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Hopf monoids, permutohedral cones, and generalized
retarded functions

William Norledge and Adrian Ocneanu

Abstract. The commutative Hopf monoid of set compositions is a fundamental Hopf monoid
internal to vector species, having undecorated bosonic Fock space the combinatorial Hopf alge-
bra of quasisymmetric functions. We construct a geometric realization of this Hopf monoid
over the adjoint of the (essentialized) braid hyperplane arrangement, which identifies the mono-
mial basis with signed characteristic functions of the interiors of permutohedral tangent cones.
We show that the indecomposable quotient Lie coalgebra is obtained by restricting functions
to chambers of the adjoint arrangement, i.e., by quotienting out the higher codimensions. The
resulting functions are characterized by the Steinmann relations of axiomatic quantum field
theory, demonstrating an equivalence between the Steinmann relations, tangent cones to (gener-
alized) permutohedra, and having algebraic structure internal to species. Our results give a new
interpretation of a construction appearing in the mathematically rigorous formulation of renor-
malization by Epstein–Glaser, called causal perturbation theory. In particular, we show that
operator products of time-ordered products correspond to the H-basis of the cocommutative
Hopf monoid of set compositions, and generalized retarded products correspond to a spanning
set of its primitive part Lie algebra.
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1. Introduction

André Joyal’s theory of set species [15,42,43], and more generally stuff types [10,53],
is the result of applying what is sometimes called the gauge principle, or categorifica-
tion, to exponential generating functions in enumerative combinatorics, which, in this
context, says: do not identify sets with the same cardinality; instead, just remember
all the ways in which they can be identified, that is, remember the bijections between
them. This amounts to using arbitrary finite sets to label combinatorial objects, instead
of always using, e.g., Œn� D ¹1; : : : ; nº, and taking sets of labeled objects acted on by
relabelings, instead of just taking their cardinalities. Every set species induces a gen-
erating function by forgetfully decategorifying. More recently, Aguiar and Maha-
jan [4, 5] showed that the plethora of combinatorial graded Hopf algebras which
appear in the literature are similarly decategorifications of Hopf monoids internal to
vector species. Their species approach beautifully unifies the study of combinatorial
Hopf algebras.

Formally, a set (resp. vector) species p is a presheaf of sets (resp. vector spaces)
on the category S of finite sets and bijections.1 The value pŒI � of p on a finite set I
is interpreted as the (linearized) collection of all combinatorial objects of a certain
type that have been labeled by I . Up to isomorphism, a species is an infinite sequence
of objects such that the nth object is equipped with a right action of the symmetric
group Sn of the set ¹1; : : : ; nº, sometimes called a ‘symmetric sequence’ or ‘S-
module’.

Let .g/Vec denote the category of (N-graded) vector spaces over a field k of
characteristic zero. Joyal showed that vector species are equivalently analytic end-
ofunctors on Vec via a certain generalized bosonic Fock space construction, given by

xK.�/.p/W Vec! gVec; V 7! xKV .p/ D
M
n2N

pŒn�˝Sn V
˝n;

where pŒn�D pŒ¹1; : : : ; nº�. Thus, the pŒn� get treated as coefficients of a power series
whose argument is a vector space. The classical bosonic Fock space is recovered by
setting p equal to the exponential species E, which has EŒI � D k for all finite sets I .2

The analytic endofunctor yp associated to p is obtained by forgetting the grading,

ypW Vec! Vec; V 7! xKV .p/:

In the case that pŒI �D 0 for all large enough I , i.e., ‘polynomial species’, one recovers
classical Schur functors finVec! finVec.

1We refer to copresheaves on S as cospecies.
2Bożejko, Guţă and Maassen showed that creation-annihilation operators can be generalized

to this setting [20, 40], and these ideas were further developed in [4, Chapter 19].
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Species may be equipped with a handful of monoidal products, which categorify
familiar operations on formal power series. In particular, we can take the Day convo-
lution of set species or vector species with respect to the disjoint union of finite sets,

p1 � p2ŒI � D p1 ˝Day p2ŒI � D
a

StTDI

p1ŒS�˝ p2ŒT �:

This is often called the Cauchy product of species since it categorifies the Cauchy
product of formal power series. It is induced by ‘pointwise multiplying’ species as
analytic endofunctors,

p̂1 � p2.V / Š yp1.V /˝ yp2.V /:

Aguiar and Mahajan’s Hopf theory in species concerns Hopf monoids defined in
set species and vector species with respect to the Day convolution. In the case of
Hopf monoids in vector species, we also have internal Lie (co)algebras and universal
(co)enveloping algebras, and analogs of the Poincaré–Birkhoff–Witt and Cartier–
Milnor–Moore theorems. The undecorated bosonic Fock space of a vector species
is its image under the functor

xK.�/ D xKk.�/W VecSp! gVec; p 7! xKk.p/ D
M
n2N

.pŒn�/Sn :

Many well-known graded Hopf algebras in combinatorics are the undecorated Fock
spaces of Hopf monoids in vector species [4, Part III], the crucial point being that the
various generalized Fock space constructions preserve Hopf monoids.

Note that (symmetric May) operads are also monoids internal to species, but with
respect to the monoidal product induced by composing species as analytic endofunc-
tors, called plethysm,3 i.e., the structure of an operad on p is equivalently the structure
of a monad on yp. As long as p2Œ;� D 0, plethysm is given by

p1 ı p2ŒI � D
a
P

p1ŒP �˝
O
Sj2P

p2ŒSj �:

The coproduct is over all set partitions P D ¹S1; : : : ; Skº of I . This monoidal product
categorifies the composition of formal power series.

There is an equivalent description of Hopf theory in species in terms of left (co)-
modules of the (co)operads Com.�/, Ass.�/, Lie.�/ [4, Appendix B.5], i.e., (co)alge-
bras over the corresponding left (co)action (co)monads. This is a useful perspective;

3Plethysm was originally used as a name for the image of this monoidal product in the
Grothendieck ring of the category of vector species, which is the ring of symmetric functions
ƒ D Sym.
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Figure 1. The convex hulls of the type A coroots (left) and fundamental weights (right) in four
coordinates. The intersections with the adjoint braid arrangement and braid arrangement are
shown with dotted lines, which define the Steinmann sphere and Coxeter complex respectively.

it puts Hopf theory in species within the context of both the generalization to right
(co)modules of (co)operads, and the generalization to (co)algebras over other (co)-
monads on species, in particular algebras over S-colored operads [70, Section 2.3.2],
[56, Section 3], also studied in the guise of F -ops for a Feynman category F [46,
Definition 1.5.1], for example modular operads.

For the foundations of Hopf theory in species, see [4, 5]. Aguiar and Mahajan’s
clean category-theoretic approach clarifies and generalizes the work of several peo-
ple, in particular Barratt [11], Joyal [43], Schmitt [61], and Stover [67]. The reflection
hyperplane arrangement of the type A root system, called the braid arrangement, pro-
vides consistent geometric interpretations of the theory, which motivates the develop-
ment of aspects of the theory over generic real hyperplane arrangements [6,7].4 In this
paper, we stay in typeA, but we extend the geometric interpretations to the adjoint5 of
the braid arrangement. The adjoint braid arrangement lives in the dual root space and
consists of hyperplanes which are spanned by coroots. This hyperplane arrangement
has several names. It is known as the restricted all-subset arrangement [18, 44, 45],
[6, Section 6.3.12], the resonance arrangement [17, 26, 27, 41], and the root arrange-
ment [47]. Its spherical representation is called the Steinmann planet, or Steinmann
sphere, by physicists, e.g., [34, Figure A.4], which may be identified with the bound-
ary of the convex hull of coroots. The Steinmann sphere is the adjoint analog of the
type A Coxeter complex, see Figure 1.

At the heart of Hopf theory in species is the cocommutative Hopf monoid of set
compositions †, together with its dual, the commutative Hopf monoid of set compo-
sitions †�. These Hopf monoids play a special role because set compositions index

4Aguiar and Mahajan say in [7] that a more structured theory for reflection hyperplane
arrangements, e.g., other Dynkin types, exists, and will be the subject of a separate work.

5In the sense of [6, Section 1.9.2].
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(co)associative algebraic operations in species. More familiar objects are perhaps the
undecorated bosonic Fock spaces of † and †�, which are the algebras of noncom-
mutative symmetric functions and quasisymmetric functions respectively,6

Nƒ D NSym Š xK.†/ and Qƒ D QSym Š xK.†�/:

See [4, Chapter 17]. In this paper, we geometrically realize †� over the adjoint braid
arrangement by identifying the monomial basis with signed characteristic functions
of open permutohedral tangent cones (in fact, we shall think of them as formal linear
combinations of open conical spaces, and so refer to them as characteristic func-
tionals). We denote this realization by {†

�
. A related construction appears in [50,

Section 5] for the undecorated full Fock space of †�, which is word quasisymmetric
functions

P… DWQSym ŠK.†�/;

also called noncommutative quasisymmetric functions NCQSym. This graded Hopf
algebra has been studied in several places, e.g., [3, Section 6.2.4], [16, 54, 55].

There is a more classical geometric realization of†� over the braid arrangement,
where the monomial basis is identified with characteristic functions of relatively open
faces. We denote this realization by y†

�
. The realizations {†

�
and y†

�
are dual in the

sense of polyhedral algebras [12, Theorem 2.7]. To express this duality, we introduce
the cone basis of †�, which is the image of set compositions under the standard
homomorphism O ↠ †�, where O is the commutative Hopf monoid of preposets.
The geometric realizations of the cone basis are characteristic functions/functionals
of closed convex cones.

As we show, the beauty of the adjoint realization {†
�

is that its indecomposable
quotient is obtained by simply restricting functionals to chambers, i.e., by quotient-
ing out the higher codimensions. We denote the resulting geometrically realized Lie
coalgebra by {Zie�. It is isomorphic to the Lie coalgebra Zie� which is the dual of the
free Lie algebra on the positive exponential species

Zie D Lie.E�C/ D Lie ı E�C:

See [4, Section 11.9]. The adjoint analog of this construction, i.e., the restriction of y†
�

to Weyl chambers, is a geometric realization yL� of the commutative Hopf monoid of
linear orders L�, which is the dual of the universal enveloping algebra of the Lie
operad

L D U.Lie/ D E� ı Lie:

6These algebras play the role of symmetric functions ƒ D Sym in quantum Schur–Weyl
duality at q D 0 [69, Sections 3 and 4].
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See [5, Section 15]. The observation we make here is that moving to the adjoint
arrangement reverses the order of plethysm. The geometric aspect of this reversal
is the following discussion.

Let the symmetry of a piecewise-constant function on a hyperplane arrangement
be the degree to which it is constant in the direction of one-dimensional flats. Roughly
speaking, ‘lumping’ coordinates into lumps corresponds to higher codimensions on
the braid arrangement and increased symmetry on the adjoint braid arrangement,
whereas ‘cutting’ coordinates into blocks corresponds to increased symmetry on the
braid arrangement and higher codimensions on the adjoint braid arrangement. For
precise definitions, see Section 2.3.

Arrangement Higher codimensions Increased symmetry

braid lumping cutting

adjoint braid cutting lumping

Note also that lumping corresponds to right coactions of cooperads, whereas cutting
corresponds to left coactions of cooperads. On the braid arrangement, by either quo-
tienting out codimensions and then symmetry, or symmetry and then codimensions,
we obtain the following commutative square,

y†
�

yL�

yZie� yLie�:

sym

codim

sym

codim

On the adjoint braid arrangement, by either quotienting out codimensions and then
symmetry, or symmetry and then codimensions, we obtain the following commutative
square,

{†
�

{L�

{Zie� {Lie�:

codim

sym

codim

sym

In this paper, we only consider the quotients by codimensions.
Let L_ denote the species of formal k-linear combinations of chambers of the

adjoint braid arrangement. The (classical) Steinmann relations are certain four-term
linear relations on the components of L_, first appearing in the foundations of ax-
iomatic quantum field theory [64, 65], [68, pp. 827–828]. More recently, they have
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been studied in the context of the revived non-local approach to scattering amplitudes,
where they appear to be related to cluster algebras [23, 24, 30].

Let a Steinmann functional over I be a linear functional on the vector space
L_ŒI � which respects the Steinmann relations. In [48], it was shown that Steinmann
functionals (which were denoted there by ��) form a Lie coalgebra in species, with
cobracket the discrete differentiation of functionals across hyperplanes. The Stein-
mann relations are exactly what one needs to have factorization of the derivative, and
so they are necessary for a Lie cobracket. However, they are also sufficient, because
it turns out that if you can factorize once (in all possible ways), then you can fac-
torize arbitrarily often [48, Theorem 5.3]. In this paper, we show that our geometric
realization of Zie� is precisely the Lie coalgebra of Steinmann functionals from [48],

�� D {Zie� .Š Zie� D Lie� ı EC/:

Since {Zie� is equivalently the span of characteristic functionals of generalized per-
mutohedral tangent cones, this result is clearly closely related to the universality of
generalized permutohedra [2, Theorem 6.1], see Remark 5.5.

Dually, we obtain a geometric realization {Zie of the Lie algebra Zie as the quo-
tient of L_ by the Steinmann relations, where the Lie structure (in the form of a left
module of the Lie operad Lie) is the action of semisimple Lie elements on faces [48,
Section 3.2]. The Lie algebra {Zie is very closely related to a structure sometimes
called the Steinmann algebra [60, Section 6], [21, Section III.1], which is an ordi-
nary graded Lie algebra based on the structure map of {Zie. In particular, see Ruelle’s
identity [60, (6.6)], [36, Section 4.3], which describes the Lie bracket.

The dual polyhedral algebras y†
�
Œn� and {†

�
Œn� were first studied in [32]. Note

that Early denotes {†
�
Œn� by yP n. The quotients of {†

�
Œn� corresponding to the Lie

cooperad Lie�, linear orders L�, and Zie�, denoted respectively

P n
1 Š Lie�Œn�; yP n

1 Š L�Œn�; P n
Š Zie�Œn�;

were considered in relation to the cone basis, and a certain second basis. The c-basis
of Zie�, defined in Section 3.3, corresponds to the image of this second basis.

1.1. Perturbative algebraic quantum field theory

Our results give a new interpretation of a construction appearing in the mathematically
rigorous formulation of renormalization by Epstein–Glaser [35],7 known as causal
perturbation theory, and in the algebraic formalism of Epstein–Glaser–Stora [36, 37]

7Based on earlier work of Stückelberg, Bogoliubov–Shirkov, and others.



W. Norledge and A. Ocneanu 562

for studying generalized retarded functions. Causal perturbation theory has since been
absorbed into the modern mathematically clear and precise theory known as pertur-
bative algebraic quantum field theory (pAQFT), see [22, 31, 59, 62].

Let I be a finite set, and let X be a smooth manifold which is additionally
a time-oriented globally hyperbolic Lorentzian manifold. In [34, p. 157], a system
of operator products of time-ordered products, or, after taking vacuum expectation
values, a system of generalized time-ordered functions, is defined to be a function on
set compositions †ŒI � of I into distributions on the space of configurations

XI
D ¹functions I ! Xº;

which satisfies certain physically motivated properties. In the case of a system of
operator products of time-ordered products, these are operator-valued distributions,
i.e., linear functionals sending compactly supported smooth functions to elements
of the algebra of free quantum observables, which in pAQFT is a formal power
series �-algebra obtained via Moyal formal deformation quantization. Note that the
key property, known as causal factorization, which gives rise to the causal additivity
of the corresponding perturbative S-matrix scheme, is naturally expressed in terms
of an aspect of the Hopf structure of † known as the Tits product, see, e.g., [1,
Section 1.4.6]. The Tits product is the action of † on itself by Hopf powers [5, Sec-
tion 13].

By taking compatible maps for each finite set I , we obtain a morphism of species,
denoted

TW † ! Dist.X.�//; .S1; : : : ; Sk/ 7! T.S1/ : : :T.Sk/:

As far as we are aware, the species style notation T.S1/ : : :T.Sk/ for operator-valued
distributions first appears in Steinmann’s book [66], and then extensively in [35],
where all at once it exposes species-theoretic algebraic structures in QFT. The nota-
tion was formalized in terms of set compositions by Epstein–Glaser–Stora [36, Sec-
tion 4.1]. It is discussed in [62, Remark 15.33] (its use there is slightly different
to [35], but the same structure emerges). See also [39, Chapter 4], where the con-
nection with species is made.

Let U be the universal enveloping map which embeds the primitive part Lie alge-
bra Zie of †,

UW Zie ,! †:

See Section 3.3. In the setting where Zie is realized over the adjoint braid arrange-
ment, we show that the composition

Zie
U
�! †

T
�! Dist.X.�//

corresponds to the association of generalized retarded products, or generalized retard-
ed functions, to chambers of the adjoint braid arrangement (D geometric cells of the
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Steinmann sphere), as defined in [35, (79), p. 260], [36, (1), p. 26], [34, (35) and (36)].
See also [8] and [9, Section 9]. Thus, generalized retarded products/functions span the
image of the primitive part of † in distributions.

The primitive elements which correspond to chambers of the adjoint braid ar-
rangement are called Dynkin elements in [6, Chapter 14.1], where they are con-
structed for arbitrary real hyperplane arrangements. These Dynkin elements are asso-
ciated to generic halfspaces of a hyperplane arrangement, which are in natural bijec-
tion with chambers of the adjoint arrangement.

It is well known that graded Hopf algebras encode combinatorial aspects of renor-
malization in perturbative QFT [14, 28, 33, 38]. A self-contained introduction to this
theory is given in [29, Chapter 1]. The species analogs of the Connes–Kreimer Hopf
algebras of rooted trees have been defined by Aguiar and Mahajan [4, Section 13.3],
and we direct the reader there for their relationship to the algebras we consider in this
paper.

1.2. Losev–Manin moduli space

The usual geometric interpretation of† over the braid arrangement identifies the basis
which is dual to the monomial M-basis, called the H-basis, with faces [4, Chapter 10].
This is how Tits’s classical interpretation of the Tits product, as projections of faces,
is obtained. See also the geometric interpretation of Lie and Zie elements, which
correspond to the (Lie algebra) homomorphisms

Lie ,! Zie ,! †;

and their generalization to generic hyperplane arrangements [6, Chapter 10]. Alter-
natively, we can identify the H-basis with faces of the permutohedron, which occurs
naturally in the following construction.

First, let us consider the construction over the complex numbers C, which is more
classical. Let CTI denote the moduli space parameterizing the ‘tube’ C� D C n ¹0º

with I -marked points,

CTI D .C�/I=C� D ¹functions I ! C�º=C�:

This is the maximal torus of PGLI .C/. Let complex permutohedral space C†I be
the toric compactification of CTI with respect to the braid arrangement fan, some-
times called the toric variety associated to (type A) Weyl chambers [58]. Losev and
Manin gave a realization of C†I as a moduli space parameterizing strings of Riemann
spheres CP1, glued at the poles, with I -marked points [13, 49]. By generalizing our
construction of † in Section 2.2, as indicated in Remark 2.6, complex permutohedral
space is naturally a Hopf monoid in set species C†. The multiplication corresponds
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to embedding facets of the permutohedron, and the comultiplication corresponds to
projecting the permutohedron onto facets.8

A tropical version of the Losev–Manin moduli space is more relevant to this
paper. Recall that one can also do algebraic geometry over the tropical rig T D

R[¹�1º [52]. We may view the typeA root system, which we denote by TI DTTI ,
as the tropical algebraic torus which is the tropicalization of CTI ; TI is the moduli
space parameterizing the line T� D R with I -marked points,

TI D .T�/I=T� D RI=R D ¹functions I ! Rº=R:

Let tropical permutohedral space T†I be the toric compactification9 of TI with
respect to the braid arrangement fan. We may interpret T†I as adding would-be lim-
iting configurations to TI , where points are separated by infinite distances (or proper
times if we view R as a worldline). Notice that C†I has a similar interpretation in
terms of points moving infinity far away on a worldsheet. As in the complex case, the
compactifications T†I form a Hopf monoid in set species T†. The Hopf monoid
of set compositions † is recovered by restricting the Hopf monoid T† to B-points,
where B D ¹�1; 0º � T is the Boolean tropical rig. Moreover, the geometric real-
ization of †� as functions on the TI may be extended by continuity to functions on
the compactifications T†I , and the commutative Hopf algebraic structure of †� on
these functions is exactly that which is induced by the cocommutative Hopf monoid
structure of the underlying space T†, see Figure 2. In particular, the comultiplication
of †�, which is deconcatenation of compositions, is the restriction of functions to
facets of the permutohedron.

In this paper, we will use this geometric interpretation only to draw pictures.
We hope to describe applications of these structures in future work.

Structure. This paper has five sections. In Section 2, we describe combinatorial gad-
gets which index aspects of the type A hyperplane arrangements. In particular, we
introduce adjoint families, which generalize preposets and maximal unbalanced fam-
ilies, and index cones of the adjoint braid arrangement. In Section 3, we define the
algebras in species which feature in this paper. We construct several bases of the inde-
composable quotient of †�. In Section 4, we describe the two geometric realizations
of †�. In Section 5, we prove our main results. We show that the indecomposable

8Note that this Hopf monoid structure on permutohedral space is dual to the Hopf monoid
structure of generalized permutohedra, studied in [2], which is induced by letting gener-
alized permutohedra encode functions/forms on permutohedral space by viewing them as
Newton/momentum polytopes. Such Newton polytopes appear in the worldline formalism, or
Schwinger parametrization, approach to Feynman amplitudes [63].

9See, e.g., [51, Chapter 1] for the construction of tropical toric varieties.
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�12;3.yC.1;2;3//DyC.1;2/˝yC.3/

�1;23.yC.1;2;3//DyC.1/˝yC.2;3/

yC.1;2;3/

�.yC.1/˝yC.2;3//DyC.1j2;3/

yC.1/˝yC.2;3/

Figure 2. The geometric realization of the Hopf monoid†�, extended to the tropical toric com-
pactification T† of the type A root system, showing multiplication � (signed-quasishuffling,
dual to projecting onto facets) and comultiplication � (deconcatenation, dual to embedding
facets). The circular nodes show the B-points of T†, which may be identified with set compo-
sitions B† D †.

quotient of †� naturally lives on the chambers of the adjoint braid arrangement,
has cobracket discrete differentiation across hyperplanes, and is characterized by the
Steinmann relations. In Section 6, we describe the connection with perturbative QFT
and show that generalized retarded products/functions correspond to the primitive part
Lie algebra of †.

2. Combinatorial background

We briefly recall species, and Hopf monoids in species. We recall the combinatorial
gadgets: set partitions, set compositions, preposets, and maximal unbalanced fami-
lies. We introduce adjoint families, which simultaneously generalize preposets and
maximal unbalanced families.

We shall model each preposet p of a finite set I as the collection of all order
preserving functions 2 ,! I , where 2 is the ordinal with two elements. This defines
the cospecies of preposets O, which has subcospecies corresponding to partitions…�,
linear orders L�, and set compositions †�. We then construct their adjoint analogs
…_, L_, †_, O_, which are species whose elements are certain collections of func-
tions I ↠ 2. The species of maximal unbalanced families is L_, and the species of
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adjoint families is O_. A preposet on I is naturally an adjoint family if it is modeled
as the collection of all order preserving functions I ↠ 2, which gives an embedding
of preposets into adjoint families O ,! O_.

We adopt the following terminology for real hyperplane arrangements; we refer
to cones which are generated by vectors contained in one-dimensional flats as con-
ical subspaces of the arrangement, and we let flats/chambers/faces/cones refer to
pointwise products of characteristic functions of open or closed halfspaces of the
arrangement (see Section 4 for exact definitions). An exception is we let ‘permutohe-
dral cone’ refer to permutohedral conical subspaces, see below. The correspondence
between our combinatorial gadgets and characteristic functions on the type A hyper-
plane arrangements will be as follows:

Arrangement Flats Chambers Faces Cones

braid …� L� †� O

adjoint braid …_ L_ †_ O_

Then, via the well-known dual cone construction, there are one-to-one correspon-
dences between characteristic functions on the braid arrangement and conical sub-
spaces of the adjoint braid arrangement which are generated by coroots. This restric-
tion to aspects of the adjoint braid arrangement which can be ‘seen’ by coroots stops
it being so pathological.

Semi- Pointed Permuto- Generalized
Arrangement simple permutohedral hedral permutohedral

subspaces cones cones cones

adjoint braid …� L� †� O

A semisimple subspace is a linear subspace which is spanned by coroots. These sub-
spaces feature in the study of reflection length in the affine Weyl group zAn�1 [47].
A generalized permutohedral cone is equivalently a conical subspace which is gener-
ated by coroots. They are studied in [41].

2.1. Hopf monoids in species

Our references for Hopf monoids in species are [4, 5]. See also [2, Section 2] for
a quick introduction.

Let Set denote the cartesian category of sets X 2 Set, and let Vec denote the
tensor category of vector spaces over a field k of characteristic zero. Let S denote
the monoidal category with objects finite sets I 2 S, morphisms bijective functions
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� W J ! I , and monoidal product the restriction of the disjoint union of sets to fi-
nite sets.

We define a set species p to be a presheaf on S, that is, any functor of the form

pW Sop
! Set; I 7! pŒI �:

Explicitly, to every finite I we assign a set pŒI �, and to every bijection of finite sets
� WJ ! I we assign a bijection pŒ��W pŒI �! pŒJ � such that the composition of bijec-
tions is preserved. Often, pŒI � is the collection of labelings/‘probes’ of a set of objects
by I , and pŒ��W pŒI �! pŒJ � sends an I -labeling to its precomposition with � . This is
reminiscent of functorial geometry.

A vector cospecies q is a copresheaf of vector spaces on S, that is, any functor of
the form

qW S! Vec; I 7! qŒI �:

If p is a set species, then we denote the vector cospecies of k-valued functions on p
by p�, i.e., given the monoidal functor

k.�/W Setop
! Vec; X 7! kX

WD ¹functions X ! kº;

we let p� WD k.�/ ı p. A vector species p is a presheaf of vector spaces on S,

pW Sop
! Vec; I 7! pŒI �:

If p is a set species, then we define an associated vector species p by letting pŒI � �
Hom.p�ŒI �; k/ be the subspace of linear functionals corresponding to formal linear
combinations of elements of pŒI �, i.e., given the free vector space monoidal functor

k.�/W Set! Vec; X 7! kX;

we may naturally identify p D k.�/ ı p. Finally, a set cospecies q is a copresheaf
on S,

qW S! Set; I 7! qŒI �:

If q is a set cospecies, then we have the associated vector cospecies q D k.�/ ı q.
A set (resp. vector) (co)species is called positive if its value on the empty set ; is the
empty set (resp. zero-dimensional vector space), and connected if its value on ; is the
singleton set (resp. one-dimensional vector space).

Throughout this paper, we define (co)species by explicitly giving the values of
functors on finite sets only, with their values on bijections then being induced in an
obvious way.

Remark 2.1. In [4, 5], Aguiar and Mahajan explicitly consider only copresheaves
on S. However, since the inversion of bijections is a dagger for S (it is a groupoid), the
general theory of species is a copy of the general theory of cospecies.
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The functor category of set (resp. vector) (co)species is a symmetric monoidal
category when equipped with the Day convolution for the disjoint union of finite sets,
denoted�Day (resp.˝Day). Let a (co/bi/Hopf)algebra in (co)species be a (co/bi/Hopf)-
monoid internal to vector (co)species. In [5, Sections 4.2 and 4.3], the specialized
notion of a set-theoretic (co/bi/Hopf)monoid is given, which is required in order to
overcome a technicality when internalizing comonoids in set (co)species. Let a (co/bi-
/Hopf)monoid in (co)species be a set-theoretic (co/bi/Hopf)monoid in set (co)species.

Let us make this explicit for the case of a Hopf algebra in (co)species, which is
the most relevant to us. A bialgebra in (co)species consists of a vector (co)species h
such that for each finite set I 2 S, and each choice of disjoint subsets S; T � I with
S t T D I ,10 we have linear maps called the multiplication and comultiplication,
respectively

�S;T W hŒS�˝ hŒT �! hŒI � and �S;T W hŒI �! hŒS�˝ hŒT �;

and linear maps called the unit and counit, respectively

�;W k! hŒ;� and ";W hŒ;�! k:

A Hopf algebra in (co)species must have an additional linear map for each finite set
I 2 S, called the antipode,

sI W hŒI �! hŒI �:

See Figure 3. All these maps should satisfy the usual bimonoid and Hopf monoid
compatibility axioms. The compatibility of multiplication and comultiplication is the
most interesting, whose string diagram is shown in Figure 4. See [4, Section 8.3] for
more details.

To define a bialgebra structure on a connected (co)species, it suffices to spec-
ify �S;T and �S;T for S; T ¤ ;. Moreover, a bialgebra structure on a connected
(co)species is necessarily a Hopf algebra, and there are explicit formulas for the
antipode.

D hŒI �
I

I S T ;

�;

I

SI

I

";

;I

�S;T

�S;T

TS

Figure 3. Data of a Hopf algebra in (co)species h. The topology here is just serving as notation
for string diagrams.

10In particular, we allow S or T to be empty.
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(1,2) (34,5)

(1,3,5) (2,4)

(1,2) (34,5)

(1)

(2)

(2)

(3,5)

(3,5)

(1,3,5)

(4)

(2,4)

(1,2,34,5)

U V U V

S T S T

=

Figure 4. The string diagram for the compatibility of multiplication and comultiplication, where
I D S t T D U t V . One can check compatibility by imagining passing elements of the Hopf
monoid through the surfaces. An example for the Hopf monoid of set compositions † (see
Section 2.2) is shown, where S D ¹1; 2º, T D ¹3; 4; 5º, U D ¹1; 3; 5º, V D ¹2; 4º.

If p is a cocommutative Hopf monoid in species with finite components pŒI �, then
p� D k.�/ ı p is naturally a commutative Hopf algebra in cospecies, and pD k.�/ ı p
is naturally its dual cocommutative Hopf algebra in species [5, Section 4.5].

Remark 2.2. We may compare these definitions and constructions with more familiar
Hopf monoids. Recall that groups, which are Hopf monoids internal to cartesian cate-
gories of spaces, are carried into ordinary commutative Hopf algebras via appropriate
modifications of the functor k.�/ (e.g., smooth functions on a compact Lie group), and
are carried into ordinary cocommutative Hopf algebras via appropriate modifications
of the functor k.�/ (e.g., distributions on an algebraic group), see [25, Section 3].
Note however that Hopf monoids in species are not groups; groups should be con-
structed with respect to the Hadamard product �Had since this is the cartesian product
for set species. In fact, set species trivially form a presheaf topos, and so groups in set
species are equivalently presheaves of groups Sop ! Grp, an example from this paper
being I 7! PGLI .C/.

Remark 2.3. Set species, or more generally presheaves on S valued in a cartesian cat-
egory of spaces Spa, appear naturally as moduli spaces of spaces with marked points.
This is analogous to the construction of singular simplicial complexes in homology,
where instead of probing a topological space X 2 Top with simplices by composing
the standard cosimplicial topological space11

�! Top

11Recall that a (co)simplicial topological space is a Top-valued (co)presheaf on the simplex
category �.
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with HomTop.�;X/, one probes a space X 2 Spa with finite sets by composing the
‘standard’ cospecies of finite discrete spaces

S! Spa

with HomSpa.�;X/. Such a set species will automatically be a set-theoretic comonoid
by restricting configurations of points (‘forgetting marked points’), which is a spe-
cial case of Schmitt’s comonoid construction [4, Section 8.7.8]. Dually, we may
obtain cospecies by composing the cospecies of finite codiscrete spaces S! Spa with
HomSpa.X;�/.

2.2. Set compositions and set partitions

We now describe some primordial examples of set species, which, according to the
philosophy of Rota’s twelvefold way, should be defined as certain probes of ordinals
and cardinals by finite sets. This approach also enables us to immediately suggest
a generalization of the construction in Remark 2.6.

Let us model finite ordinals by ordered tuples of integers

.k/ WD ¹1; : : : ; kº; k 2 N;

where the ordering is 1 > � � � > k. Let I 2 S be a finite set with cardinality n 2 N.
Let y†ŒI � be the set of finite ordinals with I -marked points, that is

y†ŒI � WD
®
functions I

F
�! .k/W k 2 N

¯
D

G
k2N

.k/I :

This defines the species of (set) decompositions y†. We can encode decompositions
F 2 y†ŒI � in formal expressions

F D .S1; : : : ; Sk/; where Sj WD F �1.j /:

The commas in the expression indicate that the order does matter. The Sj are called
the lumps of F . We let l.F /D k denote the number of lumps of F . The opposite of F
is defined by

xF WD .Sk; : : : ; S1/; i.e.; xF �1.j / D F �1.k C 1 � j /:

We have the following subsets of y†ŒI �,

†ŒI � WD
®
surjective functions I

F
�! .k/W k 2 N

¯
and

LŒI � WD
®
bijective functions I

F
�! .k/W k 2 N

¯
:
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This defines the species of (set) compositions † and linear orders L. For F a decom-
position, let FC denote the composition whose formal expression is obtained from the
formal expression of F by deleting all copies of the empty set. This defines a retrac-
tion of species,

.�/CW y†↠ †; F 7! FC:

Notice that y† is immediately a set-theoretic comonoid via Schmitt’s comonoid con-
struction, with the comultiplication given by restricting configurations of points. We
can define a multiplication on y† by concatenating formal expressions for decompo-
sitions. More conceptually, this uses the fact that unmarked ordinals y†Œ;� form the
additive monoid .N;C/ via ordinal sum,12

y†Œ;� � y†Œ;�! y†Œ;�; .k1; k2/ 7! .k1/C .k2/ WD .k1 C k2/:

We can then define the map

�k1;k2 W .k1/ t .k2/! .k1 C k2/; �k1;k2.j / WD

´
j if j 2 .k1/;

j C k1 if j 2 .k2/;

which allows us to glue configurations; for F WS ! .k1/ and GW T ! .k2/, the con-
catenation of F with G is given by

FGW I ! .k1 C k2/; FG WD �k1;k2 ı .F tG/:

For S � I and F W I ! .k/, let F jS denote the restriction of F to S ,

F jS WS ! .k/; F jS WD F ı .S ,! I /:

Then y† is a bimonoid in species, with multiplication concatenation and comultiplica-
tion restriction,

�S;T .F;G/ WD FG and �S;T .F / WD .F jS ; F jT /:

This induces the structure of a Hopf monoid on † (considered as a quotient of y†),
which restricts to the structure of a Hopf monoid on L. Explicitly, the multiplication
is concatenation, and the comultiplication is restriction composed with .�/C,

�S;T .FC; GC/ WD FCGC and �S;T .FC/ WD ..FCjS /C; .FCjT /C/:

Note that compositions and linear orders are not closed under restriction. From now
on, if F is a composition, we let F jS WD .F jS /C.

12The multiplication of N is recovered as the Tits product [5, Section 1.11].
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Remark 2.4. Let us briefly mention the connection to more familiar decategorified
structures. Recall the bosonic Fock functor xKV .�/ from Section 1, which preserves
Hopf monoids. We have that xKV .L/ is the tensor algebra T .V / on V , and xK.†/ D
xKk.†/ is the algebra of noncommutative symmetric functions NSym. We describe†

in detail in Section 3.2.

Let us model finite cardinals by sets of integers,

Œk� WD ¹1; : : : ; kº; k 2 N:

The automorphism group of Œk� is the symmetric group Symk of ¹1; : : : ; kº, where-
as .k/ did not have any automorphisms. Let y…ŒI � be the set of finite cardinals with
I -marked points, taken modulo automorphisms,

y…ŒI � WD
®
functions I

P
�! Œk�

ı
Symk

W k 2 N
¯
:

This defines the set species of departitions y…. We can encode departitions P 2 y…ŒI �
in formal expressions

P D .S1j : : : jSk/; where Sj WD P�1.j /:

The bars in the expression indicate that the order does not matter. The Sj are called
the blocks of P . We have the subsets

…ŒI � WD
®
surjective functions I

P
�! Œk�

ı
Symk

W k 2 N
¯

and

EŒI � WD
®
bijective functions I

P
�! Œk�

ı
Symk

W k 2 N
¯
:

This defines the set species of partitions…, and the exponential species E. Notice that
each component of the exponential species has cardinality one. The map

Q.�/W y†↠ y…; .S1; : : : ; Sk/ 7! .S1j : : : jSk/;

which quotients by the Symk actions, induces the structure of a bimonoid on y….
Then… and E inherit the structure of Hopf monoids from y…. We summarize all these
bimonoids in the following commutative diagram of homomorphisms:

y† † L

y… … E:

mod cardinal symmetry

mod ; bijective

probes

mod cardinal symmetry
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This diagram is fundamental in the recent work of Aguiar and Mahajan, who use it as
a pivot towards generalizations of Hopf monoids in species [7].

Remark 2.5. We have that xKV .E/ is the symmetric algebra �.V / on V , and xK.…/D
xKk.…/ is the algebra of symmetric functions Sym.

For partitions P;Q 2 …ŒI �, if each block of Q is a subset of a block of P , we
write

P � Q:

That is we can obtain P from Q by merging blocks. For compositions F;G 2 †ŒI �,
we write

G � F

if we can obtainG from F by merging contiguous lumps. Given compositionsG � F
with G D .S1; : : : ; Sk/, let

l.F=G/ WD

kY
jD1

l.F jSj / and .F=G/Š WD

kY
jD1

l.F jSj /Š:

Remark 2.6. In order to obtain the Hopf monoid structure on complex permutohedral
space C†, mentioned during the discussion of the Losev–Manin moduli space in
Section 1, one should now repeat this construction with the ordinals .k/ replaced by
strings of k-many Riemann spheres CP1, glued at the poles as in [13, Section 3].

2.3. Preposets

We describe one of the most important examples of a cospecies, which we present
in terms of codiscrete categories on finite sets. For related examples of cospecies,
see [2] and [4, Chapter 13]. For the relationship with the braid arrangement, see [4,
Section 13.5].

Let cat denote the category of small categories.13 For C 2 cat and objects x;y 2C ,
we write x � y if there is a morphism y ! x.14 The interval category 2 2 cat has
set of objects ¹1; 2º, with a single non-identity morphism 2! 1. Given a finite set
I 2 S, the codiscrete category CodiscŒI � 2 cat has set of objects I , with exactly one
morphism i2 ! i1 for all i1; i2 2 I . We define the set cospecies Œ2I �� by

Œ2I I � WD ¹injective functions 2 ,! I º � Homcat.2;CodiscŒI �/:

13In particular, categories C 2 cat have the structure of a set on their preset of objects.
14We may think of y! x as the arrow of time, then x � y corresponds to the time coordinate

of x being greater than the time coordinate of y.
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Then Œ2II � is in natural bijection with the set of non-identity morphisms of CodiscŒI �.
For i1; i2 2 I with i1 ¤ i2, let .i1; i2/ 2 Œ2I I � correspond to the morphism i2 ! i1,
that is

.i1; i2/.1/ WD i1 and .i1; i2/.2/ WD i2:

Then morphism composition in CodiscŒI � induces the following partially defined
product on Œ2I I �,

.i1; i2/ ı .i3; i4/ WD

8̂̂<̂
:̂
.i1; i4/ if i2 D i3 and i1 ¤ i4;

.i3; i2/ if i1 D i4 and i2 ¤ i3;

undefined otherwise:

Recall that (co)roots of SLI .C/ are indexed by elements of Œ2II �. This partial product
corresponds to the addition of (co)roots, see Section 4.1. Underlying this is the fact
that SLI .C/ is a group of units in the convolution algebra of CodiscŒI �.

A preposet p of I is a reflexive and transitive relation �p on I , or equivalently
a surjective-on-objects subcategory of CodiscŒI �. In this paper, we identify p with its
‘injective 2-probes’,

p D Œ2Ip� WD
®
.i1; i2/ 2 Œ2I I �W i1 �p i2

¯
� Homcat.2; p/:

Thus, we identify p with its set of non-identity morphisms. This identifies preposets
with subsets of Œ2I I � which are closed under the partial product, and hence also with
subsets of coroots which are closed under addition.

An element .i1; i2/ 2 p is called symmetric if .i2; i1/ 2 p. We let p> denote the
set of nonsymmetric elements of p. The opposite xp of p is defined by

.i1; i2/ 2 xp if and only if .i2; i1/ 2 p:

The intersection of two preposets of I is a preposet of I . For X � Œ2I I � any subset,
the transitive closure Cl.X/ of X is the preposet of I which is the intersection of all
the preposets of I which contain X . For p and q preposets of I , let p [ q denote the
preposet of I which is the transitive closure of the set union of p and q.

The blocks of a preposet p are the equivalence classes of the transitive and sym-
metric closure of the relation

i1 � i2 , .i1; i2/ 2 p or .i2; i1/ 2 p:

The lumps of p are the equivalence classes of the equivalence relation

i1 � i2 , .i1; i2/ 2 p and .i2; i1/ 2 p:

Let l.p/ denote the number of lumps of p. For p and q preposets of I , we write q � p
if p � q. We write q � p if both q � p and p> � q>, and we write q �l p if both
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q � p and l.q/ D l.p/. For p a preposet of I and S � I , the restriction pjS is the
preposet of S which is given by

.i1; i2/ 2 pjS if and only if .i1; i2/ 2 p for all .i1; i2/ 2 Œ2IS�:

Let
OŒI � WD ¹pWp is a preposet of I º:

This defines the cospecies of preposets O. We say a preposet is total if for all .i1; i2/ 2
Œ2I I �, at least one of .i1; i2/ 2 p and .i2; i1/ 2 p is true. Let †� denote the cospecies
of total preposets,

†�ŒI � WD ¹p 2 OŒI �Wp is totalº:

We say a preposet is totally-nonsymmetric if for all .i1; i2/ 2 Œ2I I �, exactly one of
.i1; i2/ 2 p and .i2; i1/ 2 p is true. Let L� denote the cospecies of totally-totally-non-
symmetric preposets,

L�ŒI � WD ¹p 2 OŒI �Wp is totally-nonsymmetricº:

Let …� denote the cospecies of preposets without nonsymmetric elements,

…�ŒI � WD ¹p 2 OŒI �Wp> D ;º D ¹p 2 OŒI �W xp D pº:

The elements of the cospecies †�, L�, and …� are in one-to-one correspondence
with set compositions, linear orders, and set partitions respectively. Explicitly, given
a partition P D .S1j : : : jSk/ of I , we let P 2 …�ŒI � denote the encoding of P as
the collection of .i1; i2/ 2 Œ2I I � such that ¹i1; i2º � Sj for some Sj 2 P ; and given a
composition F D .S1; : : : ; Sk/ of I , we let F 2 †�ŒI � denote the encoding of F as
the collection of .i1; i2/ 2 Œ2I I � such that the lump of F D .S1; : : : ; Sk/ containing
i1 is to the left of, or is equal to, the lump containing i2.

The context will make it clear whether we mean the covariant or contravariant
version of compositions and partitions. For example, given a two-lump composi-
tion .S; T /, we might write ‘.S; T / � p’, which is only defined if we take .S; T / 2
†�ŒI �� OŒI �. Notice this says that S (resp. T ) is an upward (resp. downward) closed
subset of p.

Remark 2.7. Note that O indexes cones of the braid arrangement, †� indexes faces,
L� indexes chambers, and …� indexes flats [57, Section 3], [4, Section 13.5.1]. See
Section 4.2 for details.

2.4. Adjoint families

Let us now describe the adjoint analogs of preposets, which we call (pre-)adjoint fam-
ilies. Similar combinatorial gadgets were considered by Epstein–Glaser–Stora [36].
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We define the set species Œ�I 2� by

ŒI I 2� WD ¹surjective functions I ↠ 2º � Homcat.DiscŒI �; 2/:

If we view 2 as the ordinal with two elements, then ŒI I 2� is equivalently the set of
compositions of I with two lumps. Explicitly, for S t T D I with S; T ¤ ;, define
.S; T / 2 ŒI I 2� by

.S; T /.i/ D 1 if i 2 S and .S; T /.i/ D 2 if i 2 T:

Define the following partial product on ŒI I 2�,

.S; T / ı .U; V / WD

8̂̂<̂
:̂
.S [ U; T \ V / if T � U;

.S \ U; T [ V / if S � V;

undefined otherwise:

Recall that fundamental weights of SLI .C/ are indexed by elements of ŒI I 2�. This
partial product corresponds to the addition of fundamental weights, see Section 4.1.

Let a pre-adjoint family F of I be a subset of ŒI I 2� which is closed under this
partial product, i.e., for all .S; T /; .U; V / 2 F , we have either

.S; T / ı .U; V / 2 F or .S; T / ı .U; V / is undefined.

Let an adjoint family F of I be a subset of ŒI I 2� whose corresponding set of funda-
mental weights of SLI .C/ is closed under taking non-negative linear combinations.
The intersection of two adjoint families of I is an adjoint family of I . For X � ŒI I 2�
any subset, the closure Cl.X/ of X is the adjoint family of I which is the intersection
of all the adjoint families of I which contain X .

Given a preposet p 2 OŒI �, we obtain an associated subset Fp � ŒI I 2� by taking
the ‘surjective 2-coprobes’ of p,

Fp D ŒpI 2� WD ¹.S; T / 2 ŒI I 2�W .S; T / � pº � Homcat.p; 2/:

This unforgetfully encodes p in terms of its upward/downward closed subsets. (We
have Cl.Fp/ D Fp by Proposition 4.3, and so Fp is in fact an adjoint family.) If F 2
†�ŒI �, then FF recovers the usual way of modeling set compositions as flags of sub-
sets.

Remark 2.8. In general, the set of pre-adjoint families of I does not coincide with
the set of adjoint families of I . Indeed, there exists a nontrivial pre-adjoint family F ,
which is additionally totally-nonsymmetric in the sense defined below, with Cl.F /D
ŒI I 2� [36, pp. 92–93].15

15We thank Marcelo Aguiar for making us aware of this result.
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An element .S; T / 2 F is called symmetric if .T;S/ 2 F .16 We let F> denote the
set of nonsymmetric elements of F . The opposite xF of F is defined by

.S; T / 2 xF if and only if .T; S/ 2 F :

Then xFp D F xp . For F and G pre-adjoint families of I , we write G � F if F � G .
We have q � p, Fp � Fq .

Let
O_ŒI � WD ¹F WF is an adjoint family of I º:

This defines the species of adjoint families O_. An adjoint family F is total if for all
.S; T / 2 ŒI I 2�, at least one of .S; T / 2 F and .T; S/ 2 F is true. We denote total
adjoint families by � . Let †_ denote the species of total adjoint families,

†_ŒI � WD ¹F 2 O_ŒI �WF is totalº:

An adjoint family F is totally-nonsymmetric if for all .S; T / 2 ŒI I 2�, exactly one of
.S; T / 2 F and .T;S/ 2 F is true. Totally-nonsymmetric adjoint families are (equiv-
alent to) maximal unbalanced families [18], positive sum systems [19], and cells [36,
Definition 6], [34, Definition 2.5]. The number of maximal unbalanced families is
sequence A034997 in the OEIS. Let L_ denote the species of totally-nonsymmetric
adjoint families,

L_ŒI � WD ¹F 2 O_ŒI �WF is totally-nonsymmetricº:

Let …_ denote the species of adjoint families without nonsymmetric elements,

…_ŒI � WD ¹F 2 O_ŒI �WF> D ;º D ¹F 2 O_ŒI �W xF D F º:

Remark 2.9. Since taking dual cones intertwines intersections with Minkowski sums,
O_ indexes cones of the adjoint braid arrangement, †_ indexes faces, L_ indexes
chambers, and …_ indexes flats. See Section 4.3 for details.

3. Algebraic structures

We define the various algebras in (co)species which feature in this paper. Our main
references are [4, 5]. We also prove some additional results which we shall need.

16A pre-adjoint family without symmetric elements is (equivalent to) a paracell in the sense
of Epstein–Glaser–Stora [36, Definition 1], [34, Definition 2.3].

https://oeis.org/A034997
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3.1. The commutative Hopf algebra of preposets

Following [4, Section 13.1.6], we now define the commutative Hopf algebra of pre-
posets. Let

OŒI � WD kOŒI � D ¹formal k-linear combinations of preposets over I º:

This defines the vector cospecies O. Given p 2 OŒI �, we also denote by p the corre-
sponding basis element of OŒI �. For .S; T / 2 ŒI I 2�, p 2 OŒS� and q 2 OŒT �, let

.p j q/ 2 OŒI �

denote the (disjoint) set union of p and q. For .S; T / 2 ŒI I 2� and p 2 OŒI �, we have
(generalized) deconcatenation,

p8S WD

´
pjS if .S; T / � p;

0 otherwise
and p(T WD

´
pjT if .S; T / � p;

0 otherwise.

The vector cospecies O has the structure of a commutative bialgebra, with multipli-
cation union and comultiplication deconcatenation,

�S;T .p ˝ q/ WD .p j q/ and �S;T .p/ WD p8S ˝p(T :

The unit and counit are induced by identifying 1 2 k with the unique preposet on the
empty set. Since O is then a connected bialgebra, it is a Hopf algebra. The antipode
may be given by Takeuchi’s antipode formula [4, Proposition 8.13].

Remark 3.1. The Hopf algebra in cospecies O is particular in that it does not arise
as the algebra of functions on a Hopf monoid of preposets.

3.2. The Hopf algebras of set compositions

We now define the Hopf algebras of set compositions † and †�, following [5, Sec-
tion 11]. Let

†�ŒI � WD ¹functions †ŒI �! kº:

This defines the vector cospecies †�. For F 2 †�ŒI �, let MF 2 †�ŒI � be given by
MF .G/ WD ıFG , where G 2 †ŒI �. The set

¹MF WF 2 †�ŒI �º

is called the M-basis, or monomial basis, of†�ŒI �. The cocommutative Hopf monoidal
structure of † then induces a commutative Hopf algebraic structure on †�, given in
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terms of the M-basis by17

�S;T .MF ˝ MG/ WD
X

H�.F jG/

MH and �S;T .MF / WD MF 8S ˝ MF(T :

The antipode is given by

sI .MF / WD .�1/l.F /
X
G� xF

MG :

Let
†ŒI � WD Hom.†�ŒI �;k/:

This defines the vector species†. ForF 2†ŒI �, let HF 2†ŒI � be given by HF .MG/ WD
ıFG , where G 2 †�ŒI �. The set

¹HF WF 2 †ŒI �º

is called the H-basis of †ŒI �. The cocommutative Hopf algebraic structure on †
induced by linearizing the cocommutative Hopf monoidal structure of † is given in
terms of the H-basis by

�S;T .HF ˝ HG/ WD HFG and �S;T .HF / WD HF jS ˝ HF jT :

The antipode is given by

sI .HF / WD
X
G� xF

.�1/l.G/HG :

We have the perfect pairing

†� ˝Had † ! E; MF ˝ HG 7! ıFG :

This realizes† as the dual Hopf algebra of†� [4, Section 8.6.2]. The Hopf algebra†
is equivalently the free cocommutative Hopf algebra on the positive coalgebra E�C [4,
Section 11.2.5]. This construction naturally equips† with the H-basis. A second basis
of †, called the Q-basis, is given by

QF WD
X
G�F

.�1/l.G/�l.F /
1

l.G=F /
HG

or equivalently

HF DW
X
G�F

1

.G=F /Š
QG :

17We let M0 WD 0.
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The Q-basis appears naturally if we construct † according to [4, Section 11.2.2], i.e.,
as the free cocommutative Hopf algebra on the raw species E�C, ignoring the coalgebra
structure. For .S; T / 2 ŒI I 2� and F 2 †ŒI �, we have deshuffling,18

F kS WD

´
F jS if .S jT / � QF ;

0 otherwise.

The algebraic structure of † is given in terms of the Q-basis by

�S;T .QF ˝ QG/ D QFG and �S;T .QF / D QF kS ˝ QF kT :

We collect the combinatorial descriptions of the algebraic structure of † in the fol-
lowing table:

† H-basis Q-basis

multiplication concatenation concatenation

comultiplication restriction deshuffling

Let the P-basis be the basis of †� which is dual to the Q-basis, thus

PF WD
X
G�F

1

.F=G/Š
MG :

The algebraic structure of †� is given in terms of the P-basis by

�S;T .PF ˝ PG/ D
X

H�l .F jG/

PH and �S;T .PF / D PF 8S ˝ PF(T :

Consider the homomorphism of Hopf algebras given by

O ↠ †�; p 7! Cp WD
X
F�p

MF :

To see that this is a homomorphism, one should consider the homomorphism O!†�

given by [4, Theorem 11.23], where the homomorphism of monoids is O ! E,
p 7! HI . Then [4, (11.18)] recovers the map p 7! Cp . The set

¹CF WF 2 †�ŒI �º

is a third basis of †�ŒI �. We call this the C-basis, or cone basis.

18Recall that QF denotes the partition with blocks the lumps of F .
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Proposition 3.2. The algebraic structure of †� is given in terms of the C-basis by

�S;T .CF ˝ CG/D
X

H�.F jG/

.�1/l.F jG/�l.H/CH and �S;T .CF /D CF 8S ˝ CF(T :

Proof. Notice that
CF D .�1/l.F /sI .M xF /:

The antipode sI reverses the order of multiplication and comultiplication [4, Proposi-
tion 1.22]. Therefore, for the multiplication, we have

.�1/l.F /Cl.G/�S;T .CF ˝ CG/ D �S;T
�
sI .M xF /˝ sI .M xG/

�
D

X
H�.F jG/

sI .M xH /

D

X
H�.F jG/

.�1/l.H/CH :

Then

�S;T .CF ˝ CG/ D
X

H�.F jG/

.�1/l.F /Cl.G/Cl.H/CH

D

X
H�.F jG/

.�1/l.F jG/�l.H/CH :

For the comultiplication, we have

.�1/l.F /�S;T .CF / D �S;T .sI .M xF // D sI .M xF 8T
/˝ sI .M xF(S

/

D sI .MF(T
/˝ sI .MF 8S

/ D .�1/l.F(T /Cl.F 8S /CF(T ˝ CF 8S

D .�1/l.F /CF(T ˝ CF 8S :

Using the geometric realization of†� over the braid arrangement (see Section 4.2)
and an inclusion-exclusion argument, one sees that

Cp D
X
G�p

.�1/l.p/�l.G/CG :

The case p D .F1j : : : jFk/, where the Fj ’s are compositions, is proved explicitly
in [32, Theorem 21]. We collect the combinatorial descriptions of the algebraic struc-
ture of †� in the following table:

†� M-basis P-basis C-basis

multiplication quasishuffling shuffling signed-quasishuffling

comultiplication deconcatenation deconcatenation deconcatenation
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3.3. The primitive part and the indecomposable quotient

We now describe the Lie algebra which forms the primitive part of †, and its dual
Lie coalgebra, which is the indecomposable quotient of †�. Following Aguiar and
Mahajan in [6], the Lie algebra will be denoted by Zie. The Lie coalgebra will be
denoted by Zie�. Therefore, we shall have a pair of dual maps, denoted

UW Zie ,! † and U�W †� ↠ Zie�:

By the definition of primitive elements and the fact that † is connected, the image of
Zie is the kernel of the comultiplication of †,

U.Zie/ŒI � D
\

.S;T /2ŒI I2�

ker.�S;T W†ŒI �! †ŒS�˝†ŒT �/:

Dually, Zie� is the quotient of †� by the image of its multiplication,

U�.†�/ŒI � D †
�ŒI �

. X
.S;T /2ŒI I2�

im.�S;T W†�ŒS�˝†�ŒT �! †�ŒI �/:

See [5, Sections 5.5 and 5.6] for more details.
Let a tree T over I be a planar19 full binary tree whose leaves are labeled bijec-

tively with the blocks of a partition QT of I . The blocks of QT are called the
lumps of T . They form a composition FT by listing in order of appearance from
left to right, called the debracketing of T . We may denote trees by nested products
‘Œ � ; � �’ of subsets or trees, see Figure 5. We make the convention that no trees exist
over the empty set ;. Given a tree T , let antisym.T / denote the set of 2l.FT /�1

many trees which are obtained by switching left and right branches at nodes of T .
For T 0 2 antisym.T /, let .T ; T 0/ 2 Z=2Z denote the parity of the number of node
switches required to bring T to T 0.

Let ZieŒI � be the vector space of formal linear combinations of trees over I , mod-
ulo antisymmetry and the Jacobi identity as interpreted on trees in the usual way.

1 9 678241 23 2 3 54

Figure 5. Let I D ¹1; 2; 3; 4; 5; 6; 7; 8; 9º. The trees Œ4�, Œ1; 23� (¤ Œ23; 1�), ŒŒ2; 3�; 5�,
ŒŒ24; Œ1; 9��; 678�. The debracketing of ŒŒ24; Œ1; 9��; 678� is the composition .24; 1; 9; 678/. If we
put T1 D Œ24; Œ1; 9�� and T2 D Œ678�, then ŒT1; T2� would also denote this tree.

19That is, a choice of left and right child is made at every node.
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Figure 6. The primitive elements QT 2 †ŒI � corresponding to the trees T 2 ¹ŒŒ1; 2�; 3�; Œ12; 3�;

Œ123�º, where the H-basis† has been identified with the midpoints of faces of the permutohedron
(see the discussion of the Losev–Manin moduli space in Section 1). The (necessarily zero)
comultiples of the primitive elements, i.e., their projections onto facets, are shown computed.

This defines the positive vector species Zie. If Lie is the species of the (positive) Lie
operad, E�C is the positive exponential species, and ı denotes the plethystic monoidal
product of species, then20

ZieŒI � D Lie ı E�CŒI � D
M

P2…ŒI�

LieŒP �:

Define the following map, which embeds Zie as the primitive part of †,

UW Zie ,! †; T 7! QT WD

X
T 02antisym.T /

.�1/.T ;T
0/QFT 0

:

See Figure 6. The Lie bracket of Zie, which we denote by @�, connects a pair of trees
T1, T2 over disjoint sets by adding a new root whose children are the roots of T1

and T2,
@�W Zie˝Day Zie! Zie; @�S;T .T1 ˝ T2/ WD ŒT1; T2�:

A geometric interpretation of this Lie bracket inside † can be seen in Figure 7. For
F 2 †ŒI �, let ŒF � 2 ZieŒI � denote the ‘right comb-tree’ with debracketing F ; that is,
if F D .S1; : : : ; Sk/, then

ŒF � WD Œ: : : ŒŒS1; S2�; S3�; : : : ; Sk�:

20As the argument of a (co)species, we let P denote the set whose elements are the blocks
of P .
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–1

,

Figure 7. The Lie bracket of (the image of) Zie given in terms of the H-basis. The multiplication
of† corresponds to embedding facets. The Lie bracket is the commutator of the multiplication,
and so embeds a facet twice, on opposite sides and with opposite sign.

Given a distinguished element i0 2 I , let

†i0 ŒI � WD
®
.S1; : : : ; Sk/ 2 †ŒI �W i0 2 S1

¯
:

If F 2 †i0 ŒI �, then ŒF � is called a standard right comb-tree over I with respect to i0.

Proposition 3.3. The set of standard right-comb trees®
ŒF �WF 2 †i0 ŒI �

¯
is a basis of ZieŒI �.

Proof. To show that any tree T 2 ZieŒI � is a linear combination of standard right
comb-trees, first move i0 to the leftmost branch of T by using antisymmetry. Then
comb branches to the right using the following consequence of antisymmetry and the
Jacobi identity,

ŒS; ŒT; U �� D ŒŒS; T �; U � � ŒŒS; U �; T �:

Therefore standard right-comb trees span ZieŒI �. The result then follows since the
dimension of LieŒI � is .n � 1/Š, see, e.g., [6, Theorem 10.38].

Let
Zie�ŒI � WD Hom.ZieŒI �;k/:

This defines the positive vector cospecies Zie�. For F 2 †�ŒI �, consider the set of
trees T .F / given by

T .F / WD
G

T 2ZieŒI �
FT DF

antisym.T /:
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This is indeed a disjoint union because for each T 0 2 T .F /, there is a unique tree
with debracketing F which is obtained from T 0 by switching branches at nodes. For
F 2 †�ŒI �, let pF be the function on trees over I given by

pF .T 0/ WD

´
.�1/.T ;T

0/ if T 0 2 T .F /; where T 0 2 antisym.T /;

0 if T 0 … T .F /:

Proposition 3.4. For F 2 †�ŒI �, we have

pF 2 Zie�ŒI �:

Proof. The definition of pF ensures that it satisfies antisymmetry. For the Jacobi iden-
tity, suppose that a tree T 0ST U 2 T .F / has a branch ŒŒS; T �; U �. We may assume
that pF .T 0ST U / D 1 by antisymmetry. Then the tree T 00ST U obtained from T 0ST U by
replacing the branch ŒŒS; T �; U � with ŒS; ŒT; U �� has pF .T 00ST U / D 1. Therefore the
tree T 0T US obtained from T 0ST U by replacing the branch ŒŒS; T �; U � with ŒŒT; U �; S�
has pF .T 0ST U / D �1. However, the tree T 0UST obtained from T 0ST U by replacing the
branch ŒŒS; T �; U � with ŒŒU; S�; T � has pF .T 0UST / D 0, because there does not exist
a switching of the nodes of ŒŒU; S�; T � which produces the debracketing .S; T; U /.
Then

pF .T 0ST U /C pF .T 0T US /C pF .T 0UST / D 1 � 1C 0 D 0:

Given a distinguished coordinate i0 2 I , let

†�i0 ŒI � WD ¹F D .S1; : : : ; Sk/ 2 †
�ŒI �W i0 2 S1º:

Proposition 3.5. The set of functions on trees

¹pF WF 2 †�i0 ŒI �º

is the basis of Zie�ŒI � which is dual to the basis of standard right-comb trees from
Proposition 3.3.

Proof. We have
pF .ŒF �/ D 1

because T 2 T .F / with .�1/.T ;T / D .�1/0 D 1. Let F 2 †�i0 ŒI � and G 2 †i0 ŒI �
with

ŒG� 2 T .F /:

This means that there exists a tree T with debracketing F such that ŒG� 2 antisym.T /,
which implies that T 2 antisym.ŒG�/. Since ŒG� is a right comb-tree, it is the only
tree in antisym.ŒG�/ which contains i0 in its leftmost lump. Therefore we must have
T D ŒG�, and so F D G. The contrapositive of this is that if F ¤ G, then ŒG� …
antisym.T /, and so

pF .ŒG�/ D 0:
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We call the functions pF , for F 2 †�i0 ŒI �, the p-basis of Zie�. Of course, it
depends on the choice of i0 2 I . Let U�W†� ↠ Zie� denote the linear dual of the
map U. Thus, U� is isomorphic to the indecomposable quotient map of †�, i.e., U�

quotients out the image of the multiplication of †�.

Proposition 3.6. The map U� is given by

U�W †� ↠ Zie�; PF 7! pF :

Proof. Since U� is the dual of U, for F 2 †�ŒI � and G 2 †i0 ŒI �, we have

U�.PF /.ŒG�/ D PF .QŒG�/:

But, directly from the definitions of QT and pF , we see that PF .QŒG�/ D pF .ŒG�/.
Thus U�.PF /.ŒG�/ D pF .ŒG�/. Because the right-comb trees ŒG�, for G 2 †i0 ŒI �,
form a basis of ZieŒI �, we must have U�.PF / D pF .

Let cp WD U�.Cp/ and mF WD U�.MF /. Then ¹cF W F 2 †�i0 ŒI �º and ¹mF W F 2
†�i0 ŒI �º are two more bases of Zie�ŒI �. We call them the c-basis and the m-basis
respectively. Since Zie� is the quotient of †� by the image of its multiplication, we
have the following three choices of generating relations for Zie�: quasishuffling, shuf-
fling, and signed-quasishuffling,X

H�.F jG/

mH D 0;
X

H�l .F jG/

pH D 0;
X

H�.F jG/

.�1/l.H/cH D 0:

We have a relation for each choice of triple

.S; T / 2 ŒI I 2�; F 2 †�ŒS�; G 2 †�ŒT �:

The quotient of Zie� by the relations pF D 0, for F … L�ŒI �, is the (positive) Lie
cooperad Lie�, whose shuffle relations are well known.

The Lie cobracket @ of Zie�, which is the linear dual map of the Lie bracket @� of
Zie, is given in terms of the p-basis (and also the c-basis and m-basis) by the cocom-
mutator of deconcatenation,

@W Zie� ! Zie� ˝Day Zie�; @ŒS;T �.pF / WD pF 8S ˝ pF(T � pF 8T ˝ pF(S :

4. Geometric realizations

We now give two geometric realizations of the Hopf algebra†�. First, we realize†�

as piecewise-constant functions on the braid arrangement. Second, we realize †� as
functionals of piecewise-constant functions on the adjoint braid arrangement which
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arise from formal linear combinations of conical subspaces generated by coroots. The
quotients obtained by restricting these realizations to chambers are the commutative
Hopf algebra of linear orders L� for the braid arrangement (this is clear), and the inde-
composable quotient Lie coalgebra Zie� for the adjoint braid arrangement (we prove
this in Section 5).

4.1. Root datum and hyperplane arrangements

We describe the braid arrangement and its corresponding adjoint arrangement. These
hyperplane arrangements are naturally constructed over the root datum of SLI .C/,21

or dually PGLI .C/. Consider the set

RI WD ¹functions �W I ! Rº

and let ZI � RI be the subset of integer-valued functions. Then RI and ZI are
groups by taking the pointwise addition of functions. For a subset S � I , let �S 2 ZI

be given by
�S .i/ WD 1 if i 2 S and �S .i/ WD 0 if i … S:

If we consider functions only up to translations of R, we obtain the quotient groups

TI WD RI=R�I and PI WD ZI=Z�I :

The lattice PI � TI is called the weight lattice of SLI .C/. For .S; T / 2 ŒI I 2�, the
fundamental weight �ST 2 PI is the image of �S 2RI in TI . Recall that for SLI .C/,
fundamental weights coincide with minuscule weights, see Figure 8. The partial prod-
uct on ŒI I2� encodes the addition of fundamental weights, restricted to the case where
the sum is again a fundamental weight,

�ST C �UV D �.S;T / ı .U;V /:

To see this, we have for example,

T � U W Œ1 W1 W1 W0 W0 W0 W0�C Œ0 W0 W0 W0 W0 W1 W1� D Œ1 W1 W1 W0 W0 W1 W1�;

S � V W Œ1 W1 W1 W1 W1 W0 W0�C Œ0 W1 W1 W1 W1 W1 W1� D Œ1 W2 W2 W2 W2 W1 W1�

D Œ0 W1 W1 W1 W1 W0 W0�;

otherwiseW Œ1 W1 W1 W0 W0 W0 W0�C Œ1 W0 W0 W0 W0 W1 W1� D Œ2 W1 W1 W0 W0 W1 W1�:

21Note that some authors construct the braid arrangement over the root datum of GLI .C/,
and recover the braid arrangement in our sense as the essentialization. The corresponding
‘adjoint’ arrangement is known as the all-subset arrangement, and the adjoint arrangement in
our sense is recovered as a restriction.
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Figure 8. Coroots (red, left) and the coweight lattice, fundamental weights (blue, right) and the
weight lattice, for I D ¹1; 2; 3º. Special hyperplanes and reflection hyperplanes are shown as
dotted lines.

Let
RI WD ¹hW h D .hi /i2I ; hi 2 Rº

and let ZI � RI be the free Z-module on I . We have the perfect pairing

h�;�iW RI �RI ! R; hh; �i WD
X
i2I

hi�.i/:

Let

T_I WD ¹h 2 RI W hh; �I i D 0º and Q_I WD ¹h 2 ZI W hh; �I i D 0º:

We have the natural identifications

RI D Hom.RI;R/; TI D Hom.T_I ;R/; PI D Hom.Q_I ;Z/:

The lattice Q_I � T_I is called the coweight lattice of SLI .C/. For .i1; i2/ 2 Œ2I I �, the
coroot hi1i2 2 Q_I evaluates the signed distance between the point labeled by i2 to the
point labeled by i1,

hhi1i2 ; �i WD �.i1/ � �.i2/:

The partial product on Œ2I I � encodes the addition of coroots, restricted to the case
where the sum is again a coroot,

hi1i2 C hi3i4 D h.i1;i2/ ı .i3;i4/:

For .i1; i2/ 2 Œ2I I �, the reflection hyperplane H.i1ji2/ � TI is given by

H.i1ji2/ WD
®
� 2 TI W hhi1i2 ; �i D 0

¯
:
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For the set species T.�/ given by I 7!TI , the transposition i1$ i2 acts by reflection in
H.i1ji2/. The collection of all reflection hyperplanes in TI is called the braid arrange-
ment over I . For .S; T / 2 ŒI I 2�, the special hyperplane H.S jT / � T_I is given by

H.S jT / WD
®
h 2 T_I W hh; �ST i D 0

¯
:

The collection of all special hyperplanes in T_I is called the adjoint braid arrange-
ment over I . Notice that special hyperplanes are equivalently hyperplanes which are
spanned by coroots, whereas fundamental weights can span hyperplanes which are
not necessarily reflection hyperplanes (this can be seen in Figure 1).

The significance of the hyperplanes is as follows: if � 2 H.i1ji2/, then the points
of i1 and i2 coincide, and if h 2 H.S jT /, then the function

hW TI ! R; � 7! hh; �i

does not depend on the distances separating the points of S from the points of T .

Remark 4.1. The set species T.�/ is a set-theoretic comonoid, with comultiplication
the restriction of configurations,

�S;T W TI ↠ TS � TT ; �S;T .�/ WD .�jS ; �jT /:

Dually, the set cospecies T_
.�/

given by I 7! T_I is a monoid, with multiplication the
embedding of special hyperplanes,

�S;T W T_S � T_T ,! T_I ; h�ST .hS ; hT /; �i WD hhS ; �jS i C hhT ; �jT i:

To make the comonoid T.�/ into a Hopf monoid, one needs to take a certain compact-
ification so that the multiplication has somewhere to land (see the discussion on the
Losev–Manin moduli space in Section 1).

4.2. Realization over braid arrangement

The vector space
kTI
WD ¹functions TI ! kº

is a k-algebra, with multiplication the pointwise product of functions. For .i1; i2/ 2
Œ2I I �, define the halfspace yCi1i2 2 kTI by

yCi1i2 W TI ! k; yCi1i2.�/ WD

´
1 if hhi1i2 ; �i � 0;

0 otherwise.

Let y†
�
ŒI � denote the subalgebra of kTI which is generated by halfspaces. This defines

the vector cospecies y†
�

of piecewise-constant functions on the braid arrangement.
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Each component y†
�
ŒI � is a polyhedral algebra in the sense of [12]. Monomials in the

halfspaces are called braid cones. We let preposets index braid cones via

OŒI �! y†
�
ŒI �; p 7! yCp WD

Y
.i1;i2/2p

yCi1i2 :

This is the well-known one-to-one correspondence between preposets and cones of
the braid arrangement [57, Section 3], [4, Section 13.5.1]. Let the braid signature be
the function

TI ↠ †�ŒI �; � 7! F� WD
®
.i1; i2/ 2 Œ2I I �W yCi1i2.�/ D 1

¯
:

Equivalently, F� is the preposet which is the ordering induced on I by representative
configurations �W I ! R. For F 2†�ŒI �, the (relatively open) face yMF is the function
given by

yMF W TI ! k; yMF .�/ WD

´
1 if F� D F;

0 otherwise:

The image under the braid signature of the complement of the reflection hyperplanes
is L�ŒI �. Thus, F 7! yMF puts L� in one-to-one correspondence with characteristic
functions of connected components of the complement of the reflection hyperplanes.

Proposition 4.2. We have
yCp D

X
F�p

yMF :

Proof. Let � 2 TI . We have

yCp.�/ D
Y

.i1;i2/2p

yCi1i2.�/ D 1 , yCi1i2.�/ D 1 for all .i1; i2/ 2 p , F� � p:

The support of a face yMF is the preimage of F under the braid signature. Therefore �
is in the support of exactly one face, and so

F� � p ,
X
F�p

yMF .�/ D 1:

Then, since yCp and
P
F�p
yMF take values 0 and 1 only, the result follows.

The set ¹yMF W F 2 †�ŒI �º spans y†
�
ŒI � by Proposition 4.2, and is linearly inde-

pendent because the faces yMF are supported by disjoint sets. Therefore we have an
isomorphism of cospecies, given by

†� ! y†
�
; MF 7! yMF or Cp 7! yCp:
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We let this isomorphism induce the structure of the commutative Hopf algebra of
compositions on the cospecies of functions y†

�
. If we extend to the permutohedral

compactification of TI , we may interpret the algebraic structure as in Figure 2, i.e., in
terms of embedding facets and projecting onto facets of the permutohedron.

Recall that a (closed) conical space � is a module of the rig .R�0;C;�/, and an
open conical space is a module of the rig .R>0;C;�/. For X � ŒI; 2� any subset,
let z�X ; �X � TI denote the respectively open and closed conical spaces which are
generated by the fundamental weights

¹�ST W .S; T / 2 Xº:

This defines a Galois insertion, with adjoint families as the closed elements. Therefore
adjoint families are in one-to-one correspondence with open/closed conical spaces
over fundamental weights. Recall that to each preposet p 2 OŒI �, we associated the
subset denoted Fp � ŒI; 2�. In this case, let �p be the conical space defined by

�p WD �Fp D ¹non-negative R-linear combinations of ¹�ST W .S; T / � pºº:

Proposition 4.3. The braid cone yCp is the characteristic function of �p .

Proof. Since
F�ST D .S; T /;

we have .S;T /� p if and only if yCp.�ST /D 1. Then, since the support of yCp must be
closed under taking non-negative linear combinations, we have that �p is contained
in the support of yCp . Conversely, suppose that �0 2 TI is in the support of yCp , which
means that F�0 � p. The proposition clearly holds when p is a composition, i.e., we
have

�F D ¹� 2 TI WF� � F º:

Therefore, in particular, �0 2 �F�0 . Then, since F�0 � p, we have .S; T / � F�0
implies that .S; T / � p, and so �0 2 �F�0 � �p .

It is now clear that Fp is an adjoint family, since an equivalent definition of Fp is
that it is the set of .S; T / 2 ŒI; 2� such that �ST is in the support of yCp . We clearly
have

�q � �p , q � p and z�q � z�p , q � p:

Thus, the images of MF and Cp in y†
�

are the characteristic functions of z�F and �p
respectively. Notice also that �p \ �q D �p[q . Therefore the polyhedral algebraic
structure of y†

�
may be given by

y†
�
˝Had y†

�
! y†

�
; yCp ˝ yCq 7! yCp � yCq D yCp[q:

Recall that˝Had denotes the Hadamard monoidal product of vector (co)species.
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4.3. Adjoint braid arrangement

The vector space
kT_
I WD ¹functions T_I ! kº

is a k-algebra, with multiplication the pointwise product of functions. For .S; T / 2
ŒI I 2�, define the halfspace {YST 2 kT_

I by

{YST W T_I ! k; {YST .h/ WD

´
1 if hh; �ST i � 0;

0 otherwise.

Let {†
_
ŒI � denote the subalgebra of kT_

I which is generated by halfspaces. This de-
fines the vector species {†

_
of piecewise-constant functions on the adjoint braid ar-

rangement. Each component {†
_
ŒI � is a polyhedral algebra in the sense of [12]. Let

an adjoint cone be a monomial in the halfspaces. We let adjoint families index adjoint
cones via

O_ŒI �! {†
_
ŒI �; F 7! {YF WD

Y
.S;T /2F

{YST :

The definition of adjoint families (as the closed elements of a Galois insertion) ensures
that this is a one-to-one correspondence between adjoint families on I and adjoint
cones of T_I . Let the adjoint signature be the function

T_I ↠ †_ŒI �; h 7! �h WD
®
.S; T / 2 ŒI I 2�W {YST .h/ D 1

¯
:

For � 2 †_ŒI �, the (relatively open) adjoint face {H� is the function given by

{H� W T_I ! k; {H� .h/ WD

´
1 if �h D � ;

0 otherwise:

The image under the adjoint signature of the complement of the special hyperplanes
is L_ŒI �. Thus, � 7! {H� puts L_ in one-to-one correspondence with characteristic
functions of connected components of the compliment of the special hyperplanes.

Proposition 4.4. We have
{YF D

X
��F

{H� :

Proof. Let h 2 T_I . We have

{YF .h/ D
Y

.S;T /2�

{YST .h/ D 1 , {YST .h/ D 1 for all .S; T / 2 F , �h � F :
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The support of {H� is the preimage of � under the adjoint signature. Therefore h is in
the support of exactly one adjoint face, and so

�h � F ,
X
��F

{H� .h/ D 1:

Then, since YF and
P

��F
{H� take values 0 and 1 only, the result follows.

For F 2 O_ŒI � an adjoint family, let �_
F

denote the dual conical space of �F ,
given by

�_F WD
®
h 2 T_I W hh; �i � 0 for all � 2 �F

¯
:

Proposition 4.5. The adjoint cone {YF is the characteristic function of the conical
space �_

F
.

Proof. The result follows from the fact that cone duality intertwines intersections with
Minkowski sums.

For p 2 OŒI � a preposet, let �_p denote the dual conical space of �p , given by

�_p WD
®
h 2 T_I W hh; �i � 0 for all � 2 �p

¯
:

The conical spaces �_F are tangent cones to permutohedra, and the conical spaces �_p
are tangent cones to generalized permutohedra. This follows from the characterization
of generalized permutohedra as polyhedra whose normal fans are coarsenings of the
braid arrangement, see, e.g., [2]. By cone duality, the conical space �_p is generated
by the coroots ®

hi1i2 W .i1; i2/ 2 p
¯
:

Let z�_p denote the open conical space which is generated by the same coroots.

The set ¹{H� W � 2 †
_ŒI �º spans {†

_
ŒI � by Proposition 4.4, and is linearly inde-

pendent because the adjoint faces {H� are supported by disjoint sets. Let us give each
component {†

_
ŒI � the structure of a real Hilbert space by letting adjoint faces be an

orthonormal basis. If Y 2 {†
_
ŒI � is the characteristic function of a region X � T_I , let

the characteristic functional of X be the Riesz representation of Y.

4.4. Realization over adjoint braid arrangement

For p 2 OŒI �, let {Cp be the characteristic functional of �_p , thus

{CpW {†
_
ŒI �! k; {Cp.{H� / WD

´
1 if � � Fp;

0 otherwise.
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Let {†
�
ŒI � denote the span of ¹{CpW p 2 OŒI �º in Hom. {†

_
ŒI �; k/. This defines the

cospecies {†
�

of functionals which arise from formal linear combinations of conical
spaces over coroots.

Proposition 4.6. We have a cospecies isomorphism D , given by

D W y†
�
! {†

�
; yCp 7! {Cp:

Proof. Since yCp is the characteristic function of �p , and the Riesz representation of {Cp
is the characteristic function of �_p , we see that {†

�
ŒI � is naturally the dual of the

polyhedral algebra y†
�
ŒI � in the sense of [12, Theorem 2.7], and D is the duality

map.

We let D induce the structure of the commutative Hopf algebra of compositions
on the cospecies of functionals {†

�
. The image of the pointwise product in {†

�
is

called convolution,

{†
�
˝Had {†

�
! {†

�
; {Cp ˝ {Cq 7! {Cp ? {Cq WD {Cp[q:

The restriction of convolution to coroot cones is Minkowski sum.
For F 2 †�ŒI �, let

{MF 2 Hom. {†
_
ŒI �;k/

be the characteristic functional of the relative interior z�_
xF

of the permutohedral cone
�_
xF

, with sign .�1/l.F /�1.

Theorem 4.7. For F 2 †�ŒI �, we have

D.yMF / D {MF :

Proof. For F 2 †�ŒI �, we have22

D.yMF /� D D

� pointwiseY
.i1;i2/2F

.yCI � yCi2i1/
�
D

convolY
.i1;i2/2F

D.yCI � yCi2i1/

D

convolY
.i1;i2/2 xF

.{CI � {Ci1i2/ D {MF :

The final equality follows by multiplying out the convolution product, and then doing
inclusion-exclusion of faces of the permutohedral cone �_F .

Therefore, the isomorphism D W y†
�
! {†

�
is also given by yMF 7! {MF . We let {PF

denote the image of PF in {†
�
.

22In yCI and {CI , I denotes the partition of I into singletons .i1j : : : jin/, modeled as the empty
preposet p D ;.
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5. The indecomposable quotient

We now show that the indecomposable quotient Lie coalgebra of the adjoint real-
ization of †� is simply the restriction of functionals to chambers. Recall that the
indecomposable quotient of †� is isomorphic to

Zie� D Lie� ı EC;

where Lie� is the Lie cooperad, EC is the positive exponential species, and ı is
plethysm. We show that the resulting geometric realization of Zie�, which we know
consists of functionals in the span of characteristic functionals of generalized per-
mutohedral cones, is also characterized as functionals which satisfy the Steinmann
relations from QFT. We shall see that the cobracket of this realization of Zie� may be
interpreted as the discrete differentiation of functionals across special hyperplanes.

5.1. Permutohedral cones and the Steinmann relations

Let {Zie� be the quotient cospecies of {†
�

which is obtained by restricting functionals
to adjoint chambers, thus

{Zie�ŒI � WD {†
�
ŒI �
ı˝
f 2 {†

�
ŒI �Wf .{H� / D 0 for all � 2 L_ŒI �

˛
:

We denote the corresponding quotient map by

{U�W {†
�
↠ {Zie�:

Define the following functionals on adjoint chambers:

LpF WD {U�.{PF /; Lcp WD {U�.{Cp/; LmF WD {U�.{MF /:

See Figure 9. In particular, the functionals Lcp are characteristic functionals of gen-
eralized permutohedral tangent cones, taken modulo higher codimensions. Therefore
we may characterize the subspace

{Zie�ŒI � � Hom.L_ŒI �;k/

as the span of characteristic functionals of (generalized) permutohedral tangent cones.

Remark 5.1. The adjoint analog of {Zie�, i.e., the quotient of y†
�

obtained by restrict-
ing functions to Weyl chambers, is the cospecies yL� given by

yL�ŒI � WD y†
�
ŒI �
ı
hMF WF … L�ŒI �i:
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Lc.1;2;3/ Lc.12;3/ Lc.123/

Figure 9. The images in the quotient {Zie� of the various bases of †�.

This is a geometric realization of the commutative Hopf algebra of linear orders L�.
Since L� is the coenveloping algebra of the Lie cooperad Lie�, we have a natural
isomorphism

L� Š E ı Lie�:

Therefore L� is a right Lie�-comodule. If we look at what the Lie�-coaction should
be for the realization yL�, we see that it is discrete differentiation of functions across
reflection hyperplanes. This is geometrically the same as the Lie structure we shall
give {Zie�.

Let a Steinmann functional f 2 Hom.L_ŒI �;k/ over I be a k-valued function on
adjoint chambers which satisfies the Steinmann relations [48, Section 4.2]. We denote
the cospecies of Steinmann functionals by ��. In [48], it was shown that restricting
to Steinmann functionals is necessary and sufficient for the discrete differentiation of
functionals across hyperplanes to be a Lie cobracket, so that �� has the structure of
a Lie coalgebra. We now show that {Zie� is exactly the Lie coalgebra of Steinmann
functionals, so �� D {Zie�.

See [48, Definition 2.3] for the precise definition of the discrete derivative.
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Lemma 5.2. For F 2 †�ŒI � and .S; T / 2 ŒI I 2�, the discrete derivative @ŒS;T � LcF of
the functional LcF across the special hyperplane H.S jT / is given by23

@ŒS;T � LcF D �.S jT /.LcF 8S ˝ LcF(T � LcF 8T ˝ LcF(S /:

Proof. Let X be a codimension one adjoint face which is supported by the special
hyperplane H.S jT /. Let XŒS;T �, respectively XŒT;S�, be the adjoint chamber with facet X
such that {YST � XŒS;T � D XŒS;T �, respectively {YST � XŒT;S� D 0. First, suppose that
.S; T / � F . In this case, we need to show that

@ŒS;T � LcF D �.S jT /.LcF jS ˝ LcF jT /:

By the definition of the derivative, we have

@ŒS;T � LcF .X/ D LcF .XŒS;T �/ � LcF .XŒT;S�/:

However, since .S; T / � F , we have LcF .XŒT;S�/ D 0, so that

@ŒS;T � LcF .X/ D LcF .XŒS;T �/:

Then, directly from the definitions, we see that

�.S jT /.LcF jS ˝ LcF jT /.X/ D 1 , LcF .XŒS;T �/ D 1:

Since these functionals take values 0 or 1, the result follows. The case .T;S/� F then
follows by antisymmetry of the derivative. Finally, if S is not an initial or terminal
interval of F , then

�.S jT /.LcF 8S ˝ LcF(T � LcF 8T ˝ LcF(S / D �.S jT /.0 � 0/ D 0:

Also, in this case, we have

LcF .XŒS;T �/ D LcF .XŒT;S�/;

and so @ŒS;T � LcF D 0, as required.

Corollary 5.3. The functionals ¹LcF W F 2 †�ŒI �º satisfy the Steinmann relations.
More generally, the characteristic functionals of generalized permutohedral tangent
cones ¹LcpWp 2 OŒI �º satisfy the Steinmann relations.

Proof. In Lemma 5.2, we showed that the first derivatives of LcF factorize. The result
then follows since a functional satisfies the Steinmann relations if and only if its first
derivatives factorize, see [48, Section 4.2].

23See [48, Definition 1.6] for the definition of �.SjT/.
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But what about the converse?

Theorem 5.4. A functional on adjoint chambers satisfies the Steinmann relations if
and only if it is a linear combination of characteristic functionals of (generalized)
permutohedral tangent cones. Therefore,

{Zie� D ��

as cospecies.

Proof. Let n D jI j. For m 2 N with m � n, let fm denote a Steinmann functional
over I such that @ŒF �fm D 0 for all F 2 †�i0 ŒI �, l.F / > m. Notice that if l.F / D m,
then @ŒF �fm is a constant functional, whose value we denote by �.@ŒF �fm/. Define

fm�1 D fm �
X

¹F 2†�
i0
ŒI �W l.F /Dmº

�.@ŒF �fm/LcF :

Then, for F 2 †�i0 ŒI � with l.F / > m � 1, we have

@ŒF �fm�1 D @ŒF �fm �
X

¹G2†�
i0
ŒI �W l.G/Dmº

�.@ŒG�fm/@ŒF � LcG D 0:

To see this, notice that if l.F / > m then everything is equal to zero, and if l.F / D m,
then @ŒF � LcG is constant with

�.@ŒF � LcG/ D ıFG :

This shows that we can systematically perturb a Steinmann functional with linear
combinations of the functionals ¹LcF WF 2†�i0 ŒI �º, gradually making it more and more
symmetric, until we obtain a constant functional, which will be a scaling of Lc.I /.

Remark 5.5. This result is not surprising, given that the Steinmann relations are
about enjoying factorization of the discrete derivative across special hyperplanes (in
the case of characteristic functionals, the derivative is just taking the boundary), and
then [2, Theorem 6.1], which tells us that generalized permutohedra are exactly those
polyhedra which enjoy type A factorization of their boundaries.

Let us equip the cospecies {Zie� with the cobracket @ of discrete differentiation
across hyperplanes, so that it is now exactly the Lie coalgebra �� from [48],

@W {Zie� ! {Zie� ˝Day {Zie�; @ŒS;T � LcF WD LcF 8S ˝ LcF(T � LcF 8T ˝ LcF(S :

We now dispense with the notations � and ��.



Hopf monoids, permutohedral cones 599

5.2. An isomorphism of Lie coalgebras

If a preposet p 2 OŒI � has at least two blocks, then {Cp.{H� / D 0 for all � 2 L_ŒI �,
and so Lcp D 0. Therefore the Lie coalgebra {Zie� is a quotient of the indecomposable
quotient of {†

�
, and so we have a surjective morphism of cospecies

Zie� ↠ {Zie�; cp 7! Lcp:

We now show that these two quotients of {†
�

actually coincide, so that in fact Zie� Š
{Zie�.

Lemma 5.6. The set of functionals

¹LcF WF 2 †�i0 ŒI �º �
{Zie�ŒI �

is linearly independent.

Proof. We prove by induction on nD jI j. Suppose we have coefficients aF 2 k such
that X

F 2†�
i0
ŒI �

aF LcF D 0:

Let .S; T / 2 ŒI; 2� with i0 2 S . ThenX
F 2†�

i0
ŒI �

aF .@ŒS;T � LcF / D @ŒS;T �

� X
F 2†�

i0
ŒI �

aF LcF

�
D @ŒS;T �0 D 0:

Let m D jS j. If m D 1, then each term @ŒS;T � LcF which is not zero will be of the form

Lc.i0/ ˝ LcG ;

for some G 2 †�ŒT �. Then, since jT j D n � 1 < n, by the induction hypothesis we
have aF D 0 for all F 2 †�i0 ŒI � with a first lump of cardinality one.

We now do induction onm, and assume that aF D 0 for all F 2†�i0 ŒI � with a first
lump of cardinality less than m. By the induction hypothesis on m, each @ŒS;T � LcF
which is not zero, and such that aF is also not zero, will be of the form

Lc.S/ ˝ LcG ;

for some G 2 †�ŒT �. Therefore, by the induction hypothesis on n, we have aF D 0
if F has a first lump of cardinality m.

Lemma 5.7. The set of functionals

¹LcF WF 2 †�i0 ŒI �º �
{Zie�ŒI �

is a basis of {Zie�ŒI �.
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Proof. This set of functionals is linearly independent by Lemma 5.6. This set spans
{Zie�ŒI � because it is the image of the c-basis under the quotient Zie� ↠ {Zie�.

Theorem 5.8. The quotient

Zie� ↠ {Zie�; pF 7! LpF or mF 7! LmF or cp 7! Lcp

is an isomorphism of Lie coalgebras.

Proof. This quotient is an isomorphism at the level of cospecies by Lemma 5.7. This
quotient preserves the cobracket by Lemma 5.2.

Thus, we have shown that Steinmann functionals, equivalently the span of (gener-
alized) permutohedral cones modulo higher codimensions, equipped with the discrete
differentiation of functionals across special hyperplanes, is the indecomposable quo-
tient of the adjoint realization of †�.

We finish with a conceptual remark, which we hope further clarifies the situation.
For a partition P 2…�ŒI �, let {†

�

P ŒI � denote the subspace of {†
�
ŒI � which consists of

those functionals that are supported by the semisimple subspace �_P ,

{†
�

P ŒI � WD
®
f 2 {†

�
ŒI �Wf .{H� / ¤ 0 H) �_� � �

_
P

¯
:

Since the Hopf structure of {†
�

was induced by the identification Cp 7! {Cp with †�,
the higher multiplication of {†

�
is given by

�P W {†
�
.P / ,! {†

�
ŒI �; {Cp1 ˝ � � � ˝ {Cpk 7! {C.p1j:::jpk/:

Then, since {Zie� was the indecomposable quotient of {†
�
, the image of �P must be

{†
�

P ŒI �,
{†
�

P ŒI � Š
{†
�
.P /:

In this sense, the higher multiplication of the adjoint realization of †� is simply the
embedding of semisimple subspaces. For the Lie coalgebra Zie�, one then quotients
out the images of all these embeddings, leaving just the chambers.

5.3. Bring to basis for Steinmann functionals

We now evaluate derivatives of functionals at the first Eulerian idempotent in order to
bring Steinmann functionals to the Lp-basis. This will work in the same way as a Taylor
series expansion. Let {† be the dual species of the cospecies {†

�
,

{†ŒI � WD Hom. {†
�
ŒI �;k/:
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This is naturally a quotient of the span of adjoint faces,

{† D {†
_

=�:

Let {Zie denote the Lie algebra which is dual to the Lie coalgebra {Zie�,

{ZieŒI � WD Hom.{Zie�ŒI �;k/:

This is naturally the subspecies of {† which is spanned by adjoint chambers. The
underlying species of {Zie is given by

{Zie D {L_=Stein;

where Stein is the span of the Steinmann relations [48, Section 4.2]. The first Eulerian
idempotent EI 2 †ŒI � is defined by putting E; WD 0, and

EI WD Q.I / D �
X

F 2†ŒI�

.�1/l.F /

l.F /
HF

for I nonempty. See [5, Section 14.1]. The first Eulerian idempotent is a primitive
series in†. Its image in the adjoint realization {Zie is then as follows. For I nonempty,
let {EI 2 {ZieŒI � such that for all F 2 †�ŒI �, we have

LpF .{EI / WD

´
1 if F D .I /;

0 otherwise.

To define {EI , it is enough to consider just the basis elements ¹LpF WF 2 †�i0 ŒI �º. The
definition is then satisfied because Lp-basis elements satisfy shuffle relations. This
defines the series

E! {Zie; HI 7! {EI :

In order to obtain the explicit isomorphism between Zie and {Zie, we should now act
on {EI with the dual derivative @�T of [48, Definition 2.4], giving

Zie! {Zie; T 7! {QT WD @
�
T .{ES1 ˝ � � � ˝ {ESk /:

See Figure 10. We have computed {EI for n D 4, see Figure 11. For 1 � n � 4, {EI
may be presented as a sum of nŠ adjoint faces, all with coefficient 1=nŠ. We have not
studied the cases n � 5.

Theorem 5.9. Given a Steinmann functional f 2 {Zie�ŒI �, we have

f D
X

F 2†i0 ŒI �

@ŒF �f .{ES1 ˝ � � � ˝ {ESk /LpF :
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Figure 10. The primitive elements {QT 2
{ZieŒI � for T 2
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¯
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Figure 11. The adjoint realization of the first Eulerian idempotent EI , for n D 4, shown on
the Steinmann sphere. The 24 adjoint chambers which are contained in square facets are all
included with the coefficient 1=24. Note that due to the Steinmann relations, this presentation
is not unique.

Proof. Let aG 2 k be the coefficients in the expansion of f in the Lp-basis,

f D
X

G2†�
i0
ŒI �

aG LpG :

For F D .S1; : : : ; Sk/ 2 †i0 ŒI �, we have

@ŒF �f D
X

G2†�
i0
ŒI �

aG@ŒF � LpG :

Then

@ŒF � LpG D

8<: LpGjS1 ˝ � � � ˝ LpGjSk if F � G;

0 2 {Zie�.QF / otherwise.



Hopf monoids, permutohedral cones 603

Therefore, since the first Eulerian idempotent is equal to Q.I / for I nonempty, and the
Q-basis is dual to the P-basis, we have @ŒF � LpG.{ES1 ˝ � � � ˝ {ESk / D ıFG : Thus,

@ŒF �f .{ES1 ˝ � � � ˝ {ESk / D aF :

6. Generalized retarded functions

We finish by describing (at least one aspect of) the connection with pAQFT. We hope
to further expose the role species have to play in QFT in future work.

Let {UW {Zie ,! † denote the linear dual map of the composition

†�
�
�! {†

�
↠ {Zie�; MF 7! {MF 7! LmF :

Thus, the embedding {U realizes the adjoint geometric realization of the Lie alge-
bra Zie as the primitive part of its universal enveloping algebra †. Given an adjoint
chamber {H� 2

{L_ŒI �, we denote by

{D� 2
{ZieŒI � D {L_ŒI �

ı
SteinŒI �

its image under the quotient by the Steinmann relations.

Proposition 6.1. The map {U is given by24

{UW {Zie ,! †; {D� 7! D� D U� WD

X
F 2†ŒI�

LmF .{H� /HF :

Proof. This follows immediately from the fact that the H-basis and M-basis are dual.
Indeed, we have that {D� 2

{ZieŒI � D Hom.{Zie�ŒI �;k/ is given by

LmG 7! LmG.{H� /:

Therefore {U.{D� / is given by

{U.{D� /W †
�ŒI �! k; MG 7! LmG.{H� / D

X
F 2†ŒI�

LmF .{H� /HF .MG/:

See Figure 12. Recalling our definition of LmF , we see that the embedding {U
appears in the mathematical foundations of perturbative QFT, where it expresses gen-
eralized retarded products in terms of operator products of time-ordered products, and
hence also generalized retarded functions in terms of vacuum expectation values of
products of time-ordered products, sometimes called generalized time-ordered func-
tions. As far as we are aware, its first appearance is in [35, (79), p. 260]. See also
[36, (1), p. 26], and more recently [34, (35) and (36)].

24The notation U� is used in the physics literature, however, we shall prefer the notation D� .
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132
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23 1 23

{U

Figure 12. The primitive element of an adjoint chamber, over I D¹1;2;3º. One can compute the
primitive element by evaluating the {M-basis on the chamber, or by using Epstein–Glaser–Stora’s
expansion in terms of the Tits product. The primitive element corresponds to the generalized
retarded function of the chamber (‘geometric cell’), expressed in terms of vacuum expectation
values of operator products of time-ordered products.

The elements D� 2 †ŒI �, for � 2 L_ŒI �, were defined for generic real hyperplane
arrangements in [6, (14.1)] (so in particular for reflection hyperplane arrangements
of other Dynkin types). Aguiar and Mahajan call these special primitive elements
Dynkin elements. From this perspective, the Steinmann relations turn up as the kernel
of the map

L_ ↠ Zie ,! †; � 7! D� :

That is, the Steinmann relations are a set of generating relations for the typeADynkin
elements. The 4-point Steinmann relations appear in [6, Exercise 14.67]. For a direct
proof that the D� are indeed primitive elements, i.e., without using the dual polyhedral
algebra construction of this paper, see [6, Proposition 14.1].

The Tits product is the action of † on itself by Hopf powers, thus

† �Had †! †; .F;G/ 7! F �G WD �F .�F .G//:

Explicitly, if F D .S1; : : : ; SkF / and G D .T1; : : : ; TkG / are compositions of I , then

F �G D .T1 \ S1; : : : ; TkG \ S1; : : : ; T1 \ SkF ; : : : ; TkG \ SkF /C:

The Tits product is associative and unital, and so promotes† to a presheaf of monoids,

†W Sop
! Mon; I 7! †ŒI �:

We then linearize the Tits product, to obtain

† ˝Had † ! †; HF ˝ HG 7! HF F HG WD HF �G :

This promotes † to a presheaf of k-algebras. The components of this species are
known as Tits algebras, or algebras of proper sequences in Epstein–Glaser–Stora’s
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formalism [36, Section 4.1]. In QFT, the Tits product is motivated by considering
causal factorization, or causal additivity, [34, p. 2]. In [36, Lemma 8], the following
expansion of D� is given.

Proposition 6.2 (Epstein–Glaser–Stora). For � 2 L_ŒI �, we have

D� D

TitsY
.S;T /2�

.H.I / � H.T;S//;

where the right-hand side is well-defined because these elements commute in the Tits
product.

For more on the structure of Dynkin elements, see [6, Chapter 14] and [5, Sec-
tion 14.5]. Note that in the notation of [5], the Dynkin element of Figure 12 is D3. This
corresponds to the fact that the adjoint face contains the orthogonal projection of the
basis element e3 2 RI onto T_I .
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