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Lozenge tilings of hexagons with removed core and satellites

Mihai Ciucu and Ilse Fischer

Abstract. We consider regions obtained from 120 degree rotationally invariant hexagons by
removing a core and three equal satellites (all equilateral triangles) so that the resulting region
is both vertically symmetric and 120 degree rotationally invariant, and give simple product
formulas for the number of their lozenge tilings. We describe a new method of approach for
proving these formulas, and give the full details for an illustrative special case. As a byproduct,
we are also able to generalize this special case in a different direction, by finding a natural
counterpart of a twenty year old formula due to Ciucu, Eisenkölbl, Krattenthaler, and Zare,
which went unnoticed until now. The general case of the original problem will be treated in a
subsequent paper. We then work out consequences for the correlation of holes, which were the
original motivation for this study.
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Figure 1. The region Sn;a;b;k (left) and S 0
n;a;b;k

(right) for n D 6, a D 4, b D 2, k D 1.

1. Introduction

The fact that not only the number of plane partitions that fit in a box (equivalently,
lozenge tilings1 of a hexagon), but also all the symmetry classes (a total of ten)
are given by simple product formulas, is of singular beauty in enumerative combi-
natorics.2 This has been a rich source of inspiration for many researchers over the
last four decades. Just to skim the surface, we mention [1, 4, 36, 42, 47, 48] and the
survey [39] for more recent developments. Works of the first author inspired by this
include [7–11, 15, 20, 23]. Probabilistic aspects were studied by Cohn, Larsen, and
Propp [25], Borodin, Gorin and Rains [3], and Bodini, Fusy, and Pivoteau [2]. Another
extension was given by Vuletić [49].

In this paper we consider regions obtained from 120 degree rotationally invari-
ant hexagons by removing a core and three equal satellites (all equilateral triangles)
so that the resulting region is both vertically symmetric and 120 degree rotationally

1A lozenge is the union of two adjacent unit triangles on the triangular lattice; a lozenge
tiling of a lattice region R is a covering of R by lozenges that has no gaps or overlaps.

2To specify just one of them, MacMahon proved [45] – in an equivalent formulation – that
the number of lozenge tilings of a hexagon of side lengths a, b, c, a, b, c (in cyclic order) on
the triangular lattice is equal to

a
Y

iD1

b
Y

j D1

c
Y

kD1

i C j C k � 1

i C j C k � 2
:

The other nine are only somewhat more complicated.
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invariant (Figure 1 shows the two types of regions that are obtained; see Section 2
for the precise definitions), and give simple product formulas for the number of their
lozenge tilings.

The reader may find interesting the account of how these regions were found.
The special case of these regions when the core is empty was discovered by the

first author in 1999, when he noticed that the number of its lozenge tilings seems to
always factor fully into relatively small prime factors (such integers are sometimes
referred to as “round”).

This seemed a very hard result to prove (indeed, even guessing the precise prod-
uct formula seemed exceedingly hard). Using the Lindström–Gessel–Viennot theo-
rem [30, 44] it is clearly possible to derive a determinant for the number of lozenge
tilings in the case of even size satellites, but Krattenthaler’s identification of factors
method for evaluating determinants (see a brief description in the fourth to last para-
graph of Section 2), which had proved successful on many occasions before (see,
e.g., [18,19,21,22,39]) was not applicable due to the lack of a polynomial parameter.
Furthermore, it was the odd size that interested the first author most. The reason had
to do with [8], where he discovered that the distribution of gaps in random lozenge
tilings is governed by Coulomb’s law of two-dimensional electrostatics: [8] could
handle a multitude of even holes but only a single odd hole, and in order to support
the conjecture that 2D Coulomb governs the distribution of holes for arbitrary holes
(this conjecture was published in [9]) it was desirable to have an example with three
odd holes; the fact that they were not collinear made this instance especially interest-
ing. Having an exact, simple product formula for the number of tilings of the hexagon
with three holes, the correlation of the holes can be worked out and its asymptotics
determined, confirming thus the above mentioned “electrostatic conjecture.”

The first author mentioned this observation to Christian Krattenthaler in 2003, and
considered briefly a project to attempt proving it, but the project was abandoned due
to the above mentioned complications and limitations.

An important step ahead was achieved in 2010, when the first author noticed that
the round factorization persists if a fourth hole is added at the center. The reason this is
so helpful is because it introduces a new parameter in the data, and the counts can be
proved to be polynomials in this parameter. Then the data is not just integers that factor
into relatively small (but otherwise mysterious) prime factors, but polynomials in the
new parameter that factor fully into linear factors. This also gives a more objective
measure of “roundness” than just factorization of integers into relatively small prime
factors.

While the first author was working on enumerating the tilings of these regions
in 2014, he showed them to Tri Lai (he was the first author’s Ph.D. student at the
time), who then in 2017 co-wrote the paper [43] which involves these regions. To
be precise, [43] focuses on counting the lozenge tilings of these regions which are
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invariant under rotation by 120ı, and also of those which are both vertically sym-
metric and invariant under this rotation (these follow, after a considerable amount
of work, by applying the factorization theorem [6] and Kuo condensation [40, 41];
see [16, 17] for earlier examples). The straight count of lozenge tilings is not men-
tioned in [43]. However, it turns out (see Conjecture 2.1 below) that the straight count
and the 120ı-rotationally-invariant count are very closely related!

We are now finally presenting ourselves these regions found many years ago by the
first author, and our work on the problem of counting their lozenge tilings, a question
that seems singularly hard in the circle of lozenge tiling problems. This is due to
a large extent to the fact that it does not seem possible to extend this family so as
to obtain a proof by applying Kuo’s graphical condensation method, and also that it
does not seem possible to deduce it from other results using standard combinatorial
arguments.

It seemed very difficult even to find an explicit conjectural formula for the number
of lozenge tilings of these regions, even with the great help that the extra parameter
(the size of the core) brought in. The second author succeeded in finding one in 2016,
and this is how this collaboration began.

2. Statement of main results and conjectures

The regions we present in this paper are hexagons on the triangular lattice3 with one
central and three satellite up-pointing triangular holes4 so that

i. the hexagon with holes is both vertically symmetric and 120 degree rotation-
ally invariant, and

ii. the gap between each satellite and the core can be bridged by a string of
whole lozenges lined up along their long diagonals.

This common description leads to two families of different-looking regions,
depending on whether the satellites point towards or away from the core. In the former
case, condition (ii) above amounts to the requirement that the side-length of the core
is even (see the picture on the left in Figure 1 for an illustration), while in the latter

3Throughout this paper, with the exception of Section 3, we draw the triangular lattice so
that one family of lattice lines is horizontal.

4The case when the central hole is empty comes up several times in the paper. Besides being
the first case that was discovered (see the first paragraph on the history of the problem in the
Introduction), it also yields a hole arrangement that is a special case of the bowtie triads studied
in [24]. This allows us to extend results we obtain for equal triangular satellites to bowtie shaped
satellites that are not necessarily equal (see Theorems 2.5 and 2.6).
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the side-length of the satellites is required to be even (an example of this is shown on
the right in Figure 1).

Assume therefore that n, a, b and k are non-negative integers with a even, and
define Sn;a;b;k to be the region obtained from the hexagon Hn;nCaC3b of side-lengths5

n, n C a C 3b, n, n C a C 3b, n, n C a C 3b (clockwise from top) by removing a
triangle of side a from its center and three satellite triangular holes, each of side b,
as indicated on the left in Figure 1 (we emphasize that k is the length of a chain of
lozenges that would bridge the gap between each satellite and the core; there are 2k

lattice spacings between a satellite and the core). For non-negative integers n, a, b

and k with b even, define S 0
n;a;b;k

to be the region obtained from the same hexagon
Hn;nCaC3b by removing a triangle of side a from its center and three satellite trian-
gular holes of side b as indicated on the right in Figure 1 (k has the same significance
as in the picture on the left in that figure). For the first case, one must have k � n=2

in order for the satellites to be contained in the region.
Our original interest in these regions (and indeed the reason we found them)

came from discovering (see [8]) that for quite general distributions of even6 trian-
gular holes around the center of a very large hexagon, the number of lozenge tilings
of the hexagon with holes varies with the position of the holes precisely7 as the expo-
nential of the negative of the 2D electrostatic potential of a naturally corresponding
system of electrical charges. This striking observation lended itself to generalization.
We needed an example involving non-collinear holes of odd side-lengths, for which
we could work out the needed asymptotics.

From this point of view, the more interesting family for us is Sn;a;b;k, as it can
have three non-collinear odd charges (S 0

n;a;b;k
can have at most one odd charge, a case

already covered by [8]). The formula for the number of tilings of Sn;a;b;k can then be
used to determine the asymptotics of the correlation (see (2.12) for its definition) of
the system of its four holes, providing thus the first example in the literature involv-
ing large non-collinear odd holes; we work this out in Theorem 2.2 below (collinear
holes of arbitrary size on the square lattice were treated in [12, 13], and unit holes
of arbitrary positions on the square lattice in [26]; see also [10] for arbitrary holes

5The form of these lengths is required in order for the obtained region to be balanced (i.e.,
have the same number of up- and down-pointing unit triangles), a necessary condition for the
existence of lozenge tilings. Indeed, in a lattice hexagon of side-lengths n, n C ˛, n, n C ˛, n,
n C ˛ (clockwise from top) there are ˛ more up-pointing than down-pointing unit triangles, and
in the union of the four holes this excess is a C 3b.

6With the exception of one, which could be odd.
7In the double limit as first the enclosing hexagon becomes infinite, and then the separation

between the holes approaches infinity.
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of side two on the triangular lattice, and the extension [14] to weighted doubly peri-
odic planar bipartite lattices in the liquid phase of the Kenyon–Okounkov–Sheffield
classification [35] of the dimer models).

We therefore focus in this paper on the regions Sn;a;b;k. Analogous results to the
ones we present below exist also for the regions S 0

n;a;b;k
, but due to the involved

nature of the arguments and the fact that the Sn;a;b;k’s already provide us with the
asymptotics we were after in the first place, we do not present them here.

Throughout this paper we define products according to the convention

n�1
Y

kDm

Expr.k/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Qn�1
kDm Expr.k/ if n > m;

1 if n D m;
1

Qm�1
kDn Expr.k/

if n < m:

(2.1)

We recall that the Pochhammer symbol .˛/k is defined for any integer k to be

.˛/k WD
k�1
Y

iD0

.˛ C i /;

thus according to (2.1)

.˛/k WD

8

ˆ

ˆ

<

ˆ

ˆ

:

˛.˛ C 1/ : : : .˛ C k � 1/ if k > 0;

1 if k D 0;

1=..˛ � 1/.˛ � 2/ : : : .˛ C k// if k < 0:

(2.2)

For half-integers k, define the Pochhammer symbol .˛/k by

.˛/k WD �.˛ C k/

�.˛/
: (2.3)

Denote by M.R/ the number of lozenge tilings of the region R on the triangular
lattice, and by Mr.R/ the number of its lozenge tilings that are invariant under rotation
by 120 degrees.

Our main goal in this paper is to find a formula for M.Sn;a;b;k/. When k D 0, the
three satellites touch the core, and due to forced lozenges, removing the core and the
three satellites is equivalent (as far as counting lozenge tilings of the leftover region)
to removing just a larger core, of side a C 3b. Therefore, the case k D 0 follows by
the main result of [18, Theorem 1].

There is a simple relationship between M.Sn;a;b;k/ and Mr.Sn;a;b;k/, the number
of lozenge tilings of the region Sn;a;b;k which are invariant under rotation by 120
degrees. A formula for the latter was proved by Lai and Rohatgi in [43]. However,
in Theorem 2.3 we provide a (rather radical) rewriting of their formula,8 which has

8In the case when n is even; a similar rewriting holds for n odd, but we do not need it in this
paper.
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the advantage that it works for both even and odd satellite sizes (the original formulas
were very different in the two cases; compare [43, (2.9) and (2.11)]).

The simplest way to express our formula for M.Sn;a;b;k/ is to introduce the nor-

malized counts M.Sn;a;b;k/ and Mr.Sn;a;b;k/ as follows:

M.Sn;a;b;k/ WD M.Sn;a;b;k/

M.Sn;a;b;0/
; (2.4)

Mr.Sn;a;b;k/ WD Mr.Sn;a;b;k/

Mr.Sn;a;b;0/
: (2.5)

Then our formula for M.Sn;a;b;k/ follows (using also the three paragraphs above)
from the following conjecture.

Conjecture 2.1. For non-negative integers n, a, b and k with a even we have

M.Sn;a;b;k/

Mr.Sn;a;b;k/3
D
h

k
Y

iD1

.a C 6i � 4/.a C 3b C 6i � 2/

.a C 6i � 2/.a C 3b C 6i � 4/

i2

: (2.6)

While this is still strictly speaking a conjecture, we mention that we do have a new
approach to tackle it, which we are confident that will lead to a proof. We describe in
Sections 4 and 5 this new method, which uses the identification of factors method on
a particularly convenient determinant, and give the details of the proof for the special
case of Conjecture 2.1 when b D 0. This case corresponds to the cored hexagons
treated in [18]. As a byproduct, we are able to deal with a different generalization of
this special case, which leads us to a new family of regions whose number of lozenge
tilings is expressible by a product formula; see Theorem 5.1 in Section 5 (in fact,
using results from [24], this can be generalized; see Remark 5.1 in Section 5). The
relative briefness of the proof we present here compared to the original proof in [18]
illustrates the advantages of our new method. Some details still need to be worked
out for the proof of the general case (when b is not necessarily zero), which will be
presented in a subsequent paper.

Remark 2.1. It is amusing to note that the product on the right-hand side of (2.6) can
be written as

�a

6
C 1

3

�

k
�a

6
C 2

3

�

k
�a C 3b

6
C 1

3

�

k
�a C 3b

6
C 2

3

�

k

;

and that a is the size of the core, while a C 3b is the size of the enlarged core arising
in the special case k D 0. It is remarkable that this ratio does not depend on n.
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The relationship between the un-normalized counts M.Sn;a;b;k/ and Mr.Sn;a;b;k/

is detailed in the following equivalent restatement of Conjecture 2.1.

Conjecture 2.2. For non-negative integers n, a, b and k with a even we have

M.Sn;a;b;k/

Mr.Sn;a;b;k/3
D

k
Y

iD1

h .a C 6i � 4/.a C 3b C 6i � 2/

.a C 6i � 2/.a C 3b C 6i � 4/

i2

�
´

E if n is even;

O if n is odd,
(2.7)

where

E WD
h .a C 3b C 2/n=4;6.a C 3b C 3n=2 C 1/n=4;6

.a C 3b C 4/n=4;6.a C 3b C 3n=2 C 5/n=4;6

i2

;

O WD .a C 3b C 3n C 2/2

4.a C 3b C 3.n C 1/=2 � 1/2

�
h .a C 3b C 2/.nC1/=4;6.a C 3b C 3.n C 1/=2 C 1/.nC1/=4;6

.a C 3b C 4/.nC1/=4;6.a C 3b C 3.n C 1/=2 C 5/.nC1/=4;6

i2

;

.˛/k;m WD mk
� ˛

m

�

k
;

and the half-integer index Pochhammer symbols are defined by (2.3).

We note that when the parameter n is even in the above formula, it simplifies
(writing the n- and a-parameters as 2n and 2a, to spell out their evenness) to

M.S2n;2a;b;k/

Mr .S2n;2a;b;k/3

D

2

6

4

�a

3
C 1

3

�

k

�a

3
C b

2
C k C 1

3

�

n=2�k

�a

3
C b

2
C n

2
C 1

6

�

n=2
�a

3
C 2

3

�

k

�a

3
C b

2
C k C 2

3

�

n=2�k

�a

3
C b

2
C n

2
C 5

6

�

n=2

3

7

5

2

: (2.8)

Remark 2.2. In the special case when a D b D 0 – when our region becomes a regular
hexagon Hn of side n – the two branches of the formula in Conjecture 2.2 unify to
give

M.Hn/

Mr .Hn/3
D

2

6

4

�1

3

�

n
�2

3

�

n

3

7

5

2

; (2.9)

a result that readily follows from the well-known formulas for symmetry classes of
plane partitions (compare [47, Cases 1 and 3]).
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Throughout the asymptotic analysis, we will focus on the case when the parameter
n is even. This will help keep its length manageable, while capturing the details of the
asymptotics of our formulas. Analogous results exist for odd n.

We present now our (rather radical) rewriting of the formulas for Mr.Sn;a;b;k/

found by Lai and Rohatgi [43] (in line with the previous paragraph, we only treat here
the case when the n-parameter is even; see also footnote 8). The new form has the
advantage that it works for both even and odd satellite sizes (the original formulas
were quite different in the two cases;9 compare the form of [43, equations (2.9) and
(2.11)]).

We emphasize that products with index limits out of order are to be interpreted
according to the formula we presented at the beginning of Section 2.

Theorem 2.3 ([43]). Let n, a, b and k be non-negative integers. For even n we have

Mr .S2n;2a;b;k/ D

�a

2
C k

2
C 1

2

�

k

�

a C 2n C 3b

2
C 1

2

�

n

2n2�n�k2�k
�b

2
C n � k C 1

2

�

k

�1

2

�

n�k

�
�a

2
C b

2
C k

2
C 1

2

�

k

�a

2
C b C n � k

2
C 1

2

�

k

�
�a

2
C b

2
C n � k

2
C 1

2

�

k

�
h

n=2�k
Y

iD1

�

a C 3b

2
C 3k C 2i

�

i

�

a C 3b

2
C 3k C 2i � 1

�

i�1

�
k
Y

iD1

�a

2
C i

2

�

i�1

n=2�1
Y

iD1

�

a C 3b

2
C 3n

2
C i C 1

2

�

2i

�
n�k�1
Y

iD1

1
�1

2

�

i

k
Y

iD1

Fi

i2

; (2.10)

where

Fi WD .a C b C 2i C k/n�i�k.a C b C 2n C k � 2i C 2/b�2kC4i�3
�1

2

�

i
.2i/b�1

�

i C b � 1

2

�

n�k

;

9It is true that for even (resp., odd) satellite size, [43, (2.9) (resp., (2.11))] holds for all values
of n in S2n;2a;b;k , while the forms given here in equations (2.10) and (2.11) for n even or odd,
although nearly identical, are slightly different.
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while for odd n we have

Mr.S2n;2a;b;k/ D

�a

2
C k

2
C 1

2

�

k

�

a C 2n C 3b

2
C 1

2

�

n

2n2�n�k2�k
�b

2
C n � k C 1

2

�

k

�1

2

�

n�k

�
�a

2
C b

2
C k

2
C 1

2

�

k

�a

2
C b C n � k

2
C 1

2

�

k

�
�a

2
C b

2
C n � k

2
C 1

2

�

k

�
h

.n�1/=2�k
Y

iD1

�

a C 3b

2
C 3k C 2i

�

i

�

a C 3b

2
C 3k C 2i C 1

�

i

�
k
Y

iD1

�a

2
C i

2

�

i�1

.n�1/=2�1
Y

iD0

�

a C 3b

2
C 3n

2
C i C 1

�

2iC1

�
n�k�1
Y

iD1

1
�

1
2

�

i

k
Y

iD1

Fi

i2

: (2.11)

Proof. Our region S2n;2a;b;k is, in the notation of [43], the region H2n;k.b; 2a/.
Formula [43, (2.9)] expresses Mr.H2t;y.2a; 2x// as a power of two times the prod-
uct of two specific products of linear factors (see the expressions for P1 and P2

in [43, (2.4)–(2.5)]). For even b, this supplies an expression for Mr .S2n;2a;b;k/ D
Mr .H2n;k.b; 2a// as a ratio of products of linear factors. In order to prove part (a),
we need to check that, for even n, the resulting expression agrees with (2.10), and for
odd n it agrees with (2.11) – both of which are also ratios of products of linear factors.
A straightforward (if lengthy) manipulation verifies this.

The case of odd b follows similarly, using formula [43, (2.11)] and the product
expressions F1 and F2 in [43, (2.6)–(2.7)].

Remark 2.3. It is worth mentioning that originally we worked out the above formulas
in the case when b is odd, patterned on the product formula for M.Sn;a;b;k/ that
we discovered; it was this that led us to the expressions in (2.10) and (2.11). An
interesting feature of these formulas (which [43, (2.9) and (2.11)] do not possess) is
that the expressions on their right-hand sides are defined also for even b. It is most
remarkable – given how different equation [43, (2.9)] (which corresponds to even b)
is from [43, (2.11)] (which corresponds to odd b) – that for even values of b, the
expressions on the right-hand sides of (2.10) and (2.11) above still give the correct
number of 120ı-rotationally-invariant tilings of S2n;a;b;k.
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To state our next result, we need to define the correlation of holes in a sea of
dimers. We define the correlation of the core and the three satellites to be

!.a; b; k/ WD lim
n!1

M.S2n;a;b;k/ D lim
n!1

M.S2n;a;b;k/

M.S2n;a;b;0/
: (2.12)

The original motivation for our work on the correlation of gaps in dimer systems
was Fisher and Stephenson’s [28] conjecture that the correlation of two monomers on
the square lattice is rotationally invariant in the scaling limit. In earlier work [8, 10]
we phrased this problem on the hexagonal lattice and generalized it, allowing any
finite number number of gaps of any size, and proved that for fairly general types
of gaps the asymptotics of their correlation is governed in the scaling limit by the
Coulomb energy of a two-dimensional system of electric charges that corresponds
naturally to the holes. In fact, we conjectured [9] that this holds for all types of gaps.
More precisely, for any gaps O1; : : : ; On, we conjectured that their joint correlation
!.O1; : : : ; On/ (a variant of definition (2.12), see Section 3 for details) has asymp-
totics

!.O1; : : : ; On/ � C
Y

1�i<j �n

d.Oi ; Oj /
1
2

q.Oi / q.Oj / (2.13)

in the limit of large mutual distances between the gaps, where the charge q.O/ of
the gap O equals the number of up-pointing unit holes in O minus the number of
down-pointing unit holes in O , and the multiplicative constant C depends only on the
shapes of the gaps. We refer to (2.13) as the electrostatic conjecture; it is made precise
in Conjecture 3.1 in Section 3.

We recall that the Barnes G-function G.z/ is defined for complex z to be

G.z C 1/ D .2�/z=2 exp
�

�z C z2.1 C 
/

2

�

1
Y

kD1

°�

1 C z

k

�k

exp
� z2

2k
� z

�±

; (2.14)

where 
 is Euler’s constant.
In fact, since in Theorem 2.4 below the argument of G.z/ is always either a non-

negative integer or a non-negative half-integer, it will be enough for us to know the
values of G at such values.

The function G.z/ satisfies the recurrence

G.z C 1/ D �.z/G.z/; (2.15)

and thus for non-negative integers n it is given by

G.n/ D
n�2
Y

iD0

i Š (2.16)
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(we note that for 0 � n � 1, when the product limits are out of order, we use the
general convention (2.1) to obtain G.0/ D 0 and G.1/ D 1).

On the other hand, by the recurrence (2.15), we have

G
�

n C 1

2

�

D G
�1

2

�

�
�1

2

�

�
�3

2

�

: : : �
�

n � 1

2

�

: (2.17)

All the values we need are then specified by the known fact (see, e.g., [27, Sec-
tion 2.15, p. 136]) that

G
�1

2

�

D e1=821=24

A3=2�1=4
; (2.18)

where A is the Glaisher–Kinkelin constant.10 It is interesting that our results would
lead one to guess this very value for G.1=2/, had it not already been known (see
Remark 2.5 for a detailed explanation).

We are now ready to state the asymptotic result for which our hexagonal regions
with four holes were designed.

Theorem 2.4. Assuming that Conjecture 2.1 holds, for non-negative integers a, b,

and k with a even we have

!.a; b; k/ �

2

6

4

G
�a

2
C 1

�

G
�a

2
C 3b

2
C 1

�

3

7

5

2

°

3b2=4G
�b

2
C 1

�2

kb.aCb/=2
±3

; k ! 1;

(2.20)
where G is the Barnes G-function.

Remark 2.4. This proves the electrostatic conjecture (2.13) mentioned above for the
system of holes consisting of the core and the three satellites, achieving this way the
original motivating goal of this work (see also the equivalent form (3.7) of (2.20)). We
discuss in detail in Section 3 the strong evidence (2.20) provides for Conjecture 3.1
in this special case.

Remark 2.5. We note that since a is even, when b is also even the values of the
Barnes G-function in (2.20) are simply given by (2.16). It is most remarkable that
formula (2.20) holds also for odd b, when the right-hand side involves the fourth
power of the complicated constant (2.18).

10The Glaisher–Kinkelin constant (see [31]) is the value A for which

lim
n!1

0Š1Š : : : .n � 1/Š

n
n2

2
� 1

12 .2�/
n
2 e� 3n2

4

D e
1

12

A
: (2.19)
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In fact, we could have guessed the value of G.1=2/ (had it not been known
already) from the natural assumption that (2.20) holds also for odd b. Indeed, set
a D 0; b D 1 in (2.20), and compare the leading coefficient in k on the left-hand side
(which we obtain explicitly from the asymptotic analysis of our formulas) with the
coefficient of the power of k on the right-hand side of the thus specialized (2.20).
Using (2.17), this gives a linear equation for G.1=2/4, which leads us precisely to the
value in (2.18)!

Let Tn;k;B;a;b;c be the region obtained from the hexagon whose side-lengths alter-
nate between n C a C b C c and n C 3B � a � b � c (with the top side of length
n C a C b C c) by removing from its center three bowties in a triad formation as indi-
cated in Figure 2, where the outer lobe sizes are a, b, c, the inner lobe sizes B � a,
B � b, B � c (counterclockwise from top), the distance between two bowtie nodes
is 3k C 3B � a � b � c, and the distance between the outer lobes and the facing
hexagon sides is n � 2k.

It turns out that the number of lozenge tilings of the region Tn;k;B;a;b;c can be
expressed in terms of the number of lozenge tilings of a hexagon with three satellites
removed and empty core, using the main result of [24]. The connection is based on the
fact that Tn;k;B;a;b;c can be obtained from our region Sn;0;k;B by applying three times
the bowtie squeezing operation described in [24], and that by [24, Theorem 1] the
ratio of the number of tilings of any two regions related by bowtie squeezings is given
by a simple, conceptual product formula (see Figure 13 and the proof of Theorem 2.5
in Section 9).

We obtain the following result.

Theorem 2.5. Writing h˛i D G.˛ C 1/ for short, we have

M.Tn;k;B;a;b;c/

M.Sn;0;B;k/

D h3k C Bi3

h3kihBi3

hn C k C Bi3hn � k C 2Bi3

hn � 2k C Bi3hn C 2k C 2Bi3

� h3k C 3B � a � b � ci4haihbihci
h3k C 3B � a � bih3k C 3B � a � cih3k C 3B � b � ci

� hB � aihB � bihB � ci
h3k C 2B � a � bih3k C 2B � a � cih3k C 2B � b � ci

� hn � 2k C aihn C 2k C 3B � ai
hn C k C 3B � b � cihn � k C b C ci

� hn � 2k C bihn C 2k C 3B � bi
hn C k C 3B � a � cihn � k C a C ci

� hn � 2k C cihn C 2k C 3B � ci
hn C k C 3B � a � bihn � k C a C bi : (2.21)
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3kCa0Cb0Cc0

a

a0

b0

cb

c0

nCaCbCc

nC3B a b c

2kn

2kn

2kn

Figure 2. The region Tn;k;B;a;b;c (a triad of bowties at the center of a hexagon); a0 D B � a,
b0 D B � b, c0 D B � c (here n D 6, k D 1, B D 4, a D 3, b D 2, c D 1).

Remark 2.6. Note that the above result allows in particular to squeeze in completely
the outer lobe of any of the three bowties independently, obtaining a triangular satellite
of opposite orientation compared to Sn;a;b;k. This includes the case a D 0 of the
regions S 0

n;a;b;k
shown on the right in Figure 1!

The special case of Conjecture 2.1 when the core is empty, combined with The-
orem 2.5, affords a product formula for the number of lozenge tilings of the regions
Tn;k;B;a;b;c of Figure 2. Asymptotic analysis of this formula for M.Tn;k;B;a;b;c/ lets
us deduce the following result. We present the proofs of Theorems 2.5 and 2.6 in
Section 9.

Theorem 2.6. Consider three bowties X1, X2 and X3 in a triad formation, as shown

in Figure 2. Their outer lobes have sizes a, b and c, and their inner lobes have sizes

a0 D B � a; b0 D B � b; c0 D B � c;

respectively. The distance between the nodes of two bowties is

3k C a0 C b0 C c0:
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Assume a C b C c D a0 C b0 C c0, and define the correlation N!.X1; X2; X3/ by

N!.X1; X2; X3I k/ D lim
n!1

M.Tn;k;B;a;b;c/

M.HnCaCbCc/
; (2.22)

where HnCaCbCc is the regular hexagon11 of side n C a C b C c.

Then if the special case of Conjecture 2.1 when the core is empty holds, writing

h˛i D G.˛ C 1/ as before, we have

N!.X1; X2; X3I k/

� 3B2=8

.2�/B=2

hB
2

i2haiha0i
hBi

3B2=8

.2�/B=2

hB
2

i2hbihb0i
hBi

3B2=8

.2�/B=2

hB
2

i2hcihc0i
hBi

� .3k/
1
2

Œ.a�a0/.b�b0/C.a�a0/.c�c0/C.b�b0/.c�c0/�; k ! 1: (2.23)

Remark 2.7. As 3k is the distance between each pair of bowties, and their charges
are a � a0, b � b0, and c � c0, this proves the electrostatic conjecture (2.13) for a
system of three bowties arranged in a triad when a C a0 D b C b0 D c C c0 and
a C b C c D a0 C b0 C c0. In fact, the electrostatic conjecture follows even without
assuming a C b C c D a0 C b0 C c0. The reason we assumed this condition is because
it allows us to compute the multiplicative constant in (2.23) explicitly. We will use it
in Section 3 (see Remark 3.1).

The rest of this paper is organized as follows. In Section 3, we present conse-
quences of the formulas presented in this section for the correlation of holes, our
original motivation that led to discovering the satellite regions Sn;a;b;k. First, we show
how an earlier conjecture of the first author (a stronger version of the electrostatic
conjecture (2.13); see Conjecture 3.1) can be “bootstrapped” into displaying the mul-
tiplicative constant explicitly, in the case when the holes are arbitrary triangles (see
Conjecture 3.2). This amounts to having explicit expressions for the correlations of
single triangular holes. We present in detail the derivation of these from the formulas
of Section 2 and two additional assumptions (see Conjectures I and II). Second, we
show how these arguments can be extended to derive the correlation of a shamrock-
shaped hole (see equation (3.12)) and of a fern-shaped hole (see equations (3.13)
and (3.14)). And third, we present a surprising relation between the square and hexag-
onal lattice that makes the correlation of two monomers on each of them decay to zero
at precisely the same rate.

In Sections 4 through 6 we develop our new approach to prove Conjecture 2.1.

11This is the outer boundary of the region Tn;k;B;a;b;c . As we will see in the proof of this
theorem in Section 9, provided the special case of Conjecture 2.1 when the core is empty holds
(an assumption we make in the statement), the limit (2.22) exists.
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One feature of this is that we need to consider regions that are more general than
the satellite regions Sn;a;b;k defined at the beginning of this section (see Figure 1).
The new regions extend the Sn;a;b;k’s in three different ways (see Figure 6): (1) the
top, lower left and lower right side-lengths of the outer hexagon can be arbitrary non-
negative integers n1, n2, n3 satisfying the triangle inequality,12 (2) the satellite sizes
can be arbitrary non-negative integers b1, b2, b3, and (3) the distances of the satellites
to the core can be arbitrary integers13 k1, k2, k3. We denote the resulting region by
Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

.
Section 4 provides a determinant formula for the number of lozenge tilings of

these more general regions (the increased generality is important for our arguments to
work) that holds for both even and odd14 non-negative integer sizes b1, b2, b3 of the
satellites, so that the order of the determinant is independent of a and the entries are
polynomials in a (see Theorem 4.5).

Section 5 shows the details of how to evaluate explicitly the determinant in Theo-
rem 4.5 in the special case when the satellite sizes are zero. This yields Theorem 5.1,
which is a counterpart of a twenty year old result of Ciucu, Krattenthaler, Eisenkölbl,
and Zare (see [18, Theorems 1 and 2]) which has been previously overlooked. We
use Krattenthaler’s method of identification of factors (or factor exhaustion method),
which consists of finding row or column linear combinations that vanish for certain
values of a convenient parameter (in our case, a), to prove divisibility of the deter-
minant by various linear factors, and eventually deduce the full expression for the
determinant. The resulting linear combinations are especially simple, in contrast with
the ones in [18]. In fact, the simplicity of the linear combinations of rows and columns
holds also for the general case of non-zero satellite size of the regions15 Sn;a;b;k; the
reason that case is more involved is due to the more complex block structure of the
determinant. The details of the general case will be presented in a forthcoming paper.

12The remaining side-lengths are then determined by the sizes of the core and satellites, and
the condition that the region is balanced (has the same number of up- and down-pointing unit
triangles).

13As long as the satellites are still within the outer hexagon. Note that the position of the core
at the “center” of the general outer hexagon needs to be defined; we do this in Section 6 (it can
also be read off from Figure 6); the satellites are still required to be along the medians of the
core sides.

14In general, enumerating lozenge tilings of regions with odd size holes is more difficult;
in this instance also, the case of even satellites is easier, and we work it out first (see Proposi-
tion 4.2); we then extend it to cover the odd size satellite case as well (see Theorem 4.4).

15For the determinant to fully factor into linear factors – and thus for the method of factor
exhaustion to be applicable, not to mention the guessing of the formula to be tractable – we
need n1 D n2 D n3, b1 D b2 D b3, and k1 D k2 D k3.
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We also show how the results of [24] can be used to extend Theorem 5.1 to the case
when the removed structure is a shamrock, obtaining a new counterpart of a result of
Ciucu and Krattenthaler (see Theorem 5.6).

In Section 6 we present another determinant formula (see Theorem 6.1) for the
number of tilings of the regions Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

, which works for even
satellite sizes and has the convenient property that the order of the determinant is
independent of n (namely, is equal to the sum of the side-lengths of the four holes,
a C 3b for the region Sn;a;b;k). The entries of this determinant are explicit hypergeo-
metric series. This has the important consequence that for concrete values of a and b

(with b even; a is even by assumption), Conjecture 2.1 can be proven, at least in prin-
ciple, by showing that the determinant resulting from Theorem 6.1 (whose entries are
explicit hypergeometric series) evaluates to the product expression for M.Sn;a;b;k/

resulting from Conjecture 2.2 and Theorem 2.3. Indeed, if for instance a D 6 and
b D 4, this amounts to proving that a certain determinant of order 18, whose entries
are explicit hypergeometric series, is equal to the corresponding explicit product for-
mula resulting from Conjecture 2.2 and Theorem 2.3 – an interesting identity!

The purpose of Section 7 is to show that, if b is even, when regarded as polyno-
mials in a, M.Sn;a;b;k/ and the product formula for it implied by Conjecture 2.2 and
Theorem 2.3 have the same degree and the same leading coefficient. This is done in
Proposition 7.2, which can be regarded as a step towards proving our conjectured for-
mula for M.S2n;2a;b;k/. Section 8 presents the proof of Theorem 2.4, and in Section 9
we prove Theorems 2.5 and 2.6.

Section 3 connects closely with Section 2. Sections 4 through 6 form a somewhat
independent part in terms of how our new method of approach is constructed, but
then connect with Section 2 in Theorems 5.1 and 6.1. The arguments in Section 7 are
mostly self contained, and so is the asymptotic analysis in Sections 8 and 9. We end
the paper with some concluding remarks in Section 10.

3. Consequences for the correlation of holes

In this section we show how Theorem 2.4 can be used to “bootstrap” an earlier con-
jecture of the first author [9] (stated below as Conjecture 3.1) on the asymptotics of
the correlation Q! of any finite collection O1; : : : ;On of triangular holes, by specifying
explicitly the involved multiplicative constant (see Conjecture 3.2 in this section).

To achieve this, we need to discuss some more subtle points involving two other
definitions of the correlation of holes, which the first author introduced in [9]. For
convenience we reproduce their definitions below.

Denote the triangular lattice by T , and draw it (only in this section) so that one
family of lattice lines is vertical. Think of the hexagonal lattice H as the dual of T .
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4.3;2/

2.2;3/

Figure 3. Marked points in our 60ı coordinate system; the right 2-triangular hole F2.2; 3/ D
42.2; 3/ and the left 4-triangular hole G4.3; �2/ D 4�4.3; �2/; see text.

Then the vertices of H are the unit triangles of T , and a dimer on H is a lozenge.
Monomers on H are unit triangles of T ; we call them right-monomers and left-
monomers according to the direction they point to. Allow holes in H to be arbitrary
finite (not necessarily connected) unions of monomers.

Call the midpoints of vertical lattice segments in T marked points, and coordina-
tize them by pairs of integers in a 60ı coordinate system (see Figure 3), by picking
one of them to be the origin, and taking the x- and y-axes in the polar directions ��=6

and �=6, respectively. Then each right-monomer is specified by a pair of integer coor-
dinates, and so is each left-monomer.

Define the right k-triangular hole Fk.x; y/ to be the right-pointing triangular
hole with a side of length k (the unit being the side-length of a unit triangle) whose
topmost marked point (those on its boundary included) has coordinates .x;y/; the left

k-triangular hole Gk.x;y/ is defined to be the analogous left-pointing triangular hole.
In some instances we will find it convenient to have a unifying notation for these two
types of holes. To this end, for k 2 Z we define the k-triangular hole 4k.x; y/ by

4k.x; y/ WD
´

Fk.x; y/ if k > 0,

Gk.x; y/ if k < 0
(3.1)

(see Figure 3 for two illustrations).
We define the correlation Q! of any finite collection O1; : : : ;On of holes as follows.
For any positive integer N , let TN be the torus obtained from the rhombus

¹.x; y/W jxj; jyj � N � 1=2º
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on T by identifying opposite sides. Recall that the charge q.O/ of the hole O is
the difference between the number of right- and left-monomers in O . By performing
a reflection across a vertical lattice line, it suffices to define the correlation when
Pn

iD1 q.Oi / � 0. Define Q! inductively as follows.

i. If
Pn

iD1 q.Oi / D 0, set

Q!.O1; : : : ; On/ WD lim
N !1

M.TN n O1 [ � � � [ On/

M.TN /
: (3.2)

(Kenyon’s determination of the coupling function of the hexagonal lattice [34] and
the fact that the correlation of holes can be written as a determinant whose entries
are values of the inverse Kasteleyn matrix – see, e.g., Fisher and Stephenson’s work
[28] – imply that this limit exists.)

ii. If
Pn

iD1 q.Oi/ D s > 0, set

Q!.O1; : : : ; On/ WD lim
R!1

Rs=2 Q!.O1; : : : ; On; G1.R; 0//p
C

(3.3)

(assuming that the limit exists), where the constant C is determined by

Q!.F1.0; 0/; G1.R; 0// � C R�1=2; R ! 1

(the existence of C for the square lattice version of this follows from Dubédat’s
work [26]).

In other words, if the total charge of the holes is strictly positive, we repeatedly
send to infinity negative charges of unit magnitude until the total charge is reduced to
zero, so that part (i) can be used.

Given a hole O and integers x and y, denote by O.x;y/ the translation of O under
which its topmost (and leftmost, if there are ties) marked point is brought to the point
.x; y/. In [9] we presented the following generalization of the Fisher–Stephenson
conjecture [28] (the latter was recently proved by Dubédat [26]), which stated that the
monomer–monomer correlation on the square lattice is rotationally invariant in the
scaling limit, and decays to zero as one over the square root of the distance between
the monomers.

Conjecture 3.1 ([9]). For any hole types O1; : : : ;On and any distinct pairs of integers

.x1; y1/, : : :, .xn; yn/ we have as R ! 1 that

Q!.O1.Rx1; Ry1/; : : : ; On.Rxn; Ryn//

�
n
Y

iD1

Q!.Oi /
Y

1�i<j �n

d..Rxi ; Ryi /; .Rxj ; Ryj //
1
2 q.Oi / q.Oj /; (3.4)

where d is the Euclidean distance expressed in units equal to a unit triangle side.
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The second correlation we need is denoted by O!. It is a variant of Q!, but defined
only for those collections of holes whose total charge is even. The correlation O! is
defined inductively using (i) above, and the modification of (ii) in which G1.R; 0/

is replaced by G2.R; 0/ (note that this causes the constant C to be replaced by the
leading coefficient C 0 in the asymptotics of O!.F2.0; 0/; G2.R; 0//, R ! 1; it turns
out that O!.F2.0; 0/; G2.R; 0// � 3

4�2 R�2, R ! 1, and therefore C 0 D 3
4�2 ).

The special case q D 1 of [10, Proposition 2.2], stated in terms of the correlation
O! (in [10] it is phrased in terms of a variant of O!, denoted there by O!) implies that for
non-negative integers s we have

O!.F2s/ D 3s2=2

.2�/s
Œ0Š1Š : : : .s � 1/Š�2: (3.5)

Based on physical intuition, it is expected that Q! agrees with O!, and therefore (3.5)
is expected to hold with O! replaced by Q!. If we would also know – at least con-
jecturally – the values of the Q!.F2sC1/’s, then we could write down explicitly the
multiplicative constant on the right-hand side of (3.4) in the (quite general) special
case when Oi is an arbitrary triangular hole (of even or odd side-length, pointing
either to the right or to the left), for i D 1; : : : ; n.

Based on the experience with Theorem 2.3 (see Remark 3), we could make the
daring guess that (3.5) holds with O! replaced by Q! also for odd side triangular holes:

as 0Š1Š : : : .s � 1/Š D G.s C 1/, this leads to guessing that

Q!.Fk/ D 3k2=8

.2�/k=2

h

G
�k

2
C 1

�i2

for all k � 0: (3.6)

As it turns out, this daring guess is strongly supported by Theorem 2.4, as we
explain in this section. We therefore formulate the following strengthening of Conjec-
ture 3.1 in the case when the holes are arbitrary triangles.

Conjecture 3.2. For arbitrary integers k1; : : : ; kn, and any distinct pairs of integers

.x1; y1/, : : :, .xn; yn/, we have

Q!.4k1
.Rx1; Ry1/; : : : ; 4kn

.Rxn; Ryn//

�
n
Y

iD1

3k2
i

=8

.2�/jki j=2

h

G
� jki j

2
C 1

�i2

�
Y

1�i<j �n

d..Rxi ; Ryi/; .Rxj ; Ryj //
1
2

ki kj ; R ! 1:

We now discuss the supporting evidence for equation (3.6). We start by rewriting
the statement of Theorem 2.4 in terms of the Euclidean distance between the holes,
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expressed in units equal to the side-length of a unit triangle. In these units, asymp-
totically as k ! 1, the distance between the core and each satellite is k

p
3, and the

distance between each pair of satellites is 3k. Denoting the core by S0 and the satel-
lites by Si D Si .k/, i D 1; 2; 3, one readily checks that the statement of Theorem 2.4
can be rewritten as

!.S0; S1; S2; S3/

�
3a2=8G

�a

2
C 1

�2h

3b2=8G
�b

2
C 1

�2i3

3.aC3b/2=8G
�a C 3b

2
C 1

�2

Y

0�i<j �3

d.Si ; Sj /
1
2

q.Si / q.Sj /; (3.7)

in the limit as the satellites recede away from the core at the same rate, where d is the
Euclidean distance expressed in units equal to the side-length of a unit triangle.

In order to make our arguments, we will need two additional conjectures (Conjec-
tures I and II below). Their nature is different from the nature of the other conjectures
in this article, as they simply state that various correlations of special gap systems are
equal, or equal up to an overall, unspecified multiplicative constant. Because of this,
we denote them by Roman numerals.

The first one consists of two special cases of the conjecture that the correlations !

and Q! are equal up to a multiplicative factor depending only on the shapes and sizes
of the holes, and not on their relative positions.

The first special case we need is that when the collection of holes consists of the
core and the three satellites, when it is equivalent to the statement in the first part
below. The second is described in the second part.

Conjecture I. (a) The ratio

!.S0; S1.k/; S2.k/; S3.k//

Q!.S0; S1.k/; S2.k/; S3.k//

does not depend on k.

(b) Let m be a non-negative integer, and let O be the collection consisting of one

F1 and m F2 collinear holes lined up along a horizontal axis, so that the leftmost of

them is the F1. Then16 !.O/
Q!.O/

does not depend on the relative distances between the

holes in the collection O.

This is a reasonable conjecture, as ! is defined by placing the holes at the very cen-
ter of the enclosing hexagons (in the fine mesh limit as the lattice spacing approaches
zero, the enclosing hexagon approaches a regular hexagon, with the core and the

16Here !.O/ is defined by a limit analogous to (2.12); see [8, (2.2)].
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satellites shrinking to its center), a place where dimer statistics is governed by the
translation invariant Gibbs measure of maximal entropy, which is equal to the topo-
logical entropy (see [25, 34, 35]). Note also that the denominator in equation (2.12)
(resp., for part (b), the denominator in [8, (2.2)]) is a natural choice, but other choices
would clearly work, so in the very definition of ! there is a residing and somewhat
arbitrary multiplicative constant.

When taking ratios of correlations, the multiplicative constants cancel out. There-
fore, assuming Conjecture I (a) holds we get

!.S0; S1.k/; S2.k/; S3.k//

!.S0; S1.0/; S2.0/; S3.0//
D Q!.S0; S1.k/; S2.k/; S3.k//

Q!.S0; S1.0/; S2.0/; S3.0//
: (3.8)

By definition (2.12), the denominator on the left-hand side above is equal to 1. Thus,
equation (3.8) combined with (3.7) gives

Q!.S0; S1.k/; S2.k/; S3.k//

Q!.S0; S1.0/; S2.0/; S3.0//

�
3a2=8G

�a

2
C 1

�2h

3b2=8G
�b

2
C 1

�2i3

3.aC3b/2=8G
�a C 3b

2
C 1

�2

Y

0�i<j �3

d.Si ; Sj /
1
2 q.Si / q.Sj /: (3.9)

However, due to forced lozenges at the points of contact of S1.0/, S2.0/, and S3.0/

with the core S0, the denominator on the left-hand side above is equal to Q!.FaC3b/.
Therefore, if Conjecture 3.1 holds, (3.9) implies that, for all 0 � a; b 2 Z, a even,

Q!.Fa/ Q!.Fb/3

Q!.FaC3b/
D

3a2=8G
�a

2
C 1

�2h

3b2=8G
�b

2
C 1

�2i3

3.aC3b/2=8G
�a C 3b

2
C 1

�2

D

3a2=8

.2�/a=2
G
�a

2
C 1

�2h 3b2=8

.2�/b=2
G
�b

2
C 1

�2i3

3.aC3b/2=8

.2�/.aC3b/=2
G
�a C 3b

2
C 1

�2
: (3.10)

While strictly speaking not implying (3.6), the above equation does strikingly support
it.

In fact, it turns out that equation (3.6) is implied by Conjecture 3.1 and Conjec-
ture I, provided we make one additional assumption (see Conjecture II below). We
explain this in the three paragraphs following the statement of Conjecture II.

Remark 3.1. It turns out that Theorem 2.6, Conjecture 3.1, equation (3.6) and the
expected fact that the correlations N! and Q! agree for collections of holes of total
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charge zero17 imply the following generalization of (3.6): for a bowtie Xa;a0 with
lobe sizes a and a0, its correlation is given by

Q!.Xa;a0/ D 3.aCa0/2=8

.2�/.aCa0/=2

G
�a C a0

2
C 1

�2

G.a C 1/G.a0 C 1/

G.a C a0 C 1/
: (3.11)

In turn, the above equation, when combined with [23, (1.4)], yields more gen-
erally the correlation of the shamrock S.a; b; c; m/ (the structure consisting of an
up-pointing triangular core of side m and three down-pointing triangular lobes of
sides a, b, and c touching it at the vertices). We obtain

Q!.S.a; b; c; m//

D 3.aCbCcCm/2=8

.2�/.aCbCcCm/=2

�
G
�a C b C c C m

2
C 1

�2

G.m C 1/3G.a C 1/G.b C 1/G.c C 1/

G.a C m C 1/G.b C m C 1/G.c C m C 1/
: (3.12)

Similarly, combining equation (3.11) above with [15, (1.5)], we can find the cor-
relation of the fern F.a1; : : : ; ak/ (a string of contiguous triangular lobes of sizes
a1; : : : ; ak lined up along a lattice line, alternately oriented up and down). With
a D a1 C � � � C ak , o D a1 C a3 C � � �, and e D a2 C a4 C � � �, we obtain

Q!.F.a1; : : : ; ak//

D 3a2=8

.2�/a=2

G
�a

2
C 1

�2

G.o C 1/G.e C 1/

G.a C 1/
s.a1; : : : ; ak/s.a2; : : : ; ak/; (3.13)

where

s.b1; b2; : : : ; b2l/ D s.b1; b2; : : : ; b2l�1/

D
Q

1 � i � j � 2l � 1, j � i C 1 odd G.bi C biC1 C � � � C bj C 1/
Q

1 � i � j � 2l � 1, j � i C 1 even G.bi C biC1 C � � � C bj C 1/

� 1

G.b1 C b3 C � � � C b2l�1 C 1/
: (3.14)

17When the total charge is zero, Q! is defined by equation (3.2), and N! by equation (2.22).
So, the former is defined by including the configuration of holes in large tori, and the latter by
including them (in the scaling limit) at the center of large regular hexagons. Since the dimer
statistics is not distorted in the scaling limit at the center of large regular hexagons (see the first
paragraph after the statement of Conjecture I), we expect the two correlations to agree.
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Equations (3.12) and (3.13) then naturally extend Conjecture 3.2 to arbitrary col-
lections of shamrocks and ferns. The details will be presented in a subsequent paper.

We point out that part (i) of the definition (3.2)–(3.3) of the correlation Q! is most
natural, but in part (ii) a very specific choice was made about how to handle collections
of holes of strictly positive total charge: namely, to repeatedly send to infinity negative
charges of unit magnitude18 until the total charge is reduced to zero, so that part (i)
can be used.

Once a decision is made upon how exactly to balance the total charge (e.g., for
a collection of holes of total charge 2k > 0, one way to do the balancing – the way
done in the definition of Q! – is to repeatedly send a negative monomer G1 to infinity
2k times; another way – corresponding to the definition of O! – is to repeatedly send a
G2 hole to infinity k times), we claim that there is a unique choice for the value of C at
the denominator on the right-hand side of (3.3) that gives a chance for Conjecture 3.1
to hold.

We justify this claim for the two cases of a G1 or a G2 being sent to infinity (these
are the only instances we need in our arguments below; the general case is handled the
same way). For the case of a G1, the claim follows by considering in (ii) the special
case when n D 1 and O1 D F1. Indeed, then (3.3) becomes

Q!.F1/ D Q!.F1.0; 0// WD lim
R!1

R1=2 Q! .F1.0; 0/; G1.R; 0//p
C

: (3.15)

If we want to end up with a correlation for which Conjecture 3.1 holds, then we must
have

Q!.F1.0; 0/; G1.R; 0// � Q!.F1.0; 0// Q! .G1.R; 0// R�1=2; R ! 1: (3.16)

Clearly, (3.15) and (3.16) give (using also Q!.G1/ D Q!.F1/) that Q!.F1/ D
p

C . Com-
bined with (3.16), this gives

Q! .F1.0; 0/; G1.R; 0// � CR�1=2; R ! 1; (3.17)

which determines C uniquely, as claimed, to be the value we used in the definition
of Q!. The case of O!.F2/ is justified the same way, leading to the unique choice of C 0

used in the definition of O!.

18Furthermore, in the definition of Q! these auxiliary negative unit charges are always sent to
infinity along the polar direction ��=6. This was chosen for technical reasons, to aid the com-
putations. Due to the expected rotational invariance, the obtained values should be independent
of the direction.
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Our second conjecture is a special case of what we could call self-consistency:
that all the different possible ways to balance a given collection of holes in part (ii) of
the definition lead to the same value of the correlation, provided the denominator on
the right-hand side of (3.3) is always chosen to have the unique value determined by
the statement of Conjecture 3.1. In fact, we only need this for our two correlations Q!
and O!, and only for a single triangular hole of side two.

Conjecture II. O!.F2/ D Q!.F2/.

There is one more result on the asymptotics of the correlation ! that we need,
which follows from the product formula of [7, Theorem 1.1] by the same reasoning
that derived Theorem 2.4 from the formula in Conjecture 2.1. Making the same argu-
ments that led to (3.10) (i.e., assuming that Conjecture 3.1 and Conjecture I (b) hold),
we obtain

Q!.F1/ Q!.F2/m

Q!.F2mC1/
D

31=8G
�

3
2

�2
Œ31=2G.3/2�m

3.2mC1/2=8G
�2m C 1

2
C 1

�2
; for all m � 0: (3.18)

Deducing the value of Q!.F1/. Consider equation (3.10) (which recall follows from
Theorem 2.4, provided Conjecture 3.1 and Conjecture I (a) hold), and set a D 0

and b D 1. Using Q!.F0/ D 1 (which follows from the definition of Q!), the recur-
rence (2.15) and the fact that �.3=2/ D p

�=2, we obtain

Œ Q!.F1/�3

Q!.F3/
D 4

33=4�
G
�3

2

�4

: (3.19)

On the other hand, setting m D 1 in (3.18), we get

Q!.F1/ Q!.F2/

Q!.F3/
D 4

31=2�
: (3.20)

By (3.5) and Conjecture II, Q!.F2/ D
p

3=.2�/. Thus, combining equations (3.19)
and (3.20), we get

Q!.F1/ D 31=8

p
2�

G
�3

2

�2

: (3.21)

Deducing the values Q!.F2mC1/. Having determined the value of F1, the value of
Q!.F2mC1/ for any positive integer m follows directly from (3.18), using again that
(by (3.5) and Conjecture II) Q! .F2/ D

p
3=.2�/. This leads to (3.6), and thus to the

explicit multiplicative constant in Conjecture 3.2.

We end this section with a pretty astounding way of relating the hexagonal and
square lattices from the point of view of the rate of decay to zero of the monomer–
monomer correlation. This is afforded by comparing the value of Q!.F1/ derived above
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Figure 4. Squaring the hexagonal lattice: If the removed unit triangles and the removed unit
squares are lined up as shown, having d long lozenge diagonals, respectively d unit square
diagonals in between, then their correlations decay to zero asymptotically like c=

p
d with the

same value of c (namely c D e1=22�5=6A�6, A being the Glaisher–Kinkelin constant), where
d is the Euclidean distance between the removed monomers, measured on the triangular lattice
in units equal to a long lozenge diagonal, and on the square lattice in units equal to a unit
square diagonal. Phrased in terms of monomer correlations in a sea of dimers, as the dual of
the triangular lattice is the hexagonal lattice (while the square lattice is self-dual), this shows
how to calibrate the size of the hexagonal lattice against the square lattice so that the monomer–
monomer correlations decay identically.

to the analogous constant for the square lattice, which was determined by Hartwig [32]
in 1966.

Hartwig showed in [32] that

!.�0;0; �d;dC1/ � e1=2

2
5
6 A6

d�1=2; d ! 1; (3.22)

where �p;q denotes the unit square on the square lattice whose bottom left corner has
coordinates .p; q/, and the correlation ! on the square lattice is defined in analogy
to (2.22), using large squares centered at the origin to enclose the monomers.

On the other hand, equation (3.17), together with Q!.F1/ D
p

C and the value for
Q!.F1/ derived in (3.21), gives

Q!.F1.0; 0/; G1.d; 0// � 31=4

2�
G
�3

2

�4

d�1=2; d ! 1: (3.23)
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By equation (2.17) and the value (2.18) of G.1=2/, we have

G
�3

2

�

D 21=24e1=8�1=4

A3=2
; (3.24)

and (3.23) becomes

Q!.F1.0; 0/; G1.d; 0// � 31=4e1=2

25=6A6
d�1=2; d ! 1: (3.25)

By Conjecture 3.1, we should have

Q!.F1.0; 0/; G1.d; d// � 31=4e1=2

25=6A6
.d

p
3/�1=2 D e1=2

25=6A6
d�1=2; d ! 1; (3.26)

because the Euclidean distance between F1.0; 0/ and G1.d; d/ is d
p

3, expressed in
units equal to a unit triangle side.

The agreement of the multiplicative constants in (3.22) and (3.26) is most unex-
pected. Note that in (3.22) the distance between the removed unit squares is d unit
square diagonals, and the distance between the removed unit triangles in (3.26) is d

long lozenge diagonals. Therefore, the agreement of the right-hand sides in (3.22)
and (3.26) has the following interpretation: if the triangular lattice is scaled so that the
lengths of a long lozenge diagonal matches the length of a unit square diagonal on the
square lattice (see Figure 4), then the monomer–monomer correlations on these two
lattices decay to zero at precisely the same rate. Since unit holes in lozenge tilings are
equivalent to monomers in dimer systems on the hexagonal lattice, we can view this
agreement as specifying how to scale the hexagonal lattice against the square lattice
in order to get precisely the same decay – squaring the hexagonal lattice, as it were.

This is reminiscent of magic angle graphene superlattices [5] – except there two
identical hexagonal lattices are superimposed, while here one hexagonal and one
square lattice, carefully scaled.

4. Determinantal formulas for M.Sn;a;b;k/

The purpose of this section is to derive some convenient determinantal formulas for
M.Sn;a;b;k/ (see Theorems 4.4 and 4.5). This derivation is divided into the following
steps according to Sections 4.1–4.4.

1. First we use the Lindström–Gessel–Viennot theorem [30,44] to derive a deter-
minantal formula for the number of lozenge tilings of Sn;a;b;k assuming that b

is even. This is standard, however, we introduce a notation that will be useful
in the following. Also, for what follows, we need a more general setting, where
the sizes of the three satellites are independent integers b1; b2; b3.
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2. Next we show that the number of lozenge tilings in this more general setting is
for each i 2 ¹1; 2; 3º a polynomial in bi when fixing the other bj ’s, n, a, and
k. Here we employ arguments that have been used in [18, Section 6].

3. Then we use this polynomiality to modify the determinantal formula from the
first step so that it gives the correct values also if b is odd.

4. Finally, we modify the determinant further such that it reveals the polynomial-
ity in a (so that a does not appear in the size of the matrix and all matrix entries
are polynomials in a). This is necessary to be able to apply the identification
of factors method, see [38, Section 2.4].

4.1. Trapezoids with triangular holes

For positive integers n; l , we refer to the isosceles trapezoid whose longer base is of
length l , whose legs are of length n and with lower base angles 60ı as an .n; l/-trape-

zoid. The .11; 16/-trapezoid is given in Figure 5. If we draw such a trapezoid on the
triangular lattice in the usual way so that the longer base is horizontal and below
the shorter base, and the vertices are lattice points, then the trapezoid has n more
up-pointing unit triangles than down-pointing unit triangles. Hence, such a trapezoid
does not have a lozenge tiling, but may have one if we remove n up-pointing unit
triangles from it.

As indicated in Figure 5, such lozenge tilings correspond to families of non-
intersecting lattice paths where the starting points are arranged along the left leg of the
trapezoid, while the end points are situated at the centers of the =-sides of the removed
triangles (which are the black triangles in our example). We number the starting points
from bottom to top with 1 to n, and the removed triangles also from bottom to top and
within each row from left to right with 1 to n. Then such a family of non-intersecting
lattice paths induces in a natural way a permutation of 1; 2; : : : ; n. The sign of this
permutation is said to be the sign of the lozenge tiling. In our example, numbering
the removed triangles from bottom to top and within a row from left to right gives the
permutation 1 2 3 4 6 7 8 9 5 10 11.

We say that the set of removed triangles is even if each such triangle that is not
situated in the bottom row is contained in a maximal (connected) horizontal chain of
removed triangles that is of even length. The set of removed triangles in Figure 5 is
even. As the lattice paths are non-intersecting, the starting points of the paths that end
in a particular chain must be numbered with consecutive integers that increase as we
go from left to right in the chain. Thus, the assumption guarantees that all permuta-
tions can be obtained from the identity by applying an even number of transpositions,
and therefore all lozenge tilings have sign C1. Finally, note that removing a horizon-
tal chain of, say, n unit triangles is equivalent (due to forced lozenges) to removing an
up-pointing triangle of size n.
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Figure 5. A lozenge tiling of an .11; 16/-trapezoid along with the corresponding family of
non-intersecting lattice paths.

The following lemma, which follows immediately from the Lindström–Gessel–
Viennot theorem, allows us to compute the number of lozenge tilings of a trapezoid
with an even set of up-pointing unit triangles removed. In order to formulate it, we
need to define the forward difference operator: suppose pW Z ! C is a function, then
� is defined as

�p.x/ D p.x C 1/ � p.x/:

In our applications, we will usually deal with multivariate functions which can of
course be viewed as univariate functions when fixing all but one variable, say, x, and
in such a situation we use �x to identify to which variable the forward difference is
applied. Moreover, we set

�

n

k

�

D

8

<

:

n.n � 1/ : : : .n � k C 1/

kŠ
for k � 0;

0 otherwise.

Lemma 4.1. Consider an .n; l/-trapezoid with n up-pointing unit triangles R1;

R2; : : : ; Rn removed. For each i , let ri be the row of Ri , counted from the bottom

starting with 1, and ci be the position of Ri in its row, counted from the left starting

with 1. Then the signed enumeration of lozenge tilings19 of the .n; l/-trapezoid where

the triangles R1; R2; : : : ; Rn have been removed is

h

n
Y

iD1

�ri �1
ci

i

Y

1�i<j �n

cj � ci

j � i
D
h

n
Y

iD1

�ri �1
ci

i

det
1�i;j �n

��

ci � d

j � 1

��

; (4.1)

for any integer d . If R1; : : : ; Rn is even, then the absolute value of this expression is

the number of lozenge tilings.

19Each tiling being counted with a sign equal to the sign of the permutation induced by the
paths of lozenges encoding the tiling; see Figure 5.
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Proof. We use the bijection between lozenge tilings and families of non-intersecting
lattice paths as indicated in Figure 5. The starting points of the lattice paths on the
left leg of the trapezoid can be parametrized by .1; 1/; .2; 2/; : : : ; .n; n/, from bottom
to top, while the endpoint on the =-side of Ri is then .ci C ri ; ri /, and we allow unit
steps .1;0/ and .0;�1/ in our paths. In general, the number of lattice paths from .a;b/

to .c; d/ is
�

c�aCb�d
b�d

�

, and so the number of paths from .j; j / to .ci C ri ; ri / is

�

ci

j � ri

�

D �ri �1
ci

�

ci

j � 1

�

;

which is needed to apply the Lindström–Gessel–Viennot theorem [30, 44]. This the-
orem can be used to express the signed enumeration of families of non-intersecting
lattice paths as a determinant. In our particular case, we obtain for this signed enu-
meration

det
1�i;j �n

�

�ri �1
ci

�

ci

j � 1

��

D
n
Y

iD1

�ri �1
ci

det
1�i;j �n

��

ci

j � 1

��

; (4.2)

where we have used the linearity in the rows of the determinant to show the equality of
the expressions. On the other hand, suppose pj .c/ is a sequence of monic polynomials
for j D 1; : : : ; n with degc pj .c/ D j � 1. Then, by elementary column operations,
we have

det
1�i;j �n

.pj .ci// D
Y

1�i<j �n

.cj � ci /:

Choosing pj .c/ D .j � 1/Š
�

c�d
j �1

�

as well as dividing the identity by
Qn

j D1.j � 1/Š

shows

det
1�i;j �n

��

ci � d

j � 1

��

D
Y

1�i<j �n

cj � ci

j � i
;

in particular we see that the left-hand side is independent of d . The assertion now
follows by combining this observation with (4.2).

As it was used in the proof, we may apply the powers of the forward difference
operators also “inside” the determinant in (4.1) (by the linearity of the determinant
in the rows). That way we obtain a determinant in which each row corresponds to
a removed triangle. Horizontal (connected) chains of removed triangles then corre-
spond to sets of consecutive rows (if the numbering of the removed triangles was
chosen accordingly) in the matrix; these are referred to as blocks in the following.
The parameter d will play a crucial role and it is the reason why we write the formula
in (4.1) in this particular form: We will see that, for any such block, we can choose
d appropriately in such a way that this block can be “eliminated.” We will find it
useful to eliminate certain parameters (typically the length of a chain of removed unit
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triangles) from the matrices underlying our determinants, as this will help us obtain
expressions that are polynomials in these parameters. It is this somewhat simple obser-
vation that is applied in the following repeatedly to derive two useful formulas for our
concrete problem.

Next, we apply this lemma to our setting. However, in order to be able to extend
the determinental formula for even b to odd b, we need to work with satellites of
independent sizes. It is not more difficult to consider a multivariate generalization,
where also the three sides – originally of length n – are allowed to have independent
lengths, and so are the distances between the core and the satellites.

For non-negative integers n1; n2; n3; b1; b2; b3; k1; k2; k3 and non-negative even
a, we denote the hexagon with side lengths

n1 C a C b1 C b2 C b3; n3;

n2 C a C b1 C b2 C b3; n1;

n3 C a C b1 C b2 C b3; n2

(clockwise from the northwestern side) that has four triangular holes with side lengths
a; b1; b2; b3, respectively, as indicated in Figure 6 by Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

: the
hole of size a (the core) has distance

.n1 C b1/ �
p

3

2
; .n2 C b2/ �

p
3

2
; .n3 C b3/ �

p
3

2

from the three sides of length

n1 C a C b1 C b2 C b3; n2 C a C b1 C b2 C b3; n3 C a C b1 C b2 C b3;

respectively. The three holes of size b1; b2; b3 (the satellites) point towards the center
of the core and have distance

2k1 �
p

3

2
; 2k2 �

p
3

2
; 2k3 �

p
3

2

from the core, respectively, where the satellite of size bi is situated between the core
and the long side of the hexagon that has distance ni C bi from the core.

Note that the geometry of the configuration implies

n1 � a C n2 C b2 C n3 C b3: (4.3)

This can be seen as follows. Consider the line that includes the “=”-side of the core.
The length of the portion of this line included in the wedge obtained by extending
the sides of length n2 C a C b1 C b2 C b3 and n3 C a C b1 C b2 C b3 until they
meet, which is a C n2 C b2 C n3 C b3, needs to be at least as large as the length
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2
b111

n1CaCb1Cb2Cb3 n2CaCb1Cb2Cb3

n3CaCb1Cb2Cb3

n1Cb1 n2Cb2

n3Cb3

b1
b2

b3

k1 k2

k3

a

n1n2

n3

Figure 6. Independent satellites.

of the southeastern edge of the hexagon, which is n1. By symmetry, we also have
n2 � a C n1 C b1 C n3 C b3 and n3 � a C n1 C b1 C n2 C b2.

If b1; b2; b3 are even, Lemma 4.1 can be applied to compute the number of lozenge
tilings of this region. Indeed, set n D n1 C n2 C a C b1 C b2 C b3. In order to start
from an .n; n C n3/-trapezoid, we add a triangle of size n2 at the bottom left corner
of the hexagon, while we add a triangle of size n1 at the bottom right corner. We have
six chains of triangles to be removed as follows:

1. at height20 0 of length n2 in positions

1; : : : ; n2I

2. at height 0 of length n1 in positions

n2 C n3 C a C b1 C b2 C b3 C 1; : : : ; n1 C n2 C n3 C a C b1 C b2 C b3I

3. at height n3 � 2k3 of length b3 in positions

n1 C a

2
C b1 C k3 C 1; : : : ; n1 C a

2
C b1 C b3 C k3I

4. at height n3 C b3 of length a in positions

n1 C b1 C 1; : : : ; n1 C a C b1I

20The height of a removed triangle is one less than its row number.
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5. at height n3 C a
2

C b3 C k1 of length b1 in positions

n1 � 2k1 C 1; : : : ; n1 � 2k1 C b1I

6. at height n3 C a
2

C b3 C k2 of length b2 in positions

n1 C a

2
C b1 C k2 C 1; : : : ; n1 C a

2
C b1 C b2 C k2:

Using Lemma 4.1, it follows that the number of lozenge tilings of

Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

is

b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2 Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2 Cb3Ck2

c6;i

� det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

c1;i �d

j �1

�

1 � i � n2
�

c2;i �d

j �1

�

1 � i � n1
�

c3;i �d

j �1

�

1 � i � b3
�

c4;i �d

j �1

�

1 � i � a
�

c5;i �d

j �1

�

1 � i � b1
�

c6;i �d

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

; (4.4)

evaluated at

c1;i D i;

c2;i D n2 C n3 C a C b1 C b2 C b3 C i;

c3;i D n1 C a

2
C b1 C k3 C i;

c4;i D n1 C b1 C i;

c5;i D n1 � 2k1 C i;

c6;i D n1 C a

2
C b1 C k2 C i:

We obtain the following result.
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Proposition 4.2. For even b1; b2; b3, we have

M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3
/

D det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

i�d
j �1

�

1 � i � n2
�

n2Cn3CaCb1Cb2Cb3Ci�d
j �1

�

1 � i � n1
�

n1C a
2

Cb1Ck3Ci�d

j �1�n3C2k3

�

1 � i � b3
�

n1Cb1Ci�d
j �1�n3�b3

�

1 � i � a
�

n1�2k1Ci�d

j �1�n3� a
2

�b3�k1

�

1 � i � b1
�

n1C a
2

Cb1Ck2Ci�d

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

; (4.5)

where d can be chosen arbitrarily.

4.2. Polynomiality in the sizes of the satellites

The technique we are using to deal with odd-sized satellites is based on the following
crucial observation.

Lemma 4.3. For any i 2 ¹1; 2; 3º, the quantity M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3
/ is a

polynomial in bi when fixing the ni ’s, the ki ’s, the core size a, and the two bj ’s with

j 6D i .

Proof. We follow the ideas provided in [18, Section 6], which were used there to
show the polynomiality of M.Sn1;n2;n3;a;0;0;0;0;0;0/ in a. By symmetry, it suffices to
consider the case i D 2.

Set S D Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3
. Let R be the smallest lattice hexagon that

contains the southwestern side of S , the core, and the satellites of side-lengths b1 and
b3. For the region in Figure 7, the resulting region R is shown on the lower left in
Figure 8 (delimited by the dashed line).

As b2 varies over the non-negative integers (with all the other parameters hav-
ing fixed values), the region R does not change. In particular, for any fixed choice
of lozenges protruding through the dashed portion of the boundary, the number of
lozenge tilings of R is a fixed number, independent of b2.

One instance of such a tiling (for focus, only the lozenges straddling the dashed
line) is shown in Figure 8. By the observation in the previous paragraph, it suffices
to show that for any such fixed choice of lozenges straddling the dashed line, the
complement R0 of R in S – which does change as b2 varies – has a number of tilings
that is a polynomial in b2.
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Figure 7. An example of a lozenge tiling of S5;5;5;2;3;2;4;1;1;1.

Figure 8. Proving polynomiality in b2. The region R on the lower left delimited by the dashed
line does not change as b2 varies; the lozenges that straddle the dashed line in one of its fixed
number (independent of b2) of tilings are indicated. The number of ways each such tiling of
R can be extended to a tiling of Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

is polynomial in b2 for fixed
n1; n2; n3; a; b1; b3; k1; k2; k3, by the argument in [18].
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This follows by the very same arguments we used in [18, Section 6]. Indeed,
extend rays from the satellite of side b2 as indicated by the red lines in Figure 8.
Depending on the actual values of the fixed parameters n1; n2; n3; a; b1; b3; k1; k2; k3,
the ray going southwest may intersect either the northeast side of R or the south side
of S . Similarly, the ray going east intersects either the northeast or the southeast side
of S , and the ray going northwest either the north or the northwest side of S . Figure 8
shows one of these possibilities. We prove polynomiality of M.R0/ in b2 in this case;
the others follow the same way.

As we did in [18], we fix a set L of lozenges straddling the blue dashed line and
three sets of lozenges L1, L2, and L3 that straddle the three red rays, respectively,
and consider the number of lozenge tilings that contain the lozenges in these four sets,
but no other lozengue that straddles the blue dashed line or the red rays. We show that
this refined counting function is a polynomial in b2. The crucial observation is that
the lengths of the rays in R0 are independent of b2: the lengths are a

2
C b1 � k2 C

n1 C n2 � n3, n2 � 2k2, 2k2.
Clearly, this number is the product of the number of corresponding tilings of the

three regions that the rays divide R0 into. For each of these three regions, encode
their tilings as families of paths of lozenges (equivalently, lattice paths on Z

2) as
indicated in Figure 8. Then by the Lindström–Gessel–Viennot theorem [30, 44], the
number of tilings of each of these three regions is equal to a determinant whose order
is independent of b2, and all of whose entries are – as can be easily checked – either
independent of b2, or of the form

�

b2Cc
d

�

, with c and d independent of b2. This implies
that each of them is a polynomial in b2, and the proof is complete.

4.3. A determinantal formula for general b1; b2; b3 assuming k2 D k3

The goal of this section is to derive the following determinantal formula for

M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k2
/

that holds for general b1; b2; b3. Note that we assume k2 D k3 because the situation
is simpler then, but the procedure can be adapted so that it works also if k2 6D k3. In
this formula, we use the convention

b
X

iDa

p.i/ D �
a�1
X

iDbC1

p.i/

if b < a. Note that this implies

a�1
X

iDa

p.i/ D 0:
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Theorem 4.4. For all non-negative integers n1; n2; n3; b1; b2; b3; k1; k2, and even a,

we have

M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k2
/

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

det

0

B

B

B

B

B

B

B

B

B

B

B

@

M1 1 � i � n2

M2 1 � i � n1
�

i�1
j �1�n3C2k2

�

1 � i � b3
�

i� a
2

�k2�1/

j �1�n3�b3

�

1 � i � a
�� a

2
�b1�2k1�k2Ci�1

j �1�n3� a
2 �b3�k1

�

1 � i � b1

�

i�1
j �1�n3� a

2
�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

where

M1 WD .�1/Œj �n3�2k2C1�b3

��

i � n1 � a
2

� b1 � k2 � 1

j � 1

�

C ..�1/b1 � 1/

j
X

qDn3C a
2

Cb3Ck1C1

�

i � n1 C 2k1 � 1

q � 1

�

�
�

�2k1 � a
2

� b1 � k2

j � q

��

;

M2 WD .�1/Œj �n3C a
2 Cb3Ck2C1�b2

�
�

�n1 C n2 C n3 C a
2

C b2 C b3 � k2 C i � 1

j � 1

�

;

and where we use the Iverson bracket which is defined as

Œstatement� D
´

1 if the statement is true,

0 otherwise.

Proof. We consider the determinant in (4.5) now for arbitrary (not necessarily even)
integers bi ’s and set

d D d1 D n1 � 2k1 C 1:

Then all entries in the first row of the fifth block (which is the one corresponding to
the satellite of size b1) are zero except for the one in column

j D 1 C n3 C a

2
C b3 C k1:

We expand with respect to this row. The new top row of the fifth block has again only
a non-zero entry in column j D 1 C n3 C a

2
C b3 C k1, and so we expand with respect
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to this row now. We keep doing this until the fifth block has vanished and obtain

.�1/.n1Cn2Cn3C 3a
2

Ck1/b1

� det

0

B

B

B

B

B

B

B

B

B

B

B

@

�

i�d1

j �1

�

1 � i � n2

�

n2Cn3CaCb1Cb2Cb3Ci�d1

j �1

�

1 � i � n1

�

n1C a
2

Cb1Ck3Ci�d1

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d1

j �1�n3�b3

�

1 � i � a
�

n1C a
2

Cb1Ck2Ci�d1

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n3C a
2

Cb3Ck1

n3C a
2

Cb1Cb3Ck1C1�j �n

:

This can also be written as follows (omitting now the ranges for the rows i ):

.�1/.n1Cn2Cn3C 3a
2 Ck1/b1 det

0

B

@

M1;1 M1;2

M2;1 M2;2

M3;1 M3;2

M4;1 M4;2

M5;1 M5;2

1

C

A
; (4.6)

where

M1;1 WD
�

i � d1

j � 1

�

1�j �n3C a
2

Cb3Ck1

;

M1;2 WD
�

i � d1

j C n3 C a
2

C b1 C b3 C k1 � 1

�

1�j �n1Cn2�n3C a
2

Cb2�k1

;

M2;1 WD
�

n2 C n3 C a C b1 C b2 C b3 C i � d1

j � 1

�

1�j �n3C a
2 Cb3Ck1

;

M2;2 WD
�

n2 C n3 C a C b1 C b2 C b3 C i � d1

j C n3 C a
2

C b1 C b3 C k1 � 1

�

1�j �n1Cn2�n3C a
2 Cb2�k1

;

M3;1 WD
�

n1 C a
2

C b1 C k3 C i � d1

j � 1 � n3 C 2k2

�

1�j �n3C a
2 Cb3Ck1

;

M3;2 WD
�

n1 C a
2

C b1 C k3 C i � d1

j C n3 C a
2

C b1 C b3 C k1 � 1 � n3 C 2k2

�

1�j �n1Cn2�n3C a
2 Cb2�k1

;

M4;1 WD
�

n1 C b1 C i � d1

j � 1 � n3 � b3

�

1�j �n3C a
2 Cb3Ck1

;

M4;2 WD
�

n1 C b1 C i � d1

j C n3 C a
2

C b1 C b3 C k1 � 1 � n3 � b3

�

1�j �n1Cn2�n3C a
2

Cb2�k1

;

M5;1 WD
�

n1 C a
2

C b1 C k2 C i � d1

j � 1 � n3 � a
2

� b3 � k2

�

1�j �n3C a
2

Cb3Ck1

;
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M5;2 WD
�

n1 C a
2

C b1 C k2 C i � d1

A

�

1�j �n1Cn2�n3C a
2

Cb2�k1

and
A WD j C n3 C a

2
C b1 C b3 C k1 � 1 � n3 � a

2
� b3 � k2:

Concerning the range of the right block, note that

n1 C n2 � n3 C a

2
C b2 � k1 � 0

because of the following: consider the wedge of the line containing the .n1 C a C
b1 C b2 C b3/-side of the hexagon and of the line containing the .n2 C a C b1 C
b2 C b3/-side of the hexagon. Then the length of the section of the horizontal line
containing the top vertex of the satellite of size b1 in this wedge is

n1 C n2 C a

2
C b2 � k1

which can be seen as follows (the reader is advised to look at Figure 6):

• the length of the section between the NE side of the hexagon and the line extending
the NE side of the core is n2 C b2;

• the length of the section between the line extending the NE side of the core and
the top vertex of the satellite of size b1 is a

2
C k1;

• the length of section between the top vertex of the satellite of size b1 and the NW
side of the hexagon is n1 � 2k1.

This length is obviously greater than or equal to n3, the length of the top side of the
hexagon.

Next we will show that we can modify this formula by introducing .�1/b1 at vari-
ous places such that the result is a polynomial function in b1. Since this has of course
no effect if b1 is even, the modified formula will give the number of lozenge tilings
for even b1. However, using Lemma 4.3 and the fact that a polynomial is uniquely
determined by its evaluation on even integers, the modified formula gives the number
of lozenge tilings for all non-negative integers b1 (however still assuming that b2 and
b3 are even).

The following observations are crucial.

1. The entries in the first n3 C a
2

C b3 C k1 columns are all polynomials in b1,
since b1 appears at most in the upper parameter of the binomial coefficient.

2. The entries that are right of column n3 C a
2

C b3 C k1 and below row n2

are also polynomials in b1: these entries are binomial coefficients of the form
�

b1Cs
b1Ct

�

for some integers s and t . We have b1 C s � 0 which follows basically because the



M. Ciucu and I. Fischer 446

satellite of size b1 is the leftmost removed (big) triangle except for the triangle of size
n2, which however corresponds to the top block (see also (4.3)). Thus, we can apply
the symmetry of the binomial coefficient, i.e.,

�

n

k

�

D
�

n

n � k

�

if n � 0; (4.7)

to obtain binomial coefficients where b1 only appears in the top parameter.

3. As for the remaining entries in row 1 to n2, they are binomial coefficients of
the form

� s
b1Ct

�

where s < b1 C t . In order to see this, observe that the extreme case
with regard to this inequality is when i D n2 and j D 1. In this case we need to show
that

n2 �
�

n3 C a

2
C b3 C k1

�

C b1 C .n1 � 2k1/:

However, this is obvious: n3 C a
2

C b3 C k1 is the “lattice” distance of the satellite
of size b1 from the bottom of the hexagon, thus .n3 C a

2
C b3 C k1/ C b1 is the

“lattice” distance between the top of this satellite to the bottom of the hexagon and
going n1 � 2k1 unit steps from this top into --direction will bring us to a point on the
side of length n1 C a C b1 C b2 C b3, which is thus surely above the side of length
n2.

We claim that this implies that .�1/b1
� s

b1Ct

�

is polynomial in b1: We use the sec-
ond elementary transformation for binomial coefficients, i.e.,

�

n

k

�

D .�1/k

�

k � n � 1

k

�

(4.8)

to see that
�

s

b1 C t

�

D .�1/b1Ct

�

b1 C t � s � 1

b1 C t

�

D .�1/b1Ct

�

b1 C t � s � 1

�s � 1

�

;

where the last step follows from the symmetry (4.7) which can be applied since

b1 C t � s � 1 � 0:

It follows that we obtain a formula that is a polynomial function in b1 and coin-
cides with the original formula for even b1 if we do the following:

• multiply (4.6) with .�1/.n1Cn2Cn3C 3a
2 Ck1/b1 ;

• multiply the entries in the first n2 rows and right of column n3 C a
2

C b3 C k1

with .�1/b1 .
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If we “reverse” after this modification our calculation so that we again have a block
that corresponds to the satellite of size b1, we obtain

.�1/.n1Cn2Cn3C 3a
2

Ck1/b1

b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

�
b1
Y

iD1

�
n3C a

2
Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2
Cb3Ck2

c6;i

� det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

c1;i �d1

j �1

�

.�1/Œj �n3C a
2

Cb1Cb3Ck1C1�b1 1 � i � n2

�

c2;i �d1

j �1

�

1 � i � n1

�

c3;i �d1

j �1

�

1 � i � b3

�

c4;i �d1

j �1

�

1 � i � a

�

c5;i �d1

j �1

�

1 � i � b1

�

c6;i �d1

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

at

c1;i D i;

c2;i D n2 C n3 C a C b1 C b2 C b3 C i;

c3;i D n1 C a

2
C b1 C k2 C i;

c4;i D n1 C b1 C i;

c5;i D n1 � 2k1 C i;

c6;i D n1 C a

2
C b1 C k2 C i;

provided that d1 D n1 � 2k1 C 1. Note that .�1/Œj �n3C a
2

Cb1Cb3Ck1C1�b1 can actually
be replaced by any .�1/Œj �n3C a

2
ClCb3Ck1C1�b1 with 0 � l � b1: when “eliminating”

a block (in our case the fifth block) it becomes apparent that the values of certain
entries, in our case the entries in columns

n3 C a

2
C b3 C k1 C 1;

n3 C a

2
C b3 C k1 C 2;

:::

n3 C a

2
C b3 C k1 C b1;
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do not play a role at all. When we reverse the procedure, we are free to choose the
values conveniently. We choose l D 0 in the following.

Now, observe that, by the Chu–Vandermonde summation,

�

c � d2

j � 1

�

D
j
X

qD1

�

c � d1

q � 1

��

d1 � d2

j � q

�

;

and multiply the matrix underlying the determinant from the right with the upper tri-
angular matrix

��

d1�d2

j �i

��

1�i;j �n
with determinant 1. This gives the following matrix:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M3 1 � i � n2

�

c2;i �d2

j �1

�

1 � i � n1

�

c3;i �d2

j �1

�

1 � i � b3

�

c4;i �d2

j �1

�

1 � i � a

�

c5;i �d2

j �1

�

1 � i � b1

�

c6;i �d2

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

where

M3 WD
�

c1;i � d2

j � 1

�

C ..�1/b1 � 1/

j
X

qDn3C a
2 Cb3Ck1C1

�

c1;i � d1

q � 1

��

d1 � d2

j � q

�

Specializing the cl;i , we obtain the following expression:

.�1/.n1Cn2Cn3C 3a
2

Ck1/b1

� det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M4 1 � i � n2

�

n2Cn3CaCb1Cb2Cb3Ci�d2

j �1

�

1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d2

j �1�n3�b3

�

1 � i � a

�

n1�2k1Ci�d2

j �1�n3� a
2

�b3�k1

�

1 � i � b1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n
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where

M4 WD
�

i � d2

j � 1

�

C ..�1/b1 � 1/

j
X

qDn3C a
2

Cb3Ck1C1

�

i � d1

q � 1

��

d1 � d2

j � q

�

:

We set
d2 D n1 C a

2
C b1 C k2 C 1:

(The assumption k2 D k3 is now useful because it allows us to eliminate the blocks
of the satellites of sizes b2 and b3 simultaneously.) With this, all entries in first row of
the bottom block are zero except for the one in column j D 1 C n3 C a

2
C b3 C k2,

and so we expand with respect to this row. We can keep doing this until the bottom
block vanishes and obtain the following:

.�1/.n1Cn2Cn3C 3a
2

Ck1/b1C.n1Cn2Cn3C 3a
2

Cb1Ck2/b2

� det

0

B

B

B

B

B

B

B

B

B

B

B

B

@

M4 1 � i � n2

�

n2Cn3CaCb1Cb2Cb3Ci�d2

j �1

�

1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d2

j �1�n3�b3

�

1 � i � a

�

n1�2k1Ci�d2

j �1�n3� a
2

�b3�k1

�

1 � i � b1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n3C a
2

Cb3Ck2

n3C a
2

Cb2Cb3Ck2C1�j �n

:

The first n3 C a
2

C b3 C k2 columns of the matrix underlying the determinant are

0

B

B

B

B

B

B

B

B

B

B

B

B

@

M4 1 � i � n2

�

n2Cn3CaCb1Cb2Cb3Ci�d2

j �1

�

1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d2

j �1�n3�b3

�

1 � i � a

�

n1�2k1Ci�d2

j �1�n3� a
2

�b3�k1

�

1 � i � b1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n3C a
2 Cb3Ck2

:

Only the entries in the second block depend on b2, and, since b2 appears only in the
upper parameter of the binomial coefficient, these entries are polynomials in b2. The
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matrix consisting of the remaining columns can be written as follows:
0

B

B

B

B

B

B

B

B

B

B

B

B

@

M5 1 � i � n2

�

n2Cn3CaCb1Cb2Cb3Ci�d2

j Cn3C a
2 Cb2Cb3Ck2�1

�

1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d2

j C a
2 Cb2Cb3C3k2�1

�

1 � i � b3

�

n1Cb1Ci�d2

j C a
2

Cb2Ck2�1

�

1 � i � a

�

n1�2k1Ci�d2

j Cb2Ck2�k1�1

�

1 � i � b1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where

M5 WD
�

i � d2

j C n3 C a
2

C b2 C b3 C k2 � 1

�

C ..�1/b1 � 1/

j Cn3C a
2

Cb2Cb3Ck2
X

qDn3C a
2

Cb3Ck1C1

�

i � d1

q � 1

�

�
�

d1 � d2

j C n3 C a
2

C b2 C b3 C k2 � q

�

and
1 � j � n1 C n2 � n3 C a

2
C b1 � k2:

We analyze the different blocks of the matrix.

1. Top block. First note that in

�

i � d2

j C n3 C a
2

C b2 C b3 C k2 � 1

�

;

the upper parameter is always less than the lower parameter: this follows from

n2 � 2k2 � n1 C n3 C a C b1 C b2 C b3;

which is true since .n1 C n3 C a C b1 C b2 C b3/ �
p

3
2

is the distance of the SW side

and the NE side of the hexagon and .n2 � 2k2/ �
p

3
2

is the distance of the NW side of
the hexagon and the satellite of size b1. Therefore, in analogy to a situation for b1, this
binomial coefficient is a polynomial function in b2 after multiplication with .�1/b2 .
Now, as d1 � d2 < 0 (unless b1 D 0 in which case the entry simplifies to the binomial
coefficient that was already discussed),

� d1�d2

j Cn3C a
2

Cb2Cb3Ck2�q

�

is a polynomial func-

tion in b2 and q when multiplied with .�1/b2Cq . In case i � d1 is non-negative, we
can sum over all q less than or equal to i � d1 C 1 (because otherwise the binomial
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coefficient
�

i�d1

q�1

�

is zero), and, since b2 has now disappeared from the upper bound in
the summation, the entry is seen to be a polynomial function in b2 after multiplication
with .�1/b2 . If, however i � d1 is negative, then

�

i�d1
q�1

�

is a polynomial in q after
multiplication with .�1/q, and so the summand

�

i � d1

q � 1

��

d1 � d2

j C n3 C a
2

C b2 C b3 C k2 � q

�

is a polynomial function in q. Using the fact that
Pb

iDa p.i/ is a polynomial function
in a and b if p.i/ is a polynomial in i , it follows that also in this case, the entry is a
polynomial function in b2 after multiplication with .�1/b2 .

2. Second block. b2 appears in the upper parameter as well as in the lower param-
eter of the binomial coefficient. As the upper parameter is non-negative, the symmetry
can be applied in order to remove b2 from the lower parameter.

3. As for the remaining blocks, the entries are always of the form
� s

b2Ct

�

where s <

b2 C t , which implies that these entries are polynomial functions after multiplication
with .�1/b2 .

Summarizing we see that, in order to transform the determinant formula into a
polynomial function in b2, we need to do the following:

• multiply with .�1/.n1Cn2Cn3C 3a
2

Cb1Ck2/b2 ;

• multiply the entries in the columns right of the column n3 C a
2

C b3 C k2 with
.�1/b2 , except for those in the second block.

Since there are n1 C n2 � n3 C a
2

C b1 � k2 columns right of the column n3 C a
2

C
b3 C k2, this is equivalent to the following:

• multiply only the entries in the second block right of the column n3 C a
2

C b3 C k2

with .�1/b2 .

Going back in our calculation and reintroducing a block with b2 rows, we obtain

.�1/.n1Cn2Cn3C 3a
2 Ck1/b1 det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M4 1 � i � n2

M6 1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d2

j �1�n3�b3

�

1 � i � a

�

n1�2k1Ci�d2

j �1�n3� a
2 �b3�k1

�

1 � i � b1

�

n1C a
2

Cb1Ck2Ci�d2

j �1�n3� a
2 �b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

;
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where

M6 WD .�1/Œj �n3C a
2

Cb3Ck2C1�b2

 

n2 C n3 C a C b1 C b3 C i � d2

j � 1

!

:

As for b3, a similar argument shows that we need to make the adjustment only in the
top block. This concludes the proof of the theorem.

4.4. Polynomiality in a

The purpose of this section is to modify the formula in Theorem 4.4 to reveal the
polynomiality of the underlying determinant in a. More specifically, we prove the
following theorem.

Theorem 4.5. Let

A D

0

B

B

B

B

B

B

B

B

B

B

@

M7 1 � i � n2

�

�n1Cn2Cn3CaCb2Cb3Ci�1
j �1

�

1 � i � n1

�

a
2

Ck2Ci�1

j �1�n3C2k2

�

1 � i � b3

0 1 � i � b1

0 1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

A

1�j �n3Cb3

where

M7 WD
�

i � n1 � b1 � 1

j � 1

�

C ..�1/b3 � 1/

j
X

pD1Cn3�2k2

�

i � n1 � a
2

� b1 � k2 � 1/

p � 1

��a
2

C k2

j � p

�

;

and

B 0 D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

M8 1 � i � n2

M9 1 � i � n1

0 1 � i � b3

.�1/j
�

a
2

Cb1Ck1�iCj �1

b1C2k1�i

�

1 � i � b1

�

a
2

Ck2Ci�1

2k2Ci�j

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;
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where

M8 WD .�1/j Cn3�1

�

n1 C n3 C a C b1 C b3 � i C j � 1

n1 C b1 � i

�

C ..�1/b1 � 1/.�1/j Cn3�1

j Cn3CaCb3
X

qDn3C a
2

Cb3Ck1C1

�

n1 � 2k1 � i C q � 1

n1 � 2k1 � i

�

�
�

j C n3 C a C b1 C b3 C 2k1 � q � 1

b1 C 2k1 � 1

�

and

M9 WD
�

�n1 C n2 C n3 C a C b2 C b3 C i � 1

�n1 C n2 C b2 C i � j

�

C..�1/b2 � 1/

�n1Cn2Cb2�2k2Ci
X

pD1

�

�n1Cn2Cn3C a
2

Cb2 C b3�k2Ci �1

�n1 C n2 C b2 � 2k2 C i � p

�

�
�

a
2

C k2

2k2 � j C p

�

;

and where the range of j in B 0 is 1 � j � n1 C n2 � n3 C b1 C b2. Then the number of

lozenge tilings of Sn1;n2;n3;a;b1;b2;b3;k1;k2;k2
is the absolute value of det.A j B 0/. The

determinant is obviously a polynomial in a since all matrix entries are polynomials

in a.

Proof. We need to eliminate the fourth block in the formula in Theorem 4.4. Note
that this formula can also be written up to sign as follows:

b3
Y

iD1

�n3�2k2
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2
Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2
Cb3Ck2

c6;i

� det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

.�1/Œj �1Cn3�2b2�b3M3 1 � i � n2

.�1/Œj �n3C a
2

Cb3Ck2C1�b2

�

c2;i �d2

j �1

�

1 � i � n1

�

c3;i �d2

j �1

�

1 � i � b3

�

c4;i �d2

j �1

�

1 � i � a

�

c5;i �d2

j �1

�

1 � i � b1

�

c6;i �d2

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n
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evaluated at

c1;i D i;

c2;i D n2 C n3 C a C b1 C b2 C b3 C i;

c3;i D n1 C a

2
C b1 C k2 C i;

c4;i D n1 C b1 C i;

c5;i D n1 � 2k1 C i;

c6;i D n1 C a

2
C b1 C k2 C i;

and

d1 D n1 � 2k1 C 1;

d2 D n1 C a

2
C b1 C k2 C 1:

We multiply the matrix underlying the determinant from the right with the upper
triangular matrix

��

d2�d3

j �i

��

1�i;j �n
with determinant 1. In block l , 3 � l � 6, the entry

is then replaced by
�cl;i �d3

j �1

�

. In the second block, we have

n
X

pD1

.�1/Œp�n3C a
2 Cb3Ck2C1�b2

�

c2;i � d2

p � 1

��

d2 � d3

j � p

�

D
�

c2;i � d3

j � 1

�

C ..�1/b2 � 1/

j
X

pDn3C a
2

Cb3Ck2C1

�

c2;i � d2

p � 1

��

d2 � d3

j � p

�

:

As for the top block, using

n3 C a

2
C b3 C k2 C 1 � n3 � 2k2 C 1

as well as the Chu–Vandermonde summation, we have

n
X

pD1

.�1/Œp�1Cn3�2k2Cb3�b3

�

c1;i � d2

p � 1

��

d2 � d3

j � p

�

C ..�1/b1Cb3 C .�1/1Cb3/
X

p�1;q�n3C a
2 Cb3Ck1C1

�

c1;i � d1

q � 1

��

d1 � d2

p � q

��

d2 � d3

j � p

�

D
�

c1;i � d3

j � 1

�

C ..�1/b3 � 1/

j
X

pD1Cn3�2k2

�

c1;i � d2

p � 1

��

d2 � d3

j � p

�

C ..�1/b1Cb3 � .�1/b3/

j
X

qDn3C a
2 Cb3Ck1C1

�

c1;i � d1

q � 1

��

d1 � d3

j � q

�

:
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We obtain up to sign the following:

det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M10 1 � i � n2

M11 1 � i � n1

�

c3;i �d3

j �1�n3C2k2

�

1 � i � b3

�

c4;i �d3

j �1�n3�b3

�

1 � i � a
�

c5;i �d3

j �1�n3� a
2

�b3�k1

�

1 � i � b1

�

c6;i �d3

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

;

where

M10 WD
�

c1;i � d3

j � 1

�

C ..�1/b3 � 1/

j
X

pD1Cn3�2k2

�

c1;i � d2

p � 1

��

d2 � d3

j � p

�

C..�1/b1Cb3 � .�1/b3/

j
X

qDn3C a
2 Cb3Ck1C1

�

c1;i � d1

q � 1

��

d1 � d3

j � q

�

and

M11 WD
�

c2;i � d3

j � 1

�

C ..�1/b2 � 1/

j
X

pDn3C a
2

Cb3Ck2C1

�

c2;i � d2

p � 1

��

d2 � d3

j � p

�

:

Evaluating at

c1;i D i; c2;i D n2 C n3 C a C b1 C b2 C b3 C i;

c3;i D n1 C a

2
C b1 C k2 C i; c4;i D n1 C b1 C i;

c5;i D n1 � 2k1 C i; c6;i D n1 C a

2
C b1 C k2 C i

gives

det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M12 1 � i � n2

M13 1 � i � n1

�

n1C a
2

Cb1Ck2Ci�d3

j �1�n3C2k2

�

1 � i � b3

�

n1Cb1Ci�d3

j �1�n3�b3

�

1 � i � a
�

n1�2k1Ci�d3

j �1�n3� a
2

�b3�k1

�

1 � i � b1

�

n1C a
2

Cb1Ck2Ci�d3

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

;
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where

M12 WD
�

i � d3

j � 1

�

C ..�1/b3 � 1/

j
X

pD1Cn3�2k2

�

i � d2

p � 1

��

d2 � d3

j � p

�

C ..�1/b1Cb3 � .�1/b3/

j
X

qDn3C a
2

Cb3Ck1C1

�

i � d1

q � 1

��

d1 � d3

j � q

�

and

M13 WD
�

n2 C n3 C a C b1 C b2 C b3 C i � d3

j � 1

�

C ..�1/b2 � 1/

j
X

pDn3C a
2

Cb3Ck2C1

�

n2 C n3 C a C b1 C b2 C b3 C i � d2

p � 1

�

�
�

d2 � d3

j � p

�

:

Now, we perform the replacement

d1 D n1 � 2k1 C 1; d2 D n1 C a

2
C b1 C k2 C 1;

and specify furthermore
d3 D n1 C b1 C 1:

We get

det

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M14 1 � i � n2

M15 1 � i � n1

�

a
2

Ck2Ci�1

j �1�n3C2k2

�

1 � i � b3

�

i�1
j �1�n3�b3

�

1 � i � a
�

�b1�2k1Ci�1

j �1�n3� a
2

�b3�k1

�

1 � i � b1

� a
2

Ck2Ci�1

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

;

where

M14 WD
�

i � n1 � b1 � 1

j � 1

�

C ..�1/b3 � 1/

j
X

pD1Cn3�2k2

�

i � n1 � a
2

� b1 � k2 � 1

p � 1

��a
2

C k2

j � p

�

C ..�1/b1Cb3 � .�1/b3/

j
X

qDn3C a
2

Cb3Ck1C1

�

i � n1 C 2k1 � 1

q � 1

��

�b1 � 2k1

j � q

�
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and

M15 WD
�

�n1 C n2 C n3 C a C b2 C b3 C i � 1

j � 1

�

C ..�1/b2 �1/

j
X

pDn3C a
2 Cb3Ck2C1

�

�n1 C n2 C n3 C a
2

C b2 C b3 � k2 C i � 1

p � 1

�

�
�

a
2

C k2

j � p

�

:

We can now eliminate the fourth block, and obtain up to sign

det

0

B

B

B

B

B

B

B

B

B

@

M14 1 � i � n2

M15 1 � i � n1
�

a
2 Ck2Ci�1

j �1�n3C2k2

�

1 � i � b3

�

�b1�2k1Ci�1

j �1�n3� a
2

�b3�k1

�

1 � i � b1

� a
2

Ck2Ci�1

j �1�n3� a
2

�b3�k2

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

A

;

where the range for j is
1 � j � n3 C b3

and
n3 C a C b3 C 1 � j � n:

Note that the entries vanish for 1 � j � n3 C b3 in blocks 4 and 5, as well as for
n3 C a C b3 C 1 � j � n in block 3. Also, for 1 � j � n3 C b3, the last sums for the
entries in block 1 and 2 vanish, since the upper parameter in the summation is less than
the lower parameter and therefore the lower parameter in the binomial coefficients

�

�b1 � 2k1

j � q

�

and

�a
2

C k2

j � p

�

are negative. Now, note that the n3 C b3 leftmost columns constitute the matrix A in
the statement of the theorem. The entries of A are obviously polynomials in a because
a appears only in the upper parameter of the binomial coefficients. We define

B D

0

B

B

B

B

B

B

B

B

B

@

M16 1 � i � n2

M17 1 � i � n1

0 1 � i � b3

�

�b1�2k1Ci�1
a
2

�k1Cj �1

�

1 � i � b1

� a
2

Ck2Ci�1
a
2

�k2Cj �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

A

;
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where

M16 WD
�

i � n1 � b1 � 1

j C n3 C a C b3 � 1

�

C ..�1/b3 � 1/

j Cn3CaCb3
X

pD1Cn3�2k2

�

i � n1 � a
2

� b1 � k2 � 1

p � 1

�

�
�

a
2

C k2

j C n3 C a C b3 � p

�

C ..�1/b1Cb3 � .�1/b3/

j Cn3CaCb3
X

qDn3C a
2 Cb3Ck1C1

�

i � n1 C 2k1 � 1

q � 1

�

�
�

�b1 � 2k1

j C n3 C a C b3 � q

�

and

M17 WD
�

�n1 C n2 C n3 C a C b2 C b3 C i � 1

j C n3 C a C b3 � 1

�

C ..�1/b2 � 1/

�
j Cn3CaCb3

X

pDn3C a
2 Cb3Ck2C1

�

�n1 C n2 C n3 C a
2

C b2 C b3 � k2 C i � 1

p � 1

�

�
�

a
2

C k2

j C n3 C a C b3 � p

�

and where 1 � j � n1 C n2 � n3 C b1 C b2. We know that

M.Hn1;n2;n3;a;b1;b2;b3;k1;k2;k2
/ D j det.A B/j:

The entry in the first block can be simplified as follows. We can extend the first sum
to all positive p as

�

a
2

C k2

j C n3 C a C b3 � p

�

vanishes for 1 � p � n3 � 2k2 C b3. Hence, by the Chu–Vandermonde summation,
the first sum evaluates to

�

i � n1 � b1 � 1

j C n3 C a C b3 � 1

�

;
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which can then be combined with the first term. We obtain

B D

0

B

B

B

B

B

B

B

B

B

@

M18 1 � i � n2

M17 1 � i � n1

0 1 � i � b3

�

�b1�2k1Ci�1
a
2 �k1Cj �1

�

1 � i � b1

� a
2

Ck2Ci�1
a
2

�k2Cj �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

A

;

where

M18 WD .�1/b3

�

i � n1 � b1 � 1

j C n3 C a C b3 � 1

�

C ..�1/b1Cb3 � .�1/b3/

j Cn3CaCb3
X

qDn3C a
2 Cb3Ck1C1

�

i � n1 C 2k1 � 1/

q � 1

�

�
�

�b1 � 2k1

j C n3 C a C b3 � q

�

:

However, using (4.7) as well as (4.8), B can also be written as follows

B D

0

B

B

B

B

B

B

B

B

B

@

M19 1 � i � n2

M20 1 � i � n1

0 1 � i � b3

.�1/
a
2 �k1Cj �1

�

a
2

Cb1Ck1�iCj �1

b1C2k1�i

�

1 � i � b1

�

a
2 Ck2Ci�1

2k2Ci�j

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

A

;

where

M19 WD .�1/j CaCn3�1

�

n1 C n3 C a C b1 C b3 � i C j � 1

n1 C b1 � i

�

C ..�1/b1 � 1/.�1/j Cn3Ca�1

j Cn3CaCb3
X

qDn3C a
2 Cb3Ck1C1

�

n1 � 2k1 � i C q � 1

n1 � 2k1 � i

�

�
�

j C n3 C a C b1 C b3 C 2k1 � q � 1

b1 C 2k1 � 1

�
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and

M20 WD
�

�n1 C n2 C n3 C a C b2 C b3 C i � 1

�n1 C n2 C b2 C i � j

�

C ..�1/b2 � 1/

�
�n1Cn2Cb2�2k2Ci

X

pD1

�

�n1 C n2 C n3 C a
2

C b2 C b3 � k2 C i � 1

�n1 C n2 C b2 � 2k2 C i � p

�

�
�

a
2

C k2

2k2 � j C p

�

:

Now, it can be seen that the entries are – up to some signs – polynomials in a. Since
a is even and we are only interested in the determinant up to sign, we can replace B

by B 0 from the statement of the theorem.

5. The case b1 D b2 D b3 D 0 for general n1; n2; n3

In this section we demonstrate how to compute the number of lozenge tilings of
Sn1;n2;n3;a;0;0;0;0;0;0 using the determinant from Theorem 4.5. This establishes a new
result – it gives the number of lozenge tilings of an arbitrary hexagon with a trian-
gular hole of the suitable size21 removed from a different position than in [18]. To
be precise, in the latter a triangular hole of side a was removed from the center of
the hexagon H of side-lengths n1, n2 C a, n3, n1 C a, n2, n3 C a (counterclockwise
from the southeastern edge), while in our result below the distances from the sides
of the triangular hole to the NW, NE and S sides of the hexagon are n1, n2 and n3,
respectively. One readily sees that this places the triangular hole inside the hexagon if
and only if n1 � n2 C n3, n2 � n1 C n3, and n3 � n1 C n2. The two positions agree
only if n1 D n2 D n3. For the formulation of the statement, recall that

M.Sn1;n2;n3;0;0;0;0;0;0;0/ D
n1
Y

i1D1

n2
Y

i2D1

n3
Y

i3D1

i1 C i2 C i3 � 1

i1 C i2 C i3 � 2
DW B.n1; n2; n3/

by MacMahon’s box formula [45].

Theorem 5.1. Let n1; n2; n3 be non-negative integers with n1 � n2 � n3 and n3 �
n1 C n2 and define the following monic polynomial Qn1;n2;n3

.a/ in a, given in its

factorized forms with only linear factors, with all the roots being negative integers,

Qn1;n2;n3
.a/ D

b.n1Cn3�1/=2c
Y

iDd.n1Cn2�1/=2e
.a C 2i C 1/2iC1�n3

b.n2Cn3�1/=2c
Y

iDb.n1Cn3�1/=2cC1

.a C 2i C 1/n1

21So, that the resulting region has the same number of up- and down-pointing unit triangles.
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�
b.n1Cn2Cn3�1/=2c

Y

iDb.n2Cn3�1/=2cC1

.a C 2i C 1/n1Cn2Cn3�2i�1

�
b.n1Cn2�2/=2c

Y

iDd.n1Cn2Cn3�2/=4e
.a C 2i C 1/4iC2�n1�n2�n3

�
min.b.n2Cn3�n1�1/=2c;b.n1Cn3/=2c/

Y

iDd.n1Cn2/=2e
.a C 2i/2i�n3

�
b.n1Cn3/=2c

Y

iDmax.d.n1Cn2/=2e;d.n2Cn3�n1/=2e/

.a C 2i/n2�n1

�
b.n2Cn3/=2c

Y

iDmax.d.n2Cn3�n1/=2e;d.n1Cn3C1/=2e/

.a C 2i/n2Cn3�2i

�
b.n2Cn3�n1�1/=2c

Y

iDd.n1Cn3C1/=2e
.a C 2i/n1

�
min.b.n1Cn2�1/=2c;b.n2Cn3�n1�1/=2c/

Y

iDd.n1Cn2Cn3/=4e
.a C 2i/4i�n1�n2�n3

�
b.n1Cn2�1/=2c

Y

iDmax.d.n2Cn3�n1/=2e;n1/

.a C 2i/2i�2n1

b.n2Cn3�1/=2c
Y

iDn2

.a C 2i/2i�2n2

�
n3
Y

iDd.n2Cn3/=2e
.a C 2i/2n3�2i

b.n1Cn2�n3/=2c
Y

iD1

.a C 2i/2i

�
b.n1Cn3�n2/=2c

Y

iDb.n1Cn2�n3/=2cC1

.a C 2i/n1Cn2�n3

�
min.b.n2Cn3�n1/=2c;n1/

Y

iDb.n1Cn3�n2/=2cC1

.a C 2i/2n1�2i

�
b.n1Cn2Cn3/=4c

Y

iDb.n2Cn3�n1/=2cC1

.a C 2i/n1Cn2Cn3�4i ; (5.1)

where unlike in (2.1) products are 1 if the range limits are out of order. Then

M.Sn1;n2;n3;a;0;0;0;0;0;0/ D Bn1;n2;n3

Qn1;n2;n3
.a/

Qn1;n2;n3
.0/

:
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Our proof approach is to apply Krattenthaler’s “identification of factors” method
[38, Section 2.4], which is in this case not complicated as the linear combinations
that prove the zeros22 turn out to be quite simple. The situation is somewhat similar
for M.Sn;n;n;a;b;b;b;k;k;k/: the linear combinations are as simple as those used in this
section. There the only additional complication lies in the more elaborate (block)
structure of the matrix. One important purpose of this section is to demonstrate on a
simpler example the procedure that will be used in a forthcoming paper to compute
M.Sn;n;n;a;b;b;b;k;k;k/ in general.

In the special case b1 D b2 D b3 D 0, Theorem 4.5 provides the following matrix,
whose determinant we need to compute:

Mn1;n2;n3
D
 

M0
1;1 M0

1;2

M0
2;1 M0

2;2

!

;

where

M0
1;1 WD

�

i � n1 � 1

j � 1

�

1�i�n2;1�j �n3

;

M0
1;2 WD .�1/j Cn3�1

�

n1 C n3 C a � i C j � 1

n1 � i

�

1�i�n2;1�j �n1Cn2�n3

;

M0
2;1 WD

�

�n1 C n2 C n3 C a C i � 1

j � 1

�

1�i�n1;1�j �n3

;

M0
2;2 WD

�

�n1 C n2 C n3 C a C i � 1

�n1 C n2 C i � j

�

1�i�n1;1�j �n1Cn2�n3

:

We set
Pn1;n2;n3

.a/ WD det.Mn1;n2;n3
/;

which is obviously a polynomial in a. In the next lemma, we compute an upper bound
for the degree of this polynomial. As we will see later, this will turn out to be in fact
the actual degree.

Lemma 5.2. Let n1; n2; n3 be non-negative integers. Then

dega Pn1;n2;n3
.a/ �

j2n1n2 C 2n1n3 C 2n2n3 � n2
1 � n2

2 � n2
3

4

k

:

Proof. We start by modifying the matrix applying a set of elementary row and column
operations. First we transform the bottom block consisting of the bottom n1 rows: we
subtract the second-to-last row from the last row, then the then the third to last row

22When the left-hand side is regarded as a polynomial in a.
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from the .n1 C n2 � 1/-st row etc. until we subtract the .n2 C 1/-st row from the
.n2 C 2/-nd row. We repeat this, but terminate with the subtraction of .n2 C 2/-nd
row from the .n2 C 3/-rd row. We repeat this loop n1 � 1 times where in every step
we perform one subtraction less than in the previous step. This way we arrive at the
matrix

Mn1;n2;n3
D
 

M00
1;1 M00

1;2

M00
2;1 M00

2;2

!

;

where

M00
1;1 WD

�

i � n1 � 1

j � 1

�

1�i�n2;1�j �n3

;

M00
1;2 WD .�1/j Cn3�1

�

n1 C n3 C a � i C j � 1

n1 � i

�

1�i�n2;1�j �n1Cn2�n3

;

M00
2;1 WD

�

�n1 C n2 C n3 C a

j � i

�

1�i�n1;1�j �n3

;

M00
2;2 WD

�

�n1 C n2 C n3 C a

�n1 C n2 C i � j

�

1�i�n1;1�j �n1Cn2�n3

:

Second we modify the right block consisting of the n1 C n2 � n3 rightmost columns.
We add the .n3 C 2/-nd column to the .n3 C 1/-st column, the .n3 C 3/-rd column
to the .n3 C 2/-nd column etc. until we add the .n1 C n2/-nd column to the
.n1 C n2 � 1/-st column. We repeat this, but terminate with the addition of the
.n1 C n2 � 1/-st column to the .n1 C n2 � 2/-nd column. We repeat this loop
n1 C n2 � n3 � 1 times where in every step we perform one addition less than in
the previous step. The result is the following matrix:

Mn1;n2;n3
D
 

M000
1;1 M000

1;2

M000
2;1 M000

2;2

!

;

M000
1;1 WD

�

i � n1 � 1

j � 1

�

1�i�n2;1�j �n3

;

M000
1;2 WD .�1/n1Cn2�1

�

n1 C n3 C a � i C j � 1

�n2 C n3 � i C j

�

1�i�n2;1�j �n1Cn2�n3

;

M000
2;1 WD

�

�n1 C n2 C n3 C a

j � i

�

1�i�n1;1�j �n3

;

M000
2;2 WD

�

2n2 C a � j

�n1 C n2 C i � j

�

1�i�n1;1�j �n1Cn2�n3

:
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Now, we find the maximal degree in a of the summands in the Leibniz formula of the
determinant: if we define the degree of the zero polynomial to be �1, then, in the
top left block of the matrix the degree of an entry is at most 0, in the top right block it
is at most �n2 C n3 � i C j , in the bottom left block it is at most j � i , while in the
bottom right block it is at most �n1 C n2 C i � j .

Let � be a permutation that maximizes the degree in a of the corresponding sum-
mand in the Leibniz formula of the determinant and suppose that this summand has
k entries from the bottom left block. As the degree is maximal in the top right corner
of this block, while in the bottom right block the degree is maximal in the bottom left
corner and in the top right block the degree is maximal in the top right corner, the k

entries coming from the bottom left block are situated in the top right square of size k

of this block. Furthermore, there are n1 � k entries from the bottom right block, and
they are situated in the bottom left square of size n1 � k in this block. Similarly, the
k C n2 � n3 entries from the top right block are situated in the top right square of size
k C n2 � n3. The upper bound for the degrees coming from these squares of size k,
n1 � k and k C n2 � n3, respectively, are the summands of the following expression:

k
X

iD1

.n3 C 1 � 2i/ C
n1�k
X

iD1

.n2 C 1 � 2i/ C
kCn2�n3
X

iD1

.n1 C 1 � 2i/

This expression is equal to

�3k2 C 3kn1 � n2
1 � 3kn2 C 2n1n2 � n2

2 C 3kn3 � n1n3 C 2n2n3 � n2
3:

The maximum of this expression is at k D n1�n2Cn3

2
. Note that we need to require

k � n1; n3, n1 � k � n1; n1 C n2 � n3 and k C n2 � n3 � n2; n1 C n2 � n3, which
in summary gives n3 � n2 � k � min.n1; n3/. As

n3 � n2 � n1 � n2 C n3

2
� min.n1; n3/;

which basically follows from nx � ny C nz if ¹x;y;zº D ¹1;2;3º (these are necessary
conditions for the removed triangle to be inside of the hexagon, see Figure 6), the
maximum is attained at bn1�n2Cn3

2
c and at dn1�n2Cn3

2
e. The maximum is then

�

2n1n2 C 2n1n3 C 2n2n3 � n2
1 � n2

2 � n2
3

4

�

D

8

ˆ

ˆ

<

ˆ

ˆ

:

2n1n2 C 2n1n3 C 2n2n3 � n2
1 � n2

2 � n2
3

4
if n1 C n2 C n3 � 0 mod 2,

2n1n2 C 2n1n3 C 2n2n3 � n2
1 � n2

2 � n2
3 � 3

4
if n1 C n2 C n3 � 1 mod 2.
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The identification of factors method uses the following principle (for details con-
sult [38, Section 2.4]). In order to prove that Pn1;n2;n3

.a/ has a zero at a D i of
multiplicity at least m, we need to find m independent linear combinations of the rows
(or columns) that vanish of the a D i specialization of Mn1;n2;n3

. Equivalently, we
need to find m independent vectors in the left (resp. right) kernel of this specialization
of Mn1;n2;n3

.
The odd zeros (i.e., the linear factors in (5.1) that become zero for odd values

of a) are dealt with in the following lemma. If A D .ai;j / is an m � n matrix, then
the d -th (forward) difference with respect to the rows is defined to be the following
.m � d/ � n matrix:

.�d
i ai;j /1�i�m�d;1�j �n

Clearly, the rows of this matrix are linear combinations of rows of the original matrix.
The definition is analogous for columns or operators different from �. Note that by
the binomial theorem, .�d

i ai;j /1�i�m�d;1�j �n is equal to the following product:

��

d

j � i

��

1�i�m�d
1�j �m

� .ai;j /
1�i�m
1�j �n

: (5.2)

Lemma 5.3. Let d � 0, and choose row indices 1 � i1 � n2 � d (top block) and

1 � i2 � n1 � d (bottom block). Assuming a D i1 � i2 � n2 � n3, i1 C i2 � n2 C
n3 C 1 .mod 2/, and i2 C n3 C d � i1 C n1, the i1-th row of the d -th difference with

respect to the rows in the top block is equal to the i2-th row of the d -th difference in

the bottom block.

Proof. This is obvious for the left block because if a D i1 � i2 � n2 � n3, as the i1-th
row of the top left block is equal to the i2-th row of the bottom left block, for all
i1 2 ¹1; 2; : : : ; n2º and i2 2 ¹1; 2; : : : ; n1º.

The general entry of the d -th difference of the right top block is

�d
i

�

n1 C n3 C a � i C j � 1

n1 � i

�

.�1/j Cn3C1

D .�1/j Cn3CdC1

�

n1 C n3 C a � i C j � 1 � d

n1 � i

�

;

while the general entry of the d -th difference of the right bottom block is

�d
i

�

�n1 C n2 C n3 C a C i � 1

�n1 C n2 C i � j

�

D
�

�n1 C n2 C n3 C a C i � 1

�n1 C n2 C i � j C d

�

:
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After setting a D i1 � i2 � n2 � n3, the entry in row i1 of the d -th difference in the
top-right block is equal to

.�1/j Cn3CdC1

�

n1 � i2 � n2 C j � 1 � d

n1 � i1

�

D .�1/j Cn3CdC1Cn1Ci1

�

�i1 C i2 C n2 � j C d

n1 � i1

�

assuming i1 � n2 � d and using (4.8), while the entry in row i2 of the d -th difference
in the bottom-right block is equal to
�

�n1 C i1 � 1

�n1 C n2 C i2 � j C d

�

D .�1/�n1Cn2Ci2�j Cd

�

�i1 C i2 C n2 � j C d

�n1 C n2 C i2 � j C d

�

:

The assertion now follows from the symmetry of the binomial coefficient (4.7). Note
that here we need the assumptions i2 C n3 C d � i1 C n1 (as the symmetry is only
true if the upper parameter of the binomial coefficient is non-negative) as well as
i1 C i2 � n2 C n3 C 1 .mod 2/ to have the right sign.

For d D 0, this lemma provides the following linear factors:
Y

1�i1�n2;1�i2�n1

i1Ci2�n2Cn3C1.mod 2/;i2Cn3�i1Cn1

.a � i1 C i2 C n2 C n3/

D
b.min.n1;n2/Cn3�1/=2c

Y

iDd.n1Cn2�1/=2e
.a C 2i C 1/2iC1�n3

�
b.max.n1;n2/Cn3�1/=2c

Y

iDmax.d.n1Cn2�1/=2e;b.min.n1;n2/Cn3�1/=2cC1/

.a C 2i C 1/min.n1;n2/

�
b.n1Cn2Cn3�1/=2c

Y

iDmax.d.n1Cn2�1/=2e;b.max.n1;n2/Cn3�1/=2cC1/

.a C 2i C 1/n1Cn2Cn3�2i�1:

Note that, for a fixed zero, the various linear combinations are linearly independent
because each of them involves only a pair of rows and a particular row appears in at
most one such linear combination.

Using our assumption n1 � n2 � n3, the above expression simplifies to

b.n1Cn3�1/=2c
Y

iDd.n1Cn2�1/=2e
.a C 2i C 1/2iC1�n3

b.n2Cn3�1/=2c
Y

iDb.n1Cn3�1/=2cC1

.a C 2i C 1/n1

�
b.n1Cn2Cn3�1/=2c

Y

iDb.n2Cn3�1/=2cC1

.a C 2i C 1/n1Cn2Cn3�2i�1:
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The degree of this product is

�

�
ln1 C n2 � 1

2

m

C
jn1 C n3 � 1

2

k

C 1
�

�
�ln1 C n2 � 1

2

m

C
jn1 C n3 � 1

2

k

� n3 C 1
�

C n1

�jn2 C n3 � 1

2

k

�
jn1 C n3 � 1

2

k�

C
�jn2 C n3 � 1

2

k

�
jn1 C n2 C n3 � 1

2

k�

�
�jn1 C n2 C n3 � 1

2

k

C
jn2 C n3 � 1

2

k

� n1 � n2 � n3 C 2
�

:

Now, we consider the case i2 C n3 > i1 C n1 in Lemma 5.3. To ensure no double
count, we assume that i2n3 C d � i1 C n1 is fulfilled with equality, so that the relevant
zero is d � n1 � n2. The parity condition is d � n1 C n2 C 1.mod 2/. As 1 � i1 �
n2 � d and 1 � i2 � n1 � d , we have the following linear factors:

Y

d�1
d�n1Cn2C1.2/

.a � d C n1 C n2/max.min.n2�d;n3/�max.1;1�n1Cn3Cd/C1;0/

D
b.n1Cn2�2/=2c

Y

iDd.n1Cn2Cn3�2/=4e
.a C 2i C 1/4iC2�n1�n2�n3 :

Also here it can be seen that, for a fixed zero, the various linear combinations are
linearly independent because, in addition to the argument given for d D 0, we make
use of the fact that the transformation matrix in (5.2) has full rank m � d . The degree
of the above product is

�

�
ln1 C n2 C n3 � 2

4

m

C
jn1 C n2 � 2

2

k

C 1
�

�
�

2
ln1 C n2 C n3 � 2

4

m

C 2
jn1 C n2 � 2

2

k

� n1 � n2 � n3 C 2
�

:

In the following lemma, we identify a set of even zeros.

Lemma 5.4. Let d � 0, and choose row indices 1 � i1 � n2 � d (top block) and

1 � i2 � n1 � d (bottom block). Assuming a D i1 � i2 � n2 � n3; i1 C i2 � n2 C
n3.mod 2/, n1 C 1 � i1 and �i1 C i2 � n1 C n3 C d � 0, the i1-th row of the d -th

difference in the top block is equal to the i2-th row of the d -th difference in the bottom

block.

Proof. The proof follows the proof of Lemma 5.3 up to some point: for the left block,
the assertion can be deduced in the same way because we have all assumptions needed
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also in this lemma. Further, we have seen that, after setting a D i1 � i2 � n2 � n3, the
entry in row i1 of the d -th difference in top-right block is equal to

.�1/j Cn3CdC1Cn1Ci1

�

�i1 C i2 C n2 � j C d

n1 � i1

�

;

which is zero since we assume n1 C 1 � i1, while the entry in row i2 of the d -th
difference in the bottom right block is equal to

.�1/�n1Cn2Ci2�j Cd

�

�i1 C i2 C n2 � j C d

�n1 C n2 C i2 � j C d

�

;

which is also zero because, by n1 C 1 � i1, the upper parameter is less than the lower
parameter, and, by �i1 C i2 � n1 C n3 C d � 0, the upper parameter is positive for
all j 2 ¹1; 2; : : : ; n1 C n2 � n3º.

For d D 0, we obtain the following factors:

min.b.n2Cn3�n1�1/=2c;b.n1Cn3/=2c/
Y

iDd.n1Cn2/=2e
.a C 2i/2i�n3

b.n1Cn3/=2c
Y

iDmax.d.n1Cn2/=2e;d.n2Cn3�n1/=2e/

.a C 2i/n2�n1

�
b.n2Cn3/=2c

Y

iDmax.d.n2Cn3�n1/=2e;d.n1Cn3C1/=2e/

.a C 2i/n2Cn3�2i

b.n2Cn3�n1�1/=2c
Y

iDd.n1Cn3C1/=2e
.a C 2i/n1

The degree of this product is

�

max
�ln1 C n3 C 1

2

m

;
l�n1 C n2 C n3

2

m�

�
jn2 C n3 C 2

2

k�

�
�

max
�ln1 C n3 C 1

2

m

;
l�n1 C n2 C n3

2

m�

�
ln2 C n3

2

m�

C
�

min
�jn1 C n3

2

k

;
j�n1 C n2 C n3 � 1

2

k�

� min
�ln1 C n2 � 2

2

m

;
j�n1 C n2 C n3 � 1

2

k��

�
�

min
�ln1 C n2

2

m

;
j�n1 C n2 C n3 C 1

2

k�

� max
�ln3 � n1

2

m

;
ln1 � n2 C n3 C 1

2

m��

C .n2 � n1/
�

max
�l�n1 C n2 C n3

2

m

;
jn1 C n3 C 2

2

k�

� max
�ln1 C n2

2

m

;
l�n1 C n2 C n3

2

m��

C n1

�j�n1 C n2 C n3 C 1

2

k

� min
�ln1 C n3 C 1

2

m

;
j�n1 C n2 C n3 C 1

2

k��

:



Lozenge tilings of hexagons with removed core and satellites 469

For d > 0, we obtain

min.b.n1Cn2�1/=2c;b.n2Cn3�n1�1/=2c/
Y

iDd.n1Cn2Cn3/=4e
.a C 2i/4i�n1�n2�n3

b.n1Cn2�1/=2c
Y

iDmax.d.n2Cn3�n1/=2e;n1/

.a C 2i/2i�2n1:

The degree is

�

max
�l�n1 C n2 C n3 � 2

2

m

;
jn1 C n2 � 1

2

k�

C max
�

�n1;
l�5n1 C n2 C n3

2

m��

�
�

max
�l�n1 C n2 C n3

2

m

;
jn1 C n2 C 1

2

k�

� max
�

n1;
l�n1 C n2 C n3

2

m��

C
�

min
�jn1 C n2 C 1

2

k

;
j�n1 C n2 C n3 C 1

2

k�

� min
�ln1 C n2 C n3

4

m

;
j�n1 C n2 C n3 C 1

2

k��

�
�

2 min
�ln1 C n2 C n3

4

m

;
j�n1 C n2 C n3 C 1

2

k�

C 2 min
�jn1 C n2 � 1

2

k

;
j�n1 C n2 C n3 � 1

2

k�

� n1 � n2 � n3

�

:

A related set of even zeros can be obtained as follows. We fix an integer t with
t � n2 C n3 .mod 2/, and consider the zero a D t � n2 � n3. From the proof of
Lemma 5.3, we know that the i1-th row in the top left block is equal to the i2-th row
in the bottom left block if we assume and t D i1 � i2 and a D t � n2 � n3. For each
such pair .i1; i2/, we produce a zero row in the left bottom block by subtracting the
i1-th row from the top block from the i2-th row in the bottom block. We consider
the submatrix of this new matrix that consists of the rows i2 that come from such
pairs .i1; i2/. From this matrix, we further exclude those rows i2 that come from pairs
.i1; i2/ that were already dealt with in Lemma 5.4. The dimension of the kernel of
this submatrix is a lower bound for the additional multiplicity of the zero (i.e., the
multiplicity not already covered by Lemma 5.4). If m is the number of rows, then
m � .n1 C n2 � n3/ is a lower bound for this dimension because n1 C n2 � n3 is the
number of columns in the right block and the left block is zero. It is a straightforward
to check that this results in the following factors:

b.n2Cn3�1/=2c
Y

iDn2

.a C 2i/2i�2n2

n3
Y

iDd.n2Cn3/=2c
.a C 2i/2n3�2i :
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The degree of this product is

ln2 � n3 � 2

2

mln2 � n3

2

m

C
j�n2 C n3 � 1

2

kj�n2 C n3 C 1

2

k

:

As for the remaining even zeros, we need the following lemma. It is useful to define
the following operator.

�xp.x/ D p.x C 1/ C p.x/

We refer to it as the anti-difference.

Lemma 5.5. Let d � 0. Assuming a D j1 � j2 � n3, j1 C j2 C n3 � 0 .mod 2/,

j1 � n2 � n1 C 1 and n2 � n1 C j1 C d � j2, the j1-th column of the d -th anti-

difference with respect to the columns in the left block is equal to the j2-th column

of the d -th anti-difference in the right block, provided that 1 � j1 � n3 � d and

1 � j2 � n1 C n2 � n3 � d .

Proof. The d -th anti-difference in the bottom left block is

�d
j

�

�n1 C n2 C n3 C a C i � 1

j � 1

�

D
�

�n1 C n2 C n3 C a C i � 1 C d

j � 1 C d

�

;

while it is
�

�n1 C n2 C n3 C a C i � 1 C d

�n1 C n2 C i � j

�

in the right bottom block. If we plug in a D j1 � j2 � n3, then we need to employ
the symmetry to show that the expressions are equal, which is possible as long as
n2 � n1 C j1 C d � j2. On the other hand, the d -th anti-difference in the top left
block is

�d
j

�

i � n1 � 1

j � 1

�

D
�

i � n1 � 1 C d

j � 1 C d

�

;

while the d -th anti-difference in the top right block is

�d
j .�1/j Cn3�1

�

n1 C n3 C a � i C j � 1

n1 � i

�

D .�1/j Cn3Cd�1

�

n1 C n3 C a � i C j � 1

n1 � i � d

�

:

After plugging in a D j1 � j2 � n3 and applying (4.8) to the entry in the top left
block, we see that we need to have

.�1/j1C1Cd

�

n1 C j1 � i � 1

j1 � 1 C d

�

D .�1/j2Cn3Cd�1

�

n1 C j1 � i � 1

n1 � i � d

�

:

By the symmetry, this is true if j1 � n2 � n1 C 1 and j1 C j2 C n3 � 0 .mod 2/.
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From this lemma, we can deduce the following linear factors if d D 0.

n3
Y

j1Dmax.1;n2�n1C1/

min.n2�n1Cj1;n1Cn2�n3/
Y

j2D1
j1Cj2Cn3�0 .2/

.a � j1 C j2 C n3/

D
b.n1Cn2�n3/=2c

Y

iD1

.a C 2i/2i

b.n1Cn3�n2/=2c
Y

iDb.n1Cn2�n3/=2cC1

.a C 2i/n1Cn2�n3

�
min.b.n2Cn3�n1/=2c;n1/

Y

iDb.n1Cn3�n2/=2cC1

.a C 2i/2n1�2i (5.3)

The degree of this product is

�

min
�

0;
j�3n1 C n2 C n3

2

k�

C
j�n1 � n2 C n3 C 2

2

k�

�
�jn1 � n2 C n3

2

k

� min
�

n1;
j�n1 C n2 C n3

2

k��

C
jn1 C n2 � n3

2

kjn1 C n2 � n3 C 2

2

k

C .n1 C n2 � n3/
�jn1 � n2 C n3

2

k

�
jn1 C n2 � n3

2

k�

:

For d > 0, we obtain

b.n1Cn2Cn3/=4c
Y

iDb.n2Cn3�n1/=2cC1

.a C 2i/n1Cn2Cn3�4i : (5.4)

The degree of this product is
�j�n1 C n2 C n3

2

k

� max
�j�n1 C n2 C n3

2

k

;
jn1 C n2 C n3

4

k��

�
�

2 max
�j�n1 C n2 C n3

2

k

;
jn1 C n2 C n3

4

k�

C 2
j�n1 C n2 C n3 C 2

2

k

� n1 � n2 � n3

�

:

The even zeros coming from Lemma 5.5 are distinct from those that were identi-
fied before. It can be checked that the former factors are of the form .a C 2i/ with
i � min.bn1Cn2Cn3

4
c; n1/,23 while the latter are of the form .a C 2i/ again with

23To see that i � n1 in (5.3), recall that n1 � n2 � n3 and n3 � n1 C n2. As for (5.4),
n1 > b.n1 C n2 C n3/=4c, would imply b.n2 C n3 � n1/=2c C 1 > b.n1 C n2 C n3/=4c, and
so the product is empty.
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n1CmCaCbCc

n2

n3

b

a

n2

n3

m

n1

n1
m

c

c

m

b

m

m

m m

m

Figure 9. The region Qn1;n2;n3
.m C a C b C c/ (solid contour, three thicker contour lobes –

equivalently, big light shaded triangle – removed) and the region SC 0
n1;n2;n3

.a; b; c; m/ (dotted
contour, shaded four-lobed shamrock removed) for n1 D 3, n2 D 5, n3 D 6, m D 2, a D 3,
b D 1 and c D 2. The latter is obtained from the former by regarding the former region as
Sn1;n2;n3;aCbCcCm;0;0;0;0;0;0, and squeezing in the top lobe m units.

i > min.bn1Cn2Cn3

4
c; n1/. Now, it remains to show that the degrees of the various

factors add up to the upper bound for the total degree as computed in Lemma 5.2 and
to provide one additional evaluation. The former is a tedious but straightforward com-
putation distinguishing several cases taking into the remainder of the ni ’s modulo 4

and certain linear inequalities (which can be assisted by a computer algebra system).
The additional evaluation is provided by a D 0 because then the result is equivalent
to MacMahon’s formula for the number of plane partitions in an n1 � n2 � n3-box. It
is straightforward to check that this leads to the leading coefficient in a displayed in
formula (5.1). This completes the proof of Theorem 5.1.

Remark 5.1. As mentioned above, Theorem 5.1 establishes a counterpart of the main
result of [18], in which the removed triangle is not in the center of the hexagon, but in
a new position (the two positions agree only if n1 D n2 D n3). Using [24, Theorem 1],
one can deduce from Theorem 5.1 above a more general result. Namely, we can allow,
instead of just the triangular hole, to have a more general hole shape, consisting of a
triangle with three other triangles of the opposite orientation touching its vertices
(what is called a shamrock in [23]).
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Theorem 5.6. Let SC 0
n1;n2;n3

.a; b; c; m/ be the region obtained from the hexagon of

sides n1 C a C b C c, n2 C m, n3 C a C b C c, n1 C m, n2 C a C b C c, n3 C m

(clockwise from top) by removing a shamrock of core size m and lobe sizes a, b, and c

(counterclockwise from top; see [15, Figure 2.1] for an illustration of a shamrock),

placed in such a way that the top, left and right lobes are at distances n1, n2 and n3

from the top, southwestern and southeastern sides of the hexagon, respectively. Then

we have

M.SC 0
n1;n2;n3

.a; b; c; m//

M.Sn1;n2;n3;aCbCcCm;0;0;0;0;0;0/

D H.m/3 H.a/ H.b/ H.c/

H.m C a/ H.m C b/ H.m C c/

H.n1 C a/ H.n2 C n3 � n1 C b C c C m/

H.n1 C a C m/ H.n2 C n3 � n1 C b C c/

� H.n2 C b/ H.n1 C n3 � n2 C a C c C m/

H.n2 C b C m/ H.n1 C n3 � n2 C a C c/

� H.n3 C c/ H.n1 C n2 � n3 C a C b C m/

H.n3 C c C m/ H.n1 C n2 � n3 C a C b/
; (5.5)

where H.n/ D 0Š1Š : : : .n � 1/Š, and the denominator is given by Theorem 5.1.

For the special case of a bowtie this was also conjectured by Won Hyok Kim. This
will be presented in his master thesis prepared under the supervision of the second
author, along with a proof that reduces everything to proving some hypergeometric
identities.

Proof. Consider the region Sn1;n2;n3;aCbCcCm;0;0;0;0;0;0 (in Figure 9, it is the hexagon
in the solid contour, with the lightly shaded equilateral triangle removed). Note that
the number of lozenge tilings does not change if instead of the equilateral triangle
of side-length a C b C c C m we remove three equilateral triangles of side-lengths
a C m, b and c touching at a common point, as shown in Figure 9. Indeed, the removal
of these three triangles forces several lozenges to be part of every tiling; the union of
the three holes and the forced lozenges is precisely the original equilateral triangle of
side-length m C a C b C c.

Regard Sn1;n2;n3;aCbCcCm;0;0;0;0;0;0 as a triad hexagon region of the kind con-
sidered in [24] (each of the three bowties consists in this case just of their outside
lobe, and they touch at the common point). Apply the bowtie squeezing operation
of [24] to the top lobe, squeezing it in m units. The resulting region is readily seen
to be precisely SC 0

n1;n2;n3
.a; b; c; m/. [24, Theorem 1] expresses then the ratio of

M.SC 0
n1;n2;n3

.a;b; c;m// and M.Sn1;n2;n3;aCbCcCm;0;0;0;0;0;0/ as a conceptual prod-
uct expression involving hyperfactorials evaluated at various natural distances within
these regions. All the relevant distances can be read off from Figure 9. One is lead to
formula (5.5).
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6. A determinantal formula of dimension a C b1 C b2 C b3 for even bi

The purpose of this section is to employ an idea that has been used in Section 4 to
derive a determinantal formula for M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

/ when b1; b2; b3 are
even, such that the underlying matrix is of size a C b1 C b2 C b3. This allows us
to reduce the proof of our formula for M.Sn;n;n;a;b;b;b;k;k;k/ for any concrete even
values of a and b to verifying certain hypergeometric identities. This shows, from a
different point of view, the advantage of our new method.

More specifically, the entries of the determinants are hypergeometric 3F2 series.
Verifying the hypergeometric identities can be accomplished by computer algebra
packages such as HYP [37]. The matrix entries of neighboring columns are related
by so-called contiguous relations for hypergeometric series. The same applies to
neighboring rows within the same “homogeneous block,” so the verification of the
hypergeometric identities amounts to applying such relations.

Theorem 6.1. If a, b1, b2 and b3 are even, then

M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3
/

D
n1
Y

iD1

�

n2 C n3 C a C b1 C b2 C b3 C i � 1

n2

� aCb1Cb2Cb3Cn1
Y

j D1

�

j C n2 � 1

j � 1

��1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

det

0

B

B

B

@

S1 1 � i � b3

S2 1 � i � a

S3 1 � i � b1

S4 1 � i � b2

1

C

C

C

A

1�j �aCb1Cb2Cb3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; (6.1)

where

S1 WD
X

l�1

�

n1 C a
2

C b1 C k3 C i � 1

l C n2 � n3 C 2k3 � 1

��

l C n2 � 1

l � 1

��

�n3 � a � b1 � b2 � b3

j C n1 � l

�

;

S2 WD
X

l�1

�

n1 C b1 C i � 1

l C n2 � n3 � b3 � 1

��

l C n2 � 1

l � 1

��

�n3 � a � b1 � b2 � b3

j C n1 � l

�

;

S3 WD
X

l�1

�

n1 � 2k1 C i � 1

l C n2 � n3 � a
2

� b3 � k1 � 1

��

l C n2 � 1

l � 1

�

�
�

�n3 � a � b1 � b2 � b3

j C n1 � l

�

;

S4 WD
X

l�1

�

n1 C a
2

C b1 C k2 C i � 1

l C n2 � n3 � a
2

� b3 � k2 � 1

��

l C n2 � 1

l � 1

�

�
�

�n3 � a � b1 � b2 � b3

j C n1 � l

�

:
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Proof. The starting point is again (4.4), where we now eliminate the top two blocks.
By setting d D 1 and plugging in c1;i D i , we see that M.Sn1;n2;n3;a;b1;b2;b3;k1;k2;k3

/

is equal to

ˇ

ˇ

ˇ

b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2 Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2 Cb3Ck2

c6;i
det B

ˇ

ˇ

ˇ; (6.2)

where

B WD

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

i�1
j �1

�

1 � i � n2

�

c2;i �1

j �1

�

1 � i � n1

�

c3;i �1

j �1

�

1 � i � b3

�

c4;i �1

j �1

�

1 � i � a
�

c5;i �1

j �1

�

1 � i � b1

�

c6;i �1

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n

;

and where

c2;i D n2 C n3 C a C b1 C b2 C b3 C i;

c3;i D n1 C a

2
C b1 C k3 C i;

c4;i D n1 C b1 C i;

c5;i D n1 � 2k1 C i;

c6;i D n1 C a

2
C b1 C k2 C i

and
n D n1 C n2 C a C b1 C b2 C b3:

The only non-zero entry in the first row is in the first column, and so we expand with
respect to this row. After having performed this reduction, the new first row has the
same property. We can keep expanding until we have deleted the top block. We then
set

c2;i D n2 C n3 C a C b1 C b2 C b3 C i

and obtain that the expression whose absolute value is taken in (6.2) equals

b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2
Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2
Cb3Ck2

c6;i
det C;
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where

C WD

0

B

B

B

B

B

B

B

B

B

B

B

@

�

n2Cn3CaCb1Cb2Cb3Ci�1
j �1

�

1 � i � n1

�

c3;i �1

j �1

�

1 � i � b3

�

c4;i �1

j �1

�

1 � i � a
�

c5;i �1

j �1

�

1 � i � b1

�

c6;i �1

j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

A

n2C1�j �n

:

Shifting j , this becomes

b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2
Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2
Cb3Ck2

c6;i
det D;

where

D WD

0

B

B

B

B

B

B

B

B

B

B

B

@

�

n2Cn3CaCb1Cb2Cb3Ci�1
j Cn2�1

�

1 � i � n1

�

c3;i �1

j Cn2�1

�

1 � i � b3

�

c4;i �1

j Cn2�1

�

1 � i � a
�

c5;i �1

j Cn2�1

�

1 � i � b1

�

c6;i �1

j Cn2�1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

C

A

1�j �n�n2

Taking out the factor
�

n2Cn3CaCb1Cb2Cb3Ci�1
n2

�

from row i , 1 � i � n1, as well as

the factor
�

j Cn2�1
j �1

��1
from column j , 1 � j � n � n2, this is equal to

n1
Y

iD1

�

n2 C n3 C a C b1 C b2 C b3 C i � 1

n2

� n�n2
Y

j D1

�

j C n2 � 1

j � 1

��1

�
b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2
Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2
Cb3Ck2

c6;i
det E; (6.3)

where

E WD

0

B

B

B

B

B

B

B

B

B

B

@

�

n3CaCb1Cb2Cb3Ci�1
j �1

�

1 � i � n1

�

c3;i �1

j Cn2�1

��

j Cn2�1
j �1

�

1 � i � b3

�

c4;i �1

j Cn2�1

��

j Cn2�1
j �1

�

1 � i � a
�

c5;i �1

j Cn2�1

��

j Cn2�1
j �1

�

1 � i � b1
�

c6;i �1

j Cn2�1

��

j Cn2�1
j �1

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

A

1�j �n�n2

:
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Now, we multiply the matrix underlying the determinant in (6.3) on the right by

��

�n3 � a � b1 � b2 � b3

j � i

��

1�i;j �n�n2

;

which is a matrix that has determinant 1. We obtain that expression (6.3) is equal to

n1
Y

iD1

�

n2 C n3 C a C b1 C b2 C b3 C i � 1

n2

� n�n2
Y

j D1

�

j C n2 � 1

j � 1

��1

�
b3
Y

iD1

�n3�2k3
c3;i

a
Y

iD1

�n3Cb3
c4;i

b1
Y

iD1

�
n3C a

2 Cb3Ck1

c5;i

b2
Y

iD1

�
n3C a

2 Cb3Ck2

c6;i
det F; (6.4)

where

F WD

0

B

B

B

B

B

B

B

B

B

B

@

�

i�1
j �1

�

1 � i � n1

P

l�1

�

c3;i �1

lCn2�1

��

lCn2�1
l�1

��

�n3�a�b1�b2�b3

j �l

�

1 � i � b3

P

l�1

�

c4;i �1

lCn2�1

��

lCn2�1
l�1

��

�n3�a�b1�b2�b3

j �l

�

1 � i � a

P

l�1

�

c5;i �1

lCn2�1

��

lCn2�1
l�1

��

�n3�a�b1�b2�b3

j �l

�

1 � i � b1

P

l�1

�

c6;i �1

lCn2�1

��

lCn2�1
l�1

��

�n3�a�b1�b2�b3

j �l

�

1 � i � b2

1

C

C

C

C

C

C

C

C

C

C

A

1�j �n�n2

:

We now eliminate the top block as before, apply the difference operators and special-
ize the ct;i ’s. Then expression (6.4) becomes

n1
Y

iD1

�

n2 C n3 C a C b1 C b2 C b3 C i � 1

n2

� n�n2
Y

j D1

�

j C n2 � 1

j � 1

��1

det G ;

where

G WD

0

B

B

B

B

B

@

G1 1 � i � b3

G2 1 � i � a

G3 1 � i � b1

G4 1 � i � b2

1

C

C

C

C

C

A

n1C1�j �n�n2

;

and

G1 WD
X

l�1

�

n1 C a
2

C b1 C k3 C i � 1

l C n2 � n3 C 2k3 � 1

��

l C n2 � 1

l � 1

��

�n3 � a � b1 � b2 � b3

j � l

�

;

G2 WD
X

l�1

�

n1 C b1 C i � 1

l C n2 � n3 � b3 � 1

��

l C n2 � 1

l � 1

��

�n3 � a � b1 � b2 � b3

j � l

�

;
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nCb

a

b

b

Figure 10. Applying equation (7.4) to the region Sn;a;b;k (left; here n D 3, a D 2, b D 2 and
k D 1). The region whose planar dual is G1 (right; the dotted portions of the boundary are glued
together).

G3 WD
X

l�1

�

n1 � 2k1 C i � 1

l C n2 � n3 � a
2

� b3 � k1 � 1

��

l C n2 � 1

l � 1

�

�
�

�n3 � a � b1 � b2 � b3

j � l

�

;

G4 WD
X

l�1

�

n1 C a
2

C b1 C k2 C i � 1

l C n2 � n3 � a
2

� b3 � k2 � 1

��

l C n2 � 1

l � 1

�

�
�

�n3 � a � b1 � b2 � b3

j � l

�

:

Shifting j we arrive at formula (6.1) in the statement.

7. The leading coefficient in a for even b

Lemma 7.1. For a and b even we have

M.Sn;a;b;k/ D det. zU C zB/ det.� zU C zB/ det.�2 zU C zB/; (7.1)

where

� D �1

2
C

p
�3

2
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is a cubic root of unity, and zU and zB are .n C 2b/ � .n C 2b/ matrices given by24

zU D

"

InCb OnCb;b

Ob;nCb Ob;b

#

(7.2)

(where Im stands for the order m identity matrix, and Om;p for the m � p zero matrix)

and

zB D

aCiCj 2
j 1

1 i;j nCb

a
2 CkCi 1

2kCj 1 1 i nCb
1 j b

nCaCbCj 1
j i

1 i b
1 j nCb

nC
a
2 CbCk

2kCj i 1 i;j b

: (7.3)

Proof. We use Jockusch’s factorization theorem [33, Theorem 3] for plane bipartite
graphs that are invariant under rotation by 2�=k, for some positive integer k. For
k D 3, it states the following fact. Let r be the rotation of the plane by 120ı around
the origin, and let G be a plane bipartite graph invariant under r . Then, if r is color
preserving (maps vertices in a bipartition class to the same class) and does not fix any
vertex of G, we have

M.G/ D M.G1/ M� .G1/ M�2.G1/; (7.4)

where G1 is the orbit graph of G under the action of the rotation r , and Mu.G1/

is the weighted count25 of the perfect matchings of the graph G1 with each edge e

weighted by ucr.e/ (cr.e/, the crossing number of the edge e, is the signed count26 of
the number of times the edge crosses one of B , r.B/, r2.B/, where B is a branch cut
in the plane).

Choose G to be the planar dual27 graph of the satellite region Sn;a;b;k, and choose
the branch cut B as indicated on the left in Figure 10. Apply (7.4). To finish the proof,

24We use zU instead of the more natural zI in order to avoid having the notation for the matrix
look too much like the subsets I of Œn�, which appear frequently in this section.

25I.e., the sum of the weights of all the perfect matchings of G1, where the weight of a
matching is the product of the weights of its edges.

26Count C1 each time the path traversing e from its white endpoint to its black endpoint
crosses one of B , r.B/, r2.B/ in the counterclockwise direction, and �1 each time a crossing
in the clockwise direction occurs.

27The planar dual graph of a lattice region R on the triangular lattice has a vertex for each
unit triangle inside R, and two vertices are connected by an edge if and only if the corresponding
unit triangles share an edge.
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it suffices to show that for the resulting orbit graph G1 and weighted counts M� and
M�2 we have

M.G1/ D det. zU C zB/; (7.5)

M� .G1/ D �nCb det.�2 zU C zB/; (7.6)

M�2.G1/ D �2.nCb/ det.� zU C zB/: (7.7)

Indeed, equation (7.1) follows then from equation (7.4).
To prove (7.5), note that zB is the Gessel–Viennot matrix for the fundamental

region of Sn;a;b;k shown on the right in Figure 10 when one encodes its lozenge
tilings by paths of lozenges connecting horizontal unit segments on its boundary, and
one lets each of the n C b lozenges straddling the lower (resp., upper) dotted line
contribute a starting (resp., ending) unit segment.

More precisely, the upper horizontal edge for a lozenge straddling the lower dotted
line is a starting unit segment, and the lower horizontal edge of a lozenge straddling
the upper dotted line is an ending unit segment for a path of lozenges. List the starting
unit segments starting with the ones along the lower dotted line, ordered from top
down, and continuing with the ones along the base, ordered from right to left. List
the ending unit segments starting with the ones along the upper dotted line, ordered
from bottom up, and continuing with the ones along the base of the satellite, ordered
from right to left. Then one readily checks that the resulting Gessel–Viennot matrix is
precisely zB .

The perfect matchings of G1 can be viewed as lozenge tilings of the fundamental
region of Sn;a;b;k (under the action of r ; see the picture on the right in Figure 10) in
which the sets of lozenges straddling the two dotted lines are images of one another
under r . By the Lindström–Gessel–Viennot theorem (the form in [18, Lemma 14] is
most useful here; since b is even, the permutations determined by families of non-
intersecting lattice paths connecting the starting points to the ending points all have
the same sign), the number of such lozenge tilings in which the straddling lozenges
are in positions i1; : : : ; is is equal to the principal minor of zB containing the rows and
columns of indices ¹i1; : : : ; isº [ ¹n C b C 1; : : : ; n C 2bº. It follows that28

M.G1/ D
X

I�ŒnCb�

det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº : (7.8)

However, the right-hand side above is equal to det. zU C zB/ by equation (7.10) below.
This proves (7.5).

28As is customary, we write Œn� for the set ¹1; 2; : : : ; nº, and AJ
I

for the submatrix of A

obtained by selecting the rows with indices in I and the columns with indices in J .
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The weighted perfect matchings counted by M� .G1/ correspond to lozenge tilings
of the fundamental region of Sn;a;b;k in which each tiling is weighted by �l , where
l is the number of lozenges straddling one of the dotted lines. The same argument
deduces then (7.6) from (7.12). Equation (7.7) follows the same way from (7.11).

Since all entries of the matrix zB are polynomials in a, it follows by Lemma 7.1
that, for any fixed n, b and k with b even, M.Sn;a;b;k/ is the polynomial in a given
by the right-hand side of (7.1). The purpose of this section is to determine the degree
and the leading coefficient of this polynomial. This is accomplished in the following
result.

Proposition 7.2. For b even, the degree of M.S2n;2a;b;k/ regarded as a polynomial

in a is 3.n2 C 2bk/, and its leading coefficient is

° 1

2n2�nC2k

1
�b

2
C n � k C 1

2

�

k

�

1
2

�

n�k

�
h

n�k�1
Y

iD1

1
�

1
2

�

i

k
Y

iD1

1
�

1
2

�

i
.2i/b�1

�

i C b�1
2

�

n�k

i2±3

: (7.9)

Therefore, when regarded as polynomials in a, M.S2n;2a;b;k/ and the formula for

it that follows from Conjecture 2.2 and Theorem 2.3 have the same degree and the

same leading coefficient.

Proof. The first factor on the right-hand side of (7.1) can be written as

det. zU C zB/ D
X

I�ŒnCb�

det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº (7.10)

(in other words, det. zU C zB/ is equal to the sum of the determinants of all principal
minors of zB which contain the last b rows and columns). To see this, regard each of
the first n C b columns of zU C zB as being the sum of the corresponding column of zU
with the corresponding column of zB , and use the fact that the determinant is a linear
function.

By the same argument, we also have

det.� zU C zB/ D
X

I�ŒnCb�

�nCb�jI j det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº (7.11)

and

det.�2 zU C zB/ D
X

I�ŒnCb�

�2.nCb�jI j/ det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº : (7.12)
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Since all entries of zB are polynomials in a, it follows that each summand in (7.10)
is also so. By Lemma 7.3 below, for the summand corresponding to the index set
I D ¹i1; : : : ; isº � Œn C b�, the degree in a satisfies

dega det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº � .i1 � 1/ C .i2 � 2/ C � � � C .is � s/ C 2bk � bs:

(7.13)
For fixed s, the bound on the right-hand side of (7.13) attains its maximum only

for
¹i1; : : : ; isº D ¹n C b � s C 1; : : : ; n C bº;

when it is readily seen to equal 2bk C s.n � s/. In turn, for even n (note that the
n-parameter in the statement of Proposition 7.2 is even), this is maximum only for
s D n=2. Therefore, for all subsets ¹i1; : : : ; isº � Œn C b�, we have

.i1 � 1/ C .i2 � 2/ C � � � C .is � s/ C 2bk � bs � 2bk C
�n

2

�2

; (7.14)

with equality attained only if s D n=2 and

¹i1; : : : ; in=2º D ¹n=2 C b C 1; : : : ; n C bº:

By equation (7.10), it follows that det. zU C zB/ has degree at most 2bk C . n
2
/2.

However, since Mr.Sn;a;b;k/ D M.G1/, where G1 is the orbit graph in the proof
of Lemma 7.1, equation (7.5) implies

Mr.Sn;a;b;k/ D det. zU C zB/: (7.15)

Thus, as a simple calculation shows, it follows from Theorem 2.3 that the degree
of det. zU C zB/ is actually equal to 2bk C . n

2
/2. This can only happen if, for the

unique index set I0 for which equality is attained in (7.14), we have in fact that the
degree in a of det B

I0[¹nCbC1;:::;nC2bº
I0[¹nCbC1;:::;nC2bº is equal to 2bk C . n

2
/2. In each of the sums

on the right-hand side in (7.10)–(7.12), the term corresponding to this index I0 has
degree 2bk C . n

2
/2, while the degree in a of all remaining terms is strictly smaller.

This implies that det.�i zI0 C zB/ has degree equal to 2bk C . n
2
/2, for i D 1; 2; 3. The

claim about the degree of the leading term in Proposition 7.2 follows then from the
factorization of Lemma 7.1.

By Lemma 7.1, for a and b even, the leading coefficient of M.Sn;a;b;k/ (when
regarded as a polynomial in a) is equal to the product of the leading coefficients of
the three factors. By formulas (7.11)–(7.12), for i D 1; 2, the leading coefficient in
det.�i zU C zB/ is equal to �i.nCb�jI0j/ times the leading coefficient in det. zU C zB/.
The latter can be read off directly from Theorem 2.3, and since ��2 D 1, the claim
about the leading coefficient in Proposition 7.2 follows.

The last claim in the statement follows readily by comparing (7.9) with the product
formula for M.S2n;2a;b;k/ implied by Conjecture 2.2 and Theorem 2.3.
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n n

b 2k

a
2 k

nCaC3b nCaC3b

n

n

Figure 11. Obtaining equations (7.17)–(7.19) (illustrated on Sn;a;b;k for n D 6, a D 4, b D 2,
k D 1).

Lemma 7.3. Let b be even. If zU and zB are given by (7.2) and (7.3), for any index set

I D ¹i1; : : : ; isº � Œn C b�, the degree in a of the polynomial det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº

satisfies the inequality

dega det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº

� .i1 � 1/ C .i2 � 2/ C � � � C .is � s/ C 2bk � bs: (7.16)

Proof. Let RI be the region obtained from the fundamental region29 of Sn;a;b;k deter-
mined by the dashed rays in Figure 11 by removing the lozenges that straddle those
rays and are at distances i1; : : : ; is from the core (Figure 11 illustrates this for I D
¹3; 6; 7º). Encoding the lozenge tilings of RI by families of non-intersecting paths of
lozenges that connect the horizontal unit segments on the boundary of RI (including
the b such unit segments on the bottom of the left satellite), we obtain by applying the
Lindström–Gessel–Viennot theorem (and using that b is even) that

det zBI[¹nCbC1;:::;nC2bº
I[¹nCbC1;:::;nC2bº D M.RI /: (7.17)

If we instead encode the lozenge tilings of RI by families of non-intersecting
paths of lozenges that connect the northwest/southeast going unit segments of the
boundary of RI , and perform Laplace expansion in the determinant of the resulting

29Under the action of rotation by 120 degrees.
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a
2

k

a
2

kCi 00
1

a
2

kCi 00
2k

i 0
1 i 0

2 i 0
b

2k

b

Figure 12. The region HI 0 (rotated clockwise by 120ı compared to Figure 11) for a D 14,
b D 6, k D 3 and I 0 D ¹1; 2; 6; 8; 9; 12º.

Gessel–Viennot matrix G along the rows corresponding to the b starting segments on
the northeastern side of the satellite, we claim that we obtain

M.RI / D ˙
X

¹i 0
1

<���<i 0
b

º�ŒnCb�nI

.�1/i 0
1
C���Ci 0

b M.HI 0/ M.RI;I 0/; (7.18)

where I 0 D ¹i 0
1; : : : ; i 0

b
º, and HI 0 and RI;I 0 are the regions described as follows. HI 0 is

the region “spanned” by the b unit segments on the northeastern side of the left satel-
lite and the b unit segments of the top dashed ray that are at distances i 0

1; : : : ; i 0
b

from
the core – i.e., the region consisting of the union of all possible paths of lozenges that
start at the former and end at the latter b unit segments. RI;I 0 is the region obtained
from RI by filling back in the satellite hole, and making b more dents along the top
dashed ray, at distances i 0

1; : : : ; i 0
b

from the core (so RI;I 0 has s dents along the bottom
dashed ray, and s C b dents along the top dashed ray).

Indeed, the described Laplace expansion yields first an equality like (7.18) with
the two tiling counts in the summand replaced by the determinants of two complemen-
tary submatrices of G. However, these submatrices are in their turn Gessel–Viennot
matrices, and it is not hard to see that they correspond precisely to the above defined
regions HI 0 and RI;I 0 , when their tilings are encoded by families of non-intersecting
paths of lozenges that connect the southwest/northeast facing unit segments of their
boundary. Therefore, by the Lindström–Gessel–Viennot theorem, each of the two
determinants is equal to the corresponding tiling count, yielding (7.18).

Now, switch again the direction of the paths, and encode the tilings of RI;I 0 by
paths of lozenges that connect the horizontal unit segments of its boundary. Things
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simplify if we replace RI;I 0 by R0
I;I 0 , the region obtained from RI;I 0 by adding a

down-pointing dented triangle of side b along its base, with b dents along its south-
eastern side (see Figure 11). Then clearly M.RI;I 0/ D M.R0

I;I 0/, and the mentioned
encoding gives

M.RI;I 0/ D M.R0
I;I 0/ D det B.n C 2b/I[I 0

I[¹nCbC1;:::;nC2bº; (7.19)

where B.n/ is the matrix

B.n/ WD
��

a C i C j � 2

j � 1

��

1�i;j �n

: (7.20)

A detailed picture of the region HI 0 – provided a=2 � k – is showed in Figure 12.
By Lemma 7.4, if we set30 ¹i 00

1 ; : : : ; i 00
2k

º WD Œ2k C b� n ¹i 0
1; : : : ; i 0

b
º, then we have

dega M.HI 0/ D .i 00
1 � 1/ C .i 00

2 � 2/ C � � � C .i 00
2k � 2k/: (7.21)

On the other hand, by Lemma 7.5 we have

dega det B.n C 2b/I[I 0

I[¹nCbC1;:::;nC2bº

� .i1 � 1/ C � � � C .is � s/ C .i 0
1 � .s C 1// C � � � C .i 0

b � .s C b//: (7.22)

By equations (7.17)–(7.19), (7.21), and (7.22), we obtain that for integers a with
a=2 � k, the values of det zBI[¹nCbC1;:::;nC2bº

I[¹nCbC1;:::;nC2bº depend polynomially on a, as a poly-
nomial of degree less or equal than

.i 00
1 � 1/ C .i 00

2 � 2/ C � � � C .i 00
2k � 2k/ C .i1 � 1/ C � � � C .is � s/

C .i 0
1 � .s C 1// C � � � C .i 0

b � .s C b//: (7.23)

Since by definition ¹i 0
1; : : : ; i 0

s; i 00
1 ; : : : ; i 00

2k
º D ¹1; : : : ; 2k C bº, the sum on the right-

hand side above is readily seen to be equal to .i1 � 1/ C � � � C .is � s/ C 2bk � bs.
However, as the above mentioned polynomial agrees with det zBI[¹nCbC1;:::;nC2bº

I[¹nCbC1;:::;nC2bº
(which is a polynomial in a due to the fact that all its entries are so) on an infinite set
of values (namely, all integers a with a=2 � k), it follows that they are identical, and
thus (7.16) holds.

Lemma 7.4. Let I 0 D ¹i 0
1; : : : ; i 0

b
º, 1 � i 0

1 < � � � < i 0
b

� 2k C b, and set ¹i 00
1 ; : : : ; i 00

2k
º WD

Œ2k C b� n ¹i 0
1; : : : ; i 0

b
º. Then the number of lozenge tilings of the region HI 0 shown in

Figure 12 is a polynomial in a of degree

dega M.HI 0/ D .i 00
1 � 1/ C .i 00

2 � 2/ C � � � C .i 00
2k � 2k/: (7.24)

30We are using here the fact that i 0
b

� 2k C b. This is so because the unit segment at which
a path of lozenges starting from the northeastern side of the left satellite crosses the top dashed
ray is at distance at most 2k C b from the core.
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Proof. We use the classical fact [25, 29] that the number of lozenge tilings of the
trapezoid Tm.x1; : : : ; xn/ of base length m, sides of length n, and with unit triangular
dents on its base at positions 1 � x1 < � � � < xn � m, is given by

M.Tm.x1; : : : ; xn// D �.x1; : : : ; xn/

�.1; : : : ; n/
; (7.25)

where
�.x1; : : : ; xn/ WD

Y

1�i<j �n

.xj � xi/: (7.26)

Our region HI 0 (see Figure 12) is obtained from the region

Ta=2CkCb.1; : : : ; a=2 � k; a=2 � k C i 00
1 ; : : : ; a=2 � k C i 00

2k/

by removing the lozenges forced by the a=2 � k initial contiguous dents (this effec-
tively removes a triangle of side a=2 � k from the left corner of the trapezoid).

Therefore, by (7.25) we have

M.HI 0/ D
�.1; : : : ; a=2 � k; a=2 � k C i 00

1 ; : : : ; a=2 � k C i 00
2k

/

�.1; : : : ; a=2 � k; a=2 � k C 1; : : : ; a=2 � k C 2k/
: (7.27)

Clearly, one can write31

�.Œn�; n C i1; : : : ; n C il /

�.Œn�; n C 1; : : : ; n C l/
D �.Œn�; n C i1/

�.Œn�; n C 1/

�.Œn�; n C i2/

�.Œn�; n C 2/
: : :

�.Œn�; n C il /

�.Œn�; n C l/

� �.n C i1; : : : ; n C il /

�.n C 1; : : : ; n C l/
: (7.28)

One readily verifies that

�.Œn�; n C t/

�.Œn�; n C i /
D .n C i /t�i

.i/t�i

: (7.29)

Apply (7.28) to the right-hand side of (7.27), replacing n by a=2 � k, l by 2k and ij

by i 00
j . By (7.29), for j D 1; : : : ; 2k, the j th resulting fraction in the product is

.a=2 � k C j /i 00
j

�j

.j /i 00
j

�j

;

and has therefore degree i 00
j � j in a. Since the last fraction in the product – which

comes from the last fraction on the right-hand side of (7.28) – is a constant (as a poly-
nomial in a), we obtain for M.HI 0/ an explicit expression as a product of linear factors
in a, having the degree specified on the right-hand side of (7.24). This completes the
proof.

31Here Œn� denotes the sequence of integers 1; 2; : : : ; n.
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Lemma 7.5. Let B.n/ be the matrix given by (7.20). Then for any I; J � Œn�, jI j D
jJ j D s, J D ¹j1 < j2 < � � � < jsº, the degree of det B.n/J

I as a polynomial in a

satisfies

dega det B.n/J
I � .j1 � 1/ C .j2 � 2/ C � � � C .js � s/: (7.30)

Proof. Consider the multivariate generalization zB.n/ obtained from B.n/ by replac-
ing a by ai in all entries of row i , for i D 1; : : : ; n. Then we have

zB.n/J
I D

0

B

B

B

B

B

B

B

B

@

�

ai1
Ci1Cj1�2

j1�1

� �

ai1
Ci1Cj2�2

j2�1

�

� � �
�

ai1
Ci1Cjs�2

js�1

�

�

ai2
Ci2Cj1�2

j1�1

� �

ai2
Ci2Cj2�2

j2�1

�

� � �
�

ai2
Ci2Cjs�2

js�1

�

:::
:::

: : :
:::

�

ais CisCj1�2

j1�1

� �

ais CisCj2�2

j2�1

�

� � �
�

ais CisCjs�2

js�1

�

1

C

C

C

C

C

C

C

C

A

:

All entries in column k are polynomials in ai1 ; ai2 ; : : : ; ais of total degree jk � 1.
It follows that in the expansion of det zB.n/J

I as a sum over permutations, each term,
regarded as a polynomial in ai1 ;ai2 ; : : : ;ais , has total degree .j1 � 1/ C � � � C .js � 1/.
Therefore, the total degree of det zB.n/J

I is at most .j1 � 1/ C � � � C .js � 1/.
However, note that when any two of ai1 C i1; ai2 C i2; : : : ; ais C is are equal,

there are two identical rows in zB.n/J
I , so its determinant is zero. This means that

det zB.n/J
I D P.ai1 ; : : : ; ais /

Y

1�u<v�s

Œ.aiv C iv/ � .aiu C iu/�; (7.31)

where P is a polynomial of total degree at most .j1 � 1/ C � � � C .js � 1/ �
�

s
2

�

D
.j1 � 1/ C � � � C .js � s/. When specializing back all ai ’s to a, the degree in a of the
product on the right-hand side of (7.31) becomes zero. This completes the proof.

8. Proof of Theorem 2.4

The correlation of the core and its three satellites could also be measured exclusively
via rotationally symmetric tilings, by defining

!r.a; b; k/ WD lim
n!1

Mr.S2n;a;b;k/

Mr .S2n;a;b;0/
: (8.1)

The asymptotics of this correlation is given in the following result.
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Proposition 8.1. For non-negative a, b and k with a even, we have

!r.a; b; k/

� 3b2=4
G
�b

2
C 1

�2

²

�. a
6

C b
2

C 1
3
/

�. a
6

C b
2

C 2
3
/

�. a
6

C 2
3
/

�. a
6

C 1
3
/

G. a
2

C 3b
2

C 1/

G. a
2

C 1/

³2=3
kb.aCb/=2; k ! 1:

(8.2)

Proof. We use the formulas for Mr.Sn;a;b;k/ provided in [43]. Since these are quite
different for even and odd b, we distinguish between these two cases. Throughout this
proof, n is even (this can be assumed without loss of generality, as (8.1) only involves
even values of the n-parameter of Sn;a;b;k).

Case 1: b even. The 120ı-rotationally invariant tilings of Sn;a;b;k can be identified
with the perfect matchings of the quotient graph G of its planar dual under the action
of the group generated by a 120ı rotation (see, e.g., [20] for a detailed discussion of
the case b D 0, which readily adapts to the case of general b). This quotient graph G

is a bipartite planar graph that can be drawn in the plane so that it is symmetric about
an axis. Thus, the factorization theorem of [6] can be applied to it. The resulting two
“halves” are planar duals of regions whose lozenge tilings were enumerated by Lai
and Rohatgi in [43]. The statement of the factorization theorem of [6] then yields

Mr.Sn;a;b;k/ D 2nCbP1

�a

2
C 1; k;

n

2
� k � 1;

b

2

�

P2

�a

2
C 1; k;

n

2
� k;

b

2

�

; (8.3)

where, cf. [43, (2.4) and (2.5)], P1 and P2 are given by

P1.x; y; z; a/

WD 1

2yCz

yCz
Y

iD1

.2x C 6a C 2i/i.x C 3a C 2i C 1
2
/i�1

.i/i.x C 3a C i C 1
2
/i�1

a
Y

iD1

T1.i/

B1.i/
; (8.4)

where

T1.i/ WD .z C i /yCa�2iC1.x C y C 2z C 2a C 2i/2yC2a�4iC2

� .x C 3i � 2/y�iC1.x C 3y C 2i � 1/i�1;

B1.i/ WD .i/y.y C 2z C 2i � 1/yC2a�4iC3.2z C 2i/yC2a�4iC1

� .x C y C z C 2a C i /yCa�2iC1;
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and

P2.x; y; z; a/ WD
. x

2
C 3y

2
/a.x C 2y C z C 2a/a

22a. x
2

C 3y
2

C z C a C 1
2
/a

1

2yCz

�
yCz
Y

iD1

.2x C 6a C 2i � 2/i�1.x C 3a C 2i � 1
2
/i

.i/i.x C 3a C i � 1
2
/i�1

a
Y

iD1

T2.i/

B2.i/
;

(8.5)

where

T2.i/ WD .z C i /yCa�2iC1.x C y C 2z C 2a C 2i � 1/2yC2a�4iC3

� .x C 3i � 2/y�i.x C 3y C 2i � 1/i�1;

B2.i/ WD .i/y.y C 2z C 2i � 1/yC2a�4iC3.2z C 2i/yC2a�4iC1

� .x C y C z C 2a C i � 1/yCa�2iC2:

Combining (8.3) with its k D 0 specialization we get

Mr.Sn;a;b;k/

Mr .Sn;a;b;0/
D

P1. a
2

C 1; k; n
2

� k � 1; b
2
/

P1. a
2

C 1; 0; n
2

� 1; b
2
/

P2. a
2

C 1; k; n
2

� k; b
2
/

P2. a
2

C 1; 0; n
2
; b

2
/

: (8.6)

It is easy to see that, for fixed a, b and k, as n ! 1 we have

lim
n!1

P1. a
2

C 1; k; n
2

� k � 1; b
2
/

P1. a
2

C 1; 0; n
2

� 1; b
2
/

D
b=2
Y

iD1

1

.i/k

. a
2

C 3i � 1/k�iC1

. a
2

C 3i � 1/�iC1

. a
2

C 3k C 2i/i�1

. a
2

C 2i/i�1

(8.7)

and

lim
n!1

P2. a
2

C 1; k; n
2

� k; b
2
/

P2. a
2

C 1; 0; n
2
; b

2
/

D
. a

4
C 3k

2
C 1

2
/b=2

. a
4

C 1
2
/b=2

b=2
Y

iD1

1

.i/k

. a
2

C 3i � 1/k�i

. a
2

C 3i � 1/�i

. a
2

C 3k C 2i/i�1

. a
2

C 2i/i�1

: (8.8)

Combining (8.3), (8.7), and (8.8) we obtain

!r.a; b; k/ D lim
n!1

Mr .Sn;a;b;k/

Mr.Sn;a;b;0/

D
. a

4
C 3k

2
C 1

2
/b=2

. a
4

C 1
2
/b=2

b=2
Y

iD1

1

Œ.i/k�2

�
. a

2
C 3i � 1/k�i.

a
2

C 3i � 1/k�iC1

. a
2

C 3i � 1/�i.
a
2

C 3i � 1/�iC1

�

. a
2

C 3k C 2i/i�1

. a
2

C 2i/i�1

�2

: (8.9)
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To finish proving this case, we need to determine the asymptotics of the right-hand
side above as k ! 1.

As a and b are fixed, we have

. a
4

C 3k
2

C 1
2
/b=2

. a
4

C 1
2
/b=2

�
. 3

2
/b=2

. a
4

C 1
2
/b=2

kb=2; k ! 1: (8.10)

Expressing the factor in the product in (8.9) in terms of Gamma functions via for-
mula (2.3), and using that for any fixed a and b we have

�.x C a/

�.x C b/
� xa�b; x ! 1 (8.11)

(see, e.g., [46, p. 119, (5.02)]), we are led to

1

Œ.i/k�2

. a
2

C 3i � 1/k�i.
a
2

C 3i � 1/k�iC1

. a
2

C 3i � 1/�i.
a
2

C 3i � 1/�iC1

�

. a
2

C 3k C 2i/i�1

. a
2

C 2i/i�1

�2

� 32.i�1/
�a

2
C 2i � 1

� Œ�.i/�2

Œ�. a
2

C 3i � 1/�2
kaC4i�3; k ! 1: (8.12)

Using (8.10) and (8.12) in equation (8.9), we arrive at

!r .a; b; k/ � 3
b2

4

b=2
Y

iD1

�.i/2

�
�

a
2

C 3i � 1
�2

kab=2Cb2=2; k ! 1: (8.13)

Clearly,
b=2
Y

iD1

�.i/ D G.
b

2
C 1/:

Furthermore, it is a straightforward exercise to show that

b=2
Y

iD1

�
�a

2
C 3i � 1

�

D
²

�. a
6

C b
2

C 1
3
/

�. a
6

C b
2

C 2
3
/

�. a
6

C 2
3
/

�. a
6

C 1
3
/

G. a
2

C 3b
2

C 1/

G. a
2

C 1/

³1=3

: (8.14)

Using this, (8.13) can, after some manipulation, be rewritten as (8.2).

Case 2: b odd. In the same fashion as we obtained (8.6) for even b, we get for odd b

that

Mr .Sn;a;b;k/

Mr.Sn;a;b;0/
D

F1. a
2

C 1; k; n
2

� k � 1; bC1
2

/

F1. a
2

C 1; 0; n
2

� 1; bC1
2

/

F2. a
2

C 1; k; n
2

� k; b�1
2

/

F2. a
2

C 1; 0; n
2
; b�1

2
/

; (8.15)

where F1 and F2 are given by formulas [43, (2.6) and (2.7)] (these are more involved
expressions than the ones for P1 and P2, and to keep the focus we do not list them
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here). Just as it was the case with equations (8.7) and (8.8), it is straightforward to see
that

lim
n!1

F1. a
2

C 1; k; n
2

� k � 1; bC1
2

/

F1. a
2

C 1; 0; n
2

� 1; bC1
2

/

D 1

2k. a
4

C b
2

C k
2

C 1
2
/k

�
b.bC1/=6c
Y

iD1

. a
2

C 3k C 6i � 2/3.bC1/=2�9iC1

. a
2

C 6i � 2/3.bC1/=2�9iC1

�
b.b�1/=6c
Y

iD1

a
2

C 6i � 1
a
2

C 6i C 3k � 1

.b�1/=2
Y

iD1

. a
2

C 3i � 1/k�iC1

. a
2

C 3i � 1/�iC1

�
k
Y

iD1

�. b
2

C i C 3
2
/

�.i C 3
2
/

�. a
2

C 3b
2

C 3i � 1/

�. a
2

C 3b
2

C 3i � 5
2
/

1

.i/.bC3/=2.i C 3
2
/.b�3/=2

(8.16)

and

lim
n!1

F2. a
2

C 1; k; n
2

� k; b�1
2

/

F2. a
2

C 1; 0; n
2
; b�1

2
/

D
Qb.kC1/=3c

iD1 . a
2

C 3i � 1/3k�9iC4
Qbk=3c

iD1
a
2

C 3k � 6i C 1

�
k
Y

iD1

�. b
2

C i C 3
2
/

�.i C 3
2
/

�. a
2

C 3b
2

C 3i � 1/

�. a
2

C b C k C 2i � 1/

� 1

.i/.bC3/=2.i C 3
2
/.b�3/=2

: (8.17)

Looking back at (8.15), we see that we need to determine the k ! 1 asymptotics of
the expressions (8.16) and (8.17).

One new feature we have now is that these expressions contain products whose
upper limit involves k. Because of this, in addition to (8.11) we also need to use the
asymptotics of the Barnes G-function given by (2.19).

The details of the calculations depend on the residue of a modulo 3. If a is a
multiple of 3, since by assumptions a is even, it is in fact a multiple of 6. Writing
then 6a for the size of the core, and 2b C 1 for the size of the satellite (as the latter
is assumed odd in the current case), we obtain after some straightforward if lengthy
manipulations that the k ! 1 asymptotics of the expression on the right in (8.16) (in
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which a is replaced by 6a and b by 2b C 1) is

241=36�e1=12

323=24A�
�

2
3

�2

�
Qb

iD0 �.i C 1
2
/
QaCb

iD1 �.3i � 1/
Qbb=3c

iD1 .3a C 6i � 1/
QaCb

iD0 �.3i C 1
2
/
Qb

iD1 �.3a C 2i/
Qb.bC1/=3c

iD1 .3a C 6i � 2/3b�9iC4

� 3b2=2k3abCb2C3a=2CbC1=4; (8.18)

while the k ! 1 asymptotics of the expression on the right in (8.17) (with a replaced
by 6a and b by 2b C 1) is

241=36�e1=12

311=24A�
�

2
3

�2

Qa
iD1 �.3i � 1/

Qb
iD0 �.i C 1

2
/

QaCb
iD0 �.3i C 1

2
/

3b2=2Cbk3abCb2C3a=2CbC1=4:

(8.19)
Then by (8.15)–(8.19) we obtain

!r.6a; 2b C 1; k/

�
p

3
h 241=36�e1=12

323=24A�. 2
3
/2

i2h
Qb

iD0 �.i C 1
2
/

QaCb
iD0 �.3i C 1

2
/

i2
Qa

iD1 �.3i � 1/
QaCb

iD1 �.3i � 1/
Qb

iD1 �.3a C 2i/

�
Qbb=3c

iD1 3a C 6i � 1
Qb.bC1/=3c

iD1 .3a C 6i � 2/3b�9iC4

3b.bC1/k6abC2b2C3aC2bC1=2; k ! 1:

(8.20)

After some manipulation, using the recurrence (2.17) and the value of G.1=2/ given
by (2.18), one sees that (8.20) can be written in terms of the Barnes G-function as

!r.6a; 2b C 1; k/

� 3.2bC1/2=4
G
�2b C 1

2
C 1

�2

²

�.a C 2bC1
2

C 1
3
/

�.a C 2bC1
2

C 2
3
/

�.a C 2
3
/

�.a C 1
3
/

G.3a C 3.2bC1/
2

C 1/

G.3a C 1/

³2=3

� k.2bC1/.6aC2bC1/=2; k ! 1: (8.21)

The remaining cases, when the size of the core is of the form 6a C 2 or 6a C 4 for
some integer a, are handled similarly. Together they prove that for all even core sizes
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a and odd satellite sizes b we have

!r.a; b; k/

� 3b2=4
G
�b

2
C 1

�2

²

�. a
6

C b
2

C 1
3
/

�. a
6

C b
2

C 2
3
/

�. a
6

C 2
3
/

�. a
6

C 1
3
/

G. a
2

C 3b
2

C 1/

G. a
2

C 1/

³2=3
kb.aCb/=2; k ! 1:

(8.22)

This completes the proof.

Proof of Theorem 2.4. Taking the limit as n ! 1 in the statement of Conjecture 2.1,
it follows by (2.4) and (2.5) that

!.Sn;a;b;k/

!r .Sn;a;b;k/3
D
h

k
Y

iD1

.a C 6i � 4/.a C 3b C 6i � 2/

.a C 6i � 2/.a C 3b C 6i � 4/

i2

: (8.23)

One readily gets, using (8.11), that

k
Y

iD1

.a C 6i � 4/.a C 3b C 6i � 2/

.a C 6i � 2/.a C 3b C 6i � 4/
!

�. a
6

C 2
3
/�. a

6
C b

2
C 1

3
/

�. a
6

C 1
3
/�. a

6
C b

2
C 2

3
/
; k ! 1:

(8.24)
Thus, the constant approached by the right-hand side of (8.23) as k ! 1 precisely
cancels the factors involving the Gamma function at the denominator in the cube of
the right-hand side of (8.2). Using (8.24) and the expression (8.2) for !r.Sn;a;b;k/,
equation (8.23) yields then formula (2.20).

9. Proof of Theorems 2.5 and 2.6

Proof of Theorem 2.5. Consider the region Sn;0;B;k (illustrated on the left in Fig-
ure 13 when n D 6, B D 4 and k D 1). It is what is called in [24] a triad hexagon – a
region obtained from a lattice hexagon by removing three bowties in a triad formation
(i.e., the nodes of the bowties form a lattice equilateral triangle, housing at its corners
the inner lobes of the bowties; for Sn;0;B;k these inner lobes are empty).

Recall the bowtie squeezing operation from [24]. It transforms a triad hexagon
into another as follows. Choose one of the bowties B, denote its node by v, and
decrease the size of its outer lobe by d units, while increasing the size of its inner
lobe by d units. Translate the other two bowties d units away from v. Finally, from
the point of view of the node v, push out the three sides of the hexagon closest to
the inner lobe of B d lattice spacings, and push in the remaining three sides d lattice
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spacings. Then we say that the obtained triad hexagon was obtained from the original
one by squeezing in bowtie B d units.

A conceptual product formula for the ratio of the number of tilings of two triad
hexagons related by a sequence of bowtie squeezing operations in provided in [24,
Theorem 1]. It has the form of the product of ratios of hyperfactorials whose argu-
ments have a simple geometric meaning, namely the number of lattice spacings between
a bowtie node and a hexagon side.

Starting with the region Sn;0;B;k viewed as a triad hexagon, squeeze in the top
bowtie a0 D B � a units, then the left bowtie b0 D B � b, and finally the right bowtie
c0 D B � c units. It is straightforward to check that the resulting triad hexagon is
precisely the region Tn;k;B;a;b;c in the statement of Theorem 2.5 (for n D 6, B D 4

and k D 1, this is shown on the right in Figure 13).
Therefore, [24, Theorem 1] provides a formula for M.Tn;k;B;a;b;c/= M.Sn;0;B;k/

as a product of ratios of hyperfactorials evaluated at certain integers representing dis-
tances from the bowtie nodes to the sides of the outer hexagons. All these distances
can readily be read off from Figure 13. After simplification we obtain formula (2.21).

In the proof of Theorem 2.6 we will use the following result.

Lemma 9.1. For integers ˛1; : : : ;˛s , ˇ1; : : : ;ˇt and non-negative integers 
1; : : : ; 
s ,

ı1; : : : ; ıt with
Ps

iD1 
i D
Pt

j D1 ıj , as n ! 1 we have

hn C ˛1 C 
1i
hn C ˛1i � � � hn C ˛s C 
si

hn C ˛si
hn C ˇ1i

hn C ˇ1 C ı1i � � � hn C ˇt i
hn C ˇt C ıt i

� n
Ps

iD1Œ
i ˛i C
i .
i C1/=2��
Pt

j D1Œıj ǰ Cıj .ıj C1/=2�: (9.1)

Proof. Write

hn C ˛i C 
i i
hn C ˛i i

D �.n C ˛i C 1/ : : :�.n C ˛i C 
i /

and
hn C ǰ i

hn C ǰ C ıj i D 1=.�.n C ǰ C 1/ : : :�.n C ǰ C ıj //:

Since
s
X

iD1


i D
t
X

j D1

ıj ;

we end up with as many factors at the numerator as at the denominator. Match them
in pairs and apply equation (8.11) to each pair to obtain (9.1).
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3k

B

nC3B nCaCbCc

a

b c

a0

b0 c0

3kCa0Cb0Cc0

nC3B a b c

n 2k n 2k

n 2k n 2k

n 2k
n 2k

Figure 13. Distances in the region Sn;0;B;k (left), and in the region Tn;k;B;a;b;c (right; a0 D
B � a, b0 D B � b, c0 D B � c).

Proposition 9.2. Writing a0 D B � a, b0 D B � b, c0 D B � c, we have

lim
n!1

M.Tn;k;B;a;b;c/

M.Tn;0;B;a;b;c/

M.Sn;0;B;k/

M.Sn;0;B;0/

D hB C b0 C c0ihb0 C c0ihB C a0 C c0iha0 C c0ihB C a0 C b0iha0 C b0i
hBi3ha0 C b0 C c0i4

� h3k C a0 C b0 C c0i4

h3ki4

h3k C Bi
h3k C B C b0 C c0i

h3ki
h3k C b0 C c0i

� h3k C Bi
h3k C B C a0 C c0i

h3ki
h3k C a0 C c0i

h3k C Bi
h3k C B C a0 C b0i

h3ki
h3k C a0 C b0i :

(9.2)

Proof. Write the quantity inside the limit on the left-hand side of (9.2) as

M.Tn;k;B;a;b;c/

M.Sn;0;B;k/

M.Tn;0;B;a;b;c/

M.Sn;0;B;0/

:

Then the numerator of the resulting fraction is given by equation (2.21), and the
denominator by its k D 0 specialization.
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In the formula on the right-hand side of (2.21), the second fraction and the last
three depend on n, while the others don’t. We claim that the asymptotics of the part
depending on n is independent of k. Then, when taking the limit as n goes to infinity
in M.Tn;k;B;a;b;c /

M.Sn;0;B;k /
=

M.Tn;0;B;a;b;c /

M.Sn;0;B;0/
(which is just the left-hand side of (9.2)), the contri-

butions coming from the factors on the right-hand side of equation (2.21) that involve
n cancel out. The limit is then just the ratio between the part of the right-hand side
of (2.21) which does not depend on n and its k D 0 specialization. This visibly leads
to the expression in equation (9.2).

Therefore, to finish the proof it suffices to prove our claim. One readily sees that
the product of the four fractions involving n on the right-hand side of (2.21) is an
expression of the kind treated in Lemma 9.1, and thus its asymptotics is given by
equation (9.1). A straightforward calculation checks that the resulting asymptotics is
n3B.a0Cb0Cc0/�.a0Cb0Cc0/2

, which is independent of k.

When a C b C c D a0 C b0 C c0, the following result supplies the exact value of
the correlation N!.X1;X2;X3Ik/ (see its defining equation (2.22)) of the three bowties
at the center of the region Tn;k;B;a;b;c in the special case k D 0.

Proposition 9.3. If a C b C c D a0 C b0 C c0, we have

N!.X1; X2; X3I 0/

D 3
1
2 .aCbCc/2

.2�/aCbCc

� ha C b C ci6haihbihciha0ihb0ihc0i
h2a C b C ciha C 2b C ciha C b C 2ciha0 C b0iha0 C c0ihb0 C c0i : (9.3)

Proof. It is not hard to see that the hexagonal subregion of sides a0, b0; c0; a0; b0; c0

(clockwise from top) determined by the innermost sides of the inner lobes of the
bowties in the region Tn;0;B;a;b;c must be internally tiled. Therefore, it follows that
M.Tn;0;B;a;b;c/ is equal to the number of tilings of this inner hexagon, which, by a
rewriting of the formula in footnote 2, is

ha0ihb0ihc0iha0 C b0 C c0i=.ha0 C b0iha0 C c0ihb0 C c0i/;

times the number of tilings of the region obtained from Tn;0;B;a;b;c by removing this
inner hexagon. However, the latter is a special case of the shamrock regions whose
tilings were enumerated in [23]. By [23, Theorem 2.1] (with m D a0 C b0 C c0) we
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obtain

M.Tn;0;B;a;b;c/

M.HnCaCbCc/

D ha C b C ci5ha0 C b0 C c0ihaihbihciha0ihb0ihc0i
h2a C b C ciha C 2b C ciha C b C 2ciha0 C b0iha0 C c0ihb0 C c0i

� hn C a C b C ci3

hni3

hn C ai
hn C a C bi

hn C bi
hn C b C ci

hn C ci
hn C a C ci

� hn C a C 2b C 2ci
hn C a C 2b C ci

hn C 2a C b C 2ci
hn C a C b C 2ci

hn C 2a C 2b C ci
hn C 2a C b C ci

�
hn

2
i6

hn
2

C a C b C ci6

h3n
2

C 2a C 2b C 2ci2

h3n
2

C a C b C ci2

h3n C 2a C 2b C 2ci
h3n C 3a C 3b C 3ci : (9.4)

The asymptotics of hn C ˛i readily follows from the defining relation (2.20) of the
Glaisher–Kinkelin constant A to be

hn C ˛i � e
1

12

A
.2�/

nC˛
2 e� 3

4
n2�˛n n

.nC˛/2

2
� 1

12 ; n ! 1:

Using this for all factors involving n in equation (9.4) yields, after simplifications,
equation (9.3).

Proof of Theorem 2.6. Multiply (9.2) by the denominator of its left-hand side, and
divide both the numerator and denominator inside the limit of the resulting left-hand
side by M.HnCaCbCc/. By the definition of N! (see (2.22)) and ! (see (2.12)), this
gives

N!.X1; X2; X3I k/

N!.X1; X2; X3I 0/

D !.0; B; k/
hB C b0 C c0ihb0 C c0ihB C a0 C c0iha0 C c0ihB C a0 C b0iha0 C b0i

hBi3ha0 C b0 C c0i4

� h3k C a0 C b0 C c0i4

h3ki4

h3k C Bi
h3k C B C b0 C c0i

h3ki
h3k C b0 C c0i

� h3k C Bi
h3k C B C a0 C c0i

h3ki
h3k C a0 C c0i

h3k C Bi
h3k C B C a0 C b0i

h3ki
h3k C a0 C b0i :

(9.5)

The asymptotics of the part involving k on the right-hand side of (9.5) is readily seen,
using Lemma 9.1, to be .3k/2Œa0b0Ca0c0Cb0c0�B.a0Cb0Cc0/�. Using then Proposition 9.3
and Theorem 2.3, equation (9.5) implies (2.23).
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10. Concluding remarks

In this paper we presented an “experiment” designed to give the exact value of the
correlation of a core and three satellite triangular holes. It relies on the first author’s
two decade old observation that if the satellites are enclosed symmetrically by a
hexagon, the number of lozenge tilings of the resulting region is round, and on its
almost decade-old generalization that brings in the presence of the core. We also pre-
sented asymptotic consequences of our exact formulas, which include the verification
of the electrostatic conjecture ([9, Conjecture 1]) for the system of gaps consisting
of the core and satellites (it was the special case of this when the core is empty that
was the original motivation for this work). In fact, combining our results with those
in [24], we obtain a verification of [9, Conjecture 1] for arbitrary triples of bowtie
gaps arranged in a triad, a satisfying generalization of our motivating case. Other
consequences we present include a strengthening of [9, Conjecture 1] (by specifying
exactly the multiplicative constant), an unexpected exact way to calibrate the hexago-
nal lattice against the square lattice so that the monomer–monomer correlations decay
at precisely the same rate, and a heuristic derivation of the special value G.1=2/ of
the Barnes G-function.

Funding. The authors acknowledge support by the National Science Foundation,
DMS grant 1501052 and Austrian Science Foundation FWF, START grant Y463 and
SFB grant F50.
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[49] M. Vuletić, A generalization of MacMahon’s formula. Trans. Amer. Math. Soc. 361 (2009),

no. 5, 2789–2804 Zbl 1228.05297 MR 2471939

Communicated by Mireille Bousquet-Mélou

Received 5 February 2020; revised 5 January 2021.

Mihai Ciucu

Department of Mathematics, Indiana University, Bloomington, IN 47401, USA;
mciucu@indiana.edu

Ilse Fischer

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria;
ilse.fischer@univie.ac.at

https://zbmath.org/?q=an:1383.05016
https://mathscinet.ams.org/mathscinet-getitem?mr=3767510
https://zbmath.org/?q=an:0262.05018
https://mathscinet.ams.org/mathscinet-getitem?mr=335313
https://zbmath.org/?q=an:42.0236.21
https://zbmath.org/?q=an:42.0236.21
https://zbmath.org/?q=an:0303.41035
https://mathscinet.ams.org/mathscinet-getitem?mr=0435697
https://zbmath.org/?q=an:0602.05007
https://mathscinet.ams.org/mathscinet-getitem?mr=859302
https://zbmath.org/?q=an:0790.05007
https://mathscinet.ams.org/mathscinet-getitem?mr=1069389
https://zbmath.org/?q=an:1228.05297
https://mathscinet.ams.org/mathscinet-getitem?mr=2471939
mailto:mciucu@indiana.edu
mailto:ilse.fischer@univie.ac.at

	Contents
	1. Introduction
	2. Statement of main results and conjectures
	3. Consequences for the correlation of holes
	4. Determinantal formulas for M(S_n,a,b,k)
	4.1. Trapezoids with triangular holes
	4.2. Polynomiality in the sizes of the satellites
	4.3. A determinantal formula for general b_1,b_2,b_3 assuming k_2=k_3
	4.4. Polynomiality in a

	5. The case b_1=b_2=b_3=0 for general n_1, n_2,n_3
	6. A determinantal formula of dimension a+b_1+b_2+b_3 for even b_i
	7. The leading coefficient in a for even b
	8. Proof of Theorem 2.4
	9. Proof of Theorems 2.5 and 2.6
	10. Concluding remarks
	References

