 1;

be a quantum channel. Given the channel N , for which codes Q does there exist
a recovery channel R such that R ıN .�/ D � for all

� D
X
i

pi j�i i h�i j;

where j�i i 2 Q?
It turns out that the set of correctable states form subspaces. The following the-

orem gives a necessary and sufficient condition for a recovery channel to exist.

Theorem 1.5 (Knill–Laflamme conditions). Let Q be a subspace of .Cd /˝n. The
channel N .�/ D

P
� E�.�/E

�
� can be corrected by a code Q if and only if for all

j�i, j i in Q and errors E�, E� ,

h�jE��E� j i D c��h�j i

for some c�� 2 C.

This condition implies the following two essential properties:

(1) Orthogonal code states remain orthogonal under the action of errors,

if h�j i D 0 then h�jE��E� j i D 0;

and thus orthogonal codewords remain orthogonal under the noise.

(2) The expectation value of E��E� is constant when j�i ranges over the set of
code states. In other words, for all quantum states j�i; j i 2 Q,

tr
�
j�ih�jE��E�

�
D h�jE��E� j�i D h jE

�
�E� j i D c�� :

In this way, the encoded quantum information is “hidden” from the noisy
channel.

Lastly, a set of errors E is said to be detectable if and only if all errors E��E� with
E�; E� 2 E are correctable.

1.5. Error weights

We define the weight wt.M/ of an operatorM in the Pauli group Pn to be the number
of tensor factors which are not equal to �0. For example,

M D �x ˝ �z ˝ �0 ˝ �y ˝ �0

has weight three.



Quantum error-correcting codes and their geometries 349

In classical codes, the distance between any two elements of An is the num-
ber of coordinates in which they differ. If the minimum distance of a code C is at
least 2t C 1, then C is a t -error-correcting code (i.e., we can correct errors if up to t
coordinates of a codeword change). In quantum codes the same holds, if a quantum
code can detect all errors of weight less than 2t C 1, then it is a t -error-correcting
code.

2. Qubit stabilizer codes

2.1. Definition and examples

Most of the quantum codes presently known are stabilizer codes, and their usefulness
lies partially in the fact that their connection with classical codes allows for them
to be described in an efficient way. Here, we will mainly deal with stabilizer codes,
although we will also see examples of quantum codes in Section 4 which are not
stabilizer codes.

A qubit stabilizer code Q.S/ is the joint eigenspace with eigenvalue 1 of the
elements of an abelian subgroup S of Pn not containing �1. The subgroup S is also
known as the stabilizer.

We will often define S as being generated by a set of n� k commuting independ-
ent generators M1; : : : ; Mn�k of Pn. By independent we mean that M1; : : : ; Mn�k

generate S ,

hM1; : : : ;Mn�ki D

°Y
M
˛1

1 � � �M
˛n�k

n�k
j ˛1; : : : ; ˛n�k 2 ¹0; 1º

±
D S

while any smaller subset does not.
It is important to note that we require �1 62 S , since otherwise Q.S/ D ¹0º. We

also assume that there is no coordinate in which every element of S has a �0 in that
coordinate, as we could simply delete this coordinate and this would not affect the
error-correcting capabilities of the code.

Note that the phase of any element in S is˙1, since if

M D ˙i�1 ˝ � � � ˝ �n;

then
M 2
D �1 2 S;

which, as mentioned above, implies that Q.S/ D ¹0º.

Example 2.1. Suppose n D 2 and S is generated by a single Pauli operator M D
�x ˝ �z .
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Let j˛i 2 .C2/˝2. Then j˛i can be written as

j˛i D ˛00 j00i C ˛01 j01i C ˛10 j10i C ˛11 j11i

for some ˛ij 2 C. Now,

M j˛i D ˛00 j10i � ˛01 j11i C ˛10 j00i � ˛11 j01i:

Thus, j˛i is in the eigenspace of M with eigenvalue 1 if and only if

˛00 D ˛10; ˛01 D �˛11:

We note that the dimension of Q.S/ is 2.

We often use the shorthand notation

�0 D I; �x D X; �y D Y and �z D Z;

so in the previous example we might write M D XZ.

Example 2.2. Suppose n D 3 and S is generated by M1, M2, M3, where

M1 D �0 ˝ �x ˝ �z; M2 D �0 ˝ �y ˝ �x; M3 D �x ˝ �z ˝ �y :

In the shorthand notation, we would write that S is defined by

M1 D I X Z; M2 D I Y X; M3 D X Z Y:

Observe that MiMj DMjMi for all i and j 2 ¹1; 2; 3º. For example,

M2M1 D .�0 ˝ �y ˝ �x/.�0 ˝ �x ˝ �z/ D �0 ˝ .�i�z/˝ .�i�y/

D ��0 ˝ �z ˝ �y

and

M1M2 D .�0 ˝ �x ˝ �z/.�0 ˝ �y ˝ �x/ D �0 ˝ i�z ˝ i�y

D ��0 ˝ �z ˝ �y :

This can be checked quickly by verifying that different Pauli matrices ¹�x; �y ; �zº
coincide in the same position in Mi and Mj (i ¤ j ) an even number of times.

To find a basis for the stabilizer code, suppose that

j˛i D
X
ijk

˛ijk jijki

is in the code space, i.e. that ˛ is in theC1-eigenspace of all Mi .
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Since

M1 j˛i D

1X
jD0

. j̨ 00 jj10i � j̨ 01 jj11i C j̨10 jj 00i � j̨11 jj 01i/;

we have that j˛i is in theC1-eigenspace zM1 D im.I CM1/ of M1 if and only if

j̨ 00 D j̨10 and j̨ 01 D � j̨11:

Similarly,

M2 j˛i D i

1X
jD0

. j̨ 00 jj11i C j̨ 01 jj10i � j̨10 jj 01i � j̨11 jj 00i/:

Thus, j˛i is in theC1-eigenspace zM2 if and only if

i j̨ 00 D j̨11 and j̨ 01 D �i j̨10:

Finally,

M3 j˛i D i.˛000 j101i � ˛001 j100i � ˛010 j111i C ˛011 j110i

C ˛100 j001i � ˛101 j000i � ˛110 j011i C ˛111 j010i/;

so j˛i is in theC1-eigenspace zM3 if and only if

i˛000 D ˛101; ˛100 D �i˛001; ˛111 D �i˛010; ˛110 D i˛011:

Thus,
Q.S/ D zM1 \ zM2 \ zM3

is the one-dimensional subspace spanned by

j000i � i j001i C j010i C i j011i � j100i C i j101i � j110i � i j111i:

In fact, we seldom actually calculate a basis this way, as it is not necessary in
practice. We have only calculated this previous example so one gets a feel of how
laborious this is even for small parameters. From a practical point of view, it is enough
to know the orthogonal projection P for the subspace Q.
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2.2. The dimension and minimum distance of a stabilizer code

Let S be an abelian subgroup of Pn. Let Q.S/ be the subspace defined as the joint
eigenspace of eigenvalue 1 of the elements of S . Let P D P.S/ be the orthogonal
projection onto the subspace Q.S/.

Lemma 2.3. The orthogonal projection is

P D
1

jS j

X
E2S

E:

Proof. Since S is an abelian subgroup, one has

MP D PM D P

for all M 2 S .
Suppose that j i 2 Q.S/. Then, P j i D j i and therefore j i 2 im.P /.
Vice versa, if j i 2 im.P /, then for all M 2 S ,

M j i DMP j�i D P j�i D j i;

so j i 2 Q.S/. Thus, Q.S/ D im.P /.
Since E� D E for all E 2 Pn, we have that P � D P . Moreover,

P 2 D P
1

jS j

X
M2S

M D
1

jS j

X
M2S

PM D
1

jS j

X
M2S

M D P:

By Lemma 1.4, P D P.S/.

For the proof of the next theorem, it is worth noting that

tr.�1 ˝ � � � ˝ �n/ D tr.�1/ � � � tr.�n/:

Thus, for all E 2 Pn with phase˙1, where E ¤ ˙1, tr.E/ D 0 and tr.1/ D 2n.

Theorem 2.4. The stabilizer code Q.S/, which is the joint C1-eigenspace of an
abelian subgroup S generated by n � k independent elements, has dimension 2k .

Proof. By Lemma 2.3, the orthogonal projection onto Q.S/ is

P D
1

jS j

X
M2S

M:

The image of P is its eigenspace of eigenvalue one and also Q.S/.
The operator P is Hermitian and thus diagonalisable. Since P 2 D P , its eigen-

values are 0 and 1. The trace of P is equal to the sum of its eigenvalues, which in
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the case of P is the dimension of the eigenspace of eigenvalue one. Therefore, the
dimension of Q.S/ is equal to the trace of P.S/.

It only remains to note that
tr.M/ D 0

for allM 2Pn with the exception ofM D1, in which case tr.1/D 2n. Thus, dimQD
2n=jS j D 2k .

Having ascertained the dimension of a stabilizer code, we go on to determine its
minimum distance.

Let Centraliser.S/ denote the set of elements of Pn that commute with all ele-
ments of S , i.e., the centraliser of S in the group Pn.

Lemma 2.5. E is an undetectable error for the qubit stabilizer codeQ.S/ if and only
if E 2 Centraliser.S/ n S .

Proof. We proceed by contradiction.
()) Suppose that E is undetectable but E 62 Centraliser.S/ n S . Since any two

elements of Pn either commute or anti-commute, E 62 Centraliser.S/ implies there is
a M 2 S such that

EM D �ME:

Take any j i; j�i 2 Q.S/ with h j�i D 0. Then

h jEj�i D h jMEj�i D � h jEM j�i D � h jEj�i;

which implies h jEj�i D 0.
If E 2 S , then

h jEj�i D h j�i:

Hence, by Theorem 1.5, E is detectable, a contradiction.
(() Suppose that E is detectable with E 2 Centraliser.S/ n S . Let j i 2 Q.S/.

Since E 2 Centraliser.S/,

ME j i D EM j i D E j i

holds for all M 2 S , which implies that E j i 2 Q.
Extend ¹j iº to an orthonormal basis B for Q. Since E is detectable,

h�jE j i D 0

for all j�i 2B n ¹j iº. This implies thatE j i is in the subspace .B n ¹j iº/?. Since
this subspace has as a basis ¹j iº,

E j i D � j i

for some � 2 C. Hence, j i is an eigenvector of E.
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By Theorem 1.5,
h�jEj�i D �E

for all j�i 2 B . Since h j i D 1, this implies that � D �E .
The same argument as made above for j i holds for all j�i 2Q.S/. Thus, for all

j�i 2 Q.S/,
Ej�i D �E j�i:

Since E 62 S , then �E ¤ 1.
The subgroup generated by S and ��1E E defines a smaller stabilizer code, so there

is a j i 2 Q such that
��1E E j i ¤ j i;

contradicting the above. Hence, E is not detectable.

In the case k D 0, we have that Q.S/ is a one-dimensional subspace so cannot
be used to store quantum information, and all errors are correctable according to the
definition. However, we do not rule out considering such codes, since for any proper
subgroup S 0 of S , the code Q.S 0/ will be of interest. Since the elements of S n S 0

will be in Centraliser.S 0/ n S 0, Theorem 2.6 indicates that it makes sense to define the
minimum distance of Q.S/ to be equal to the minimum weight of the non-identity
elements of S . These codes are called self-dual, for reasons that will become clear in
Theorem 2.12.

Theorem 2.6. If k > 1, then the minimum distance of the 2k-dimensional stabilizer
code Q.S/ with stabilizer group S is equal to the minimum weight of the errors in
Centraliser.S/ n S .

Proof. According to Lemma 2.5, Q.S/ can detect all errors which are not elements
of Centraliser.S/ n S . In particular, it can also detect all errors of weight less than the
minimum weight of an error in Centraliser.S/ n S .

If there are elements of S whose weight is less than the minimum distance of
Q.S/, then the code is called impure. If this is not the case, then the code is called
pure.

We should mention that there is also the concept of a degenerate code. Accord-
ing to Calderbank et al. [6], a non-degenerate code is one for which different errors
produce linearly independent results when applied to elements of the code. Whereas a
code is pure if distinct errors produce orthogonal results. It is straightforward to verify
that, for additive codes, ‘pure’ and ‘non-degenerate’ coincide. In general, however, a
pure code is non-degenerate, but the converse need not be true.

We use the shorthand notation ..n; K; d// to denote a quantum code of .C2/
˝n

of dimension K and minimum distance d . The notation ŒŒn; k; d �� denotes a quantum
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code of dimension 2k . If it is a stabilizer code Q.S/, then d is equal to the minimum
weight of the elements in Centraliser.S/ n S .

We now rewrite the Shor code from Example 1.2 as a stabilizer code.

Example 2.7 (An ŒŒ9; 1; 3�� code). Let S be the subgroup generated by the following
elements of P9:

M1 D �z ˝ �z ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0;

M2 D �0 ˝ �z ˝ �z ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0;

M3 D �0 ˝ �0 ˝ �0 ˝ �z ˝ �z ˝ �0 ˝ �0 ˝ �0 ˝ �0;

M4 D �0 ˝ �0 ˝ �0 ˝ �0 ˝ �z ˝ �z ˝ �0 ˝ �0 ˝ �0;

M5 D �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �z ˝ �z ˝ �0;

M6 D �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �0 ˝ �z ˝ �z;

M7 D �x ˝ �x ˝ �x ˝ �x ˝ �x ˝ �x ˝ �0 ˝ �0 ˝ �0;

M8 D �0 ˝ �0 ˝ �0 ˝ �x ˝ �x ˝ �x ˝ �x ˝ �x ˝ �x :

In shorthand notation, this would be in the following way:

MI D Z Z I I I I I I I;

M2 D I Z Z I I I I I I;

M3 D I I I Z Z I I I I;

M4 D I I I I Z Z I I I;

M5 D I I I I I I Z Z I;

M6 D I I I I I I I Z Z;

M7 D X X X X X X I I I;

M8 D I I I X X X X X X:

One can check that Mi and Mj commute for any i and j . Suppose that E is an
error of weight at most 2. We want to prove that E 2 S or E does not commute with
some Mi .

We proceed with a case-by-case analysis. If E has weight one and a single X
or Y , then it does not commute with one of M1; : : : ; M6. If E has weight one and
a single Z, then it does not commute with one of M7, M8.

Suppose E has an X error and, without loss of generality, suppose E has an X
error in the first system. Then E must have a X or Y in the second system so that it
commutes with M1. But then it must also have a X or Z in the third system so that it
commutes with M2, contradicting the fact that it has weight two.
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We leave the case-by-case analysis as an exercise but conclude that the only errors
of weight two which commute with all theMi are precisely those which are in S , i.e.,
M1; : : : ;M6;M1M2;M3M4;M5M6.

We will prove that the minimum distance of this code is 3 in a very simple manner
once we have determined its geometry.

An important observation here is that the Shor code is impure since S contains
errors of weight 2, whereas the minimum distance is 3.

We can store the same amount of information on fewer qubits with the following
code.

Example 2.8 (An ŒŒ5; 1; 3�� code). Let S be the subgroup generated by the following
elements of P5:

MI D X Z Z I X;

M2 D Z X I Z X;

M3 D I Z X Z Y;

M4 D Z I Z X Y:

This representation makes the task of checking that MiMj D MjMi fairly quick.
We will prove that the minimum distance is 3 by considering its geometry in Ex-
ample 3.15.

Let us see how we can use this example to correct errors of weight one. We per-
form measurements yMi onEj�i. This will return a value˙1 (the eigenvalues ofMi ).
This gives us a “syndrome”, a 4-tuple of signs for each error E. These are given in
the following table:

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

XIIII C � C � ZIIII � C C C YIIII � � C �

IXIII � C � C IZIII C � C C IYIII � � � C

IIXII � C C � IIZII C C � C IIYII � C � �

IIIXI C � � C IIIZI C C C � IIIYI C � � �

IIIIX C C � � IIIIZ � � � � IIIIY � � C C

Since each syndrome is distinct, we can use this look-up table to identify the error
and correct it. An important observation here is that when we perform the measure-
ment yMi , only the sign of the state can possibly change. Since

MiEj�i D ˙EMi j�i D ˙Ej�i;

Ej�i is an eigenvector ofMi , so after measuring we will be in the state˙Ej�i. Thus,
we can measure consecutively each measurement yMi for i D 1; : : : ; n � k.
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2.3. Qubit stabilizer codes as binary linear codes

In this section, we introduce a connection between qubit stabilizer codes and clas-
sical binary linear codes. We will go on to exploit this connection to construct qubit
quantum codes and then to realise a more general connection between stabilizer codes
and classical codes.

Let Fq denote the finite field with q elements. Consider the map

� W ¹�0; �x; �y ; �zº ! F22

defined by

� W

8̂̂̂̂
<̂
ˆ̂̂:
�0 7! .0j0/;

�x 7! .1j0/;

�z 7! .0j1/;

�y 7! .1j1/:

We extend the map � to Pn by applying � to an element of Pn coordinatewise, where
the image of the j -th position of M is the j and .j C n/-th coordinate in �.M/. For
example,

�.�x ˝ �y ˝ �0 ˝ �x ˝ �z/ D .11010 j 01001/:

We draw the line between the n-th and the .nC 1/-st coordinates, for readability sake.
We ignore the phase, so �.�M/D �.M/ for all � 2 ¹˙1;˙iº. Effectively, this defines
the domain of the map � as Pn=¹˙1;˙iº.

Lemma 2.9. For all M;N 2 Pn=¹˙1;˙iº,

�.MN/ D �.M/C �.N /:

Proof. Observe that the multiplicative structure, up to a phase factor (for example, we
ignore the i in �y D i�x�z), is isomorphic to the additive structure of F22 .

We have established a bijection between the elements of Pn=¹˙1;˙iº and F2n2 .
The above lemma implies that a subgroup S of Pn is in bijective correspondence with
a subspace of F2n2 . We now wish to ascertain what property this subspace has if S is
a subgroup generated by commuting elements of Pn.

To this end, we define an alternating form for u;w 2 F2n2 ,

.u;w/a D

nX
jD1

.ujwjCn � ujCnwj /:

Lemma 2.10. For M;N 2 Pn=¹˙1;˙iº,

MN D NM if and only if .�.M/; �.N //a D 0:



S. Ball, A. Centelles, and F. Huber 358

Proof. Suppose u D �.M/ and w D �.N /. One can check directly that

ujwjCn � wjujCn D 0

if and only if the Pauli matrices in the j -th position of M and N commute, and we
have˙1 otherwise.

The operators M and N commute if and only if there is an even number of posi-
tions where the Pauli matrices do not commute. This is the case if and only if there is
an even number of coordinates j for which

ujwjCn � wjujCn D 1;

a condition equivalent to .�.M/; �.N //a D 0.

The symplectic weight of a vector v 2 F2n2 is defined as

j¹i 2 ¹1; : : : ; nº j .vi ; viCn/ ¤ .0; 0/ºj:

Lemma 2.11. The weight of M 2 Pn is equal to the symplectic weight of �.M/.

Proof. We have that n � wt.M/ is equal to the number of �0’s in M which is equal
to n minus the symplectic weight of �.M/.

For a subspace C 6 F2n2 , we define ?a by

C?a D
®
u 2 F2n2 j .u;w/a D 0 for all w 2 C

¯
:

Theorem 2.12. S is a subgroup of Pn generated by n � k independent mutually
commuting elements if and only if C D �.S/ is an .n � k/-dimensional subspace
of F2n2 for which C 6 C?a . If k ¤ 0, then the minimum distance of Q.S/ is equal
to the minimum symplectic weight of the elements of C?a n C . If k D 0, then the
minimum distance of Q.S/ is equal to the minimum symplectic weight of the non-
zero elements of C D C?a .

Proof. The fact that the subspace C D �.S/ is contained in C?a follows from Lem-
mas 2.9 and 2.10. By Theorem 2.6, for k ¤ 0, the minimum distance is equal to the
minimum weight of the images of the elements of Centraliser.S/ under � , which are
not elements of the image of S . Since C D �.S/ and C?a D �.Centraliser.S//, the
theorem follows for k ¤ 0.

For k D 0, by definition, the minimum distance is equal to the minimum weight
of the images of the elements of S under � , which are the non-zero elements of C .

We can construct a generator matrix G.S/ for C D �.S/ by taking the .n � k/ �
2n matrix whose i -th row is �.Mi /.
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Lemma 2.13. S is a subgroup of Pn generated by n� k independent elements if and
only if the matrix G.S/ has rank n � k.

Proof. There is a proper subset J � ¹1; : : : ; n � kº such thatX
j2J

�.Mj / D 0

if and only if the rank of G.S/ is not equal to n� k. By Lemma 2.9, this is true if and
only if Y

j2J

Mj D 1:

The following table serves as a useful reference:

Pn the Pauli group, given by n-fold tensor products of Pauli matrices
�0, �x , �y , �z with phases ¹˙i;˙1º

M1; : : : ;Mn�k the generators, a set of independent elements of Pn that generate S
S the stabilizer, an abelian subgroup of Pn

Q.S/ the quantum code obtained as the joint intersection
of the eigenspaces of eigenvalue 1 of the operators in S

Centraliser.S/ the centraliser of S in Pn

C the subspace of F2n
2 obtained from the image of S under �

C?a the subspace of F2n
2 obtained as the image of Centraliser.S/ under �

G.S/ the .n � k/ � 2n generator matrix for C whose i -th row is �.Mi /

Example 2.14 (An ŒŒ5; 0; 3�� stabilizer code). Let S be the subgroup of P5 generated
by the following pairwise commuting elements:

M1 D X Z I I Z;

M2 D Z X Z I I;

M3 D I Z X Z I;

M4 D I I Z X Z;

M5 D Z I I Z X:

The matrix G.S/ for this code is0BBBBB@
1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 0 0 1 0

1CCCCCA :
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One can check directly that .u; v/a D 0 for any two rows u, v of G.S/. Alternatively,
it is enough to observe that A is symmetric and that

.I jA/
�At
I

�
D At C A D AC A D 0:

We will prove in Example 3.15 that the minimum distance of Q.S/ is 3.
Observe that any n�n symmetric matrixA gives an ŒŒn; 0; d �� code, whereG.S/D

.I j A/. The difficulty lies in choosing A so that the symplectic weight of the code
generated by G (and hence d ) is large.

3. The geometry of additive, linear and stabilizer codes

3.1. Additive and linear codes over a finite field

We recall that a code of length n is a subset C of An, where A is a finite set called the
alphabet. An element of C is called a codeword.

The distance between any two elements of An is the number of coordinates in
which they differ. The minimum distance of C is the minimum distance between any
two codewords of C .

Suppose A is a finite abelian group with identity element 0. If uC v 2 C for all
u; v 2 C , then we say that C is additive.

The weight of an element (codeword) u of an additive code is the number of non-
zero coordinates that it has.

Lemma 3.1. If C is an additive code over an alphabet which is a finite abelian group,
then the minimum distance d of C is equal to the minimum non-zero weight w.

Proof. Summing u 2 C enough times will eventually give the n-tuple of all zeros,
hence 0 D .0; : : : ; 0/ 2 C . Note that this implies �u 2 C too.

Suppose that u is a codeword of minimum weight w. Then since 0 2 C , we have
w > d . Suppose that u and v are two codewords which differ in exactly d coordinates.
Then u � v is a codeword in C of weight d and so d > w.

Suppose that A D Fq , the finite field with q D ph elements, p prime. If C is
additive, then �u2C for all �2Fp , soC is a subspace over Fp . IfC has the additional
property that �u 2 C for all � in Fq , then we say C is linear. A linear code of length n
is a subspace of Fnq .

We use the notation .n; K; d/q code to denote a code over an alphabet of size q
of length n, size K and minimum distance d . The notation Œn; k; d �q code denotes
a k-dimensional linear code over Fq of length n and minimum distance d .
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3.2. The geometry of linear codes

We will begin our geometrical study of codes by considering linear codes over Fq .
Let G be a k � n matrix. We recall that when at is a row vector in Fkq , the expres-

sion atG yields a linear combination of the rows of G. Likewise, when b is a column
vector in Fnq , the expression Gb yields a linear combination of the columns of G.

Let C be a k-dimensional linear code over Fq of length n; in other words, C is
a k-dimensional subspace of Fnq . We describe C by a k � n matrix G whose row
space is C , i.e., the rows of G are a basis for C . Thus, for each u 2 C , there is an
at D .a1; : : : ; ak/ 2 Fkq such that

u D atG:

In other words, the generator matrix G acts as a linear encoding matrix for the mes-
sage a, yielding the codeword u ready to be sent over a noisy channel.

The geometry of C is seen by considering the set of columns of the generator
matrix G. Let X be the set of columns of G, so X is a set (possibly multiset) of n
vectors of Fkq . The codeword u D atG has a zero in its i -th coordinate if and only if

a � z D a1z1 C � � � C akzk D 0;

where z D .z1; : : : ; zk/ is the i -th column of G. This property is unaffected if we
replace z by a non-zero scalar multiple of z, so it is natural to consider X as a set
(possibly multiset) of n points of PG.k � 1; q/, the .k � 1/-dimensional projective
space over Fq .

The projective space PG.k � 1; q/ is obtained from the vector space Fkq by identi-
fying the vectors which are scalar multiples of each other. In this way, the points
of PG.k � 1; q/ are the one-dimensional subspaces of Fkq and, more generally, the
.i� 1/-dimensional subspaces of PG.k � 1;q/ are the i -dimensional subspaces of Fkq .
The lines, planes and hyperplanes of PG.k � 1; q/ are the one-dimensional, two-
dimensional and co-dimension 1 subspaces, respectively. Note that in PG.k � 1; q/
familiar geometric properties hold. For example, two points are joined by a line; the
intersection of two planes in a three-dimensional subspace is a line. If a point x is
contained in a subspace � , we say that x is incident with � . If two subspaces �1
and �2 have an empty intersection (i.e., their corresponding subspaces in Fkq intersect
in the zero vector), then we say that they are skew.

A set of points x1; : : : ; xr of a projective space are independent if they span an
.r � 1/-dimensional (projective) subspace. If they are not independent, then they are
dependent.

The number of r-tuples of linearly independent vectors of Fkq is

.qk � 1/.qk�1 � 1/ � � � .qk�rC1 � 1/:
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Hence, the number of r-dimensional subspaces of Fkq is"
k

r

#
q

WD
.qk � 1/.qk�1 � 1/ � � � .qk�rC1 � 1/

.qr � 1/.qr�1 � 1/ � � � .q � 1/
:

Thus, the number of points of PG.k � 1; q/ is

qk � 1

q � 1
D qk�1 C qk�2 C � � � C q C 1:

There is a natural duality between the points of PG.k � 1; q/ and the hyperplanes
of PG.k � 1; q/. A point .a1; : : : ; ak/ is mapped to the hyperplane defined as the
kernel of the linear form

a1X1 C � � � C akXk :

For example, the point .1;�1; 0/ is mapped to the hyperplane X1 �X2 D 0,
Thus, the number of hyperplanes of PG.k � 1; q/ is also

qk�1 C qk�2 C � � � C q C 1;

which can be checked directly by calculating
�
k
k�1

�
q
.

The number of lines of PG.3; q/ is

.q4 � 1/.q3 � 1/

.q2 � 1/.q � 1/
D .q2 C 1/.q2 C q C 1/:

The number of points in PG.k � 1; 2/ is 2k � 1, and the number of lines of
PG.k � 1; 2/ is .2k � 1/.2k�1 � 1/=3.

Lemma 3.2. The number of .r � 1/-dimensional subspaces of PG.k � 1; q/ con-
taining a fixed .s � 1/-dimensional subspace is"

k � s

r � s

#
q

:

Proof. For any s-dimensional subspace U of the space Fkq , the quotient space Fkq =U

is a .k � s/-dimensional vector space. An r-dimensional subspace containing U is an
.r � s/-dimensional subspace in the quotient space. Thus, the lemma holds, taking
into account the dimension shift when considering the projective space.

The following theorem explains what the minimum distance d of a linear code
implies for the set of points X.
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Theorem 3.3. An Œn; k; d � linear code over Fq is equivalent to a set (possibly multi-
set) of points X in PG.k � 1; q/ in which every hyperplane of PG.k � 1; q/ contains
at most n � d points of X and some hyperplane contains exactly n � d points of X.

Proof. Let G be a k � n matrix whose row space is an Œn; k; d � linear code C . Let X

be the set of columns of G viewed as points of PG.k � 1; q/.
Recall that the codeword u D atG has a zero in its i -th coordinate if and only if

a � z D a1z1 C � � � C akzk D 0;

where z D .z1; : : : ; zk/ is the i -th column of G.
The kernel of the linear form

a1X1 C � � � C akXk

defines a hyperplane �a of PG.k � 1; q/. The codeword u D atG has weight w if
and only if u has exactly n � w zero coordinates. This is the case if and only if �a is
incident with n � w points of X.

By Lemma 3.1, the minimum distance of a linear code is equal to its minimum
weight. Hence, the maximum number of points of X on a hyperplane of PG.k � 1; q/
is n � d , where d is the minimum distance of C .

3.3. The geometry of additive codes

An additive code C over Fq is linear over Fp , where q D ph for some prime p.
Therefore, jC j D pr for some r . The following theorem is the additive version of
Theorem 3.3; the set of points X is replaced by a set of subspaces.

Theorem 3.4. An .n; pr ; d / additive code over Fq with q D ph is equivalent to a set
(possibly multiset) X of 6 .h � 1/-dimensional subspaces in PG.r � 1; p/ in which
every hyperplane of PG.r � 1; p/ contains at most n � d subspaces of X and some
hyperplane contains exactly n � d subspaces of X.

Proof. Let G be an r � nmatrix which is a basis forC over Fp . As in the case of linear
codes, we consider the set (possibly multiset) X of columns of G. However, we should
not consider the elements of X as points of PG.r � 1; q/, since we obtain C from G
by taking the row span over Fp and not over Fq . Thus, we consider the elements of X

as subspaces of PG.r � 1; p/. Suppose that e 2 Fq is such that ¹1; e; e2; : : : ; eh�1º is
a basis for Fq over Fp . Then, up to scalar factor, we can write x 2 X as

h�1X
jD0

ejxj ;
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where xj 2 F rp . We associate x with the subspace that is spanned by x0; : : : ; xh�1 in
PG.r � 1; p/, which we denote by `x . The subspace `x has dimension at most h� 1.

Suppose that x is the i -th column of G, so x 2 X. The non-zero codeword u D
atG, where a 2 F rp , has a zero in its i -th coordinate if and only if the hyperplane of
PG.r � 1; p/, which is the kernel of the linear form

a1X1 C � � � C arXr ;

contains the subspace `x .

Observe that a linear code over Fq necessarily has size qk , so if we wish to obtain
an additive code with the same parameters as a linear code, then r D kh for some k.

3.4. The geometry of qubit quantum codes

For the moment, we restrict to the case q D 2 and consider the geometrical con-
sequences of Theorem 2.12, which describes the connection between stabilizer codes
and binary linear codes.

A qubit stabilizer code Q.S/ is equivalent to a binary linear code C D �.S/ of
length 2n which is contained in its alternating dual C?a . According to Theorem 2.12,
the minimum distance of Q.S/ is the minimum symplectic weight of C?a n C .

Consider once again the Shor code from Example 1.2.

Example 3.5 (Shor code). Applying the map � to the elements in Example 1.2, we
have that C D �.S/ is the F2 row span of the matrix

G.S/ D

0BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCA
:

Since there are two columns which are linearly dependent, there are elements
of C?a of symplectic weight two; these are images under � of Pauli operators of
Centraliser.S/ of weight two.

To see this, recall that the alternating form is defined as

.u;w/a D

nX
jD1

.ujwjCn � ujCnwj /;
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so the dependency of the first two columns implies that

.0; 0; 0; 0; 0; 0; 0; 0; 0 j 1; 1; 0; 0; 0; 0; 0; 0; 0/

is an element of C?a . However, this element is an element of C since it is the first
row of the matrix. Recall that the minimum distance is equal to the minimum sym-
plectic weight of C?a nC . Therefore, although C?a contains elements of symplectic
weight 2, the minimum symplectic weight of C?a n C is in fact 3. We will prove this
in Example 3.9.

Given a subgroup S generated by n � k commuting elements M1; : : : ; Mn�k

of Pn, we obtain a set X of n lines or possibly points in PG.n � k � 1; 2/ in the
following way. For each i 2 ¹1; : : : ; nº, we get a line (or a point) by considering the
span of the i -th and .i C n/-th column of the generator matrix G.S/. Vice versa, given
a set of n lines in PG.n� k � 1; 2/, we construct an .n� k/� 2nmatrix, from which
we obtain M1; : : : ;Mn�k by applying ��1 to the rows of the matrix.

On first sight it may seem that there is a certain amount of freedom when we
reconstruct the code from a given quantum set of lines. Each line is incident with three
points, and we can choose which pair of points on the line to use to construct the i -th
and the .i C n/-th column of G. This choice is equivalent to invoking a permutation
of ¹�x; �y ; �zº on the i -th position of each of theM1; : : : ;Mn�k . This does not affect
the property that these elements pairwise commute, so we define all quantum codes
that can be obtained from each other in this way to be equivalent.

Thus, in Example 2.14, invoking the permutation � which takes

X ! Z ! Y ! X

on the Mi in the first, second and fourth positions gives

�.M1/D Z Y I I Z;

�.M2/ D Y Z Z I I;

�.M3/ D I Y X Y I;

�.M4/ D I I Z Z Z;

�.M5/ D Y I I Y X:

The matrix whose i -th row is �.Mi / is0BBBBB@
0 1 0 0 0 1 1 0 0 1

1 0 0 0 0 1 1 1 0 0

0 1 1 1 0 0 1 0 1 0

0 0 0 0 0 0 0 1 1 1

1 0 0 1 1 1 0 0 1 0

1CCCCCA :
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Comparing this to the matrix

G.S/ D

0BBBBB@
1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 0 0 1 0

1CCCCCA
from Example 2.14, we see that the set of lines X remains unchanged.

There is also a choice between the scalar factor ofM when we apply ��1 to a row
of the matrix G. We will always assume that this factor to be 1. However, changing
the sign of some of the generators of a subgroup S can be useful, as we shall see in
Section 4.

Lemma 3.6. The span of the i -th and .i C n/-th column of the generator matrix G.S/
is a line of PG.n � k � 1; 2/ for all i D 1; : : : ; n if and only if the minimum non-zero
weight of Centraliser.S/ is at least two.

Proof. We fail to obtain a line of PG.n � k � 1; 2/ if and only if either the i -th and
.i C n/-th columns of the matrix G.S/ are the same non-zero vector, or one (or both of
them) is the zero vector. This implies that in the i -th position of all the Pauli operators
in S , there is either �0 or a fixed element � 2 ¹�x; �y ; �zº. This occurs if and only if
there is an element of Centraliser.S/ of weight 1.

If a quantum code Q.S/ is pure, then the condition that the minimum non-zero
weight of Centraliser.S/ is at least 2 can be replaced by the condition that the min-
imum distance of Q.S/ is at least 2. However, this does not need to hold for impure
codes. Indeed, it could be that there are elements of Centraliser.S/ \ S of weight
one. Yet, if the stabilizer of an ŒŒn; k; d �� code Q.S/ contains an element of weight
one, then it is easy to see that one can construct an ŒŒn � 1; k; d �� stabilizer code by
deleting that position.

We would like to give a geometrical interpretation of the fact that the code C D
�.S/ is contained in C?a .

Recall that we say two subspaces of PG.k � 1; q/ are skew if they do not intersect.

Theorem 3.7. The following are equivalent:

(1) There is an ŒŒn; k; d �� stabilizer code Q.S/, where S is a subgroup generated
by n � k independent commuting elements of Pn and whose centraliser con-
tains no element of weight one.

(2) There is a set of n lines X spanning PG.n � k � 1; 2/ with the property that
every co-dimension 2 subspace is skew to an even number of the number of
lines of X.
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Proof. (1 ) 2) Let C D �.S/ and let G D G.S/ be an .n � k/ � 2n generator
matrix for C . From Lemma 2.13, the matrix G has rank n � k. Thus, its columns
span PG.n � k � 1; 2/. Let X be the set of n lines obtained for i D 1; : : : ; n as the
span of the i -th and .i C n/-th column of G.S/.

Let u; w 2 C , so u D .a1; : : : ; an�k/G and w D .b1; : : : ; bn�k/G for some a D
.a1; : : : ; an�k/ 2 Fn�k2 and b D .b1; : : : ; bn�k/ 2 Fn�k2 . One has C � C?a if and
only if

.u;w/a D

nX
jD1

.ujwnCj � wjunCj / D 0

for all u;w 2 C . We want to deduce the geometrical meaning of .u;w/a D 0.
Consider a single term in the sum first. Let x and y be the j -th and the .nC j /-th

column of G, respectively. Then

ujwnCj � unCjwj D .a � x/.b � y/ � .a � y/.b � x/:

The right-hand side is zero if and only if the matrix 
a � x a � y

b � x b � y

!
has zero determinant, i.e., it has rank 1.

This is if and only if there exists �;� 2 F2 such that

a � .�x C �y/ D 0 and b � .�x C �y/ D 0:

Recall that we define �a as the hyperplane which is the kernel of the linear form

a �X D a1X1 C � � � C an�kXn�k :

We can thus rewrite the above conditions as the requirement that the point �x C �y
is contained in both �a and �b . In other words, there is a point on the line `, spanned
by x and y, which is incident with the intersection of the two hyperplanes �a and �b;
see Figure 1.

Returning to the condition .u; v/a D 0, we must therefore get an even number of
ones in the sum

nX
jD1

.ujwnCj � unCjwj /:

All lines of X that are skew to �a \ �b D ker.a �X/\ ker.b �X/ contribute; for any
given a and b, there must in total be an even number of such lines.

We note that every co-dimension 2 subspace of PG.n � k � 1; 2/ can be realised
in this way (as the intersection of some a � X D 0 and b � X D 0). This proves the
forward implication.
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x
x0

y0

�a
�b

y

`

�x C �y

a line that is skew to �a \ �b

�a \ �b (co-dimension 2)

Figure 1. A point �x C �y on the intersection of the hyperplanes �a and �b .

(1( 2) Let X be a set of lines spanning PG.n � k � 1; 2/ with the property that
every co-dimension 2 subspace of PG.n� k � 1;2/ is skew to an even number of lines
of X. Let G be the matrix whose i -th and .i C n/-th columns are points which span the
i -th line of X. Let C be the code generated by G. Since X spans PG.n � k � 1; 2/,
the code C is .n � k/-dimensional. As we proved in the forward implication, the
property that every co-dimension 2 subspace is skew to an even number of lines of X

implies that for any two codewords u and v of C , .u; v/a D 0 holds. By Lemma 2.10,
the image under ��1 of C is an abelian subgroup S of Pn and by Lemma 2.13, it is
generated by n � k pairwise commuting elements of Pn.

Let X be a set of lines and let ‚.X/ be the space spanned by the lines of X. We
say that X is a quantum set of lines if it has the property that every co-dimension 2
subspace of ‚.X/ is skew to an even number of lines of X. To deduce the minimum
distance of the corresponding stabilizer code, we introduce the parameter d.X/.

Recall that r points are independent if they span an .r � 1/-dimensional subspace;
they are dependent otherwise.

Consider first the case in which dim‚.X/ ¤ jXj � 1. By Theorem 3.7, X will
give a quantum ŒŒn; k; d �� code with k ¤ 0. We define the parameter d.X/ as the
minimum number of dependent points that can be found on distinct lines of X; not
including the dependencies for which there is a hyperplane of ‚.X/ which both

(a) contains all the lines of X which do not contain the dependent points,

(b) contains all the dependent points.3

Thus, d.X/ D r , where r is minimal such that there exists a set of depend-
ent points ¹x1; : : : ; xrº, where each xi is incident with a line `i 2 X and the lines

3In the original definition of Glynn et al. [7], condition (b) does not appear.
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`1; : : : ; `r are distinct, but for which there is no hyperplane containing the lines
X n ¹`1; : : : ; `rº and the points ¹x1; : : : ; xrº.

In the case in which dim‚.X/ D jXj � 1, Theorem 3.7 implies that X will give
a quantum ŒŒn; k; d �� code with k D 0. We define the parameter d.X/ as the min-
imum d for which there is a hyperplane of ‚.X/ containing jXj � d lines of X.
Equivalently, it is the minimum number of dependent points that can be found on dis-
tinct lines of X. This definition and the equivalence will be justified in the proof of
Theorem 3.8.

From now on, we assume that the centraliser of the stabilizer S contains no
elements of weight one. By Lemma 3.6, this assumption guarantees that there is
a quantum set of lines associated with the stabilizer code. As mentioned before, this
is equivalent to assuming that the minimum distance is at least 2 in the case of pure
codes.

Theorem 3.8. There is an ŒŒn; k; d �� stabilizer code if and only if there is a quantum
set of lines X for which d.X/ D d and ‚.X/ D PG.n � k � 1; 2/.

Proof. We only have to prove the part about the minimum distance since Theorem 3.7
covers the rest.

()) Let Q.S/ be an ŒŒn; k; d �� stabilizer code given by some stabilizer S . Let
C D �.S/. As in the proof of Theorem 3.7, let GDG.S/ be the .n� k/� 2n generator
matrix with entries from F2 whose row space forms the code C . Define a set of lines

X D ¹ j̀ j j D 1; : : : ; nº;

where j̀ is the line that corresponds to the span of the j -th and .j C n/-th column
of G.

Consider the case k ¤ 0. By Theorem 2.12, the parameter d is the minimum
symplectic weight of C?a n C . Suppose now that v 2 C?a has symplectic weight w,
and let W denote the set of positions that contribute to the weight

W D ¹j 2 ¹1; : : : ; nº j .vj ; vnCj / ¤ .0; 0/º:

Clearly, jW j D w.
Denote by xj the j -th column of G. Since v D .v1; : : : ; v2n/ is in C?a , one hasX

j2W

.vnCjxj � xnCj vj / D 0:

Each summand corresponds to some point of j̀ . Thus, there are w D jW j points
on distinct lines ¹ j̀ j j 2 W º which are dependent. However, since the minimum
distance d is the minimum symplectic weight of C?a n C , we have to disregard this



S. Ball, A. Centelles, and F. Huber 370

dependency if v 2 C . A vector v is in C if and only if v D aG for some a 2 Fn�k2 .
As a consequence, vj D a � xj for all j D 1; : : : ; 2n.

First, consider those positions j of v that do not contribute to its symplectic
weight, that is, j … W . For each j … W , one has that vj D a � xj D 0 and vnCj D
a � xnCj D 0 if and only if the line lj is contained in the hyperplane �a described by
a �X D 0. So the lines of ¹ j̀ j j 2 ¹1; : : : ; nº nW º are contained in �a.

Second, consider those positions j of v that contribute to its symplectic weight,
j 2 W . Then

a � .vnCjxj � xnCj vj / D vnCj .a � xj / � .a � xnCj /vj D vnCj vj � vnCj vj D 0

since vj D a � xj and vnCj D a � xnCj . Hence, the dependent points are also contained
in the hyperplane a �X D 0. This exactly coincides with our definition of d.X/.

Now, consider the case k D 0. By Theorem 2.12, the parameter d is the minimum
non-zero symplectic weight of C . Let v 2 C be of minimum non-zero symplectic
weight. Since v 2 C , v D aG for some a 2 Fn�k2 . Thus, vj D a � xj for all j D
1; : : : ; 2n. Let W denote the set of positions that contribute to the symplectic weight
of v, i.e.,

W D ¹j 2 ¹1; : : : ; nº j .vj ; vnCj / ¤ .0; 0/º:

Then, for j 2 W , a � xj D a � xnCj D 0 which is equivalent to the line j̀ 2 X being
contained in the hyperplane a � X D 0. Therefore, there is a hyperplane of ‚.X/
containing jXj � d lines of X, which coincides with our definition of d.X/ in this
case.

Alternatively, since C D C?a , the parameter d is the minimum non-zero sym-
plectic weight of C?a . As in the case k ¤ 0, a vector v D .v1; : : : ; v2n/ 2 C?a of
symplectic weight d will give a dependency of d points of X, which coincides with
our alternative definition of d.X/ in this case.

(() Vice-versa, suppose that X is a quantum set of lines for which d.X/D d and
‚.X/ D PG.n � k � 1; 2/. Let G D G.S/ be the .n � k/ � 2n generator matrix for
a code C , whose i -th and .i C n/-th column span the i -th line of X. Let S D ��1.C /
and letQ.S/ be the stabiliser code. By Theorem 3.7 and the fact that‚.X/D PG.n�
k � 1; 2/, Q.S/ is an ŒŒn; k; d �� stabilizer code for some d . The fact that d D d.X/
follows from the same arguments as in the forward implication, observing that if

a � .vnCjxj � xnCj vj / D 0;

then
vnCj .a � xj / � .a � xnCj /vj D 0;

which implies vj D a � xj and vnCj D a � xnCj , assuming .a � xj ; a � xnCj / ¤ .0; 0/.
This is precisely the assumption that j̀ is not contained in the hyperplane �a.
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e7 C e8
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e1
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e5

e6
e5 C e6

Figure 2. The set of nine (thick) lines describing the geometry of the Shor code.

Example 3.9 (Shor code). As we saw in Example 3.5, the Shor code has the generator
matrix

G.S/ D

0BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCA
:

Let ei denote the i -th vector in the canonical basis of F82 . The quantum set of
lines X is

¹he1; e7i;he1 C e2; e7i; he2; e7i; he3; e7 C e8i; he3 C e4; e7 C e8i;

he4; e7 C e8i; he5; e8i; he5 C e6; e8i; he6; e8iº;

which is drawn in Figure 2. Here, hei ; ej i denotes the line spanned by points ei and ej .
Note that the point e7 is on the two lines he1; e7i and he1 C e2; e7i, and thus e7 is

“dependent with itself”. So at first sight it seems that d.X/D 2. However, the remain-
ing seven lines span a six-dimensional subspace since the two planes he3; e4; e7C e8i
and he5; e6; e8i span a five-dimensional subspace, while the line he2; e7i extends this to
a six-dimensional subspace that also contains the point e7 (i.e., contains all dependent
points). Following Theorem 3.8, we do not count this dependency and conclude that
d.X/ > 3. The dependency of e7 with itself implies that the Shor code is impure. The
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dependent points ¹e1; e2; e1 C e2º imply that d.X/ D 3. Although the six lines not
containing these points are contained in a hyperplane, there is no hyperplane contain-
ing the six lines and the dependent points, thus we do not disregard this dependency.
Thus, we see that condition (b) is essential in the definition of d.X/.

Let us generalize one feature of the Shor code further: a planar pencil of lines in
a projective space is a set of lines which are all contained in some plane and are all
the lines incident with a point in that plane. As illustrated in Figure 2, the Shor code
is the union of three planar pencils.

Observe that a planar pencil of lines is itself a quantum set of lines. Our aim is to
show that a quantum set of lines is nothing more than the union modulo two of planar
pencils of lines. We first prove a few lemmas.

Lemma 3.10. The union modulo two of two quantum sets of lines is a quantum set
of lines.

Proof. Let X and Y be two quantum sets of lines. Recall that ‚.X/, ‚.Y/, and
‚.X [ Y/ are the spaces spanned by X, Y, and both sets of lines, respectively. A co-
dimension 2 subspace � intersects ‚.X/ in either a co-dimension 2 subspace, in
a hyperplane, or in ‚.X/. In the first case, it is skew to an even number of the lines
of X; in the latter two cases it is skew to none (which is even).

Let X be the subset of X of lines skew to � . Likewise, let Y be the subset of Y of
lines skew to � . Then � is skew to jXj C jYj � 2jX \ Yj lines of the union modulo
two of X and Y.

Since both jXj and jYj are even, every co-dimension 2 subspace is skew to an
even number of lines of X [ Y. This proves the lemma.

An r-sputnik is a set of .r C 1/ concurrent lines (they are all incident with some
point) in an r-dimensional subspace � with the property that any r of them span � .
In Figure 4, a 3-sputnik is illustrated, compare this to Figure 3.

Our aim will be to prove that a quantum set of lines is the union modulo two of
planar pencils of lines. Firstly, we will prove that this claim is true for an r-sputnik.

Figure 3. A 3-sputnik looks quite like a Soviet radio satellite from 1957.
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`

`0

Figure 4. A 3-sputnik seen as the union modulo two of two planar pencils of lines.

Lemma 3.11. An r-sputnik is the union modulo two of planar pencils of lines. In par-
ticular, an r-sputnik is a quantum set of lines.

Proof. Let X be an r-sputnik and take any two lines ` and `0 2X. The r � 1 lines of
X n ¹`; `0º span an .r � 1/-dimensional subspace which intersects the plane spanned
by ` and `0 in a line `00. The line `00 is the third line in the planar pencil of lines
spanned by ` and `0. Thus, adding (modulo 2) this pencil of lines to X, we get an
.r � 1/-sputnik. Now continue adding planar pencils of lines in this way until we get
a 2-sputnik. Since a 2-sputnik is a planar pencil of lines, it is a quantum set of lines.
We can then reverse the process adding planar pencils of lines to recover the r-sputnik
which, by Lemma 3.10, is also a quantum set of lines.

Lemma 3.12. Let X be a quantum set of lines. There is a set D of dependent points
such that each point of D is incident with a different line of X.

Proof. Let � D ‚.X/ be the subspace spanned by the lines of X and let ` 2 X. Let
� 0 D ‚.X n ¹`º/ be the subspace spanned by the lines of X n ¹`º. The subspace � 0

is either a co-dimension 2 subspace of � , a hyperplane of � , or � itself. The first case
is ruled out since X is a quantum set of lines and, by definition, any co-dimension 2
subspace is skew to an even number of lines of X. Therefore, there is a point of x
of ` incident with � 0. Any point of � 0 is the sum of points incident with the lines of
X n ¹`º. Thus, we obtain a set of dependent points, each incident with a line of X.
If in this set there are two points y and z incident with same line `0 of X, then we
can replace y and z by `0 n ¹y; zº. Hence, we obtain a set of dependent points, each
incident with a distinct line of X.

Lemma 3.13. A quantum set of three lines is a planar pencil of lines.

Proof. Suppose that the quantum set of three lines X D ¹`1; `2; `3º span PG.4; 2/
or PG.5; 2/, respectively. Then there is a point x 2 `2 such that the co-dimension 2
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Figure 5. Configuration of the lines in PG.3; 2/.

subspace spanned by `1 and x (resp. `1 and `2) is skew to `3. This contradicts the
definition of a quantum set of lines.

Suppose that the quantum set of three lines X D ¹`1; `2; `3º span PG.3; 2/. If `1
and `2 intersect, then the co-dimension 2 subspace `1 (as well as `2) must also
intersect `3. Since they span PG.3; 2/, the three lines must be concurrent (and not
co-planar). Taking the union modulo 2 of the planar pencil of lines spanned by `2
and `3, we obtain, by Lemma 3.10, a quantum set of two lines, which does not exist.
Thus we have three pairwise skew lines `1, `2, `3 with the property that any line
incident with two of them is incident with the third. This implies there are nine lines
which are all incident with exactly one point of each of `1, `2, `3, see Figure 5. By
Lemma 3.2, a point of PG.3; 2/ is incident with seven lines of PG.3; 2/, so in all we
have that there are (at least)

9.7 � 4/C 3C 9 D 39

lines of PG.3; 2/, when in fact, by Lemma 3.2, there are 35.
Therefore, the quantum set of three lines span a PG.2; 2/. A co-dimension 2 sub-

space is just a point, so a quantum set of lines must be incident with every point of the
plane. Hence, X is a planar pencil of lines.

The following theorem is due to Glynn, Gulliver, Maks and Gupta [7]. It is import-
ant to note that if the qubit stabilizer code has minimum distance 2, then it is possible
that the quantum set of lines X contains repeated lines. This occurs, for example, in
the ŒŒ5; 2; 2�� code.
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x6 x1

x2 x3x4

x5

x

Figure 6. The thick lines are in X, the medium-thick lines are in X0, and the thin lines make
up the planar pencils at each point x1; : : : ; xr .

Theorem 3.14. A qubit stabilizer code with minimum distance at least three is equi-
valent to a quantum set of lines which is generated by the union modulo two of planar
pencils of lines.

Proof. Let X be a quantum set of lines. We will prove that there is an r-sputnik X0

such that the union modulo 2 of X, X0 and r � 1 planar pencils of lines is a quantum
set of jXj � 1 lines. Since, by Lemma 3.11, X0 is the union modulo 2 of planar pencils
of lines, this implies that, by iteration, we can take the union modulo 2 of X and
some planar pencils of lines and obtain a quantum set of three lines, by Lemma 3.10.
By Lemma 3.13, this set of three lines is a planar pencil of lines, and we are done.

By Lemma 3.12, there is a set x1; : : : ; xrC1 of minimally dependent points incid-
ent with the lines `1; : : : ; `rC1 of X, respectively. Let x 2 `rC1 n ¹xrC1º. Let `0j be
the line spanned by the points x and xj for j D 1; : : : ; r . Let X0 be the r-sputnik,

X0 D ¹`0j j j D 1; : : : ; rº [ ¹`rC1º:

Let Lj be the planar pencil of lines spanned by j̀ and `0j . In Figure 6, r D 5, the
lines j̀ are the thick lines, the `0j are the medium thickness lines, and the thin lines
are the third line in the planar pencil of lines spanned by j̀ and `0j .

By Lemma 3.10, the union modulo two of� r[
jD1

Lj

�
[X [X0

is a quantum set of lines and, on inspection, it is a set of jXj � 1 lines.
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e1

e2

e3e4

e5

e1 C e3
e2 C e4e3 C e5

e1 C e4

e2 C e5

Figure 7. The ŒŒ5; 0; 3�� code as the union modulo two of planar pencils of lines.

Example 3.15. Consider again the ŒŒ5; 0; 3�� code constructed in Example 2.14. As
a quantum set of lines X, this is the union modulo two of pencils of lines drawn
in Figure 7.

Since k D 0, d.X/ is the minimum d for which there is a hyperplane of PG.4; q/
containing jXj � d D 5 � d lines of X. Since any three lines span the whole space,
we have that d D 3. Thus, this is an ŒŒ5; 0; 3�� code.

We can also construct the ŒŒ5; 1; 3�� code from Figure 7. We only have to replace e5
with e1 C e2 C e3 C e4 and check that the five (thick) lines are then pairwise skew.
This can be done by writing down the 15 points and checking we get every point of
PG.3; 2/. Then, since any two of the thick lines are pairwise skew, we have that the
minimum distance is 3.

Example 3.16. The ŒŒ6; 0; 4�� code is the sum modulo 2 of 16 planar pencils of lines,
see Figure 8. The cyclic structure allows one to check quickly that there are no
three collinear points intersecting distinct lines of the six lines of the quantum set
of lines. Indeed, the points of weight two obtained by summing two points incident
with the quantum lines are cyclic shifts of 26, 36, 46 and the points of weight three
obtained by summing two points incident with the quantum lines are cyclic shifts
of 134 and 146. Therefore, the minimum distance of the code is at least 4. The points
e126, e34, e16, e234 are four dependent points, implying that the minimum distance of
the code is 4.
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e1

e2

e3

e4

e5

e6

e12

e23

e34e45

e56

e16

e123

e234
e345

e456

e156

e126

e123

e234

e345

e456

e156

e126

e123456

e36

e25

e14 e14

e25

e36

Figure 8. The quantum set of lines (the thicker lines) giving an ŒŒ6; 0; 4�� code.

Research Problem 1. The parameters ŒŒ14; 3; 5�� are the smallest for which it is un-
known whether there exists a qubit stabilizer code or not [10]. To construct such
a code, one should look for a union modulo two of planar pencils of lines that give
14 lines in PG.10; 2/ such that for any four points on 4 of the 14 lines that also lie
on a common plane, the remaining 10 lines are contained in a hyperplane which also
contains those four dependent points.

Theorem 3.14 can also be used to rule out the existence of quantum codes with
certain parameters sets. For example, were an ŒŒ4; 0; 3�� stabilizer code to exist, then X

would be a set of four skew lines in PG.3; 2/ with the property that any line is skew
to an even number of lines of X. However, the lines of X themselves are skew to
the other three lines of X, which is an odd number. A more interesting exercise is to
prove that an ŒŒ7; 0; 4�� code does not exist. To prove this, show that there are at least
five three-dimensional subspaces which intersect all of the 7 lines of PG.6; 2/ in the
quantum set of lines and prove that these pairwise intersect in a point.

4. Non-additive qubit quantum codes

4.1. Direct sum of stabilizer codes

As discussed in the previous sections, a stabilizer code is defined as the common
.C1/-eigenspace of a set of pairwise commuting Pauli operators M1; : : : ;Mn�k; this
is the generator of the code. In other words, these codes are completely characterized
by an abelian subgroup S D hM1; : : : ;Mn�ki � Pn.
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The aim of this section is to construct quantum codes that are the direct sum of sta-
bilizer codes. Technically speaking, any subspace can be regarded as a quantum code,
and naturally we want to make sure to obtain a large minimum distance when taking
this direct sum of subspaces. Thus, we seek for some additional structure amongst
them. While each individual subspace will again be defined by a set of generators
M1; : : : ; Mn�k , we will now not simply take the joint eigenspace with eigenvalue 1
as our code space.

We have already observed that to avoid constructing a trivial code, one restricts
the stabilizer not to contain a non-trivial multiple of the identity,�1 62 S . This implies
that each generator can only have an overall phase of C1 or �1 and they are of the
form

Mj D ˙�1 ˝ � � � ˝ �n

for some �1; : : : ; �n 2 P1. Now observe that when M1; : : : ; Mn�k commute, then
so do

˙M1; : : : ;˙Mn�k :

Thus for all t D .t1; : : : ; tn�k/ 2 ¹0; 1ºn�k , one can define a corresponding stabil-
izer code Q.St / as the joint .C1/-eigenspace of

.�1/t1M1; : : : ; .�1/
tn�kMn�k :

For distinct t and t 0 2 T , there is a j such that tj ¤ t 0j . Without loss of gener-
ality, suppose that tj D 1. For all jvi 2 Q.St / and jwi 2 Q.St 0/, one has hvjwi D
hvjMjwi D hMj vjwi D � hvjwi D 0. Consequently, Q.St / and Q.St 0/ are ortho-
gonal.

For any T � ¹0; 1ºm, we define a direct sum stabilizer code (confusingly also
known as a union stabilizer code) as

Q.ST / D
M
t2T

Q.St /:

To be able to determine the minimum distance of this quantum code, we first
determine the errors which are not detectable.

As before, let G be the generator matrix whose row space is C D �.S/. Let t; u 2
T n ¹0º, and let At;u be an .n � k/ � .n � k/ non-singular matrix whose first two
columns are t and u. Then A�1t;uG is also a generator matrix for C , and we can find
another set

¹M 0i j i D 1; : : : ; n � kº

of generators of S , whereM 0i is obtained from the i -th row ofA�1t;uG by applying ��1,
in other words, reversing the construction above.
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Let St;u be the subgroup of S generated by M 03; : : : ;M
0
n�k

.

Lemma 4.1. Suppose j t i 2 Qt .S/ and j ui 2 Qu.S/. Then, for all M 2 St;u,

M j t i D j t i and M j ui D j ui :

Proof. Observe that Qt .S/ depends on the set of generators chosen for S . If we use
the set of generators M 01; : : : ;M

0
n�k

for S , then Qt .S/ becomes Q.1;0;0;:::;0/.S/ and
Qu.S/ becomes Q.0;1;0;:::;0/.S/. Thus, M 0j j 

t i D j t i and M 0j j 
ui D j ui for all

j 2 ¹3; : : : ; n � kº.

Lemma 4.2. Suppose Q.ST / is unable to detect an error E. Then there is a pair
t; u 2 T such that E 2 Centraliser.St;u/.

Proof. Suppose there is no such pair. Then, for all t; u 2 T , there is aMt;u 2 St;u for
which E anti-commutes with Mt;u.

Suppose j t i 2 Qt .S/ and j ui 2 Qu.S/ are in an orthogonal basis for Q.ST /.
By Lemma 4.1,

Mt;u j 
t
i D j t i and Mt;u j 

u
i D j ui

and so

h t jE j ui D h t jEMt;u j 
u
i D �h t jMt;uE j 

u
i D �h t jE j ui:

Hence, h t jE j ui D 0, and by Theorem 1.5, E is detectable.

Thus, according to Lemma 4.2, we only need to concern ourselves with the errors
which are in Centraliser.St;u/ for any t; u 2 T . This motivates the definition

dT D min¹dt;u j t; u 2 T º; (4.1)

where dt;u is the minimum weight of a Pauli operator in Centralise.St;u/.

Theorem 4.3. The subspace Q.ST / is an ..n; jT j2k; dT // quantum code.

Proof. If error E is undetectable, then it is an element of Centraliser.St;u/ for some
t; u 2 T .

4.2. The Rains, Hardin, Shor, Sloane non-additive quantum code

The notion of a non-additive quantum code first appeared in [18], although the geo-
metric observation given here appears to be new.
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Example 4.4 (Rains, Hardin, Shor, Sloane). Consider the following elements of P5:

M1 D Z X Y Y X;

M2 D X Z X Y Y;

M3 D Y X Z X Y;

M4 D Y Y X Z X;

M5 D X Y Y X Z:

The corresponding matrix whose i -th row is �.Mi / is0BBBBB@
0 1 1 1 1 1 0 1 1 0

1 0 1 1 1 0 1 0 1 1

1 1 0 1 1 1 0 1 0 1

1 1 1 0 1 1 1 0 1 0

1 1 1 1 0 0 1 1 0 1

1CCCCCA :
Observe that deleting any two rows of this matrix, we obtain a 3 � 10 matrix whose 5
pairs of columns define a quantum set of lines in PG.2; 2/. This quantum set of lines
defines a stabilizer code whose minimum distance is 2. Therefore, if we set

T D ¹;; ¹1º; ¹2º; ¹3º; ¹4º; ¹5ºº;

then, by Theorem 4.3, Q.ST / is an ..5; 6; 2// quantum code.

4.3. The geometry of direct sum stabilizer codes

Let X be the quantum set of lines of PG.n � k � 1; 2/ associated with the ŒŒn; k; d ��
quantum stabilizer codeQ.S/, where S is the subgroup generated byM1; : : : ;Mn�k .
Let P D ¹e1; : : : ; erº be a set of points of PG.n � k � 1; 2/ chosen so that the
projection from any two points ei ; ej 2 P of the lines of X is a set of lines of
PG.n � k � 3; 2/. If this projection is a set of lines, then it is necessarily a quantum
set of lines, which we denote by Xij . The set T is the set of supports of the elements
of P .

The parameter d.Xij / is the size of the smallest set of dependent points incident
with distinct lines of Xij . Thus, the definition in (4.1) will be

dT D min¹d.Xij / j i; j 2 ¹1; : : : ; rºº:

Hence, we have a purely geometric way to construct direct sum stabilizer codes with
parameters ..n; .r C 1/2k; dT //.

This is taken much further in [4], where the geometrical construction is general-
ised to prime alphabets.
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Research Problem 2. Find quantum sets of lines X for which there are points with
the property that the projection of the lines of X from any pair is onto a quantum
set of lines X0 with relatively large d.X0/. It should be possible to make direct sum
stabilizer codes with good parameters from this geometrical construction. It would
be of great interest if one could construct codes with parameters for which stabilizer
codes could feasibly exist but none are known to exist.

5. Stabilizer codes for larger alphabets

5.1. The higher-dimensional Pauli group

When a quantum system has D levels, we speak of a quDit. In this section, we will
consider quantum codes over such larger subsystems. Consequently, these codes are
subspaces of the Hilbert space .CD/˝n.

We will consider .Cq/˝n, where qDph, is the power of a prime p. The restriction
to prime powers allows us to use the structure of the finite field for their construction.
In the case when D is not a prime power, one can use the ring Z=DZ, but then most
of the constructions that we will consider here will not work. We label the coordinates
of Cq with elements of Fq , where Fq denotes the finite field with q elements. In this
way, a basis for the space of endomorphisms of Cq can be indexed by the elements of
Fq � Fq .

For each a 2 Fq , we define a q � q matrix X.a/ to be matrix obtained from the
linear map which permutes the coordinates of Cq by adding a to the index. In other
words, with basis ¹jxi j x 2 Fqº of C,

X.a/ jxi D jx C ai:

For example, if q D 3 and the elements of Fq are ¹0; 1; 2º, then

X.0/ D

0B@1 0 0

0 1 0

0 0 1

1CA ; X.1/ D

0B@0 0 1

1 0 0

0 1 0

1CA ; X.2/ D

0B@0 1 0

0 0 1

1 0 0

1CA :
For each b 2 Fq , we define a q � q matrix Z.b/ to be the diagonal matrix whose

i -th diagonal entry is wtr.ib/. Here, w D e2�i=p is a primitive p-th root of unity, and
tr is the trace map from Fq to its prime subfield Fp ,

tr.a/ D
h�1X
jD0

ap
j

:
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As in the previous case, if we take say q D 3, then

Z.0/ D

0B@1 0 0

0 1 0

0 0 1

1CA ; Z.1/ D

0B@1 0 0

0 ! 0

0 0 !2

1CA ; Z.2/ D

0B@1 0 0

0 !2 0

0 0 !

1CA ;
where ! is a primitive complex third root of unity. Recall that the rows and columns
of the matrix are indexed by elements of Fq , so i 2 Fq . Thus,

Z.b/ jxi D ! tr.xb/
jxi:

We define the Pauli group for q odd as

P1 D
®
!cX.a/Z.b/ j a; b 2 Fq; c 2 Z=pZ

¯
and for q even, that is when p D 2, as

P1 D
®
if !cX.a/Z.b/ j a; b 2 Fq; c 2 Z=2Z; f 2 Z=2Z

¯
:

The reason that we accommodate this slightly larger group for q even is due to
Lemma 5.2 below. One can check that this definition coincides with our definition of
the Pauli group for q D 2.

More generally, we define the group of Pauli operators on .Cq/˝n to be the n-fold
direct product Pn D P1 � � � � �P1 (n times). Thus

Pn D ¹�1 ˝ � � � ˝ �n j �j 2 P1º:

The size of Pn is pq2n for q odd and 4q2n for q even.
The weight of an element c�1 ˝ � � � ˝ �n, where �i D X.ai /Z.bi /, is the number

of i 2 ¹1; : : : ; nº such that �i ¤ X.0/Z.0/.

Lemma 5.1. For all a; b 2 Fnq ,

! tr.a�b/X.a/Z.b/ D Z.b/X.a/:

Proof. We have

X.a/Z.b/ jxi D ! tr.b�x/X.a/ jxi D ! tr.b�x/
jx C ai:

Meanwhile,

Z.b/X.a/ jxi D Z.b/ jx C ai D ! tr.b�.xCa//
jx C ai:
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The following lemma implies that non-identity elements of the Pauli group have
order p for q odd. Note that for q even this is not the case; there are elements of order
four. However, we extend the Pauli group as above (defining �y D i�x�z), and in
this way we introduce more elements of order two. We do this so that we have more
options for Mi in our set of pairwise commuting operators which will generate the
abelian subgroup S .4

Lemma 5.2. For all a; b 2 Fnq and r 2 N,

.X.a/Z.b//r D !.
r
2/ tr.a�b/X.a/rZ.b/r :

Proof. By induction on r , we have

.X.a/Z.b//r D .X.a/Z.b//r�1X.a/Z.b/

D !.
r�1

2 / tr.a�b/X.a/r�1Z.b/r�1X.a/Z.b/:

By Lemma 5.1, this is equal to

!.
r�1

2 / tr.a�b/X.a/r�1!.r�1/ tr.a�b/X.a/Z.b/r�1Z.b/ D !.
r
2/ tr.a�b/X.a/rZ.b/r :

As in the case of qubit codes, we will again be looking to construct stabilizer codes
and for this reason it will be of interest to know when elements M;N 2 Pn commute
or not. For this reason, the following lemma is fundamental.

Lemma 5.3. For all a; b; a0; b0 2 Fnq ,

X.a/Z.b/X.a0/Z.b0/ D ! tr.a�b0�b�a0/X.a0/Z.b0/X.a/Z.b/:

Proof. X.a/ and X.a0/ commute, likewise Z.b/ and Z.b0/, so the lemma follows
from Lemma 5.1.

5.2. Error detection and correction

As in the case of qubit codes, it suffices to consider errors from the group Pn of
Pauli-errors which are unitary operators of the form

E D �1 ˝ � � � ˝ �n;

where �i D X.a/Z.b/ for some a; b 2 Fq .

4This was overlooked in the seminal paper of Ketkar et al. [14] on stabilizer codes over
finite fields. They do not accommodate the larger Pauli group when q is even, or include any
version of Lemma 5.2. However, this larger group is necessary for all the examples of qubit
stabiliser codes we have included here.
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Let Q be a quantum error-correcting code of .Cq/˝n, i.e., a subspace of .Cq/˝n.
Then again, as in the case of qubit codes, Q detects an error E 2 P if for all

j�i; j i 2 Q with h�j i D 0, we have that

h�jE j i D 0 and h�jE j�i D cE

for some constant cE which depends only on E.
A quantum codeQ has minimum distance d if one can detect Pauli-errors with up

to d � 1 non-identity matrices and correct Pauli-errors with up to bd�1
2
c non-identity

matrices. We say that a quantum code of .Cq/˝n of dimension K and minimum
distance d is an ..n; K; d//q code. If the code has dimension K D qk , then we say
that the code is an ŒŒn;K; d ��q code. Note that some authors reserve the latter notation
ŒŒn;K; d ��q for stabilizer codes only.

5.3. Stabilizer codes

A stabilizer code is the intersection of the eigenspaces with eigenvalue one of the
elements of an abelian subgroup S of Pn. As before, we denote the code by Q.S/.
We insist that �1 62 S whenever � ¤ 1, since otherwise Q.S/ is trivial.

As in the qubit case, a stabilizer code Q.S/ with stabilizer S can detect all Pauli-
errors that are scalar multiples of elements in S or that do not commute with some
element of S . We denote by Centraliser.S/ the elements of Pn that commute with all
elements of S . A non-detectable Pauli-error must be in Centraliser.S/.

Commuting elements are characterised as follows.
By Lemma 5.3, two elements M D cX.a/Z.b/ and N D c0X.a0/Z.b0/ satisfy

MN D ! tr.b�a0�b0�a/NM:

Therefore, M and N commute if and only if the trace symplectic form

tr.b � a0 � b0 � a/ (5.1)

is zero.
As in the case for qubit codes, we introduce the map � which maps elements of Pn

to F2nq by
�.X.a/Z.b// D .ajb/:

For elements u;w 2 F2nq , the trace symplectic form is

.u;w/a D

nX
jD1

tr.ujwjCn � wjujCn/: (5.2)

Then with u D .ajb/ and w D .a0jb0/, this is the trace symplectic form (5.1).
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5.4. Stabiliser codes as additive codes over Fq

Let � be the map that maps cX.a/Z.b/ to .ajb/ 2 F2nq . The group S is mapped to
an additive code C D �.S/. The symplectic weight of .ajb/ 2 F2nq is the number of
i 2 ¹1; : : : ; nº such that .ai ; bi / ¤ .0; 0/. Thus, an element cX.a/Z.b/ of weight w
is mapped to a vector of symplectic weight w.

The elements of Centraliser.S/ are mapped to the dual code of C , namely

C?a D
®
w 2 F2nq j .u;w/a D 0 for all u 2 C

¯
:

Here the dual ?a is taken with respect to the trace symplectic form (5.2).
We have the following important theorem.

Theorem 5.4. An ..n;K;d//q stabilizer code exists if and only if there exists an addit-
ive code C 6 F2nq of size jC j D qn=K such that C 6 C?a . If K ¤ 1, then d is the
minimum symplectic weight of an element of C?a n C , otherwise d is the minimum
symplectic weight of an element of C?a D C .

Proof. Let S be an abelian subgroup of Pn not containing non-trivial multiples of the
identity. Let Q.S/ be the corresponding ..n;K; d//q stabilizer code and let

P D
1

jS j

X
M2S

M:

Then, as in Lemma 2.3, P is the orthogonal projection onto Q.S/. For any element
M D X.a/Z.b/, we have that M �M D 1, so M 2 S if and only if M � 2 S . Hence,
P � D P .

Thus, since P is Hermitian and P 2 D P , the dimension of its image Q.S/ is
equal to the trace of P . Since tr.M/D 0 for allM 2 Pn,M ¤ 1 and tr.1/D qn, one
has tr.P / D qn=jS j and so jS j D qn=K since dimQ.S/ D K.

We note that C D �.S/ is an additive code since S is an abelian subgroup and has
size jS j D qn=K. Since �.Centraliser.S// D C?a , we have C 6 C?a . For K ¤ 1,
the minimum symplectic weight of any element of C?a n C is d since the minimum
distance ofQ.S/ is the minimum weight of the Pauli operators in Centraliser.S/ n S .
As in the qubit case, if K D 1, then we define the minimum distance of Q.S/ to be
the minimum weight of the Pauli operators in Centraliser.S/ D S , which is equal to
the minimum symplectic weight of any element of C?a D C .

The backwards implication is similar. Let S D ��1.C / and define the stabilizer
code to be Q.S/. Then the dimension follows as above. If K ¤ 1, then the minimum
distance of Q.S/ corresponds as above to the minimum symplectic weight of an ele-
ment of C?a n C since Centraliser.S/ is equal to ��1.C?a/ up to a scalar factor.
IfK D 1, then the minimum distance ofQ.S/ corresponds to the minimum non-zero
symplectic weight of the elements of C?a D C .
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5.5. Constructions

The following theorem is known as the Calderbank–Shor–Steane construction. The?
refers to the standard inner product on Fnq given by

u � v D u1v1 C � � � C unvn:

Theorem 5.5. Suppose there are linear codes C1 and C2 with parameters Œn;k1; d1�q
and Œn;k2;d2�q , such thatC?1 6C2. Then there is an ŒŒn; k1C k2� n; d ��q code, where
d is the minimum weight of the elements in .C1 n C?2 / [ .C2 n C

?
1 / if k1 C k2 ¤ n

and d is the minimum non-zero weight of the elements in C1 [ C2 if k1 C k2 D n.

Proof. Let C D C?1 � C
?
2 6 F2nq . Then C is a linear code over Fq , and for all v D

.v1jv2/ and w D .w1jw2/ in C ,

.v; w/a D tr.v1 � w2 � v2 � w1/ D tr.0 � 0/ D 0:

In the above, the first term vanishes since v1 2 C?1 6 C2 and w2 2 C?2 . Likewise,
the second term vanishes since v2 2 C?2 and w1 2 C?1 6 C2. Hence, C 6 C?a and
Theorem 5.4 applies.

To determine the minimum distance, first note that C?a > C2 � C1, since for all
v D .v1jv2/ 2 C

?
1 � C

?
2 and w D .w2jw1/ 2 C2 � C1,

.v; w/a D tr.v1 � w1 � v2 � w2/ D tr.0 � 0/ D 0:

The dimension of C2 � C1 is k1 C k2 and the dimension of C?a is 2n � .n � k1/ �
.n � k2/ D k1 C k2, so

C?a D C2 � C1:

Thus, by Theorem 5.4, if k1 C k2 ¤ n, then the minimum distance of the stabilizer
code ��1.C / is the minimum weight of the elements in .C1 n C?2 / [ .C2 n C

?
1 /.

If k1 C k2 D n, then the minimum distance of the stabilizer code ��1.C / is the min-
imum non-zero weight of the elements in C2 �C1 D C?1 �C

?
2 , which is equal to the

minimum non-zero weight of the elements in C1 [ C2 D C?1 [ C
?
2 .

Example 5.6. The ternary extended Golay code C1 is a Œ12; 6; 6�3 code for which
C1 D C?1 . Applying Theorem 5.5, this implies that there is an ŒŒ12; 0; 6��3 quantum
stabilizer code.

The code C1 has a generator matrix

G D

0BBBBBBB@

1 0 2 1 2 2 0 0 0 0 0 1

0 1 0 2 1 2 2 0 0 0 0 1

0 0 1 0 2 1 2 2 0 0 0 1

0 0 0 1 0 2 1 2 2 0 0 1

0 0 0 0 1 0 2 1 2 2 0 1

0 0 0 0 0 1 0 2 1 2 2 1

1CCCCCCCA ;
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so C D C1 � C1 has generator matrix, a 12 � 24 matrix�
0 G
G 0

�
:

The 12 Pauli operators generating the stabilizer group S are0BBBBBBBBBBBBBBBBBBBBB@

Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ 1 1 1 1 1 Z.1/

1 Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ 1 1 1 1 Z.1/

1 1 Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ 1 1 1 Z.1/

1 1 1 Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ 1 1 Z.1/

1 1 1 1 Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ 1 Z.1/

1 1 1 1 1 Z.1/ 1 Z.2/ Z.1/ Z.2/ Z.2/ Z.1/

X.1/ 1 X.2/ X.1/ X.2/ X.2/ 1 1 1 1 1 X.1/

1 X.1/ 1 X.2/ X.1/ X.2/ X.2/ 1 1 1 1 X.1/

1 1 X.1/ 1 X.2/ X.1/ X.2/ X.2/ 1 1 1 X.1/

1 1 1 X.1/ 1 X.2/ X.1/ X.2/ X.2/ 1 1 X.1/

1 1 1 1 X.1/ 1 X.2/ X.1/ X.2/ X.2/ 1 X.1/

1 1 1 1 1 X.1/ 1 X.2/ X.1/ X.2/ X.2/ X.1/

1CCCCCCCCCCCCCCCCCCCCCA

:

The next construction is called the Fq2 trick (for qubit codes, this is the F4 trick).
It is not really a trick at all, but it is a quick and effective way to construct quantum
codes. These codes are a very special type of stabilizer code in which we impose more
structure on the additive code C .

For any two vectors u, v in Fn
q2 , we define the Hermitian form

u ı v D uq � v; (5.3)

and for an Fq2-linear code E, we define

E?h D
®
u 2 Fn

q2 j u ı v D 0 for all v 2 E
¯
:

Theorem 5.7. If there exists a linear Œn; n � k; d �q2 code D for which D?h 6 D,
then there is an ŒŒn; n � 2k;> d��q stabilizer code.

Proof. The code D?h is a Œn; k; d 0�q2 code for some d 0. Fix a basis ¹e; eqº for Fq2

over Fq , where e2q ¤ e2. Let � be the map from Fn
q2 to F2nq defined by

�..a1e C b1e
q; : : : ; ane C bne

q// D .a1; : : : ; anjb1; : : : ; bn/:

Let C D �.D?h/, a 2k-dimensional linear code over Fq of length 2n.
For u 2 D?h and u0 2 D,

0 D uq � u0 D

nX
iD1

.aie C bie
q/q.a0ie C b

0
ie
q/:
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This implies that

0 D

nX
iD1

.a0ibie
2
C b0iaie

2q
C .aia

0
i C bib

0
i /e

qC1/:

Applying the x 7! xq map, we get

0 D

nX
iD1

.a0ibie
2q
C b0iaie

2
C .aia

0
i C bib

0
i /e

qC1/:

Subtracting the last two equations, we have

0 D .e2q � e2/

nX
iD1

.aib
0
i � bia

0
i /:

Hence,
.�.u/; �.u0//a D 0;

and so �.D/ 6 C?a . Since jDj D jC?a j D q2.n�k/, we have that �.D/ D C?a .
Moreover, C D �.D?h/ and D?h 6 D, so C 6 C?a . The symplectic weight of

an element of �.u/ is equal to the weight of u, so the minimum symplectic weight
of C?a n C is the minimum weight of D nD?h .

The theorem then follows from Theorem 5.4.

We will use the construction of Theorem 5.7 to obtain quantum MDS codes in the
next section.

Research Problem 3. If k is small enough, one can multiply the columns of a gen-
erator matrix for D?h with non-zero scalars to obtain an equivalent code for which
D?h 6 D holds. It would be interesting to calculate the combinatorial threshold for
codes, when this can always be done, and then deduce properties of codes which
surpass this threshold.

5.6. The geometry of qubit codes

In the case q D ph, Theorem 5.4 implies that the existence of an ..n; qn=pr ; d //q
stabilizer code Q.S/ is equivalent to the existence of an additive code C 6 C?a of
length 2n such that C is generated by r vectors of F2nq that are linearly independ-
ent over Fp . Thus, the code C is generated by an r � 2n matrix G.S/ over Fp and
its columns are vectors in F rq . We have seen in Section 3.3 that when h > 1, we
should consider those columns as subspaces of PG.r � 1; p/ and not as points of
PG.r � 1; q/.
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Let xi be the i -th column of the matrix G.S/, and let e be an element of Fq with
the property that ¹1; e; e2; : : : ; eh�1º is a basis for Fq over Fp .

Then there are vectors xi;j 2 F rp such that

xi D

h�1X
jD0

xi;j e
j :

Let `i be the subspace

`i D hxi;0; : : : ; xi;h�1; xiCn;0; : : : ; xiCn;h�1i (5.4)

as a subspace of PG.r � 1; p/.
The following lemma can be considered as a generalisation of Lemma 3.6.

Lemma 5.8. The subspace `i is a .2h� 1/-dimensional subspace for all i D 1; : : : ; n
if and only if the minimum non-zero weight of Centraliser.S/ is at least two.

Proof. Suppose that `i is a .2h� 1/-dimensional subspace for all i D 1; : : : ;n and that
E 2 Centraliser.S/ has weight one. Suppose that E has anX.a/Z.b/¤ X.0/Z.0/ in
its i -th position. Consider any M 2 S and suppose that in the i -th coordinate M has
the Pauli matrix X.a0/.Z.b0/. Since M and E commute,

tr.a0b � b0a/ D 0:

Thus, .a0; b0/ is in the kernel of the linear (over Fp) form

tr.bX � aY /:

The kernel of a linear form is a hyperplane of PG.2h � 1; p/, so `i has dimension at
most 2h � 2, a contradiction.

Suppose that the minimum non-zero weight of Centraliser.S/ is at least two and
that `i is not a .2h � 1/-dimensional subspace for some i D 1; : : : ; n. Since `i does
not span the whole of PG.2h � 1; p/, there is an element .a; b/ 2 F2q such that

tr.a0b � b0a/ D 0

for all X.a0/Z.b0/ occurring in the i -th position of some M 2 S . This implies that
the Pauli operator of weight one E with an X.a/Z.b/ commutes with all M 2 S ,
contradicting the fact that the minimum non-zero weight of Centraliser.S/ is at least
two.

Thus, by Lemma 5.8, the geometry of the stabilizer code Q.S/ for which the
minimum non-zero weight of Centraliser.S/ is at least two is given by a set X of
.2h � 1/-dimensional subspaces of PG.r � 1; p/ of size n. The following lemma
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allows us to deduce the minimum distance of Q.S/, at least in the case that Q.S/ is
pure.

Lemma 5.9. There are w dependent points incident with distinct subspaces of X if
and only if there is an element of Centraliser.S/ of weight w.

Proof. Suppose that there is an element in Centraliser.S/ of weight w. Then the
image under � of this element is a vector v 2 C?a with symplectic weight w. Let D
be the support of v restricted to the first n coordinates. As before, let xi be the i -th
column of the matrix G.S/, and define xij as in (5.4). Since v 2 C?a ,X

i2D

tr.viCnxi � xiCnvi / D 0:

This implies X
i2D

h�1X
jD0

.xij tr.viCnej / � xiCn tr.viej // D 0:

The summand is a point of the subspace `i and there are jDj D w such points. This
proves the backwards implication.

Suppose there arew dependent points incident with distinct subspaces of X. Then
there are a subset D � ¹1; : : : ; nº of size w and �i;j , �iCn;j 2 Fp , such that

X
i2D

h�1X
jD0

.�i;jxi;j � �iCn;jxiCn;j / D 0:

Recall that

xi D

h�1X
jD0

xi;j e
j :

Since `i is a .2h � 1/-dimensional subspace, the points xj ; x
p
j ; : : : ; x

ph�1

j are h lin-
early independent points, which implies there are �i;r 2 Fq such that

xi;j D

h�1X
rD0

�i;rx
pr

i :

Since xi;j 2 F rp , we have that �i;r D �
pr

i for some �i . Substituting in the above gives

X
i2D

h�1X
jD0

h�1X
rD0

.�i;j .�ixi /
pr

� �iCn;j .�iCnxiCn/
pr

/ D 0:
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If we define

vi D

h�1X
jD0

�i;j�i ;

this equation becomes X
i2D

tr.viCnxi � vixiCn/ D 0:

The property that defines X as a quantum set of lines for p D 2 does not carry
over to the case p > 3. This is because we can scale any column of G by an element
of Fq n ¹0; 1º and not alter the set of lines X. This will alter the value of .u; v/a,
so the geometric interpretation of C 6 C?a will not be so clean as in the qubit case.
Moreover, it is difficult to deduce the pureness of the code directly from the geometry.
To see this, suppose that v 2 C?a has symplectic support D and for simplicity sake
assume that q is prime. ThenX

i2D

.viCnxi � vixiCn/ D 0:

Now, v 2 C if and only if there is an a 2 F rp such that vi D a � xi . This implies that
the lines not incident with the dependent points are once again contained in a hyper-
plane, but we cannot deduce that the points of the dependencies are contained in the
hyperplane a �X D 0. Indeed, the fact that

a � .viCnxi � vixiCn/ D 0

implies that .vi ; viCn/D �i .xi ; xiCn/ for some non-zero scalar �i 2 Fq . Since this �i
depends on i , we cannot deduce that vi D a � xi for all i D 1; : : : ; 2n.

However, this also means that when p > 3, we have some flexibility in choos-
ing a basis for `i and this choice will affect whether C 6 C?a . Consider the set of n
.2h �1/-dimensional subspaces of PG.4n�1;p/ associated with a pure ŒŒn; n� 4; 3��q
stabilizer code. By Lemma 5.9, these subspaces are pairwise skew. In geometrical
language, this is called a partial spread. To construct such a code, according to The-
orem 5.7, it suffices to construct a Œn; n � 2; 3�q2 linear code D for which D?h 6 D.
Such a code is has a generator matrix 

x1 x2 : : : xn

y1 y2 : : : yn

!
;

where xiyj ¤ xjyi and

nX
iD1

x
qC1
i D

nX
iD1

y
qC1
i D

nX
iD1

x
q
i yi D 0: (5.5)
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For any n 6 q2 C 1, such a matrix can be found by scaling the first three columns so
that the equations in (5.5) are satisfied.

Research Problem 4. Glynn et al. [7] developed the geometry of qubit stabilizer
codes, introducing the concept of a quantum set of lines. This led them to prove The-
orem 3.14, which gives a beautiful geometric classification of qubit stabilizer codes.
Here, we have generalised the concept of quantum set of lines to non-qubit stabil-
izer codes. Although we have seen that the existence of non-identity non-zero scalars
means we cannot hope for such a clean geometric classification, one can certainly
expect some geometric classification for larger q.

6. Quantum MDS codes

6.1. Stabiliser MDS codes

Let C be a code of length n and minimum distance d over an alphabet of size q. If we
consider any n � .d � 1/ coordinates, then any two codewords must be different on
these coordinates (if not the distance between them is at most d � 1), so there are at
most qn�dC1 codewords in the code. This is the Singleton bound

jC j 6 qn�dC1:

A code which attains the Singleton bound is called a maximum distance separable
code or simply an MDS code.

Recall that if C is an additive code over Fq , where q D ph for some prime p,
then C is linear over Fp and so necessarily jC j D pr for some r , see Section 3.3.
Thus, if C is also an MDS code, then h divides r and jC j D qk , where k D n� d C 1.

Theorem 5.4 states that an ŒŒn; k; d ��q stabilizer code exists if and only if there
exists an additive code C 6 F2nq of size jC j D qn�k such that C 6 C?a and the
minimum symplectic weight of an element of C?a n C is d . Considering C?a as
a code over the alphabet Fq � Fq , then C?a has minimum weight d , so

jC?a j 6 q2n�2dC2:

Since jC j D qn�k , we have that jC?a j D qnCk , which implies that for an ŒŒn; k; d ��q
stabilizer code to exist, we must have the condition k 6 n � 2.d � 1/. Compare this
with the Singleton bound above k 6 n � .d � 1/ for codes of size qk .

What is perhaps surprising is that this bound holds for all ŒŒn; k; d ��q quantum
codes. The quantum Singleton bound states that

n > k C 2.d � 1/:
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Consequently, codes reaching equality are called quantum maximum distance separ-
able codes, or QMDS codes for short. We will prove this bound in Section 6.3.

6.2. Reed–Solomon codes

The classical example of an MDS code is the following linear code over Fq . Denote
by ¹a1; : : : ; aqº the elements of Fq . The Reed–Solomon code is

C D ¹.f .a1/; : : : ; f .aq/; fk�1/ j f 2 FqŒX�; degf 6 k � 1º;

where fk�1 denotes the coefficient of Xk�1 in f .X/. If k 6 q, then each polyno-
mial f defines a different codeword, so the dimension ofC is k. A non-zero codeword
has weight at least n � k C 1 since a polynomial of degree at most k � 1 has at most
k � 1 zeros. Lemma 3.1 then implies that the minimum distance d D n � k C 1 and
so the code is MDS.

We can use Theorem 5.7 to construct quantum stabilizer codes from Reed–Solo-
mon codes over Fq2 , but only if we can scale the coordinates of C so that C 6 C?h .
Then D D C?

h
is a Œn; n � k; k C 1�q2 linear MDS code with the property that

D?
h
6 D. Observe that replacing the i -th coordinate f .ai / by �if .ai / does not alter

the parameters of the code. Such a code is then called a generalised Reed–Solomon
code. This can only be done for k6 q, and we obtain an ŒŒq2C 1; q2C 1 � 2k; k C 1��q
stabilizer code. For case k D q, one can check that the Reed–Solomon code®

.f .a1/; : : : ; f .aq2/; fq�1/ j f 2 Fq2 ŒX�; degf 6 q � 1
¯

is contained in its Hermitian dual, so there is no need to scale in this case.

6.3. Quantum Singleton bound

To prove the quantum Singleton bound we will need some technical tools.

1. Bloch decomposition. Let ¹eiº be a basis for the space of complexD �D matrices
such that tr.e�i ej / D Dıij . For qubits, take for example the Pauli matrices. Every
one-quDit density matrix can then be expanded as

� D
1

D

X
i

tr.e�i �/ei ;

where we recall that the trace of a matrix is given by the sum of its diagonal elements,
tr.M/ D

P
i mi i for any square matrix M D .mij /.

Consider now an n-partite system in the space .CD/˝n. Denote by ¹E˛º, with
a multi-index ˛ D .˛1; : : : ; ˛n/, the matrix basis formed by tensor products of the ei ’s

E˛ D e˛1
˝ � � � ˝ e˛n

:
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For tensor products, such as say E ˝ F , one has tr.E ˝ F / D tr.E/ � tr.F /. In other
words, the trace of a tensor product factorizes. Consequently, tr.E�˛Eˇ / D Dnı˛ˇ ,
and the matrix basis formed by ¹E˛º is orthogonal.

Denote by wt.E˛/ the number of non-identity terms in the tensor-decomposition,
and by supp.E˛/ the collection of sites where the non-identity terms act on. Naturally,
wt.E˛/ D jsupp.E˛/j.

We can expand an n-partite state as

� D
1

Dn

X
E

tr.E��/E:

As above, we from now on omit the index ˛ for readability. This is the Bloch decom-
position of �.

2. Partial trace. Consider the linear function trj which maps

trj W e˛1
˝ � � � ˝ e˛n

7! tr.e
j̨
/ � e˛1

˝ � � � ˝ e
j̨�1
˝ e

j̨C1
˝ � � � ˝ e˛n

:

The function trj is called the partial trace and its action can be understood as that of
removing the j -th tensor component.

The partial trace does not depend on the basis. Its coordinate-free definition is the
following: Let V and W be two vector spaces and denote by IW the identity matrix
onW . The partial trace trW is the unique operator, which for allM acting on V ˝W
and all N acting on V satisfies

tr.M � .N ˝ IW // D tr.trW .M/ �N/:

Considering the Hilbert–Schmidt inner product hM;N i D tr.M �N/, the partial trace
can be seen as the adjoint to the map V ! V ˝ IW . Note that partial traces over
different subsystems commute, trj tri D tri trj , and one has that

tr.M1 ˝M2 ˝ � � � ˝Mn/ D tr.M1/ tr.M2/ � � � tr.Mn/:

3. Purification. A density matrix � on HA can always be diagonalized as

� D

dim.HA/X
iD1

�i j�i ih�i jA ;

where ¹j�i iAº is its set of eigenvectors and ¹�iº is its set of corresponding eigenvalues.
The density matrix � acting on some Hilbert space HA can always be represented

as the reduction or marginal of a pure state on HA ˝HB with dim.HB/ � dim.HA/.
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This works as follows: choose an orthonormal basis ¹j�i i
B
º for an arbitrary dim.HA/-

dimensional subspace of HB . We then write

j�i D

dim.HA/X
iD1

p
�i j�i iA ˝ j�i i

B :

It can be checked that trB.j�ih�j/ D � and the state j�i is known as a purification
of �.

4. Von Neumann entropy. Consider a classical probability distribution represented by
a set of probabilities pi � 0 with

P
i pi D 1. Its Shannon entropy is

S.p/ D �
X
i

pi log.pi /:

We can introduce a similar quantity for quantum states. Given a density matrix �,
its von Neumann entropy is defined as

S.�/ D � tr � log.�/:

Such matrix functions of Hermitian operators can be evaluated on their eigenval-
ues ¹�iº. Then the von Neumann entropy evaluates as

S.�/ D �
X
i

�i log.�i /:

Let us now write SA D S.trB Œ�AB �/ and so on. For a state � on HA with purifica-
tion j�i 2 HA ˝HB , we have that SA D SB .

The von Neumann entropy satisfies subadditivity and strong subadditivity,

SAB � SA C SB ;

SABC C SB � SAB C SBC :

We are now in position to prove the quantum Singleton bound.

Theorem 6.1 (Quantum Singleton bound). Any ŒŒn; k; d ��q code with k � 1 satisfies

n � k C 2.d � 1/:

Proof. The distance must be bounded by 2.d � 1/ < n, as otherwise n � .d � 1/ <
.d � 1/ and we could recover the encoded state from two disjoint subsystems, violat-
ing the no-cloning theorem.
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Let…Q D
Pqk

iD1 jvi ihvi j be the projector onto the code space. A purification with
a reference system R leads to

j QRi D
1p
qk

qkX
iD1

jvi i ˝ jiRi;

where jiRi is any orthonormal basis for R. Let us partition the code into the three
subsystemsA,B , C such that jAj D jBj D d � 1 and jC j D n� 2.d � 1/. Then SR D
log
�
qk
�
. As the code has distance d , any subsystem of size strictly smaller than d

cannot reveal anything about the reference system R: indeed, the condition of �RA D
�R ˝ �A is known to be a necessary and sufficient condition for the subsystem A to
be correctable [16]; this is also equivalent to SRA D SR C SA. With the subadditivity
of the von Neumann entropy this leads to

SR C SA D SRA D SBC � SB C SC ;

SR C SB D SRB D SAC � SA C SC ;

where we used that the entropies of complementary subsystems are equal for a pure
state. The combination of the above two inequalities yields

log qk D SR � SC � log dim.HC / D log qn�2.d�1/:

Similar to classical MDS codes, quantum MDS are, in a certain sense, extremal.
We have the following interesting properties:

(a) If an ŒŒn; n � 2d C 2; d �� quantum MDS code exists, then there is also an
ŒŒn � s; n � 2d C 2C s; d � s�� codes for all 0 � s � d , see Figure 9.

(b) For every subset S � ¹1; : : : ; nº with jS j � nCk
2

, we have that trSc .P / / 1,
where P is the orthogonal projection onto the quantum MDS code.

Let us discuss these properties: (a) states that QMDS codes form families of codes
where nC k is constant. Within each family, only the member with the highest dis-
tance has to be determined, as its descendants can be obtained by a partial trace:
tracing out over a single particle, one has n 7! n � 1, k 7! k C 1, d 7! d � 1. This
works because QMDS codes are pure codes, that is, all their .d � 1/-party marginals
are maximally mixed. For general quantum codes, this method of making new codes
from old is not necessarily possible.

Property (b) states that for all pure states jvi in the code, the marginals of size
less than d are maximally mixed. This implies that every vector in the code space
shows maximal bipartite entanglement across any bipartition of d � 1 vs. n � d C 1
parties. Thus QMDS codes form subspaces that show high bipartite entanglement.
We relate this to similar property of classical MDS codes: the parity check matrix H
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nC k D 6, D D 2 nC k D 12, D D 2

ŒŒ6; 0; 4��2 9 ŒŒ12; 0; 7��3 À
ŒŒ5; 1; 3��2 9 ŒŒ11; 1; 6��3 À
ŒŒ4; 2; 2��2 9 ŒŒ10; 2; 5��3 À
ŒŒ3; 3; 1��2 9 ŒŒ9; 3; 4��3 À

ŒŒ8; 4; 3��3 9

ŒŒ7; 5; 2��3 9

ŒŒ6; 6; 1��3 9

Figure 9. Two families of quantum MDS codes. Once the topmost existing parent code is
known, (here: ŒŒ6; 0; 4��2 and ŒŒ8; 4; 3��3), its descendants can be obtained by partial traces.

of a classical Œn; k; d � code has the property that every set of n � k columns are
linearly independent.

A necessary condition for QMDS to exist is the following bound.

Proposition 6.2 ([13]). If there is an ŒŒn; n � 2d C 2; d ��q quantum MDS code, then

n 6 q2 C d � 2:

This should be compared to the “trivial” upper bound for MDS codes. If there is
a .n; qk; n � k C 1/q MDS code, then

n 6 q C k � 1:

The MDS conjecture states that if 4 6 k 6 q and there is a .n; qk; n � k C 1/q
MDS code, then n 6 q C 1. This is known to hold for linear codes if q is a prime,
see [3].

For quantum MDS codes, the MDS conjecture states that if 5 6 d 6 q2 � 1 and
there is a linear ŒŒn; n � 2d C 2; d ��q MDS code, then

n 6 q2 C 1:

Ketkar [14, Corollary 65] claims that if the classical MDS conjecture holds for
linear codes, then quantum MDS conjecture holds for stabilizer codes. This is not the
case. By Theorem 5.4, the existence of a stabilizer code is equivalent to the exist-
ence of an additive code, so [14, Corollary 65] should state that the quantum MDS
conjecture holds for stabilizer codes if the MDS conjecture holds for additive codes.

Research Problem 5. Prove the MDS conjecture for linear codes with q non-prime.

Research Problem 6. Prove the MDS conjecture for additive codes over Fq , starting
with q D p2 for some prime p.
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Research Problem 7. Find all inequalities that relate the von Neumann entropies of
the marginals of multipartite systems.

Research Problem 8. Show that all QMDS codes are either stabilizer codes or the
direct sum of stabilizer codes.

7. Weight enumerators

7.1. MacWilliams identity for linear codes

Let C be an Œn; k; d �q code and define Ai to be the number of codewords of C of
weight i , i.e., the number of codewords ofC which have i non-zero coordinates. Since
the zero codeword is in C , A0 D 1 and since the minimum distance is d , Ai D 0 for
all i D 1; : : : ; d � 1. Let Bi denote the number of codewords of C? of weight i . The
MacWilliam’s identities relate the polynomials

A.x; y/ D

nX
iD1

Aix
n�iyi and B.x; y/ D

nX
iD1

Bix
n�iyi :

Specifically, we have that

jC jB.x; y/ D A.y C .q � 1/x; y � x/;

and dually
jC?jA.x; y/ D B.y C .q � 1/x; y � x/:

Let G be a k � n generator matrix for C and let X be the set or multi-set of columns
of G, viewed as points of PG.k � 1; q/. In Section 3.2, we saw that a non-zero code-
word u D aG corresponds to a hyperplane �a of PG.k � 1; q/ and that �a D ��a for
any � 2 Fq . The number of points of X incident with the hyperplane �a is nminus the
weight of the codeword u. Thus, for i ¤ 0, there are Ai=.q � 1/ hyperplanes which
are incident with n � i points of X.

7.2. MacWilliams identity for quantum codes

As for classical codes, weight enumerators can be defined for quantum codes, which
again are useful to deduce the error-correcting properties of codes and to obtain
bounds on their existence.

Let Q be a quantum code and let P be the orthogonal projection onto Q. The
weights of the primary and secondary Shor–Laflamme enumerators are

Aj D
X

wt.E/Dj

tr.EP / tr.E�P /; Bj D
X

wt.E/Dj

tr.EPE�P /;

where the sum is over Pauli operators E of weight j and phase 1.
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The enumerator polynomials are given by

A.x; y/ D

nX
jD0

Ajx
n�jyj ; B.x; y/ D

nX
jD0

Bjx
n�jyj :

Lemma 7.1. For a stabilizer code,Aj is q2n=jS j2 times the number of elements in the
stabilizer subgroup S that have weight j . Similarly, Bj is qn=jS j times the number of
elements in the normaliser of S of weight j .

Proof. By Lemma 2.3,

P D
1

jS j

X
M2S

M:

The map tr is linear and tr.M/ D 0 unless M D 1 and tr.1/ D qn.
Hence, if E 62 S ,

tr.EP / tr.E�P / D 0

and if E 2 S , then
tr.EP / tr.E�P / D q2n=jS j2:

Thus, Aj is q2n=jS j2 times the number of elements in the stabilizer subgroup S that
have weight j .

We leave the result for Bj as an exercise.

The geometrical interpretation of Aj for stabilizer codes is as follows. Suppose
that X is a quantum set of lines in PG.n� k � 1; q/. ThenAj is .q � 1/ times number
of hyperplanes containing n � j lines of X.

The quantum MacWilliams identity states that

qnB.x; y/ D A.x C .q2 � 1/y; x � y/

and, respectively, that

qnA.x; y/ D B.x C .q2 � 1/y; x � y/:

Before proving the quantum MacWilliams identity, consider the next example.

Example 7.2 (Self-dual hexacode). Consider the Œ6; 3; 4�4 code D generated by the
matrix 0B@1 0 0 1 1 1

0 1 0 1 e e2

0 0 1 1 e2 e

1CA ;
where e2 D eC 1. One can prove that the minimum distance is 4 by checking that all
3� 3 submatrices are non-singular. By verifying that the Hermitian inner product (5.3)
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between any two rows is zero, one quickly concludes that D D D?h . Theorem 5.7
implies that we can construct an ŒŒ6; 0; 4��2 stabilizer code Q.S/ from D. By writ-
ing out the entries in the matrix over F2 and considering the F2 span, we obtain the
matrix G.S/ for this quantum code.

Consider the ŒŒ6; 0; 4��2 code that can be constructed from the code D. The code
�.S/ is spanned by the generator matrix

G.S/ D

0BBBBBBB@

1 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1 1

0 1 0 1 0 1 0 0 0 0 1 1

0 0 0 0 1 1 0 1 0 1 1 0

0 0 1 1 1 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0 1 1 0 1

1CCCCCCCA :

Thus, the stabilizer subgroup has generators

M1 D X 1 1 X X X;

M2 D Z 1 1 Z Z Z;

M3 D 1 X 1 X Z Y;

M4 D 1 Z 1 Z Y X;

M5 D 1 1 X X Y Z;

M6 D 1 1 Z Z X Y:

By Lemma 5.9, the quantum set of six lines X we get from the matrix G.S/ has
the property that any three lines of X span the whole space PG.5; 2/. Therefore, any
two span a three-dimensional subspace which is contained in three hyperplanes which
contain no further line of X. Thus, there are 45 hyperplanes which contain exactly two
lines of X. Let ` be a line of X. There are 15 hyperplanes containing `, so counting
pairs .`; �/ where ` 2 X and � is a hyperplane containing `, we conclude that any
hyperplane containing a line of X contains two lines of X.

Thus, we work out the weight distribution. For codes with k D 0 (that is, pure
states), both weight distributions coincide; this can be checked from the definition.
From before, we have that Aj is the .q � 1/ times number of hyperplanes containing
n � j lines of X. Thus, we have proved that the weight distribution for the quantum
hexacode is

.A0; : : : ; A6/ D .1; 0; 0; 0; 45; 0; 18/:

The corresponding enumerator polynomials are

A.x; y/ D B.x; y/ D x6 C 45x2y4 C 18y6:
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This polynomial is indeed invariant under the quantum MacWilliams transform since

64B.x; y/ D .x C 3y/6 C 45.x C 3y/2.x � y/4 C 18.x � y/6

D 64.x6 C 45x2y4 C 18y6/:

Research Problem 9. For stabilizer codes, Aj and Bj count the number of terms in
the stabilizer S and its normaliser N.S/, respectively; there is no such combinatorial
interpretation for general quantum codes. Although Aj can interpreted as the Hilbert–
Schmidt norms of the j -body correlations that appear in the code, we would like to
determine what objects Bj is counting for non-stabilizer codes.

We return to the proof of the quantum MacWilliams identity.

Quantum MacWilliams identity. We will only state a proof sketch; the rather tedious
combinatorial details can be found in [12, 17].

Let S be a collection of subsystems, and denote by trS the partial trace the systems
in S . Denote by Sc the complement of S in ¹1; : : : ; nº. Consider now how the partial
trace trS followed by a “padding” with the identity acts on an operator P :

trS .P /˝ 1S D trS
� 1
qn

X
E

tr.E�P /E
�
˝ 1S

D
1

qn�jS j

X
supp.E/�Sc

tr.E�P /E: (7.1)

It can be shown (cf. [12, Appendix A]) that this can also be written as

trS .P /˝ 1S D

Z
U.qn/ s.t.

supp.U /�S

UPU � dU

D
1

qjS j

X
supp.E/�S

EPE�; (7.2)

where the integration is over the unitarily invariant Haar measure of unitary matrices
that act trivially on the subsystem Sc . The second equality follows from the fact that
any complete orthonormal matrix basis ¹E˛º containing the identity forms a unitary
1-design.5

The quantum MacWilliams identity now essentially follows from equating equa-
tions (7.1) and (7.2), summing over all subsystems of size jS j D m, multiplying

5t -designs replace the integration over some compact group by a finite sum. A unitary t-
design is a set of unitaries Ui , i D 1; : : : ; K, acting on Cq such that

R
U.D/

Pt;t .U / dU D
1
K

PK
iD1 Pt;t .Ui / holds for every homogeneous polynomialPt;t that has degree t in the matrix

elements of U and degree t in the matrix elements of U �.
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by P and taking the trace. This yields terms of the form
P

tr.E�P / tr.EP / andP
tr.E�PEP/, corresponding to the two types of weights Aj and Bj .
Proceeding in this manner, equation (7.1) givesX
jS jDm

tr.trS .P /˝ 1S � P / D
X
jS jDm

tr
�
qm�n

X
supp.E/�Sc

tr.E�P /E � P
�

D qm�n
X
jS jDm

X
supp.E/�Sc

tr.E�P / .EP /

D qm�n
n�mX
jD0

 
n

n �m

! 
n �m

j

! 
n

j

!�1
Aj

D qm�n
n�mX
jD0

 
n � j

m

!
Aj :

Meanwhile, equations (7.2) givesX
jS jDm

tr.trS .P /˝ 1S � P / D
X
jS jDm

tr
�
q�m

X
supp.E/�S

E�PE � P
�

D q�m
X
jS jDm

X
supp.E/�S

tr.E�PEP/

D q�m
mX
jD0

 
n

m

! 
m

j

! 
n

j

!�1
Bj

D q�m
mX
jD0

 
n � j

n �m

!
Bj :

Thus for every operator P and 0 � m � n one has that

qm�n
n�mX
jD0

 
n � j

m

!
Aj D q

�m

mX
jD0

 
n � j

n �m

!
Bj :

Using generating functions, in other words, the weight enumerator polynomials
A.x;y/ andB.x;y/, as well as Krawtchouk polynomials, we obtain the MacWilliams
identity

qnB.x; y/ D A.x C .q2 � 1/y; x � y/:

This ends the proof sketch.

The enumerators and their weights have a couple of interesting properties. Let
K D dim.imP /.
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(a) The weights Aj and Bj are invariant under the local choice of basis and are
so-called local unitary invariants (LU-invariants). That is,

Aj .P / D Aj .P
0/ and Bj .P / D Bj .P

0/;

where P 0 D .U1 ˝ � � � ˝Un/P.U
�
1 ˝ � � � ˝U

�
n /, and U1; : : : ; Un are unitary

q � q matrices.

(b) A0 D dim.P / and KBj � Aj � 0.

(c) A projection operator P withK D dim.im.P // is a code of distance d if and
only if it satisfies KBj D Aj for 0 � j < d .

(d) One can check that for codes with K D 1, the enumerator polynomial is
invariant under the quantum MacWilliams transform, and one has B.x; y/D
A.x; y/. When such a code is of stabilizer type, it corresponds to a classical
self-dual code.

Some comments are in order. The weights must be LU-invariant – the properties
of the code should not depend on the way one sets up the local coordinate system for
each spin particle. The last two properties are useful to obtain weights of hypothetical
codes and to apply the machinery of linear programming bounds [2]. That is, one sets
up a system of linear equalities and inequalities in the variables A0; : : : ; An making
use of (a), (b) and the quantum MacWilliams identity.

For example, it is a longstanding open problem if a (pure) code with the paramet-
ers ŒŒ24; 0; 10��2 exists. It is known that such code must have even weights only, and
using linear programming, one can fix the weight distribution to be

ŒA10; A12; A14; : : : ; A24� D Œ18216; 156492; 1147608; 3736557; 6248088;

4399164; 1038312; 32778�:

Indeed this is also the weight distribution of hypothetical Œ24;12;10� self-dual additive
code over GF(4) (see OEIS httpW//oeis.org/A030331).

Research Problem 10. Either find a quantum code with parameters ŒŒ24; 0; 10��2, or
show that no such code can exist.

We refer to the tables by M. Grassl [10] for more existence results.
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