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Motives of melonic graphs

Paolo Aluffi, Matilde Marcolli, and Waleed Qaisar

Abstract. We investigate recursive relations for the Grothendieck classes of the affine graph
hypersurface complements of melonic graphs. We compute these classes explicitly for several
families of melonic graphs, focusing on the case of graphs with valence-4 internal vertices,
relevant to CTKT tensor models. The results hint at a complex and interesting structure in
terms of divisibility relations or nontrivial relations between classes of graphs in different
families. Using the recursive relations, we prove that the Grothendieck classes of all melonic
graphs are positive as polynomials in the class of the moduli space Mg 4. We also conjec-
ture that the corresponding polynomials are log-concave, on the basis of hundreds of explicit

computations.
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1. Introduction

In this paper, we obtain a recursive formula for the Grothendieck classes (virtual
motives) of the graph hypersurfaces associated to the melon-tadpole graphs. This
provides a recursively constructed family of mixed-Tate motives, which includes the
motives associated to the leading melonic terms of certain bosonic tensor models.
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Our motivation in considering the behavior of the motives of melon and melon-
tadpole graphs comes from the fact that several interesting physical models are dom-
inated in the large N limit by melonic graphs. This is the case for SYK models
(see [14] for a rigorous diagrammatic proof), as well as in group field theory (see,
for instance, [7]) and tensor models [12, 18,22, 25], which include generalizations of
the SYK models (see for instance [19, 35]).

1.1. Graph polynomials and CTKT models

The graph polynomials that one expects to find when representing amplitudes in Feyn-
man parametric form in the setting of group field theory and tensor models are usually
of the form described in [20] or [34]. The Tanasa graph polynomials of [34] are gen-
eralizations of the Bollobds—Riordan polynomial that satisfy the deletion-contraction
relation. Similarly, the Gurau polynomials of [20] also satisfy a deletion-contraction
relation. The motives of hypersurfaces associated to these polynomials may be, in
principle, amenable to the kind of algebro-geometric techniques discussed in [4],
which we rely on in this paper, but in a form more similar to the case of the Potts
models we analyzed in [5]. However, the computation of the Grothendieck class we
obtain here relies essentially on the recursive form of the Grothendieck class for split-
ting an edge and for replacing an edge by a number of parallel edges, obtained in [4].
These formulas do not have a simple counterpart for the case of the Potts models
and other graph polynomials with deletion-contraction. This means that a more gen-
eral computation of the polynomials of [20] or [34] probably requires a much more
thorough analysis and would not be an immediate generalization of the argument pre-
sented here. Other parametric realizations of tensor models, such as [9], do not even
satisfy a deletion-contraction relation, hence they cannot be addressed via the method
used in [4] and in this paper.

The case we focus on here, however, is simpler and involves the usual graph hyper-
surfaces associated to the Kirchhoff—-Symanzik polynomial of the graph for a massless
scalar theory. These are relevant to tensor models in the case of the melonic sector of
the CTKT models. We briefly recall below the setting used in [10] that motivates the
computations we present in this paper. The case of the graph polynomials of [20]
or [34] will be left to a future investigation. Note that, if a similar argument can be
applied to such polynomials, or to the massive melonic graphs, one does not expect to
obtain a family of motives with the mixed-Tate property, since it is known that already
for small graphs in such families the mixed-Tate property fails, see [11, 31]. Thus,
the mixed-Tate property is certainly specific to the case of the massless Kirchhoff—
Symanzik polynomial.
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1.2. CTKT models and melonic Feynman graphs

We focus here on the modified version of the O(N)3 model by Klebanov and Tar-
nopolsky [27] considered in [10], which generalizes the zero-dimensional version
of [15]. These models are referred to in [10] as CTKT models, and we will main-
tain the same terminology here.

We recall the following setting from [10]. One considers a real rank three tensor
field ¢a(x), with a = (a1, a2, a3) that transforms under O(N )3, with action functional
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The labels ¢, p, d distinguish the tetrahedron, pillow, and double-trace patterns of
contraction. When edges are colored (red, green, or blue) according to the values of
the tensor indices in {1, 2, 3}, these different quartic terms correspond to the graphs
of Figure 1 (with three different choices of the pillow contraction depending on the
color of the vertical edge).
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Figure 1. Tetrahedron, pillow, and double-trace contractions in CTKT models [10].
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When one computes the contributions to the expansion at leading order in 1/N
and all orders in the coupling constants, this is usually done using the 4-colored graphs
expansion of tensor models [13,21,24] with 3-colored graphs (bubbles) for the dif-
ferent interaction terms as mentioned above and another color for the propagators
connecting these 3-colored bubbles. However, as shown in [10], it is possible to also
consider an expansion in ordinary Feynman graphs, which are obtained by shrinking
all the bubbles to points. The free energy of the model is written in [10] in the form
of a sum over connected vacuum 4-colored graphs with labelled tensor vertices,

ATC A A

d nytnpt+ng+1
—rtretratlp(G),
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F = ZNF—%nt—an—_’,nd
G

with 1n,(G), np(G), and n4(G) the number of tetrahedral, pillow, and double-trace
bubbles, respectively, and F(G) the number of faces and with A(G) the amplitude
of G written in terms of edge propagators (see [10, §2.1]). One then replaces the 4-
colored graphs G in this expansion with ordinary Feynman graphs by first replacing
all the pillow and double trace bubbles with their minimal resolution in terms of tetra-
hedral bubbles (as in [10, Figure 3]). An ordinary Feynman graph is then obtained
by replacing these bubbles by vertices. The resulting graph corresponds to a term
of order zero in 1/N iff it is a melon-tadpole graph, that is, a graph obtained by
iterated insertion of melons or tadpoles into a melon or tadpole (Figure 2). In the
absence of pillows and double traces, one would obtain just melonic graphs. The
amplitudes A(G) of the resulting ordinary melon-tadpole Feynman graphs can then
be computed in the Feynman parametric form in terms of the Kirchhoff-Symanzik
polynomial, as in [10]. We will not discuss here the renormalization problem for the
resulting Feynman integrals, for which we refer the reader to [10]. We focus here
instead on the algebro-geometric and motivic properties of these melon-tadpole Feyn-
man integrals.

Figure 2. Melon-tadpole graphs in CTKT models [10].
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From the point of view of motivic structures in quantum field theory (see [29]
for a general overview), our goal here is to show that massless CTKT models are
dominated by a recursively constructed family of mixed-Tate motives.

1.3. Families of melonic graphs

The melonic and melon-tadpole graphs that occur in the massless CTKT models
are all constrained by the condition that all vertices have valence 4, because of the
form (1.1) of the action functional. In order to study the recursive properties of the
Grothendieck classes associated to these graphs, however, it is convenient to consider
them as a subfamily of a larger family of graphs, which include melonic graphs with
vertices of arbitrary valences.

Moreover, in the typical description of melonic graphs, one assumes that the
melonic insertions are separated by edge propagators (equivalently, one performs an
insertion by first splitting an edge into three edges by the insertion of two valence-two
vertices and then replacing the middle edge by a number of parallel edges). Again, in
our setting it is more convenient to consider these graphs as a subfamily of a larger
family of melonic graphs where an edge can be split into a number of subedges and
each of them replaced by a set of parallel edges. The typical case of graphs with
only valence-four internal vertices and including edge propagators will guide us in
the choice of examples illustrating the main recursive construction.

We also consider graphs with external edges and graphs without any external
edges (vacuum bubbles). Instead of following the usual physics convention of regard-
ing external edges as half-edges (flags), we consider them as edges with a valence-one
vertex. In this setting, when considering non-vacuum graphs for the CTKT case, we
will allow formal valence-one vertices (to mark the external edges) in addition to the
valence-four vertices of the self-coupling interactions.

We will not treat separately the melon-tadpole graphs. Indeed, our more general
class of graphs includes the operation of bisecting an edge with an intermediate ver-
tex, and a melon-tadpole graph is simply obtained by grafting together at the vertex
two melonic graphs with this operation performed on one of their edges. Since the
Grothendieck classes for graphs joined at a vertex is just a product, these classes are
easily derived from the ones in the family we work with.

1.4. Summary of the paper

In Section 2, we present a convenient formalism for the recursive construction of
melonic graphs with arbitrary valences, and we show that a subclass of ‘reduced
constructions’ always suffices. We reformulate the construction in terms of labelled
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rooted trees. We then focus on the main case of interest for CTKT models, where
graphs have all (internal) vertices of valence four.

In Section 3, we recall some basic facts about the Grothendieck ring of varieties,
the parametric Feynman integrals, the graph hypersurfaces defined by the Kirchhoff—
Symanzik polynomial, and the Grothendieck classes of the affine graph hypersurface
complement. We focus on the Grothendieck class because it is universal among invari-
ants which behave well with respect to basic set-theoretic operations. For example,
the Grothendieck class determines the Hodge—Deligne numbers of the complement
of the (affine) graph hypersurface, as well as the number of points of the complement
over finite fields. We obtain a recursive formula for the Grothendieck class of mel-
onic graphs with arbitrary valences. This formula can be effectively implemented in
a standard symbolic manipulation system and is also useful as a tool to study general
features of Grothendieck classes of melonic graphs. For example, we prove that the
Grothendieck class of a melonic graph can be expressed as a polynomial with posi-
tive coefficients in the class S of the moduli space Mo 4, i.e., S = [P! ~ {0, 1, 00}].
Extensive computer evidence also suggests the following:

Conjecture. The polynomial in S expressing the Grothendieck class of a melonic
graph is log-concave (in the sense of [33]; see Conjecture 3.1 below).

It is well known (see [26]) that the log-concavity property often reflects some
deeper underlying geometric structure, in the form of some kind of Hodge—de Rham
relations. It seems likely that log-concavity of these Grothendieck classes as functions
of S may indeed be pointing to some richer geometric structure.

In Section 4, we focus on the case of melonic graphs with (internal) vertices
of valence four, and we consider particular recursive subfamilies for which explicit
generating functions can be obtained, both for vacuum bubbles and for graphs with
external edges, with an explicit relation between these two cases. The generating func-
tions in these and other cases considered in the paper were first obtained by carrying
out explicit computations using the recursive formula obtained in Section 3. As an
example of the type of result we obtain, consider the family consisting of graphs I',
of the form

with 7 interlocked circles. Let P, (u, v) be the Hodge—Deligne polynomial of the com-
plement Z, of the affine graph hypersurface determined by I',. That is, P,(u,v) =
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> ePquPyd, where e?1 = 3, (—~1)*h?4(HK(Z,)) (see, e.g., [16]). As a conse-
quence of Proposition 4.1, the following holds:

Pn(u,v) = (uv — D" wv)®" . A4, (uv — 1),

where the polynomial A, (¢) is determined by the equality of formal power series
ano An(O)r" = Zkzo ar(r,t), with

k
s 1
E ay (r, I)F =¢e"’ cos ((r2 —rt)2s).
k>0 )

Alternative expressions for A, (¢) are given in Section 5; in fact, the information car-
ried by the polynomials A4, (¢) may be encoded in a rational generating function.

In Section 5, we analyze extensions of these recursive subfamilies to the more
general case of arbitrary valences from the same viewpoint. Again we obtain that
the corresponding Grothendieck classes are determined by rational generating func-
tions.

In Section 6, we focus on the melonic vacuum bubbles, and we establish a gen-
eral relation between their Grothendieck classes and those of associated non-vacuum
graphs. We describe a procedure for studying the structure of valence-four melonic
vacuum bubbles in terms of their tree structure, and we identify certain families of
recursive relations in the form of ‘melonic vacuum stars’.

In Section 7, we give rigorous proofs of all the statements presented in the previ-
ous sections.

2. Melonic graphs

2.1. The construction of melonic graphs

A graph with two vertices and n parallel edges connecting them is variously referred
to in the literature as a melon graph, a banana graph, or a sunset graph. In the spirit of
botanical egalitarianism, we will use the ‘banana’ terminology when referring to these
basic building blocks, and call ‘melonic’ the result of iterating the operation of replac-
ing edges of a graph by strings of bananas. (We call this operation the ‘bananification’
of the edge.)

Thus, the basic iterative operation constructing melonic graphs is the following:

aq an as ay

We allow arbitrary sizes ay, ..., a, for the banana components. Edges ought to be
directed in order to determine the order of inclusion of the bananas; in fact, this will
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be done implicitly in what follows since it does not affect the invariant (Grothendieck
class) we are computing. A melonic graph is obtained by applying this operation to
an initial single edge, then applying it iteratively to any edge of the resulting graphs.

We can refer to the initial edge as the graph obtained ‘at stage 0’; the application
of the iterative process at any stage may be encoded by a tuple

((a1,...,ar), p.k)
to represent the replacement of one single edge in the k-th banana constructed at
stage p.
Example 2.1. The construction

can be represented by the tuples

((1,3,5),0,1),((1,2),1,2), ((1,3,1), 1, 3).

» The first operation replaces the single edge at stage O with a string consisting of
a 1-banana, a 3-banana, and a 5-banana; this is stage 1.

* The second operation replaces one edge in the second banana constructed in
stage 1 with a string consisting of a 1-banana and a 2-banana; this is stage 2.

* The third operation replaces one edge in the third banana constructed in stage 1
with a string consisting of a 1-banana, a 3-banana, and a 1-banana; this is stage 3.

Following this sequence of operations with ((2, 3), 2, 1) would replace one edge in
the first banana produced at stage 2 (which actually consists of a single edge) with
a string consisting of a 2-banana followed by a 3-banana, producing the graph

(As observed below, the same graph admits different constructions.)

Formally, we can make the following definition.
Definition 2.1. An ‘n-stage’ melonic construction is alist T = (t1,...,t,) of tuples
ts = (bg, ps, ks) such that:

1 by =(a1,...,ar,) is a tuple of positive integers, of length |bg| :=r; > 1.
(Thus, the tuple is non-empty.)

(il)) psisaninteger,0 < ps <s.
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(iii) kg is aninteger, 1 < ks < |by,|.
(iv) ps>Oforalls > 1. (By (ii), p1 = 0.)

(v) Forallt; = ((a1,...,ar),pi.ki),i =1,...,n,andall j =1,...,r;, at
most a; tuples ty = (by, ps. kg) have py =i, ks = j.

We call n the ‘length’ of the construction.

The motivation behind these requirements should be evident from the interpreta-
tion discussed above. For example, (v) expresses the constraint that the j-th banana
constructed at stage i has enough edges to accommodate later replacements.

Definition 2.2. A melonic graph is a graph determined by a melonic construction by
the procedure explained above.

Every melonic construction determines a melonic graph up to graph isomorphism.
Of course, different melonic constructions may determine the same melonic graph.
We say that two constructions 77, T" are ‘equivalent’ if the resulting graphs are iso-
morphic.

Note that, while in the construction we have made use of an orientation of the
edges, in order to list the bananas by an order of inclusion, here we consider isomor-
phism classes of the underlying graphs independent of the directed structure. Different
choices of directed structures will lead to equivalent constructions. The Grothendieck
classes we are interested in computing only depend on the underlying undirected
graph.

Example 2.2. The construction {((2),0,1),((1,3,1),1,1),((1,3,1,1,1),2,2)} deter-
mines a melonic graph as follows:

0-8-83

The construction {((2),0, 1), ((1,3,1,3,1),1,1),((1,1,1),2,4)} produces an isomor-

phic graph
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Also, the graph in Example 2.1 was obtained from the melonic construction
{(1,3.5).0.1). ((1.2).1.2). ((1.3,1).1.3). (2.3). 2. D}
The same graph can be obtained by the (shorter) construction
{((1,3,5),0,1),((2.3,2),1,2),((1,3,1), 1, 3)}.

Similarly, the second construction in Example 2.2 produces the same graph as the
(longer) construction

{((2),0,1),((1,3,1), 1,1),((1,3,1),2,3), (1, 1,1),3,3)}.

In both cases, the shorter construction is obtained by implementing the replacement
of the (single) edge in a 1-banana produced at stage s (underlined) by inserting the
appropriate tuple (also underlined) directly at stage s.

Remark 2.1. In this generality, the set of all melonic graphs agrees with the set of
series-parallel graphs. Indeed, series-parallel graphs can be characterized as those
graphs that can be reduced to the graph K, by repeated application of the operations
of replacement of a pair of parallel edges by a single edge and replacement of two
edges joined at a degree two vertex by a single edge [17]. These are exactly reversing
the operations of addition of parallel edges (bananas) and splitting of edges that form
the melonic graphs. We adopted the term ‘melonic’ as it is more commonly used in
the context of quantum field theory.

2.2. Reduced melonic constructions
Constructions such as Example 2.2 suggest the following definition.

Definition 2.3. We say that a construction is reduced if it does not prescribe the
replacement of the edge of a 1-banana past stage 0.

Formally, this requirement prescribes that

(vi) Forallt; = ((a1,...,ar),pi,ki),i =1,...,n:1fa; =1, then kg # j for
all s such that p; = i.

The process illustrated above—replacing 1-bananas by their descendants—may

be performed on every melonic construction, and produces an equivalent reduced con-
struction. Therefore, the following lemma is true.

Lemma 2.1. Every melonic graph admits a reduced construction.

Reduced constructions suffice in order to define melonic graphs, but it is important
to consider non-reduced constructions as well; these may appear in intermediate steps
of the recursive computation we will obtain in Section 3.
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2.3. Melonic graphs and rooted trees

There is a convenient way to visualize a melonic construction as a labeled tree. Each
tuple ((a1,...,ar), p, k) may be viewed as a rooted tree

aq an ar

with (black) leaves labeled by the integers a;. The (white) root will be attached to the
k-th leaf of the p-th tree; this grafting procedure builds a rooted tree encoding the
same information as a melonic construction. Item (v) in Definition 2.1 amounts to the
requirement that the valence of a (black) node labeled a is at most a + 1; that is, at
most a ‘descending’ edges can be adjacent to such a vertex.

The tree corresponding to a melonic construction has one white node for each
tuple in the construction; thus, the length of the melonic construction equals the num-
ber of white nodes in the corresponding tree.

Example 2.3. The rooted trees corresponding to the two melonic constructions in
Example 2.2 are

3 1 1 31 31

1 3111 I 1 1

As noted in Example 2.2, these non-isomorphic labeled trees determine isomorphic
melonic graphs.

Black nodes in trees corresponding to melonic constructions may have more than
one white child; in fact, the label attached to a black node indicates the maximum
possible number of white children of that node. For example, the tree

121 131 141
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corresponds to the construction
((3),0,1),((1,2,1), 1, 1), ((1,3,1),1,1),((1,4,1), 1, 1)

representing the melonic graph

No other white node could be adjacent to the black node labeled 3, since all edges of
the corresponding banana support further stages of the construction.

The ‘reduced’ condition (vi) is the requirement that nodes labeled 1 necessarily
be leaves. Every tree can be reduced (cf. Lemma 2.1) by ‘sliding up’ trees grafted at
nodes labeled 1, as the case encountered in Example 2.1 illustrates.

We also note that the melonic graphs determined in Definition 2.2 have arbitrary
vertex valences, while in a specific physical theory the valences are constrained by
the terms in the action. The additional generality is needed for the recursion formula
we will obtain in Section 3; we will choose families of graphs with fixed valence in
most of the examples illustrating the recursion in Sections 4, 5, and 6.

While we do not pursue explicitly this point of view in the present paper, it is
an interesting question whether the generative process describing the melonic graphs
can be formulated as a regular formal language. The presence of a rational generating
series suggests this may be the case. More general Feynman graphs of quantum field
theories can be described as a formal language involving graph grammars, see [30],
which are usually in the larger class of context-free grammars.
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2.4. Valence-four 2-point melonic graphs

We will be especially interested in the case in which the valence of all internal vertices
of the melonic graph is 4. The 4-regular melonic graphs include a class given by the
2-point melonic graphs, see for instance [23, Section 4]. These are the melonic graphs
obtained starting with the graph K, (one edge with two end vertices) by successive
insertions of pairs of vertices in an edge and replacement of the resulting middle edge
by a set of three parallel edges (banana). These graphs have vertices with at most a
single external momentum. The corresponding melonic constructions consist of tuples
of the type

ts = ((1,3,1), ps, ks),

where ks = 1, 2, or 3. The building blocks of these graphs are

Up to equivalence, a melonic construction (¢1, ..., ) witht; = ((1,3, 1), ps, ks)
as above is determined by the tuple (0, pit, cee p,ﬂf), where each pg for s > 1 is
marked as p; if ks = 2 and p; if ks = 1 or 3. For example, (0, 17,2F,3% 47)
indicates that at each stage the new splitting (1, 3, 1) is performed on one of the 3 par-
allel edges at the previous stage. The corresponding melonic graph may be drawn as
follows:

2.5. 2-point melonic vacuum bubbles

We will also consider the ‘vacuum’ flavor of these constructions, in which the two
external vertices are identified; for example

Definition 2.4. Vacuum bubbles of 2-point melonic graphs are 2-point melonic graphs
without valence-1 vertices.
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A vacuum 2-point melonic graph in which every vertex has valence 4 may be
obtained by iteratively applying the basic bananification ((1, 3, 1), ps, ks) starting
from a 4-banana. For example, the string of circles depicted above is produced by the
construction

(((4).0,1),((1,3,1),1,1),((1,3,1),2,2),((1,3,1),3,2),((1,3, 1), 4,2)),

while the construction

(((4),0, 1),((1,3,1),1,1),((1,3,1),1,1), ((1,3, 1), 1, 1), ((1, 3, 1), 1, 1))

yields the vacuum melonic graph

Note that all valence-4 vacuum bubbles of 2-point melonic graphs may also be
constructed by starting from a 2-banana, performing iteratively the basic (1, 3, 1)
bananifications, and then removing the two extra valence-2 vertices produced at the
beginning. Indeed, the 4-banana itself admits such a description: the melonic con-
struction

(((2).0,1),((1,3,1),1,1))

produces the 4-banana graph with two extra valence-2 vertices on one of the edges.
This alternative will be convenient in our computations concerning certain families of
vacuum melonic graphs in Section 6.

Remark 2.2. In this section and in the explicit examples given in the rest of the paper,
we focus on 2-point melonic graphs and the associated vacuum bubble graphs, since
they are the first family of melonic graphs relevant to quantum field theory due to their
contribution to the 2-point function, see [23]. These do not exhaust the entire family
of valence-4 graphs obtainable from the more general melonic construction discussed
in the previous subsection. Melonic graphs that are not among the 2-point graphs and
the corresponding vacuum bubbles include, for example, those with vertices that have
two external edges. The associated melonic vacuum graphs, obtained by pairing these
external edges, include graphs obtainable by our general construction but not in the
list of vacuum bubbles of 2-point melonic graphs. For instance, the necklace graph
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is of this type and may be described by the melonic construction

(((3.0.1).(2.....2). 1. 1)),

n—1

where n is the number of circles.

3. Grothendieck classes of melonic graphs

3.1. The Grothendieck ring of varieties

For the category Vi of varieties over a field K (which we can here assume to be
K = Q), the Grothendieck group of varieties Ko(Vk) is the abelian group generated
by isomorphism classes [X] of varieties X € Vi with the inclusion-exclusion relation

[X]=[Y]+[X~Y]

for closed subvarieties Y C X. This group may be given a ring structure by defin-
ing [X]-[Y] = [X x Y] and extending by linearity. Grothendieck classes, sometimes
referred to as virtual motives, behave like a universal Euler characteristic for algebraic
varieties. Grothendieck classes usually provide more computable information about
the nature of the motive of a variety. In particular, a Grothendieck class is Tate if it
is contained in the subring generated by the Lefschetz motive I = [A!] (the class of
an affine line), or equivalently in the ring generated by T := L — 1. Since the for-
mulas we will obtain will naturally be polynomials in this class, and we will also be
interested in expressing them in terms of the class S := I — 2, we highlight their
definitions.

Definition 3.1. We will denote by T the class of the ‘torus’ in the Grothendieck ring
of varieties, i.e., T = [A! ~ A% =L — 1 € Ko(Vk). We will also denote by S the
class of the complement of three points in P1: S = [P! ~ {0,1,00}] =T — 1.

Varieties whose motive is in the category of mixed Tate motives will have a Tate
Grothendieck class. The converse holds conditionally (see [6] for a discussion of this
point).
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3.2. Kirchhoff-Symanzik polynomials

We consider the Kirchhoff—-Symanzik polynomial of a graph G with n edges

\DG([) = Z 1_[ le,

TCG e¢E(T)

as a polynomial in variables ¢ = (#1, ..., ;) associated to the edges of G, with the
sum taken over all the spanning trees of the graph. This is a homogeneous polynomial
of degree £ = by (G), the first Betti number of the graph, which in physics is referred
to as the number of loops of G. Thus, we can consider the associated projective graph
hypersurface

Xeg={t=(t1: :ta) €P" ' | Wg(t) = 0}.

Up to renormalization of divergences, the Feynman parameter form of the Feyn-
man integral for the graph G, for a massless scalar field theory, is of the form

I'(n—Dt/2) [ Vg(t, p)"TtP/2
(An)tP2 5,  YG()P/?

UG, p) = dty ---dty 3.1
as a function of the external momenta p, where Vg (¢, p) is the second Symanzik
polynomial (defined in terms of cut sets of G), D is the spacetime dimension, and
the integration is performed on the n-simplex. In particular, (modulo divergences) the
Feynman integral (3.1) can be regarded as the integration of an algebraic differential
form on a locus defined by algebraic equations (that is, a period) on the complement
of the hypersurface X, hence the interest in investigating the nature of the motive of
P~ < X¢ through the computation of its Grothendieck class. For a general intro-
ductory survey of parametric Feynman integrals and their relations to periods and
motives of graph hypersurfaces, see [29].

In the following, we will consider both graphs with external edges and graphs
(vacuum bubbles) with no external edges. From the point of view of the parametric
Feynman integral, the contribution of the external edges with their assigned external
momenta is encoded only in the second Symanzik polynomial Vg (¢, p), while the
variables ¢ = (¢,) run over internal edges. Thus, as long as the exponent satisfies
£D/2 > n, with £ the number of loops, n the number of (internal) edges, and D
the spacetime dimension, the Feynman integral is computed on the complement of
the graph hypersurface defined by Kirchhoff-Symanzik polynomial W (¢) that only
depends on the internal edges of G. The Grothendieck class of the affine complement
of the hypersurface of a graph G (including external edges) and of the same graph
with the external edges removed are simply related by a product by a power of L (the
class of the affine line), hence computing one is equivalent to computing the other. For
the purpose of computing Grothendieck classes, considering all graphs (both vacuum
bubbles and non-vacuum graphs) for a massless scalar theory with a self-interaction
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term of order N, so that the corresponding Feynman graphs have (internal) vertices
of valence N, is equivalent to considering all vacuum bubble graphs for a massless
scalar theory with self-interaction terms of orders v < N. For convenience, we will
work with graphs with the external edges included.

Up to the issue of renormalization, the Feynman integral (3.1) can then be seen
as a period of the graph hypersurface complement. The nature of the motive of the
graph hypersurface complement (detected by its Grothendieck class) then provides
information on the kind of numbers that can be obtained as periods. The regular-
ization and renormalization of integral (3.1) can also be dealt with geometrically in
terms of blowups or deformations. We will not discuss this in the present paper and
we refer the reader to [29] for an overview and to the references therein for more
information.

3.3. Grothendieck classes of graph hypersurface complements

In previous work, especially [3] and [4], we have focused on the essentially equivalent
information given by the complement of the affine cone X G in its ambient affine space,
and studied its class in the Grothendieck group of varieties (the ‘motivic Feynman
rule’ of [3]). For short, we will refer to this class as the Grothendieck class of the
graph or of the corresponding melonic construction.

Definition 3.2. The Grothendieck class of G (or of any of its melonic constructions)
is the class U(G) = [A" ~ Xg] € Ko(VKk) of the complement of X in its natural
ambient affine space A", with n the number of edges of G.

By construction, U (G) is the class of a variety of dimension equal to the number
of edges of G.

In this section, we will use the melonic constructions introduced in Section 2 to
obtain a recursive computation of the Grothendieck class of a melonic graph. The
class only depends on the isomorphism class of the resulting graph, so equivalent
constructions produce the same Grothendieck class.

We recall the following properties of U (G).

* This invariant is ‘multiplicative’, in the sense that
U ul,) =0T - UT2)
if T'y, I'; are graphs joined at one vertex (or disjoint).
e ForI' =aloop, U(I') = T (with T as in Definition 3.1).

e For' =asingleedge, U(T') =L =T + 1.
e IfT” is obtained from T by splitting an edge, then U(T"") = (T + 1) - U(T).
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If T is an m-banana, m > 0, then
)
Ul) =B, :=mT"™ ' +T. ——————
(1) =B :=m + T +1
(see [2] and [4, Corollary 5.6]).

More generally, if e is not a bridge or a looping edge, then for suitable polynomials
fm» gm’ hm in ’]T’

UTme) = fmUT) + gmU('/e) + hnU(T ~e), (3.2)

where

— T'je stands for the graph obtained from I' by replacing e with m parallel edges
joining the same vertices as e;

— I'~e =Ty, is I with e deleted; and
— TI'/eis I with e contracted.

This is a weak form of a deletion-contraction relation. Inductively, the coeffi-
cients f, &m, hm are determined by their value for m < 2; in fact, we have

O
B Tm _(_l)m
=mT" ! — ———, 33
E&m = m T +1 (3.3)
P o
" T+1

as obtained in [4, Corollary 5.7]. Formulas for bridges and looping edges are eas-
ier, as they follow immediately from the multiplicativity property.

3.4. Recursion formulas for the Grothendieck classes

The properties listed above, and particularly identity (3.2), lead to recursion formulas
for the computation of the Grothendieck class of the melonic graph associated with a
melonic construction, or equivalently of the corresponding tree. (We will use the two

descriptions interchangeably.) We will abuse language and use both U (7") and U (G)

for the Grothendieck class of the melonic graph G resulting from a melonic construc-
tion 7.

The recursion formulas are based on the following observations.
Let G be a melonic graph given by a melonic construction (tree) 7 .

By Lemma 2.1, we may assume that the melonic construction is reduced, i.e.,
nodes labeled 1 are leaves of the tree T .
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If T has length 1, i.e., the corresponding melonic construction consists of a single
tuple ((a1,-..,ar),0, 1), then

u(r) = HB“ —1_[( ’Tai_l‘f'TWT_—_i(__ll)ai).
i=1

Indeed, the graph G consists of a string of bananas in this case.

If T = (t1,...,t,) has higher length, consider the last stage #,. By construction,

the black nodes of ¢, are all leaves of T'.

If t, = ((a), p, k), then an equivalent (n — 1)-stage construction is obtained by
omitting #, and increasing the label of the k-th leaf of #, by a — 1.

bk TN
br+a—1
a

Indeed, this step of the construction simply replaces 1 edge in the k-th banana
of #, by a parallel edges.
It
th=((1,....1, pk),
—

r times
thenlet 7/ = (¢1,...,t,—1) be the construction obtained by omitting the last stage.
Then U(T) = (T + 1)""'U(T"). Indeed, the effect of ¢, is to split one edge in
the k-th banana of ¢, a total of r — 1 times.

We may therefore assume that #, = ((a1,...,ar), p, k) with r > 1 and such
that a,, = max(ay,...,a,) > 1. The effect of 7, is to replace one edge in the
k-th banana of ¢, by a string of a;,...,dnm, ..., a,-bananas; this is the same as
replacing that edge by a string of ay,...,am—1,1,dm+1, . ..,a,-bananas, and then

replacing the resulting single edge e by ay, parallel edges

< é@ou@e@-
==
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Let G’ be the graph obtained from G by replacing the a,,-banana by the single

’
ame*

edge e. With notation as in (3.2), we have G = G
Claim 3.1. The edge e is not a bridge (or a looping edge) of G’'.

Proof. This follows from the assumption that 7" is reduced. Indeed, as a consequence
the k-th banana of #, does not consist of a single edge; hence removing one edge
of this banana does not disconnect the graph. Since the edge e is one edge in a sub-
division of one edge of the k-th banana of ¢,, removing it does not disconnect the
graph. (And the construction never produces looping edges, therefore e is not a loop-
ing edge.) ]

It follows that we can use (3.2) to relate U(G) to the Grothendieck classes of G’
and associated graphs G'/e and G’ ~ e

U(G) = f4,,U(G’) + g4,,U(G'/e) + h,,,U(G' ~ ¢) 3.4

with f4,,, 8apm» Pa,, asin (3.3).
Now:

e G’ is a melonic graph: its construction 7" is obtained from T by replacing

tn:((alwn7am—1,am’am+1»---,ar)»p,k)
by
t};=((a17"‘9am—17lvam—‘rl""yar)’p?k)'
Pictorially:
ap Ay see Uy oo° ay aq as cee 1 coe ay

» The contraction G’/e is also a melonic graph: its construction 7" is obtained
from T by omitting a,, in #,, i.e., replacing

tn = ((alﬂ"'7am—1’a”’ham+17""ar)9pak)
by
t}{[/ = ((a17“’7am—17am+17”’ 7ar)’ pvk)'
Since r > 1, the tuple (ai, ..., adm—1,4m+1,---,dr) is non-empty, as needed

(cf. Definition 2.1). Pictorially:
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a Ay *** Ay *** ary aq az ** Aym—1 Am+1 *dy

» The deletion G’ ~ e is not a melonic graph; it is obtained by replacing one edge
of the k-th banana of 7, by two disconnected strings of bananas attached at the
vertices of that edge:

-
\ /
Let 7" be the list obtained from T by omitting #,, and decreasing by 1 the order by

of the k-th banana in 7,. Since T is assumed to be reduced, by > 1; therefore, 7" is
still a melonic construction. (Note that, however, 7"’ may be non-reduced. This is the

reason forcing us to consider non-reduced melonic constructions.) The graph G’ ~ e
is obtained from the melonic graph corresponding to 7" by attaching two strings of
bananas to two vertices, and it follows that

r

m—1
U(G' ~e) = (1’[ Bai)( I IB%ai)IU(T’”).
i=1

i=m+1
In conclusion, (3.4) may be rewritten as

m—1 r

U(T) = fap U(T") + ga,, U(T") + (H B)( I1 Bai)hamU(T”’),

i=1 i=m+1
or, more explicitly, as follows:

Proposition 3.2. With notation as above,

Tam — (—1)m / am— Tam — (—1)%m "
U = U T - S U
m—1 r
Tam 4 (—1)mT
(T8 )( T B )= uam.
i=1 i=m+1

Since T’, T, T"" all correspond to melonic graphs with fewer edges than G, the
corresponding Grothendieck classes are recursively known, and determine U(G) =
u(Tr).

Corollary 3.3. The graph hypersurface of a melonic graph G determines a mixed
Tate motive, the Grothendieck class U (G) is a polynomial in 1L of degree equal to the
number of edges of G.
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Proof. The recursion implies immediately that U (G) is a polynomial in T, therefore
inL = T + 1. By construction, U(G) is the class in the Grothendieck group of a va-
riety of dimension equal to the number of edges of G, so the statement follows. =

3.5. Positivity and log-concavity

The class of a melonic graph can of course also be written as a polynomial in the class
S =T —1=[P!~{0,1, 00}]. Remarkably, these polynomials are ‘positive’, in the
following sense.

Corollary 3.4. Let G be a melonic graph. Then U(G) = P(S) for a polynomial
P(t) = ant™ 4+ --- + a1t + ao € Z[t] with nonnegative integer coefficients.

Proof. Given the recursion, it suffices to observe that the classes of banana graphs,
By (T) = B,y (S + 1), and the coefficients f,, gm, i are all positive as polynomials
in S. The key observation is the following.

Claim 3.5. The class

-=D" _ (S+D" - (="
T+1 S+2

is positive in S, in fact,
1 % o
— (- 1)'” g m—2i 0 ifmiseven,
+
CTH+1 Z_; ; 1 ifmisodd.

This is a straightforward computation, left to the reader. Given Claim 3.5, it fol-
lows immediately that

_ ™" — (D™ ™" — ()™ T + (—D)™"T
Buy =mT" '+ T———, - 7 ="
m = * T +1 Im T +1 ’" T +1
are positive in S. As for
_ - (=™
— ']Tm 1 _ ,
8m m —T T
the required positivity follows from the fact that for all m,i > 1, j
m—1 m —2i
. Eal
J J=1
1 -2 -2 -2 -2
which is clear, as (m] ) = ('J’.’_l) + (mj ) > (’;.1_1) > ("; 1’) fori > 1. n
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Example 3.1. The melon-tadpole graph in Figure 2 consists of a 4-banana tadpole,
with class B4 = (T + 1)(T? + 2T — 1)T, and of a melonic part which may be con-
structed by

(((4),0,1),((1,3, 1), 1, 1)),

i.e., by the labeled tree

1 3 1
The recursion obtained above computes the Grothendieck class of this melonic graph
to be
T2(T 4+ DH*(T? 4+ 3T —2).

The conclusion is that the Grothendieck class for the graph in Figure 2 equals
T3(T 4+ 1)7(T2 4+ 3T —2)(T? + 2T — 1)
= (S+ 13(S +2)°(S? 4+ 4S +2)(S* + 5S + 2).

Indeed, the graph may be obtained by splitting one edge in each of the two com-
ponents (which has the effect of multiplying each Grothendieck class by T + 1),
and then joining the resulting graphs at the newly created vertices, i.e., multiplying
together the two resulting Grothendieck classes. The resulting class is positive in S.

The positivity of the coefficients of the powers of S in the Grothendieck class
of a melonic graph suggests that these should have a combinatorial interpretation.
It would be valuable to have such an interpretation, for example, as a tool to explain
the log-concavity property conjectured below. We leave this as an interesting open
question. We do not have a compelling answer to this question even in the case of
banana graphs.

A Grothendieck class is said to be torified (see [28]) if it may be expressed as
a polynomial in T with nonnegative coefficients. This property may or may not be
induced by a geometric torification of the underlying variety. The presence of a tori-
fied Grothendieck class has consequences in terms of ‘geometry over the field with
one element’ [8,28]. One can similarly ask whether the positivity of the Grothendieck
class as a function of S is induced by an underlying geometric structure and whether
such a structure carries arithmetic significance. For example, the Grothendieck classes
of the moduli spaces My, of genus zero curves with marked points have the simple

[Mos] = (n i)(n -3

expression
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in terms of the class S, with [Mg 4] = S. However, these classes are not positive in S,
while the classes of the My, moduli spaces satisfy positivity (both in S and in T),
see [28].

Another feature of the polynomials expressing the classes in terms of S appears
to be the following.

Conjecture 3.1. Let G be a melonic graph, and let U(G) = ag + a1S + -+ +
anS"™ be its Grothendieck class. Then the sequence ag, ay, ..., a, is log-concave,
ie,aj—1ai41 < aizforO <i<n.

We have verified this conjecture for all melonic graphs with < 15 edges and for
hundreds of individual examples from the families of melonic graphs considered in
this paper.

Example 3.2. As polynomials in S, the Grothendieck classes of all possible melonic
graphs with 7 edges are

(S + 1D3(S +2)4,

(S + DH2(S +2)°,

(S + 1)(S +2)°,

(S+2),

(S+ 1)*(S +2)*(S + 3),

(S + DS +2)*(S +3),

(S+ 1S +2)*(S +4),

(S + D*S +2)%(S + 5),

(S + D2(S +2)3(S% +4S +2),

(S + 1)(S +2)*(S? 4 4S + 2),

(S + D2(S +2)3(S% +5S + 2),

(S + DS +2)3(S% + 58S + 5),

(S + DS +2)3(S® + 6S? + 7S + 3)

(S + 1)(S +2)3(S? + 6S% + 7S + 3),

(S + 1)(S +2)*(S? + 6S% + 9S + 3),

(S + 1)(S +2)*(S* 4 8S> + 15S? + 12S + 3),
(S + 1)(S +2)*(S* +8S? + 19S? 4 16S + 5),
(S + 1)(S +2)(S° + 10S* 4 26S> + 31S? 4 17S + 4).

Each of these classes may correspond to several non-isomorphic graphs. For example,
note that splitting an edge in two or adding an external edge both have the effect of
multiplying the class by S + 2. The graphs
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e O OS5
A e

all have Grothendieck class
(S + 1)%(S +2)3(S? + 4S +2).

One may verify that all these polynomials are log-concave (in the sense that the
coefficients of their expansions are log-concave sequences). The number of distinct
Grothendieck classes for melonic graphs with n edges is

1,2,2,4,6,11,18,33,59,114,220,454,954,2074, 4602, . ..

respectively as n = 1,2, 3, ... This list is obtained by direct computation. Melonic
(i.e., series-parallel) graphs are enumerated combinatorially in [32].

Remark 3.1. It is well known that if the zeros of a real polynomial are real, then the
coefficients of the polynomial form a log-concave sequence (as pointed out in [33],
this observation goes back to Newton). The polynomials expressing Grothendieck
classes of melonic graphs do not satisfy this stronger condition in general. For exam-
ple, the polynomial for the 5-banana

N
N—7

(S + 1)(S +2)(S* +6S% + 7S + 3)

is

and has two non-real zeros.

In [33] it is also pointed out that a weaker condition on the zeros of a polynomial
implies that the coefficients form a log-concave sequence: it suffices that the complex
zeros lie in the sector {¢ | 27 /3 < ¢ < 4x/3} [33, Proposition 7]. This condition
is satisfied by the m-banana graph for m = 1, ..., 30, but it fails for m > 31. The
Grothendieck class of the 31-banana is given by

(S+1%*—1

S+ 4+ (S +1)- .
m(S +1)>" +(S+1) S+2
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this polynomial has one real zero close to S = —31, and the others as in the following
picture:

Two of the zeros (barely) lie outside the sector.
The necklace graph (as in Remark 2.2) with 24 circles also gives an example.

The log-concavity property of the Grothendieck classes implies similar properties
for the images of these classes under any motivic measure, meaning a ring homomor-
phism p: Ko(V) — R. Such measures include the topological Euler characteristic
and the Hodge—Deligne polynomials (for complex varieties) or the counting of points
(for varieties over finite fields). As discussed in [26], the presence of a log-concave
structure is usually a sign of the presence of an underlying richer kind of structure,
in the form of Hodge—de Rham relations. These can be seen as a broad combinatorial
generalization of the setting of the Grothendieck standard conjectures for algebraic
cycles. Such combinatorial Hodge—de Rham relations arise, for example, in the con-
text of the log-concavity property of characteristic polynomials of matroids, see [1].
Thus, the observed log-concavity of the Grothendieck classes of the graph hypersur-
face complements as a polynomial in the S variable suggests the presence of a more
interesting underlying geometric structure in this Hodge—de Rham sense.

While the Grothendieck classes are positive in the class S and display this intrigu-
ing property, we will persist in using T in most of the examples that follow, since the
coefficients of the powers of T in these classes tend to be smaller and the structure
of the resulting expressions is often more transparent. For example, the Grothendieck
class of the necklace graph of Remark 2.2, with 10 circles, is

T(T + D°(T™ +10T° — 1) = (S + 1)(S +2)°(S'? + 20S° + 135S?®
+ 480S7 + 1050S° + 1512S° + 1470S8*
+ 960S? + 40582 + 100S + 10).
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4. Explicit computations, I

The recursion obtained in Section 3 is easily implemented in any symbolic manipu-
lation package, and this makes it possible to explore the landscape of Grothendieck
classes for natural families of melonic graphs. We will present a selection of such for-
mulas in the sections that follow. While we are able to prove these formulas (see Sec-
tion 7), the recursion was key to discovering them, and often the numerical evidence
we gathered was quite sufficient to convince us of their truth. It would be worthwhile
studying other natural families of melonic graphs using the same method.

In this section, we focus on melonic graph with internal vertices of valence 4, and
we will use the shorthand for such graphs introduced in Section 2.

Example 4.1. For a simple valence-4 example that can be computed without employ-
ing the full recursion from Section 3, we can consider the graph

SRR

with n circles. A corresponding melonic construction is (0,17,27,37,...,(n —1)7).
This construction is non-reduced; a reduced alternative is simply the 1-stage construc-
tion

((1,3,1,3,1,3,...,1),0,1).

The corresponding Grothendieck class is a product of classes of 3-bananas and
(T + 1)-factors, accounting for the external and internal single edges. Explicitly, the
class equals
Br; . (T + 1)n+1 — Tn(T 4 1)3n+1

for n circles.

Example 4.2. At the opposite end of the spectrum, and more interestingly, consider
the valence-4 melonic graphs T, constructed by (0,1%,2%7,3%, ..., (n — 1)*). These
are graphs of the form

e

with n circles.
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4.1. Recursion for the I';, graphs

The graph '), has 4n + 1 edges, so by Corollary 3.3 its Grothendieck class is a poly-
nomial in T of degree 4n + 1. Forn = 1,..., 7, the recursion obtained in Section 3
yields the following Grothendieck classes:

n=1 TYT +1)*- (T +1),

n=2 T*T+1)°-(T?+3T),

n=23 T3T+1)7 - (T3>+5T? +4T —2),

n=4 THT +1)°-(T*+7T3+12T2 —4),

n=>5 TT + )" (T>+9T* +24T3 + 14T2 — 12T — 4),

n==6 TT + 1. (T®+11T> +40T* + 48T> — 8T2 —28T),

n="7 TN(T+ 1Y -(T7 +13T% +60T°> + 110T* + 40T 3
—72T2 — 32T + 8).

The same classes, expressed as polynomials in S, are

(S + DS +2)%(S +2),
(S + 1)2(S +2)°(S? + 5S + 4),
(S + 1)*(S +2)7(S® + 8S? + 17S + 8),
(S + D*(S +2)°(S* + 11S3 + 39S? + 49S + 16),
(S + 1)°(S +2)11(S® + 14S* 4+ 70S? + 15082 + 129S + 32),
(S + DO(S 4+ 2)13(S® + 17S° 4+ 110S* 4 338S3 + 501S? + 321S + 64),
(S + 1)7(S +2)1°(S7 4 20S6 4 159S° + 640S* + 1375S> + 1524S>
+ 769S + 128).

Identifying the pattern underlying these expressions is an interesting challenge.

* Define polynomials ay (r,t) € Z[r, t] for k > 0 by the power series expansion
rx 2 L xk
e cos((r-—rt)2x) = Zak(”,l‘)g- 4.1
k>0
* In turn, define polynomials A4, (t) € Z|t] for n > 0 by the equality of formal power
series
Y ar(rt) =" Au()r".
k>0 n>0

(Since ¢ only appears in the product r¢ in (4.1), it is clear that A, (¢) is indeed
a polynomial, of degree at most n. In fact, deg A, = n.)
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Proposition 4.1. With T, as above, U(T,) = T™(T + 1)?>"*1. A4,(T) forn > 1.

Proposition 4.1 may be easily verified for low values of n; our computer imple-
mentation takes a few seconds to verify it forn = 1,...,100. We will prove Proposi-
tion 4.1 in Section 7.

The definition given above for the polynomials A, (¢) is of course just one choice
among many. An alternative (and perhaps simpler) formulation will be given in Sec-
tion 5. The most explicit version of the same result is the following.

Corollary 4.2. Forn > 1, we have

U(T,) = T™(T + D>+ - (”ZJ;i) ({)(_1)1‘—1'?

0<i<j

=(S+1D"(S+2>* > (” :J) (i +J:— l)zn—i—jSi'

0<i,j J
The straightforward details are left to the reader.

Example 4.3. A similar pattern holds for vacuum graphs analogous to those consid-
ered in Example 4.2. Let I}, denote the graph

with n circles. As observed at the end of Section 2, these graphs are also melonic:
their construction is ((4), 0, 1) for two circles and

((49),0,1),((1,3,1),1,1),((1,3,1),2,2),...,((1,3,1),n — 2,2)

for n > 3 circles. For n > 2, Corollary 3.3 implies that U(I')) is a polynomial of
degree 4n — 4 in T. Applying the recursion obtained in Section 3, we obtain the
following expressions for U(T',),n =2,...,7:

n=2 TYT + D' (T?+2T —1),

n=3 TXT+1)> - (T3+4T%2+T —2),

n=4 T3T +1)° - (T*+6T>+7T? —4T —2),

n=5 THT +1)7-(T>+8T*+ 17T3 +2T2 — 12T),

n==6 T>(T +1)°-(T®+10T> 4 31T* 4 24T> — 22T? — 16T + 4),
n=7 T&T + DM (T7 +12T% + 49T> + 70T* — 8T3 — 64T2 — 4T + 8).



P. Aluffi, M. Marcolli, and W. Qaisar 532

As polynomials in S:

S+ DS +2)' - (S? +4S +2),
S+ D2(S +2)%-(S>+7S?+12S + 4),
(S + 1)>(S +2)° - (S* + 108> + 31S? + 32S + 8),
(S+ D*(S +2)7- (S 4+ 138* +59S3 + 111S% + 80S + 16),
(S + 1)°(S +2)° - (S® + 16S° + 96S* + 268S3 + 351S? + 1928 + 32),
(S + 1DO(S +2)! - (S7 4+ 19S® + 142S° + 530S* + 1037S> + 102382
+ 448S + 64).
*  Define rational functions a; (r,t) € Z[t](r) for k > 0 by the power series expan-
sion 1
(r2 —rt)2 . , xk_
cos(—1 — x) = kggak(r,t)ﬁ,

that is, let a (r,1) = 0 for k odd and a’,,(r, 1) = ﬁr(el(_t%)?;

* Define polynomials A} (¢) € Z[t] for n > 0 by the equality of formal power series
PR ACHED IV AL
k>0 n>0
(Again, A4} (¢) is clearly a polynomial, and deg A, = n.)
Proposition 4.3. With T’} as above, U(T,) = T" (T + 1)?"=3. A/ (T) forn > 2.

Again, Proposition 4.3 may be easily verified by computer, using the recursion
formula obtained in Section 3, for (hundreds of) low values of n. Proposition 4.3 will
also be proved in Section 7.

Corollary 4.4. Forn > 2, we have

U, =T" (T + 1> 3 (” Y 1__1 1) (f)(—nf—"qri

osizi \ 2

- . +i—1\(7\u
— (S + 1)"Y(S + 2)2n3 n St
certei £ (1)
0<i<j

4.2. Relations of vacuum and non-vacuum graphs

A particularly careful reader may notice the following relation from the data shown
above:
Ay (1) = Ap(t) = Ap—1 (0). (42)
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This relation is not a coincidence; it follows from a general formula relating Gro-
thendieck classes of melonic vacuum graphs to classes of related non-vacuum graphs.
We will prove this formula in Section 6.

An even more careful reader may guess the divisibility relation

UTn) | U(T41), 4.3)

for example,
AL(t) = (12 4 5t + 2)(¢% 4+ 2t —2) - A3(2).

Relation (4.3) will also be obtained as a corollary of a more general result on melonic
vacuum graphs, Proposition 6.3 in Section 6 (see Remark 6.2).

Identity (4.2) can be interpreted within the framework of the operation of point-
ing/rooting in enumerative combinatorics. This in fact corresponds to taking the deri-
vative of the generating function of a class of labelled structures, so that each structure
of a certain size n gives rise to n pointed/rooted structures.

More examples of computations of Grothendieck classes for melonic vacuum
graphs will be given in Section 6.

The proofs we will discuss in Section 7 will clarify the presence of the factors
T (T + 1)/ in the Grothendieck classes for the valence-4 graphs considered in this
section. The example (0,11, 1%, 1)

with Grothendieck class
T3(T + D'(T +3)(T3 +3T2-3T + 1)

shows that T"(T + 1)2"*! is not a common factor of the Grothendieck classes of all
n-stage valence-4 melonic constructions.

5. Explicit computations, I1

5.1. Rational generating functions for I',, graphs

While Sections 4 and 6 focus on valence-4 graphs, the same types of computation can
be carried out for melonic graphs of any fixed valence for internal vertices. In order



P. Aluffi, M. Marcolli, and W. Qaisar 534
to obtain simpler statements, it is helpful to express the results stated in Examples 4.2
and 4.3 in terms of rational generating functions.

Proposition 5.1. With notation as in Examples 4.2 and 4.3, and setting Ao(t) =
Ap() =1,

3 An()r = L=r 3 AL = (1-r)
= 1—Q+0r+2r2" &0 1—Q241)r+2r2

Proof. We verify that the polynomials A4,(¢), A),(¢) defined by these expansions agree
with those given in Examples 4.2 and 4.3.
Concerning A, (t), let T = (r2 — rt)2; then

1—r _ 1—r _1( 1 n 1 )
1—Q+0r+2r2 (—r—it)(d—r+it) 2\l—r—it l—r+it/

The terms in the power series expansion of this expression are combinations of powers
. . . . k.
of (r —it) and (r +i7), so they may be obtained as the coefficients of Iy in
eirx 4 e—irx

%(e(r+ir)x + e(r—if)x) = ex. — = e " cos(tx).

This recovers the description of A, (¢) given in Proposition 4.1.
. . . 1
The argument for A/, (¢) is of course analogous. Again setting t = (r> —rt)2, we
have

(1—-r)? _1( 1—r 1—r )

1—-Q+0r+2r2 2\1—r—it  l—r+it

_1( 1 n 1 )
2\ —ie 1+

1-r
and the terms in the power series expansion of this expression are the coefficients
k
k.
of 77 in

1 i P T T
—(e' 7" 4 7' TrY) = cos( x),
2( + ) 1—r

recovering the description of A} (¢) in Proposition 4.3. ]

5.2. Graphs I')) with arbitrary valence

We will discuss some families of valence-4 vacuum graphs in Section 6. The non-
vacuum graphs to which the first formula applies have a natural generalization for
arbitrary valence: we can let I')) be the graphs with melonic construction

(((L,v—1,1),0,1),((1,v—1,1),1,2), ((1l,v —1,1),2,2),....((L,v = 1,1),n — 1,2))

for v > 3. For example, the graphs F,f have the form
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Gsase

while the graphs I'; look like

e

The first several classes U(T2) are

(T +1)%-T,

(T +1)°-(T2+T),

(T +1)7 - (T3 +2T?),

(T 4+ 1)° - (T* 4+ 3T3 + T?),

(T + )M - (T5 4 4T* +3T3),

(T + DB (TS 4+ 5T +6T*+ T3,
(T + D . (T7 4+ 6TC 4+ 10T> + 4T*).

Il
A

n
n

S]
Il

T 3 3 3
Il

It is natural to guess that forn > 1
U(T;) = (T + D> Cy(T)

with
n .
1 .
C = L .
»(T) Z(n—i)T (5.1)
i=0

This may be proven by induction on the number of circles: the m = 2 case of for-
mula (3.2) yields the recursion

Cov1=T-(Cp + Cy),

which determines all C, from C; = T, C; = T(T + 1), confirming (5.1). One
can package this result as a generating function and draw the following conclusion.
Denote by (x", F(x)) the coefficient of x" in the series expansion of F(x) at 0.
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Proposition 5.2. Forn > 1,

1
D = (T D" )

A similar, but understandably more complex expression holds for arbitrary va-
lence v.

Proposition 5.3. Let v > 4.
*  The class U(I')) is a multiple of T" (T + 1)2n+l;
U(Ty) = T™(T + D>+ Ax(T)
for a polynomial A (t) of degree (v — 3)n.

* The polynomial A} (t) equals the coefficient (r",a,(r.t)), where a,(r.t) is the
rational function N(r,t)/D(r,t) with

v=3 _ ju— v—4
Ny = LHHEDTE 2 1= (X v )
i=0

and

v—3
D(r,t) =1+ (—vz”—3 =D =D+ 2)zi)r
i=0

v—4
+ ((—1)”:”—4 +Y (=) =3— i)zv—4+i)r2.
i=0
A formal proof of Proposition 5.3 may be constructed along the lines we will
provide explicitly for the case v = 4 in Section 7.
Example 5.1. Consider the case v = 10; the rational function a1 (7, ¢) is
A—Q—t+2=34+1* =1 +1%r)
x(1—@=3t+4t> =503 + 61* — 71> + 8t° +1")r
+ (818 — 617 + 58 —41° 4+ 3¢10 — 2411 4 tlz)rz)_l
and the coefficient (r'3, a1 (r, t)) is a polynomial of degree 91:

21 +103¢%° + 479413 + ... — 2455891878317453988:+°
+ - + 86630412 — 81920¢ + 4096.

According to Proposition 5.3, the Grothendieck class for the melonic graph con-
structed by

(((1,9,1),0,1),((1,9,1),1,2),((1,9,1),2,2),....((1,9.1),12,2))
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equals

T(T + 1?7 (T°" + 103T*° + -+ — 2455891878317453988T *°
+ -+ —81920T + 4096).

This may be verified by applying the explicit recursion obtained in Section 3.

6. Vacua

In this section, we focus on melonic vacuum graphs. We first observe that there is
a close relation between Grothendieck classes of vacuum graphs and of related non-
vacuum graphs. For this discussion, the graphs are not necessarily assumed to be
melonic; however, the result will explain melonic relations such as the one observed
in (4.2).

6.1. Vacuum and non-vacuum graphs relations

Assume that I'Y is a graph with a distinguished edge

FV

and this edge is not a bridge in I'’. Consider two associated graphs: the graph I"
obtained by cutting the edge, and the graph T obtained by inserting a new edge cross-
ing the given edge, with vertices as indicated:

[

i

Lemma 6.1. One has

U(T) - T(T + 1)’U(I)

v = T(T + 1)*

Proof. This is an application of the formula for the effect on Grothendieck classes of
adding one parallel edge to a given (non-bridge, non-looping) edge in a graph, i.e., the
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case m = 2 of (3.2). Place two valence-2 vertices on the joined edge in 'Y, creating
an edge e in a graph I'/; by construction, e is neither a bridge nor a looping edge.
Then

UT) = (T + DH2UTY), UI'/e) = (T + HUTY),

while I'" ~ e = I'. Replacing e by two parallel edges produces I without the two
external edges. Applying (3.2) then gives

U(T)
(T + 1)2
that is (cf. (3.3))

= fo(T + 1)’U("Y) + g2(T + HUT) + hU(T),

U(T)

T T(T + 1)2U(T?) + TU D),

with the stated result. n

In the applications that we have in mind, I" may be a melonic non-vacuum graph
constructed by

((17a25"'7ar—17 1)707 1)9t27--',tn;

the graph I'V will then be the (melonic) vacuum graph obtained by joining the two
valence-1 vertices of I', and T is the non-vacuum graph constructed by

((1,3,1),0, 1), (1, az.....ar—1.1),1,2). 8}, ... 1},

where tl./ = (b;, pi + 1,k;) ift; = (b;, pi,ki),i =2,...,n. Lemma 6.1 shows that
the class U(I"?) of the vacuum graph is determined by the classes U(T"), U(T) of the
associated non-vacuum graphs.

For example, with notation as in Section 4, Lemma 6.1 implies that

U(Fn+1) - T(T + I)ZU(Fn)‘
T(T + 1) ’

UTy40) =

with U(T,) = T"(T + 1)?"*14,(T) and U(T),) = T* 1T + 1)>*34,,(T) as
in Section 4, this relation gives
T"(T + 1)>"7 454, (T)
_ TMYT 4 123 4, (T) — T(T + D2T™(T + 1)1 4,(T)
N T(T + 1)* ’

that is,
A;H-l(T) = An+1(T) - AH(T)a

and this proves (4.2).
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6.2. Tree structure for valence-four vacua

Next, we consider more specifically vacuum bubbles of 2-point melonic graphs in
which every vertex has valence 4. These graphs may be drawn as loopless unions of
ovals (meaning that the underlying 1-skeleton of the covering by ovals is a tree):

These graphs were discussed in Sections 2.4 and 2.5. The information carried by such
a graph is equivalent to the information of a tree, for example, the tree

for the graph shown above. Every node of this tree corresponds to one of the ovals,
and two nodes are connected by an edge if and only if the corresponding ovals meet.
Given a tree, a corresponding melonic construction is obtained in the evident way by
associating one arbitrary edge of the tree with a 4-banana and labeling the other edges
with appropriate ((1, 3, 1), *, %) tuples as prescribed by adjacencies in the tree. For
example, the edges of the above tree could be marked as follows (we also numbered
the edges of the tree to reflect the stage of the corresponding tuple in the melonic
construction; many other choices are possible):

((1,3,1),1,1)

((1,3,1),1,1) (((1,3,1),4,2)

! N ((1a371)95a1)

((1,3,1),2,1)3 \ \ ((1,3,1),6,2)

((4),0,1)
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leading to the melonic construction

((4),0,1),((1,3,1), 1,1), ((1,3,1),2, 1), ((1,3,1),1, 1), ((1,3, 1), 4,2),
((1,3,1),5,1),((1,3,1),6,2). (6.1)

Alternatively, one could label one node of the tree by a 2-banana and the remaining
nodes by ((1, 3, 1), %, *) tuples; the corresponding construction will produce a vac-
uum melonic graph with two extra valence-2 vertices. This strategy is used below in
Example 6.1.

Remark 6.1. Note that a given tree, such as the one shown above, may be used to
obtain many different melonic constructions of the same melonic vacuum graph: for
example, the root of the melonic construction will depend on which of the edges
is (arbitrarily) chosen to carry the initial 4-banana. It would be interesting to obtain
a general classification of all melonic constructions giving rise to a given melonic
graph, cf. Example 2.3.

6.3. Recursion relations for vacuum bubbles

It is natural to ask whether a simple recursion may exist between the Grothendieck
classes of vacuum melonic graphs, reflecting the tree-like structure underlying them.
The only instance known to us of such a recursion goes as follows. Assume a branch
of the tree projects out of the main body; let U,, denote the Grothendieck class of the
vacuum melonic graph obtained by adding n edges to such a branch.

Claim 6.2. Forn > 2,
Ups1 = T(T + D*(T 4 2)U, —2T*(T + 1)*U,_;.

We will prove this formula in Section 7; in fact, we will prove that this formula
holds even if the starting graph is not melonic. This will be our main tool in the proofs
of the propositions stated thus far, as well as Proposition 6.3, stated below.
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Example 6.1. Let 7 be the vacuum melonic graph corresponding to the star-shaped
tree

with s rays and n nodes along each ray. For example, 2;’; is the following melonic
vacuum star:

Interpreting the central node as a 2-banana (thus adding two valence-2 vertices to the
corresponding circle) leads to the following melonic construction for X3 :

((2),0,1), ((1,3,1,...,3,1),1,1),

T e
((1,3,1),2,2),....((1,3,1),2,25),
((1,3,1),3,2),...,((1,3,1),2 + 5,2),
((1,3,1),345,2),....((1,3,1),2 + 25,2),

s

((1,3,1),34+ (n—3)s,2),...,((1,3,1),2 4+ (n — 2)s,2).

(Of course, many alternatives are possible.) This construction may be used to compute
Grothendieck classes in specific examples, by using the recursion obtained in Sec-
tion 3 (and dividing by (T + 1)? to account for the two additional valence-2 vertices
arising in the construction). On the basis of extensive data, one can formulate the
following statement.
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Proposition 6.3. Let 0} (t) be the polynomials defined by the expansion

1=2r +((s — )t — (s —2))r?
1—Q+t)r+2r2

=1+ os@)r"t.

n>0
Then for s,n > 1
U(Z;) = T(T + 1> 4,(T)* 1o (T),
where A, (t) is the polynomial appearing in Proposition 4.1.
For example, according to the above definition,
og'(t) = t7 +22¢% + 1391 4+ 290¢* — 81> — 424¢% — 441 + 88,
and one finds

TO(T + 1)1 46(T) %0 (T) = T4+ 263T 23 + 34211 T 242+ 2935019T 26!
+ -+ 4 26065315469197312T ¢,

matching the result of the computation of the Grothendieck class U(Eél)

by means of the basic recursion obtained in Section 3.

The proof of Proposition 6.3 is given in Section 6. We record the following conse-
quence, which calls for a more geometric explanation. Relation (6.2) below suggests
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that the complement of the hypersurface X »s may be realized as a fibration over
products of complements of X, . This suggests the possible presence of interesting
geometric relations between these families of graph hypersurfaces.

Corollary 6.4. If s < 2n, then U(T,)’~! divides U(Z3). More precisely,
U(Zy) = T"(T + D> U)o (T). (6.2)

Proof. The given equality follows from the formula given in Proposition 6.3 and the
expression for U (I',,) obtained in Proposition 4.1. ]

Remark 6.2. Corollary 6.4 implies the divisibility relation (4.3) observed in Sec-
tion 4. Indeed, the graph %2 consists of a string of 2n + 1 circles:

2n+1

L 1 L 1
n n

That is, X2 = I'},, 1> with notation as in Example 4.3. For this graph, Corollary 6.4
states that U(I",) divides U(I'},, ;), and this is precisely the assertion in (4.3).

Remark 6.3. Of course, the recursion may be used to compute the Grothendieck
class of more general melonic vacuum graphs. For example, the Grothendieck class
for the ‘necklace graph’ shown in Remark 2.2,

is
(T" +nT" ! —1)(T + )*'T,

where 7 is the number of circles. (This may be easily verified by induction.)
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7. Proofs

Propositions 4.1 and 4.3 will be proved in the equivalent form presented in Proposi-
tion 5.1. For clarity, we will focus on the case of valence 4 given in these propositions;
the same method could be used to prove Proposition 5.3.

The statement we will prove will actually be substantially more general than
Propositions 4.1 and 4.3: it consists of a recursion ruling the Grothendieck classes
of graphs obtained by extending any given graph by a tower of 3-bananas.

Let G be a (not necessarily melonic) graph, and let e be an edge of G. Let G, be
the graph obtained by applying a chain of (1, 3, 1)-bananifications starting from e:

q q
G: Gn: ."m
q q

n

Theorem 7.1. The generating function for the Grothendieck classes U (Gy,) is ratio-
nal, with denominator independent of G. More precisely, there exists a polynomial
P(T, p) with integer coefficients such that

P(T, p)

n>0

This statement focuses on the fact that the generating function is rational and gives
an explicit form for its denominator, which depends on the bananification process
itself rather than on the graph G. The graph G determines the numerator P (T, p);
explicit formulas will be given below in Theorem 7.2. For example, we will see that
the polynomial has degree 1 in p, and P(T,0) = U(G).

Proof. Denote by H,, the graph obtained from G, by replacing the last 3-bananifica-
tion with a 2-bananification:

Denote U (G,) by Uy, U(H,) by V,,. Assume n > 2. Consider the graph G” obtained
by splitting one of the parallel edges of the top banana in G,—; into three edges; let ¢’

be the central edge so produced, and note that ¢’ is not a bridge or a looping edge
of G”.
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The contraction G’ := G” /e’ may be obtained from G,_, by splitting the same edge
of the top banana into two edges, and the deletion H’

= G” ~ ¢’ may be obtained
from H,_; by attaching two external edges to the vertices of the top (2-)banana:

By (3.2), we have

Vo = LU(G") + g2U(G") + ha U(H),
Un = fsU(G") + g3U(G') + hsU(H"),

where f5, f3, etc., are as in (3.3). We now note that
U(G") = (T 4+ 1)*U(Gn-1) = (T + 1)?Up_1,
U(G") = (T 4+ DHU(Gp-1) = (T + YUy,
U(H') = (T + D*U(Hp—1) = (T + 1)?*V;_1,

further,

f(T + 1) 4+ g2(T + 1) = T(T + 1),
f(T 4+ 1)% + g3(T + 1) = T(T + 1)3,

while i, = T, h3 = (T — 1)T. The above formulas can then be rewritten as
Vo =T(T + 1)zUn—l + T(T + 1)2Vn—17

3 ) (7.1)
Up=T(T + 1)°Up—1 + (T = DT(T + 1)*V;—1.
These imply

(T — 1)V, = (T = DT(T + 1)?Up_i + (T — DT(T + 1)2V,,_,
= (T = DT(T + 1)?Up—1 + (Uy = T(T + 1)3U,_1)
= U, —2T(T + 1)?U,_,
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and therefore
Unt1=T(T + 1)Uy + (T = DT(T + 1)*Vj,
= T(T + 1)U, + T(T + 1)2(U, — 2T (T + 1)2U,_1)
=T(T + D*(T 4+ 2)U, —2T*(T + 1)*U,_;.

n+1

(This proves Claim 6.2.) Now, for n > 2, the coefficient of p in the product

(1=T(T + D*(T +2)p + 2T*(T + 1)*p?) - Y _ Unp”

n>0
equals
Ups1 —T(T + DX(T 4+ 2)U, + 2TXT + D*U,_; = 0.
This product is therefore a polynomial P (T, p), and this proves the statement. |

The argument shows that

P(T.p) = (1=T(T 4+ D*(T +2)p + 2T*(T + 1)*p?) - Y _ Unp”
n>0
=U(G) + (U(G1) — T(T + D*(T +2)U(G))p
+ (U(G2) — T(T + D*(T +2)U(Gy)
+2T*(T + 1)*U(G))p>. (7.2)

If e is not a bridge, then the argument proves the same recursion for n > 1; it follows
that the coefficient (p2, P(T, p)) of p? in P(T, p) is 0 in this case. Maybe a little
surprisingly, the same conclusion holds if e is a bridge (as we will prove below); thus,
the polynomial P (T, p) is of degree 1 in p. This polynomial is determined by U(G)
and the deletion U (G ~ e), as we will see below.

In fact, Theorem 7.1 and the direct computation of a few values of U (G,,) suffice
to determine the numerator.

Example 7.1. The melonic valence-4 vacuum graphs corresponding to the trees
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have melonic construction obtained by extending (6.1):

((49),0,1),((1,3,1),1,1),((1,3,1),2,1),((1,3,1), 1, 1), ((1,3, 1), 4, 2),
((1,3,1),5,1),((1,3,1),6,2),((1,3,1),6,1),((1,3,1),8,2), ...,
((1,3,1),n 4+ 6,2).

Using the recursion obtained in Section 3, we can compute the following Grothen-
dieck classes:

n=0 T(T + )"’ +13T° +56T> +80T*—17T3 —77T? + 8),

n=1 T¥T + D(T7+ 14T®4 64T+ 94T*—29T3— 100T>+ 12T + 8),

n=2 TYT+ DT +3)(T7 + 14T° + 64T> + 96T* — 19T 3
—102T2 — 6T + 16)

and this is (more than) enough information to determine P (T, p): if Uy, Uy, U, are
these three classes, the product

(1=T(T + D*(T 4+2) p+ 2T*(T + 1)* p*) - (Uo + Uy p + Uz p*)
equals

T(T + D™(T7 4+ 13T6 + 56T> + 80T* — 17T 3 — 77T 2 + 8)
—2T3¥(T + 1)'°Q2T°® + 17T> 4 39T* + 9T3 — 33T — 6T + 4)p
modulo p3. As expected, the coefficient of p? vanishes. The polynomial P(T, p) must

equal this degree 1 polynomial in p.

In general, P(T, p) is determined by the Grothendieck classes of G and (if e is
not a bridge) G ~ e, if the latter is known.

Theorem 7.2. With notation as above, let r = T (T + 1)2p. Then we have

1—r
1 — (T +2)r +2r2

Z U(Gn)pn =

n>0

-U(G)

ife is a bridge in G, and

UG)+ (T -1DHUG ~e) - UG)r
1 — (T +2)r + 2r?

> U(Gnp" =

n>0

if e is not a bridge in G.
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Proof. The argument proving Theorem 7.1 shows that {p", P(T, p)) = 0 forn > 3,
and for n > 2 if e is not a bridge, as observed above. If e is a bridge,
Ui = (T + 1)*BB)UG ~e) = T(T + D*U(G ~e) = T(T + 1)3U,,

since G is obtained by replacing the central split of e, a bridge, with a 3-banana.
By the same token,

Vi = (T +1)>BQ)U(G ~e) = T(T + 1)3U(G ~e) = T(T + 1)*U.
By (7.1), we have

Uy =T(T + 1)3U; + (T — HT(T + 1)?V; = T3(T + DT + 3)Up.
On the other hand,

T(T + )*(T +2)U; —2T*(T + 1)*U,
= T>(T + 1)>(T +2)Up — 2T*(T + 1)*Up = T*(T + D*(T + 3)V,.

This verifies that (p?, P(T, p)) = 0 in this case as well (see (7.2)). Therefore, in all
cases we have

P(T,p) = U(G) + (U(G1) = T(T + D*(T +2) U(G)) p.
If e is a bridge,
{0, P(T, p)) = U(G1) = T(T + D*(T +2)U(G) = —T(T + 1)*U(G)

since U(Gy) = U; = T(T + 1)Uy = T(T + 1)>U(G) as we observed above.
Therefore,

P(T,p) = U(G) = T(T + )’U(G)p = (1 - U(G)

if e is a bridge, and this gives the first formula.
If e is not a bridge, splitting it into three and 3-bananifying the central edge gives,
arguing as in the proof of Theorem 7.1,

U((G,) =T(T + 1)3U(G) + (T —1D)T(T + 1)2U(G ~e)
and therefore

U(Gy) — T(T + DH*(T +2)U(G)
= —T(T + D?U(G) + (T — DHT(T + 1)>U(G ~e).

It follows that the degree-1 term in P (T, p) in this case is
(=U(G) + (T — HU(G ~e)) T (T + 1)?p,

and this completes the proof of the second formula. |
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The fact that the formulas in Theorem 7.2 depend on r = T (T + 1)?p explains
why the specific examples worked out in Propositions 4.1 and 4.3 included powers
of T and T + 1 as stated. We recover these results in the next two examples.

Example 7.2. Define the polynomials A, (¢) by the power series expansion

1—r
An(O)r" =
2 An(0)r 1—Q+0r+2r2

n>0
(cf. Proposition 5.1). Then the first formula in Theorem 7.2 reads
> UGH" = (Z Anmr") UG) = (Z An(T)T*(T + 1)2"p") - U(@G).
n>0 n>0 n>0

Equivalently,
U(Gn) = T™(T + 1)*" 4,(T) - U(G). (1.3)

If G consists of a single edge, then with notation as in Section 4 we have G, = [,
and U(G) = T + 1, therefore (7.3) gives

U(Ty) = T"(T + 1> 1 4,(T),
proving Proposition 4.1 (in the form given in Proposition 5.1).

Example 7.3. Now let G be a 2-banana, and let e be one of its (two) edges. The graph
G ~ e is a single edge. Therefore,

UG)=T(T +1), UG~e)=T +1,

and the second formula in Theorem 7.2 states that

w T(T+1)+ (T —1)(T +1) = T(T + I)r
;U(Gn)p = 1= (T +2)r + 212
T —r

= (T +1).
1—(T +2)r +2r2 T+

With notation as in Section 4, the graph G, (consisting of a chain of n + 1 circles)
equals I‘,’l P with two extra valence-2 vertices on the first circle. That is,

_ U(Ga)

n

Now, since r = T(T + 1)?p, the coefficient of p”~! may be expressed in terms of
the coefficient of "~ 1:

(T—=r)(T+1) >

UG, _ — ']rn—l T 1 2n—2 n—l’
(Gn-1) (T+1) (r 1—(T +2)r +2r2
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hence
U (Gn—l)
(T +1)2

and therefore

— T" (T + 1)2n—3<rn—1 (T —-r) >

1= (T +2)r +2r2

U(r,) =TT + D23 (- )

"1—(T + 2)r +2r2
This holds for n > 1; setting (as in Section 4) the constant term of the relevant series
to 1 amounts to adding 1 to this rational function, and we have
r(T —r) _ (1 —=r)?
1— (T +2)r+2r2 1 —(T +2)r +2r2

I+

verifying Proposition 4.3, in the form given in Proposition 5.1.

Example 7.4. As a final example, we will prove Proposition 6.3, by induction on the
number s of rays. For s = 1, the statement reproduces Proposition 4.3; so we only
need to prove the induction step, and we may assume s > 1.

To transition from X3~ to £, view X as the graph obtained by adding a chain
of 3-bananas to one of the edges e of the central circle in G = 571

Since e is not a bridge, we can apply the second formula given in Theorem 7.2.
We write it as follows:
1—r
1— (T +2)r +2r2

r(T —1)
1—(T 4+ 2)r +2r2

U + U ~e).

The class U(X3) is the coefficient of p” in this expression (i.e., T"(T + 1)>" times
the coefficient of #”). We will deal with the two summands separately.
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By induction on s, the coefficient in the first summand equals

U(Ty)
T+ 1)
w1 1=2r +((s—=2)T — (s — 3))r?
<, 1= (T + 2)r 1 212 )

. T(s—l)n(-]r + 1)2(s—1)n—1An(r]T)s—2

and U(T,) = T"(T + 1)?"*14,,(T), so this equals

sn 2sn—1 s—1/.n+1 1=2r +((s=2)T — (s — 3))}’2
™+ A1) (r ’ 1—(T +2)r +2r2 >

In the second summand, Zfl_l ~ e consists of a join of s — 1 chains of n-circles,
therefore its Grothendieck class U (X571 \ e) is the (s — 1)-st power of U(Ty),
up to an appropriate factor of (T + 1) to account for the fact that £5~! \ e has no
valence-2 vertices and no external edges. For example, here is a picture contrasting
the join of 3 graphs I'4 (on the left) with =3 ~ e (on the right):

It follows that

_ U@yt

=T = LA DA

UEs !t ~e)

Therefore, the coefficient in the second summand equals

r(T —1)
"1—(T +2)r +2r2>'

T(S_l)n(T + 1)2(s—1)n—1An(rJr)s—1<pn

Now, the coefficient of p” equals T (T + 1)? times the coefficient of 7", so this
may be rewritten as

r(T —1) >

TS*(T 12sn—1A r]Ts—l< n’
T+D A U g g v

or equivalently

r2(T —1) >

TS (T 1 2sn—1A T s—1< n+1’
T+1 A U WG g e
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Putting the summands back together, we see that U(XZ$) equals T*"(T + 1)1 x
An(T)*~! times the coefficient of 7"+ in

1—2r +((s —2)T — (s —3))r? r2(T —1)
1—(T +2)r +2r2 1—(T +2)r +2r2
_1=2r+((s—DT — (s —2))r?

N 1— (T +2)r +2r2

and this verifies the induction step, concluding the proof of Proposition 6.3.
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