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Diffeomorphisms of scalar quantum fields via generating
functions

Ali Assem Mahmoud and Karen Yeats

Abstract. We study the application of formal diffeomorphisms to scalar fields. We give a new
proof that interacting tree amplitudes vanish in the resulting theories. Our proof is directly
at the diagrammatic level, not appealing to the path integral, and proceeds via a generating
function analysis, so it is more insightful than previous proofs. Along the way, we give new
combinatorial proofs of some Bell polynomial identities, and we comment on the connection
with the combinatorial Legendre transform.

1. Introduction

A free scalar quantum field is usually defined via a Lagrangian density

L.�/ D
1

2
@��.x/@

��.x/ �
m2

2
�2.x/

that contains no self-interaction terms, where m is the mass of the �-particle. A field
diffeomorphism F is going to be formally defined as a power series in the field

� 7! F.�/ D a0�.x/C a1�.x/
2
C � � � D

1X
jD0

aj�
jC1;

where a0 D 1, i.e., F is a formal diffeomorphism tangent to the identity. The prob-
lem is then to study the field theory expressed by the transformed Lagrangian, if one
applies the diffeomorphism to the Lagrangian equation above. The result is seemingly
an interacting theory.

Similarly, one can take an interacting scalar field theory and apply a field diffeo-
morphism, again resulting in many new interaction terms in the Lagrangian. In both
cases, one would expect the contributions of these new terms should cancel. Likewise,
as we will be treating F.�/ as a formal power series, � could in fact be a vector field
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rather than a scalar field with the an�n interpreted as symmetric tensors. All we really
need is that F.�/ behaves as a formal power series in the indeterminate �.

In classical field theory, a field diffeomorphism is merely a canonical transfor-
mation that does not change the Poisson brackets [20], and it simply relates theories
with different Lagrangians. However, for quantum fields, there are some ambiguities,
probably due to operator ordering in the path-integral formulation, and the topic is
therefore controversial [1, 8, 15, 19, 21–23]. Additionally, the order by order cancel-
lations take a quite complicated form; one cannot find small sets of diagrams which
cancel, but can only see it in the final sum.

In fact, the expected cancellations do hold, a result which we give a new, direct
proof of, bypassing issues with the path integral and cleaning up a previous intricate
and uninsightful proof by Dirk Kreimer and the second author [17].

2. Motivation and prior work

The approach followed in [16, 17] is a ‘least-action’ approach: the authors study field
diffeomorphisms order by order in perturbation theory. In [16], Kreimer and Vele-
nich showed by direct calculations that, up to six external legs, interacting tree-level
amplitudes do vanish. Yet, it was not still known how this can be generalized to higher
orders. The vanishing of tree-level amplitudes is crucial as it leads to the vanishing
of loop amplitudes via Cutkosky rules and the optical theorem. In [17], Dirk Kreimer
and the second author proved that if a point field diffeomorphism

�.x/ 7!
X
j�0

aj�
jC1

is applied to a free scalar field theory, the resulting field theory, while it appears to
have many interaction terms, in fact remains a free theory by appropriate cancellations
between diagrams.

At the tree level these cancellations hold whenever the external edges are on-shell,
while at the loop level they additionally require renormalization with a kinematic
renormalization scheme. This work followed up on the observations by Kreimer and
Velenich [16].

The arguments of [17] proceeded first to reduce the tree-level problem to a purely
combinatorial problem of proving certain combinatorial identities. These were then
proved using Bell polynomials. Then the loop level results were bootstrapped off the
tree level results using Cutkosky rules and the optical theorem. For both the tree level
and loop-level results, the key thing to consider was the tree-level amplitudes with
exactly one external edge which was potentially off-shell. Calculating these one off-
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shell edge amplitudes is what reduces to a purely combinatorial problem, and what,
with the optical theorem, glues up into the loop-level results.

However, the proofs of [17], even at the tree level, were unsatisfying as they were
both opaque and intricate, consisting of delicate Bell polynomial manipulations which
needed to reach fairly deeply into the repertoire of known Bell polynomial identities
without obtaining insight. The authors in [17] conjectured that a proof on the level of
generating functions could be possible, and could give better insight, especially given
the fact that Bell polynomials come from series composition.

Our contribution: This is what we do in this paper, reproving the tree-level can-
cellations of [17] at the level of generating functions, and then leveraging the extra
insight gained to see exactly how the solution appears as a compositional inverse, and
making an explicit connection with the combinatorial Legendre transform of Jackson,
Kempf, and Morales [13]. The latter is particularly interesting because of the role
of the on-shell condition in the outcome of the combinatorial Legendre transform in
our situation. The tree-level amplitudes with at most one off-shell edge remain key
for us, since we use the same reduction to combinatorics as [17]. We show that the
series, which is the exponential generating function of these tree-level amplitudes with
at most one off-shell edge for the transformed theory, is exactly the compositional
inverse of the diffeomorphism F that was originally applied. Additionally, along the
way we give new combinatorial proofs of some Bell polynomial identities due to Cvi-
jović (see [7]). Note that, ultimately, every problem considered in this paper is purely
combinatorial.

In terms of more physical considerations, note that no appeal to the path integral
or its measure is used in [17] nor here. All results are proven by rigorous arguments at
the diagram level. Consequently, these results are ground truth, and the correct trans-
formations for the path integral and path integral measure can be reverse engineered
from them. That a field diffeomorphism ought to pass nicely though the path integral
is often viewed as a near triviality, though others have argued that in fact it does not
(see [11]). Different lines of thought can also be seen in [1, 8, 15, 19, 21–23]. Settling
this rigorously while side stepping the path integral entirely was a major motivation
for [17] as well as for us here. Furthermore, even from a physical perspective, where
this result is clear, our approach makes explicit exactly how the non-trivial cancella-
tions work in order to give the diffeomorphism invariance.

Balduf independently arrived at the fact that the series from the tree-level ampli-
tudes is the compositional inverse of the diffeomorphism through analyzing the S -
matrix [2, 3]. Both he and us first obtained this fact in the fall of 2018, and we
discussed our different proofs at that time, while the present authors were visiting
Berlin. One outcome of these discussions is that our method was used in the proof
of [3, Theorem 3.3].
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3. Field theory set up

Let F be a field diffeomorphism

F W � 7! F.�/ D

1X
jD0

aj�
jC1

with a0 D 1. When F is applied to a free field �.x/ with Lagrangian density

L.�/ D
1

2
@��.x/@

��.x/ �
m2

2
�2.x/;

it gives the new Lagrangian

LF .�/ D
1

2
@�F.�/@

�F.�/ �
m2

2
F.�/F.�/;

where the field � is a scalar field from the 4-dimensional Minkowski space-time
(�WR4 ! R). Expanding out the transformed Lagrangian, we obtain
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where

dn D nŠ

nX
jD0

.j C 1/.n � j C 1/ajan�j and cn D .nC 2/Š

nX
jD0

ajan�j

(see [16, (15)] for a formulation with slightly different conventions).
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We can see that from each term of the original free Lagrangian we obtain a vertex
of each order � 3 (thus we have two types of vertices of each order), which we will
call the kinematic and massive vertices, respectively. We read off the Feynman rules
to be

i
dn�2

2
.p21 C p

2
2 C � � � C p

2
n/

for the n-point kinematic vertex, where p1; : : : ; pn are the momenta of the incident
edges; and

�i
m2

2
cn�2

for the n-point massive vertex. The free part of the Lagrangian is unchanged so the
propagator remains

i

p2 �m2

for momentum p. We are interested in the on-shell n-point tree-level amplitude.
For the combinatorial reader, let us spell out in a bit more detail how the above

leads to a purely combinatorial problem on trees. We are working with graphs with
external edges. For a graph theorist, such graphs can be constructed as bipartite graphs,
where if the bipartition is .A; B/, then we require that all vertices in B are either of
degree 1 or 2 and all vertices in A are of degree � 3. Then B in fact contains no
additional information: the 2-valent vertices of B just mark the internal edges of the
original graph, while the 1-valent vertices of B mark some bare half-edges of the
original graph, known as external edges or legs.

To calculate the n-point tree-level amplitude, we must sum over all trees (con-
nected acyclic graphs of the type above) with n external edges and with vertices either
kinematic or massive. For each tree we compute as follows. To each internal and exter-
nal edge of the tree assign a momentum p in Minkowski space, that is in R4 but using
the pseudometric

j.a0; a1; a2; a3/j
2
D �a21 C a

2
2 C a

2
3 C a

2
4

(in fact the choice of signature will not matter). Following the usual convention, we
will write p2 for jpj2. Impose momentum conservation at each vertex, that is the sum
of the momenta for the edges incident to any given vertex must be 0. Now multiply
the factors given by the Feynman rules for each vertex and the propagator for each
internal edge to get the contribution of this tree.

The on-shell condition applies only to the external edges and this condition is that
p2 D m2 for each external momentum p. Because we are working with a pseudo-
metric, note that p2 D 0 does not imply p D 0.
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In summary, combinatorially we have the following:

(1) The n-point tree-level amplitude is the sum over all trees with n external
edges.

(2) Each external edge is labelled, nothing else is.

(3) A momentum variable p is assigned to every internal and external edge.

(4) The on-shell condition is that p2 D m2 holds for the momentum of every
external edge, where p2 D p � p.

(5) Conservation of momenta holds at every vertex.

(6) The vertices come in two kinds, massive and kinematic, each with its own
contribution to the sum given by the Feynman rules.

(7) The Feynman rule for a kinematic vertex of degree n with the momenta of
the incident legs being p1; : : : ; pn is

i
dn�2

2
.p21 C p

2
2 C � � � C p

2
n/;

where

dr D rŠ

rX
jD0

.j C 1/.r � j C 1/ajar�j :

(8) The Feynman rule for a massive vertex of degree n is

�i
m2

2
nŠ

n�2X
jD0

ajan�2�j :

(9) The Feynman rule for an internal edge is

i

p2 �m2
;

where p is the momentum assigned to this propagator.

(10) The contribution of each tree is the product of the Feynman rules for its
vertices and internal edges (with no contribution from external edges).

Now notice that since we are summing over all such trees, we get the same value
if we consider only a single type of combined vertices, each of which is the sum of
kinematic and massive vertices of degree n for each n.

3.1. Tree-level amplitudes

The best way to explore the problem combinatorially is through a small example. Fix
an internal edge e, and consider all the possible subtrees that may occur below e for
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e e e e

p3 p2 p1

p1 p2 p3 p1 p3 p2 p1 p2 p3

Figure 1. Subtrees below e corresponding to n D 3 external legs.

a fixed number of legs, n. Let bn be the sum over all such subtrees with the Feynman
rules applied to the vertices and edges of the subtree along with the edge e itself.

Example 3.1. When nD 3we have the contributions from the tree graphs in Figure 1;
the vertical dots above e indicate the rest of the tree. Let us recursively compute b3,
knowing that b2 D �2a1 (and b1 D 1), which is easily verified. We shall denote the
sum p1 C p2 C p3 by p, then

b3 D
i2
�
d2

2
.p21 C p

2
2 C p

2
3 C p2/C c2

�
p2 �m2

C
i2
�
d1

2
.p21 C .p2 C p3/

2 C p2/C c1
�
b2

p2 �m2

C
i2
�
d1

2
.p22 C .p1 C p3/

2 C p2/C c1
�
b2

p2 �m2

C
i2
�
d1

2
.p23 C .p1 C p2/

2 C p2/C c1
�
b2

p2 �m2
:

This simplifies to b3 D �6a2 C 12a21 as the reader may check. It is these cancel-
lations that required an interpretation and triggered the research in [16,17], especially
because of the independence from momenta and masses in the resulting values.

Returning to the general case, we are interested in the quantity bn, which is the
result of fixing an internal edge e and summing over all possible subtrees with n
external edges labelled p1; p2; : : : ; pn. Equivalently bn is the sum over all trees with
nC 1 external edges where one of these edges (called e) is not necessarily on-shell,
and where additionally we include the propagator for e itself in each term.

Fortunately, bn can be computed recursively. Consider the edges below e which
are incident to e. Each of them is either external or has another subtree rooted at their
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other end. Summing over all possibilities below e means summing over all possibil-
ities for each of these subtrees, and hence the contribution of the subtrees is itself
a smaller bi . By induction, this gives the following recurrence (see [17] for a full
proof):

bn D �
X

P1[���[PkD¹1;:::;nº
Pi¤; and disjoint

bjP1j
� � � bjPk j

�
.k � 1/Š

2
�

1

.
Pn
sD1 ps/

2 �m2

�

k�1X
jD0

ajak�1�j

�
�m2.k C 1/k C .j C 1/.k � j /

�

� kX
iD1

� X
e2Pi

pe

�2
C

� nX
sD1

ps

�2��
: (3.1)

The idea then was to break this into two recurrences and it turned out that some
intricate Bell polynomial identities give one way to solve for bn. The approach in [17]
makes an extensive use of Bell polynomials identities on different levels. In our case,
we will show that by sticking to working with the exponential generating series of
the bi , the use of Bell polynomial identities can be substantially minimized way.
Besides, we will give new proofs for a number of these identities. For example, in
Section 5 we give a simple combinatorial proof for the recent identity obtained by
Cvijović in 2011 (see [7]).

4. The role of Bell polynomials

Definition 4.1 (Partial Bell polynomial). The partial Bell polynomial for parameters
n, k in an infinite set of indeterminates x1; x2; : : : is defined by

Bn;k.x1; x2; : : :/ D
X

¹P1;:::;Pkº

P1[���[PkD¹1;:::;nº
Pi ’s disjoint, nonempty

xjP1j
xjP2j

� � � xjPk j

D

X
�.n;k/

nŠ

j1Šj2Š � � �

�x1
1Š

�j1
�x2
2Š

�j2

� � � ;

where the second sum ranges over all partitions � D 1j12j2 � � � of n with k parts, that
is, such that

j1 C j2 C j3 C � � � D k; j1 C 2j2 C 3j3 C � � � D n and ji � 1:
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Note that, by this definition, the largest index appearing should be xn�kC1, thus,
any given Bell polynomial uses only a finite number of variables (and is indeed a poly-
nomial).

On the level of generating functions, one gets

exp
�
u
X
m�1

xm
tm

mŠ

�
D

X
n;k�0

Bn;k.x1; x2; : : :/
tn

nŠ
uk :

This can be used as an alternative definition for Bell polynomials.
To split equation (3.1) up usefully, we will use the fact that the problem is sym-

metric in the external momenta along with the on-shell condition. Consider expanding
all the p2e in the numerator and the denominator into sums of squares of external
momenta and dot products of distinct external momenta. All the squares of external
momenta arem2 by the on-shell condition, so in both the numerator and denominator
collect all of these along with the explicit m2. The remaining terms all have a factor
which is a dot product of distinct external momenta. By the symmetry in the external
momenta, we know that each dot product appears the same number of times, so it
suffices to keep track of how many dot product terms there are, without keeping track
of which momenta are involved. So to satisfy equation (3.1) it suffices to separately
satisfy the m2 part and the dot product part of it. These two parts are respectively the
equations of the following lemma (see [17] for details).

Lemma 4.2 ([17]). Let bn be, as before, the sum over all amplitudes of rooted trees
with nC 1 external legs, one of which is off-shell and has a propagator contribution
(see the Feynman rules above). Then the sequence b D .bn/ satisfies equation (3.1) if
and only if it satisfies the following two recurrences:

0 D

nX
kD1

Bn;k.b/
.k � 1/Š

2

k�1X
jD0

ajak�1�j Œ2n.j C 1/.k � j / � k.k C 1/�; (4.1)

0 D

nX
kD1

k�1X
jD0

ajak�1�j .j C 1/.k � j /
.k � 1/Š

2k

�

nX
sD1

bs

sŠ.n � s/Š
Bn�s;k�1.b/.ks.s � 1/C n.n � 1//; (4.2)

where b D .b1; b2; : : :/.

From these two equations, Karen Yeats and Dirk Kreimer proved that

bnC1 D

nX
kD1

.nC k/Š

nŠ
Bn;k.�1Ša1;�2Ša2; : : :/; (4.3)

which might be suggested by the calculation of the first examples of bn’s.
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Proving this formula for the bnC1 is all that is needed to prove that the on-shell
tree-level amplitudes of the transformed theory are 0 for 3 or more external edges.
This is because the bnC1 it already almost the tree-level amplitude for nC 2 exter-
nal edges—the only differences are that the propagator for edge e was included and
edge e was not on-shell in bnC1. In particular, then, the on-shell tree-level ampli-
tude is .p2e �m

2/bnC1 with the bnC1 independent of masses and momenta; hence the
amplitude is 0 when edge e is on-shell.

The bn are also used in the proof of the cancellation of the loop amplitudes,
see [17] for the argument.

5. Bell polynomial identities

A number of Bell polynomial identities are needed in the sequel of this section. The
identities we are most concerned with were introduced by Cvijović in 2011 (see [7]).
These identities are key ingredients in the arguments of [17], they are also combina-
torially significant [5]. In 2015, Eger reproved some of these identities by translating
them into integer-valued distributions [9]. It is surprising, however, that elementary
combinatorial proofs are actually quite applicable, and this section is devoted to dis-
playing them. The reason that these proofs, despite being simple, were not discovered
before is probably because the proofs are only seen clearly if the appropriate identity
is chosen to start with.

Lemma 5.1. Suppose n; k > 0, then

kBn;k.x1; x2; : : :/ D

nX
sD1

 
n

s

!
xsBn�s;k�1.x1; x2; : : :/;

nBn;k.x1; x2; : : :/ D

nX
sD1

 
n

s

!
sxsBn�s;k�1.x1; x2; : : :/:

Proof. For the first identity, the left-hand side is the generating function for partitions
with k parts which are rooted at one part (localization). Seen another way, we may
first choose s arbitrary elements from ¹1; 2; : : : ; nº to form our root part, and then
generate all possible partitions with k � 1 parts over the remaining n � s elements,
thus getting the right-hand side.

For the second identity, the left-hand side counts partitions with k parts, which are
rooted in a finer way than in the previous setting, namely, they are rooted at one of
the n elements. Again, we can do this rather differently (localizing in two levels): first
choose s special elements that will form the part which hosts the root, then choose
the root from amongst them (in s ways); finally generate all partitions with k � 1
elements over the remaining elements, hence getting the right-hand side.
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The next theorem is the main theorem in [7]. The proof presented here is new and
does not make any reference to the analytic methods used in proving the identities
in [7]. The proof only depends on the combinatorial meaning of Definition 4.1.

Theorem 5.2. The following Bell identities hold:

Bn;k D
1

x1
�

1

n � k

n�kX
˛D1

 
n

˛

!h
.k C 1/ �

nC 1

˛ C 1

i
x˛C1Bn�˛;k; (5.1)

Bn;k1Ck2
D

k1Šk2Š

.k1 C k2/Š

nX
˛D0

 
n

˛

!
B˛;k1

Bn�˛;k2
; (5.2)

Bn;kC1 D
1

.k C 1/Š

n�1X
˛1Dk

˛1�1X
˛2Dk�1

� � �

˛k�1�1X
˛kD1

 
n

˛1

! 
˛1

˛2

!
� � �

 
˛k�1

˛k

!
� xn�˛1

� � � x˛k�1�˛k
x˛k

: (5.3)

Here Bn;k stands for Bn;k.x1; x2; : : :/, the partial Bell polynomial with k parts.

Proof. Identity (5.3) is immediate from (5.2), so we start by proving (5.1). The fol-
lowing ‘starter’ identity is clear from the definition of partial Bell polynomials:

BnC1;kC1 D

n�kX
˛D0

 
n

˛

!
x˛C1Bn�˛;k :

Indeed, the identity exactly describes the natural passage from partitions of the set
Nn D ¹1; 2; : : : ; nº to partitions of NnC1 D ¹1; 2; : : : ; n; nC 1º. Namely, to form all
partitions of NnC1 with k C 1 parts in which nC 1 appears in a part of size ˛ C 1,
we can first choose ˛ elements (in all possible ways) from Nn to be in the same
part with nC 1, and then generate all partitions with k parts on the remaining n � ˛
elements of Nn.

Now, by Lemma 5.1, multiply both sides by .k C 1/ to further get

.nC1/�kX
sD1

 
nC 1

s

!
xsBnC1�s;k D .k C 1/BnC1;kC1 D .k C 1/

n�kX
˛D0

 
n

˛

!
x˛C1Bn�˛;k :

Reindexing the left sum by ˛ D s � 1, and explicitly writing the first term (˛ D 0) of
both sides, we arrive at

.nC 1/x1Bn;k C

n�kX
˛D1

 
nC 1

˛ C 1

!
x˛C1Bn�˛;k

D .k C 1/x1Bn;k C .k C 1/

n�kX
˛D1

 
n

˛

!
x˛C1Bn�˛;k :
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Hence,

.n � k/x1Bn;k D

n�kX
˛D1

h
.k C 1/

 
n

˛

!
�

 
nC 1

˛ C 1

!i
x˛C1Bn�˛;k

D

n�kX
˛D1

 
n

˛

!h
.k C 1/ �

nC 1

˛ C 1

i
x˛C1Bn�˛;k;

which gives identity (5.1).
Finally, identity (5.2) is actually easier. Given k D k1 C k2, the generating func-

tion for partitions into k parts with k1 distinguished parts is given by
�
k1Ck2

k1

�
Bn;k1Ck2

.
Another way is to first select ˛ elements and use them to build a partition on k1 parts
(these are now naturally ‘highlighted’ by this choice), and then generate a partition of
the remaining n � ˛ elements on k2 parts.

6. Generating function method

The formula for bn in (4.3) turns out to be exactly the compositional inverse of the
diffeomorphism F . This can be seen through an old result that is mentioned in [6,
pp. 150–151], seemingly obtained independently by Bödewadt (1942) and Riordan
(1968) among others. However, this was not recognized by the authors in [17], and
so higher-level insights were obscured. Now, let us take advantage of this fact. We
derive a functional differential equation whose solution is the inverse of F . The idea
is to rewrite equations (4.1) and (4.2) so that we can apply the next Faà di Bruno’s
composition of power series relation.

Lemma 6.1 (Faà di Bruno). Given two power series

f .t/ D

1X
nD0

fn
tn

nŠ
and g.t/ D

1X
nD0

gn
tn

nŠ
;

the composition h.t/ WD f .g.t// can be written as

h.t/ D

1X
nD0

hn
tn

nŠ
; where hn D

nX
kD0

fkBn;k.g1; g2; : : :/:

The key is the next proposition, which gives differential equations for the expo-
nential generating series of the bn.

Proposition 6.2. Let

F.t/ D

1X
jD0

aj t
jC1
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be a diffeomorphism of fields as before, and set

G.t/ WD

1X
nD1

bn
tn

nŠ
;

where the coefficients bn satisfy recurrences (4.1) and (4.2). Define

Q.t/ WD
1

2

d

dt
..F.t//2/ and P.t/ WD

Z � d
dt
F.t/

�2
dt: (6.1)

Then, on the level of generating functions, recurrence (4.1) is equivalent to the differ-
ential equation

0 D t
d

dt
P.G.t// �Q.G.t//; (6.2)

and recurrence (4.2) is equivalent to the differential equation

0 D
d2

dt2
P.G.t//C

d2G

dt2
�
d

dG
P.G.t//: (6.3)

Proof. First, we prove (6.2). From the definitions, P and Q can be expanded as

Q.t/ D
1

2

d

dt
..F.t//2/ D

1X
kD1

qk‚ …„ ƒ�
kŠ
.k C 1/

2

k�1X
jD0

ajak�1�j

�
tk

kŠ
;

P.t/ D

Z � d
dt
F.t/

�2
dt D

1X
kD1

pk‚ …„ ƒ�
kŠ
1

k

k�1X
jD0

ajak�1�j .j C 1/.k � j /
� tk
kŠ
:

Consequently, by the Faà di Bruno’s formula (Lemma 6.1), we have

Q.G.t// D

1X
nD1

� nX
kD1

qkBn;k.b1; b2; : : :/

�
tn

nŠ
;

P.G.t// D

1X
nD1

� nX
kD1

pkBn;k.b1; b2; : : :/

�
tn

nŠ
:

In particular,

t
d

dt
P.G.t// D

1X
nD1

n

� nX
kD1

pkBn;k.b1; b2; : : :/

�
tn

nŠ
:

Then (6.2) is given by

0 D t
d

dt
P.G.t// �Q.G.t// D

1X
nD1

� nX
kD1

Bn;k.b1; b2; : : :/.npk � qk/

�
tn

nŠ
:
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That is, equation (6.2) is equivalent to the fact that for all n � 1

0 D

nX
kD1

Bn;k.b1; b2; : : :/.npk � qk/

D

nX
kD1

Bn;k.b1; b2; : : :/

�
n

�
kŠ
1

k

k�1X
jD0

ajak�1�j .j C 1/.k � j /

�
�

�
kŠ
.k C 1/

2

k�1X
jD0

ajak�1�j

��
D

nX
kD1

Bn;k.b1; b2; : : :/
.k � 1/Š

2

k�1X
jD0

ajak�1�j Œ2n.j C 1/.k � j / � k.k C 1/�;

which is exactly recurrence (4.1).
Next, we prove (6.3). We can cancel out the factor of 1=2 and rearrange recur-

rence (4.2) to obtain

0 D n.n � 1/

nX
kD1

pk �
1

k

n�kC1X
sD1

bs

sŠ.n � s/Š
Bn�s;k�1.b1; b2; : : :/

C

nX
kD1

pk

n�kC1X
sD1

bss.s � 1/

sŠ.n � s/Š
Bn�s;k�1.b1; b2; : : :/:

Now, recall that

kBn;k.b1; b2; : : :/ D nŠ

nX
sD0

bs

sŠ.n � s/Š
Bn�s;k�1.b1; b2; : : :/

D nŠ

n�kC1X
sD1

bs

sŠ.n � s/Š
Bn�s;k�1.b1; b2; : : :/;

since b0 D 0 by convention, and since Bell polynomials vanish whenever the number
of parts is greater than the size. The latter reason is exactly what allows us to also
change the bounds of the summations in the above equation to finally get

0 D
n.n � 1/

nŠ

nX
kD1

pkBn;k.b1; b2; : : :/

C

nX
sD0

s.s � 1/bs

sŠ.n � s/Š

n�sC1X
kD1

pkBn�s;k�1.b1; b2; : : :/

D Œtn�t2
d2

dt2
P.G.t//C

nX
sD0

Œt s�
�
t2
d2G

dt2

�
� Œtn�s�

�dP
dt

�
.G/;

which establishes the claim (notice that dP
dt
.G.t// D d

dG
P.G/).
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Corollary 6.3. The compositional inverse F �1 of the diffeomorphism F is a solution
for (6.2) and (6.3).

Proof. Equation (6.2) can be simplified further:

0 D t
d

dt
P.G.t// �Q.G.t// D t

d

dG
P.G.t//

dG

dt
�
1

2

d

dG
.F.G.t///2

D t
� d
dG

F.G.t//
�2dG
dt
� F.G.t//

d

dG
F.G.t//:

Now we might assume that d
dG
F.G.t//¤ 0, that is just F.G.t// is not a constant,

and then we have

0 D t
d

dG
F.G.t//

dG

dt
� F.G.t//:

That is to say,

F.G.t// D t
d

dt
F.G.t//;

and a simple separation of variables then gives that G D F �1 is a solution.
Proceeding to equation (6.3) which boils down maybe more insightfully:

0 D
d2

dt2
P.G.t//C

d2G

dt2
�
d

dG
P.G.t//

D
d

dt

� d
dG

P.G.t// �
dG

dt

�
C
d2G

dt2
�
d

dG
P.G.t//

D 2
d2G

dt2
�
d

dG
P.G.t//C

d

dt

� d
dG

P.G.t//
�
�
dG

dt

D 2
d2G

dt2
�

� d
dG

F.G.t//
�2
C
d

dt

�� d
dG

F.G.t//
�2�
�
dG

dt

D 2
d2G

dt2
�

� d
dG

F.G.t//
�2
C 2

d

dG
F.G.t// �

d

dG

� d
dG

F.G.t//
�
�

�dG
dt

�2
:

Again, we assume that G.t/ is not a constant, and so neither is F.G.t//. Hence,

0 D
d2G

dt2
�
d

dG
F.G.t//C

d2

dG2
F.G.t// �

�dG
dt

�2
D

d

dG

�dG
dt

�
�
dG

dt
�
d

dG
F.G.t//C

d2

dG2
F.G.t// �

�dG
dt

�2
:

Then by our assumption above,

0 D
d

dG

�dG
dt

�
�
d

dG
F.G.t//C

d2

dG2
F.G.t// �

dG

dt

D
d

dG

hdG
dt
�
d

dG
F.G.t//

i
D

d

dG

� d
dt
F.G.t//

�
:

Again, this leads to that G D F �1 is a solution, which proves the corollary.
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Thus, we have shown that the series whose coefficients are the solution .bn/ of
recurrences (4.1) and (4.2) is exactly the compositional inverse of the diffeomor-
phism F . This is highly suggestive of a connection to the Legendre transform, since,
as we shall see in Section 8, the definition of the combinatorial Legendre transform
goes through an almost identical process of summing over tree graphs and involves
compositional inverses [12, 13].

7. Generalization to scalar interacting fields

In this section, we overview the application of such diffeomorphisms as before to
theories with interaction terms. In particular, for the sake of completeness, we are
interested in displaying some of the work in [2] which has been significantly sim-
plified in [20] by means of our generating functions method. For the sake of clarity
and unification, we will try to use the same notation as in [20] as much as possible.
Assume we are given multiple interaction terms in the Lagrangian:

L.�/ D
1

2
@��.x/@

��.x/ �
m2

2
�2.x/ �

1X
sD3

�s

sŠ
�s.x/:

Each interacting term results in an additional type of vertex when the diffeomor-
phism F is applied, with corresponding Feynman rules w.s/n D 0 for n < s and

�iw.s/n D �i
�s

sŠ
nŠ

X
j1;:::;js

j1C���CjsDn

aj1
� � � ajs

D �i�sBn;s.1Ša0; 2Ša1; 3Ša2; : : :/

for all n � s. In particular, the interaction terms add �iwn WD �i
P
s w

.s/
n to the n-

valent interaction vertex. LetW .s/
n be the sum of contributions of trees with n external

edges and only one vertex of type �iw.s/j . Then it is calculated in [20] that

W .s/
n D �i�s

nX
kDs

Bk;s.1Š; 2Ša1; 3Ša2; : : :/Bn;k.b1; b2; : : :/:

Theorem 7.1 ([3, Theorem 3.3]). In terms of the S -matrix elements, W .s/
s D �i�s

and W .s/
n D 0 for n ¤ s.

Proof. The proof completely follows by calling the Faà di Bruno relations, and recall-
ing that

F �1.�/ D
X
n

bn
�n

nŠ
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which is the same as

�.F / D F �1.F.�// D
X
n

bn
F.�/

nŠ
:

Namely,

W .s/
n D �i�s

nX
kDs

kŠŒ�k�.F s.�//Bn;k.b1; b2; : : :/

D �i�sŒF
n�F .�.F //s D �i�sŒF

n�F s;

which establishes the statement.

8. Relation with the Legendre transform

Given a function f W x 7! f .x/, it might be desirable, in many contexts, to express
every thing in terms of y D f 0.x/ instead of x, without losing information about
the function. The (analytic) Legendre transform does indeed achieve this goal but for
a restricted class of functions, namely convex smooth functions. However, physicists
usually use the Legendre transform even when the functions involved fail to satisfy
these requirements. The surprise is when such calculations match with experimental
results. In [12], a combinatorial Legendre transform is defined which generalizes the
analytic version and unveils the hidden robust algebraic structure of the Legendre
transform. Furthermore, as has been long known to physicists, the Legendre transform
builds the series of trees, so as well as making sense rigorously as a formal power
series operator, the Legendre transform has a combinatorial meaning as an operator
on generating series.

The defining relation for the Legendre transform L is given as

Lf .z/ D �zg.z/C .f ı g/.z/;

where g is the compositional inverse of the derivative, namely, x D g.y/.
The idea in [12] was to realize this relation as coming from the following combi-

natorial bijection between classes:

v1@v1
T l
]

]
k�2

vk ı .@v1
T l/ � T l

] .e � .E2 ı e
�1@v1

T l//;

where T l is the class of labelled trees, and v1@v1
is the operation of rooting or dis-

tinguishing at a 1-vertex (vertex of degree 1), e, e�1 for edges and anti-edges (the
inverse with respect to the gluing operation), respectively.
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Definition 8.1 (Combinatorial Legendre transform [13]). If A 2 RŒŒx�� and A0�1

exists, then the combinatorial Legendre transform is defined to be

.LA/.x/ D .A ı A0�1/.x/ � xA0�1.x/:

Theorem 8.2 ([13]). Let TA.y/D ŒŒT l ; !v1
˝ !e ˝ !��.y; u; �2; �3; : : :/ be the gen-

erating series of labelled tree graphs with indeterminates y, u, �i standing for leaves,
edges and vertices of higher orders, respectively; and where

A.x/ D �u�1
x2

2Š
C

X
k�3

�k
xk

kŠ
:

Then .LA/.y/ D TA.�y/. That is, the Legendre transform is exactly the generating
series of tree graphs with the prescribed weights and variables.

This combinatorial Legendre transform is applicable to all formal power series
with vanishing constant and linear terms, and the most important fact is that the new
Legendre transform drops the convexity constraint. The following formula for com-
positional inverses appears in [18] (compare with formula (4.3)).

Lemma 8.3 ([18]). If a.x/D xC a1x2C a2x3C � � �, then the compositional inverse
of a.x/ is r.x/ D x C r1x2 C r2x3 C � � �, where

rn D
X

m1;:::;mk

.�1/
P
mjB.nC 1;m1; : : : ; mk/a

m1

1 � � � a
mk

k

and B.m�1; m1; : : : ; mk/ is the number of unlabelled rooted trees with mj vertices
with j C 1 children.

Let

A.x/ D �
x2

2Š
C

X
k�3

�k
xk

kŠ
and y D �

@A

@x
:

Then it can be shown that

LA.y/ D
y2

2
C

X
n�3

Ln
yn

nŠ
with Ln D .n � 1/Šrn�2;

where r.x/ is the inverse of y.x/ (see [12]). Now, given a diffeomorphism

F.�/ D

1X
jD0

aj�
jC1 with a0 D 1, then F D �

@A

@�
;

where

A D �
��2
2
C
a1

3
�3 C

a2

4
�4 C � � �

�
: (8.1)
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With our previous information, the inverse of F is
P
n�1

bn

nŠ
, thus, the nth coefficient

in LA.y/ is
L.n/

nŠ
D
.n � 1/Š

nŠ
�
bn�1

.n � 1/Š
D
bn�1

nŠ
:

Let us now compare the Legendre transform context with the main situation of
the present paper. For us, the series with coefficients bn�1=nŠ is the series for tree
diagrams with only one external edge off-shell in the theory transformed by the dif-
feomorphism F . The Lagrangian for this theory LF .�/ is as given at the beginning
of Section 3. This is a much more complicated Lagrangian than the A of (8.1). How-
ever, the Legendre transform of A gives the series with coefficients bn�1=nŠ, as we
saw above, using only the combinatorial Legendre transform results. But the Leg-
endre transform of LF must give the series of tree amplitudes of the theory with
Lagrangian LF , and this is essentially, by the key results we have been discussing
here, also the series with coefficients bn�1=nŠ.

So we have two apparently very different theories giving the same tree series. This
feels somewhat like the initial set up, where the free theory and the transformed the-
ory looked very different, but ultimately did, as one would naively expect, describe
the same theory. The situation here, however, is a bit different: A really is a much
simpler Lagrangian which cannot describe the same theory as it is purely a graph-
counting-type Lagrangian, with no physical parameters at all. The solution to this
discrepancy is hidden in the ‘essentially’ at the end of the previous paragraph. Namely,
the series with coefficients bn�1=nŠ is not the series of tree amplitudes of the theory
with Lagrangian LF , but the series of the tree amplitudes with all but one exter-
nal edge put on-shell. The combinatorial Legendre transform cannot see the on-shell
condition—momentum conservation at the vertices is built in, but nothing further
regarding the physical nature of the momenta.

Thus we see that the simplifications brought by putting all by one external edge
on-shell bring us to a tree-level theory that can also be obtained as the tree-level
outcome of the Lagrangian A without any kinematical conditions. By comparison,
putting all of the external edges on-shell simplifies even further, giving 0 for all higher
point functions, that is, recovering the free theory, the proof of which was the original
goal of [17].

9. Discussion

We will conclude with a few comments.
First, note that as discussed in [17], the loop-level results follow from these tree-

level results by reinterpreting the bn as describing trees with at most one off-shell
external edge and then gluing. For this to work the renormalization scheme must
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be a kinematical scheme, such as a subtraction scheme. The key property needed
of the renormalization scheme is that all tadpoles vanish. We continue to find this
interesting evidence that the kinematical schemes are physically better in some sense,
and we continue to wonder if the loop-level results have a more fully combinatorial
derivation as well.

There remains some subtleties in how exactly the renormalization process inter-
acts with the diffeomorphism. At the time of this work, we did not have a theorem
to say that the framework given here, along the with the vanishing of tadpoles should
suffice to make it possible for the renormalization process interact well with the dif-
feomorphism. As mathematicians, we were reluctant to speculate much beyond the
theorems we could prove. Subsequently, however, this has been investigated by Bal-
duf, and now there are some results, see in particular [4, Theorem 4.1].

The generating functions proof highlights the importance of equations (6.2) and
(6.3) as they are the differential equations analogous to the two defining recurrences
for the bn’s. Many other differential equations would also haveGDF �1 as a solution;
is there some structural feature that distinguishes (6.2) and (6.3), or conversely, could
other equations with this solution have similar physical meanings when converted
back into recurrences?

One might also approach the proof using an infinitesimal transformation � 7!
� C "F.�/CO."2/ and work modulo "2.1 For instance, this is the approach of [14].
In our situation, this would mean that massive and kinematic vertices of all degrees
would still be generated, but the Feynman rules for them would be much simpler,
namely, i.n � 1/Šan�2.p21 C p

2
2 C � � � C p

2
n/ for the kinematic vertex of degree n

and �im2nŠan�2 for the massive vertex of degree n. Likewise in the Bell polyno-
mial expression for bnC1, each partial Bell polynomial would only contribute one
term modulo "2 giving bnC1 D

Pn
kD1

.nCk/Š

.k�1/Š
.�1/kan�kC1" modulo "2 and (3.1)

would also have only the extreme terms in the inner sum, much simplifying the proof
that (3.1) implies the previous expression.

However, for our approach of working purely diagrammatically with no path inte-
gral assumptions whatsoever, we cannot take this infinitesimal simplification. The
freedom to work modulo "2 is fundamentally a path integral assumption—a very
mild one that surely any reasonable path integral would satisfy, but none the less
a path integral assumption. By forgoing the path integral entirely, we also forgo this
simplification. The resulting extra complexity is not without some benefits, we see
more clearly how the functional inverse comes in and we get to prove some nice Bell
polynomial identities along the way as well as maintaining a complete independence
from any path integral assumptions.

1Thanks to the referee for this suggestion.
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Two obvious directions for future inquiry are field diffeomorphisms of theories
beyond scalar theories as well as more general transformations going beyond these
point transformations of the field. For the former, we do not expect much difficulty,
though the details are bound to be interesting. The latter seems more difficult, at least
it is not evident to us what other good combinatorial questions can be asked in that
direction, so it becomes a very different question.

From the present results, one knows that all scalar theories related by a field
diffeomorphism are equivalent, so one has equivalence classes of theories. Any of
the generalizations above would also lead to equivalence classes of theories. Some
of the initial motivation of [16] was the idea that perhaps some of the more vex-
ing field theories might have simpler theories in the same equivalence class, while
in [17] there are some thoughts regarding equivalence classes and Haag’s theorem.
Ultimately, equivalence classes under only field diffeomorphism are too small for
most purposes. For instance, one does not get the whole Borchers class of even
the free field [10]. However, while the part of the Borchers class obtained by field
diffeomorphisms is small, it is up to scaling the invertible part, in the sense that dif-
feomorphisms are invertible and any linear combination of powers of � which does
not involve � itself cannot be transformed by a formal series to reobtain � and �
cannot be reobtained from its derivative using only further derivatives and powers.
One could investigate an analogous combinatorial analysis of field transformation in
the context of Ore algebras rather than algebras of formal power series in order to
incorporate the derivatives.

The connection with the Legendre transform also brings up the question of when
some restrictions in one theory, such having all but one external edge on-shell, lead
to something equivalent to a simpler theory without such restrictions, and what is the
physical meaning of this. One way to understand the physical meaning of why the
tree series of LF with all but one external edge on-shell corresponds to the tree series
of A is given by Paul Balduf in his physical proof of the appearance of the inverse
of F , see [3, Lemma 2.22], which is done by moving to position space and using the
vanishing of tadpoles.
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