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Tropical Monte Carlo quadrature for Feynman integrals
Michael Borinsky

Abstract. We introduce a new method to evaluate algebraic integrals over the simplex numer-
ically. This new approach employs techniques from tropical geometry and exceeds the capa-
bilities of existing numerical methods by an order of magnitude. The method can be improved
further by exploiting the geometric structure of the underlying integrand. As an illustration of
this, we give a specialized integration algorithm for a class of integrands that exhibit the form of
a generalized permutahedron. This class includes integrands for scattering amplitudes and para-
metric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided
with which Feynman integrals up to loop order 17 can be evaluated.
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1. Introduction

1.1. Motivation

Feynman integrals are ubiquitous in various branches of theoretical physics. They
are hard to evaluate, and predictions for particle physics experiments rely heavily
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on them. Their evaluation even poses a bottleneck for the analysis of the data from
some high accuracy experiments [60]. This situation has fostered the development of
extremely sophisticated and specialized technologies aimed to obtain a manageable
analytic expression for a given Feynman integral. The state of the art technique is the
differential equation method [62,72,92]. A slightly less powerful method, which is
amendable to more general algebraic integrals, is systematic algebraic integration [27,
87]. See also [99] for an overview of other methods.

The rapid development of these technologies in the last decades has been driven
largely by new deep insights into the underlying mathematical structures. Recent
advances in the differential equation method were inspired by the simple analytic
expressions which can be obtained in supersymmetric quantum field theories via gen-
eralized unitarity and recursion relations [4,11,47]. A program to study the arithmetic
properties of parametric Feynman integrals [13, 28, 29] led to the development of
systematic algebraic integration algorithms. This arithmetic understanding of the rel-
evant function classes was also one of the driving forces of the differential equation
method [63] and is still driving new developments in the especially challenging ellip-
tic regime [26].

All these technologies aim to obtain a closed form analytic expression for the
Feynman integral and they all fail once the underlying graph and the associated phys-
ical parameters exceed a certain complexity. In these cases, a numerical approach is
the only way to proceed [21].

The most established numerical approach to tackle such integrals is sector de-
composition. Sector decomposition as a tool for numerical evaluation of Feynman
integrals has been developed by Binoth and Heinrich [12]. It was subsequently im-
proved by Bogner and Weinzierl [15]. Another conceptual innovation of the overall
method was achieved by Kaneko and Ueda [68], who brought sector decomposition
on a geometric footing. Today, geometric sector decomposition is still the most pow-
erful method for the numerical evaluation of Feynman integrals. It lies at the heart of
two popular software tools [24,97]. Another promising numerical technique for Feyn-
man integration is loop-tree duality [37], which is in an active development phase (see,
for instance, [36, 93] and the references therein).

In contrast to analytic evaluation methods, the mathematical structures exhibited
by Feynman integrals are an essentially untapped resource in the context of numerical
evaluation. Most numerical techniques are completely oblivious to the rich specific
structure of the integrals, as they are designed to be applicable to arbitrary algebraic
integrands. For this reason, the major objective of this paper is to use some of these
mathematical structures to improve the numerical evaluation of Feynman graphs and
to show that these dormant resources can be harnessed. The overall endeavour behind
this objective consists of making progress towards the following two goals.
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The first goal is to make numerical evaluation techniques more applicable to real
world phenomenology. There are integrals which contribute to interesting measur-
able processes, but cannot be calculated analytically with available methods. For
these integrals, numerical evaluation is currently the only way to make predictions for
experiments. Numerical methods naturally come with a caveat: they suffer from long
evaluation times or they are limited in accuracy. Feynman integrals usually need to be
evaluated a large number of times in a big parameter space. This is not difficult if an
analytic expression for the integral is known, since it can be evaluated sufficiently fast,
but poses a tough challenge for numerical methods which sacrifice evaluation speed
and accuracy for generality. Our task in scope of this goal is therefore to increase the
performance of numerical methods.

The second goal is to obtain reliable data in the large-order regime where analytic
methods hopelessly fail. There are many indications that the large-order behaviour of
perturbation theory is deeply intertwined with non-perturbative phenomena [77]. The
analysis of the large-order behaviour of perturbation theory in quantum mechanics by
Bender and Wu [7] has sparked an extremely fruitful branch of research in theoretical
and mathematical physics [45, 77]. Non-perturbative analytic calculations in quan-
tum field theory are plagued with various gaps in our understanding of the underlying
mathematics [81]. A repetition of an explicit Bender—Wu like numerical analysis for
perturbative quantum field theory is very desirable as it would shed some light into
a highly unexplored territory. Unfortunately, this is extremely challenging as the eval-
uation of large numbers of Feynman integrals of order ~100 would be necessary.
It is hopeless to approach this task using the naive method of evaluation of Feynman
integrals one by one. New methods with which whole classes of diagrams can be eval-
uated at once need to be developed. The growing understanding of the geometry of
amplitude integrals could lead the way to such methods. It is also necessary that these
methods are computationally efficient: The demand for computing resources shall at
most depend polynomially on the size of the problem (i.e., the respective order in the
perturbative expansion).

This paper achieves some progress towards both these goals. The strategy is to
employ tropical geometry [80] for numerical quadrature. Panzer [89] recently showed
that a tropical version of a Feynman graph’s period behaves similar to the period
itself and anticipated that this tropical version may be used for explicit numerical
evaluation. Tropical geometry has also recently been used in the context of string
theory and scattering amplitudes [5, 35].

We will introduce a new Monte Carlo algorithm with which the numerical evalu-
ation of Feynman integrals can be significantly accelerated. It is based on the estab-
lished geometric sector decomposition principle and can be applied to general alge-
braic integrals such as the one below in equation (1.1). The improvement comes from
a stratified sampling approach to Monte Carlo quadrature, which is driven by the
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(tropical) geometric structure of the algebraic integrand. We will call this method trop-
ical sampling. Tropical sampling effectively decouples the complexity of the under-
lying integral from the achievable accuracy within the Monte Carlo approach.

Even though this new tropical-geometric technique offers a significant improve-
ment over the traditional procedure already for general algebraic integrals, a lot more
can be achieved if further information on the geometric structures of the integral is
used.

As an example of this, we will give a specialized algorithm for cases where the
integrand at hand exhibits the form of a generalized permutahedron [91] in a certain
sense which will be defined later. Many integrals in quantum field theory and string
theory fall under this category. For instance, integrands for complete amplitudes in
various theories [2] and Feynman integrals with generic Euclidean kinematics are of
this kind [96].

A proof-of-concept implementation of the resulting algorithm is provided. With
this implementation, high-dimensional Feynman integrals can be numerically inte-
grated using widely available hardware. High-dimensional explicitly means that inte-
grals corresponding to Feynman graphs with around 20 edges can be estimated up to
1073 relative accuracy in a couple of CPU-seconds and integrals for graphs with up
to 30 edges in about half an hour. Ultimately, this approach is not CPU but memory
constrained when the complexity increases. For instance, for a graph with 30 edges,
already 16 GB of computer memory are required to run the algorithm. To integrate
an 18 loop ¢*-theory four-point graph with the implementation, 1 TB of memory
would be necessary.

Although both algorithms are not efficient in the strong sense, as exponential run-
time and memory requirements start to dominate at some point, there is hope for
the existence of an algorithm that evaluates a Feynman graph of loop order n up to
a given accuracy with runtime and memory demands bounded by a polynomial in n
(see Section 8 (1)).

1.2. Algebraic integrals over the simplex

The central object of study in this article is the integral

] = e o (1.1)

prgt [T, b ()

>0

» the positive orthant of real projective space as the integration domain,

Pyl ={x =[x;:...:x,] € P" '(R):x; > Oforallk = 1,...,n},



Tropical Monte Carlo quadrature for Feynman integrals 639

¢ the differential form
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Q= Z(—l)n_k—xl /\.../\_xk Ao A Xn’
X
k=1

1 Xk Xn
» the sets of homogeneous polynomials {a;, az, ...}, {b1,b2,...} T Clx1,...,xs]
such that
Zvi dega; = ij degb;, (1.2)
i J

» where the coefficients v;, p; € C have non-negative real part: Re v;,Re p; > 0,

* afixed branch choice for each of the non-integer powers, for example, a; (x)"
eViloga;(x)

It follows that [ is a projective integral over the projective simplex. The differential
form €2, which is homogeneous degree 0, is also called the canonical form on this
simplex [3].

Parametric Feynman integrals in quantum field theory are of the same type as the
integral in equation (1.1) [83]. In string theory, this type of integrals plays an equally
important role [55]. Integrals over positive geometries, which appear in the theory of
scattering amplitudes can also be brought into this form [2—4].

The integral in equation (1.1) can be written as an integral over the positive orthant
of R”: R% ;Y = {(x1,...,xp—1) € R""1:x; > 0} by picking an affine chart for pro-
jective space, for instance,

v; n—1
" i d
! :/ L aier® Sk (1.3)
regt [T 6i G027 e v
by pulling back the diffeomorphism
R2GY — PoY, (X1, Xn—1) > [X1a e Xnm1, 1]

Such an integral is called a generalized Euler—Mellin integral. Continuing a pro-
gram started by Gelfand, Kapranov and Zelevinsky (GKZ) [53], these integrals have
been studied extensively by Nilsson and Passare and others [10, 85]. This analysis
is compatible with the geometric sector decomposition approach as was shown by
Schultka [96], who studied these integrals using foric geometry. Recently, general-
ized Euler—Mellin integrals gained new attention in the context of positive geometries,
scattering amplitudes and string theory [5,58]. Along these lines also the analysis of
Feynman integrals as GKZ-type hypergeometric functions has recently gained a lot
of attention [44,50, 69].
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As every non-homogeneous polynomial in n — 1 variables can be homogenized
by introducing a new variable, every generalized Euler—Mellin integral such as the
one in equation (1.3) is equivalent to an integral of the projective form in equa-
tion (1.1). For our considerations, it will be more convenient to work with the pro-
jective form.

1.3. Outline of the paper

After introducing the necessary preliminaries from polyhedral geometry and numer-
ical integration in Section 2, we will establish the most important tool in this paper
in Section 3: an approximation of a multivariate polynomial, which is obtained by
setting all its coefficients to 1 and replacing 4+ by max. Starting, for instance, with the
polynomial p(xy,x2,x3) = axix, + bx1xax3 + cx3, we get the ‘approximation’
P(x1, X2, x3) = max(x7xz, x1x2x3, x3). This procedure is inspired by and closely
related to tropical geometry. Hence, p" will be called the fropical approximation of p.
This tropical approximation will be the subject of the main Theorem 3.3 of this article,
where it will be proven that p" can indeed be used to approximate the polynomial p
in a certain sense, as long as p is completely non-vanishing. In the rest of the article,
we will apply this property in various contexts.

In Section 4, we will reformulate Kaneko—Ueda geometric sector decomposition
in a tropical geometric framework. This reformulation will enable us to introduce
the new tropical sampling algorithm in Section 5. This algorithm is significantly
more efficient than traditional Monte Carlo methods as the achievable accuracy is
effectively decoupled from the complexity of the integral. Only the runtime of a pre-
processing step still depends heavily on the complexity of the integral.

This new algorithm can be improved further if more is known about the structure
of the integrand polynomials {a; } and {;}. As an example of this, we will specialize
to the case where the Newton polytopes of these polynomials are generalized permu-
tahedra in Section 6. Generalized permutahedra are a family of polytopes with a rich
combinatorial structure. Many polytopes are from this family, including associahe-
dra, the Newton polytopes of Symanzik polynomials and other polytopes at play in
the theory of scattering amplitudes [2]. We will use results by Postnikov [91], Aguiar,
Ardila [1] and Fujishige, Tomizawa [51] to formulate a specialized algorithm. This
second new algorithm has more favorable r untime and memory requirements and is
easier to implement.

Even though the improved algorithm can be applied to all generalized permutahe-
dra integrands, as for instance the ones for complete scattering amplitudes introduced
by Arkani-Hamed, Bai, He and Yan [2], we will specify it for Feynman integrals in
Section 7 for illustrative purposes.
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The first, general tropical sampling algorithm, can always be applied to Feynman
integrals regardless of their explicit form. The second algorithm can only be applied
if the Newton polytopes of the Symanzik polynomials are generalized permutahedra.
We will use results by Brown [28] and Schultka [96] which ensure that this is the case
as long as we are in a non-exceptional Euclidean kinematic region. Subsequently, we
will discuss some experimental results which have been obtained using a proof-of-
concept implementation of the second algorithm.

We conclude with a selection of future research directions resulting from this
project in the last Section 8.

2. Preliminaries

2.1. Notation for polytopes and multivariate polynomials

The integral in equation (1.1) is convergent if the sets of polynomials {a;} and {b;}
fulfill certain properties, which essentially have been determined by Nilsson and Pas-
sare [85]. In this section, we will briefly review these properties and introduce the
necessary vocabulary from polyhedral and tropical geometry.

To keep the notation simple, we will identify the space of linear forms on R”
with R” via the usual scalar product v - w = >y _; vxwg. A polytope is the intersec-
tion of a finite number of half-spaces in R”. A subset F C & of a polytope # C R”"
is a face of & if there is a vector y € R” and a scalar £ € R such that & is contained
in the half-space {v € R":y - v < £} and F is the intersection of  with the hyper-
plane {v € R": y - v = £}. Equivalently, a face of a polytope is a subset of J which
maximizes a given linear functional y e R”, F ={v € :y - v = maxyep y - W}.
We will assume polytopes to be bounded, i.e., maxyep y - w < oo forall y € R”.

For a pair of non-negative real numbers A, u > 0, the weighted Minkowski sum
of two polytopes #, @ C R" is AP + u@ = {Av + pw:v € P, w € @} C R".
The relative interior, relint(#), of a polytope & is the interior of & determined in the
subtopology of the affine hull of &, which is the affine subspace of minimal dimension
that contains .

We can write a generic multivariate polynomial p in the variables xi, ..., x, as
n
L L
peix)=px)= Y a]]xt= D cxt
Lesupp(p) k=1 L supp(p)

where supp(p), the support of p, is the set of all multi-indices (¢1,...,¢,) =4 € Z"
such that ¢y # 0. We will make regular use of the multiplicative multi-index nota-
tion x¢ = [Tiz: xﬁk as above. The Newton polytope of p is the convex hull of the
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elements in supp(p) interpreted as vectors in R”:

:/Vp={ Z Aed: Z Ag=landngO}CRn.

Lesupp(p) Lesupp(p)

The Newton polytope N, of a homogeneous polynomial p in n variables is at most
(n — 1)-dimensional as it is contained in the hyperplane {v e R*":1 - v =deg p} D N,
where 1 is the only-ones-vector 1 = (1,...,1) € R".

Definition 2.1. For each face F' of N, associated to a polynomial p, we define the
truncated polynomial pr by

PF(x) = Z Cexe.

£eF Nsupp(p)

To ensure convergence of integrals such as the one in equation (1.1), the following
property of polynomials is useful:

Definition 2.2. A polynomial p € C[xq, ..., x,] is completely non-vanishing on
a domain X if for each face F C N, the truncated polynomial pr does not van-
ishon X.

With this terminology at hand, we can give a convergence criterion for the integral
in equation (1.1).

Theorem 2.3. We define the polytopes A, B C R”" as the weighted Minkowski sums

A = Z(Re vi) Ngj. B = Z(Rep;)wb_,
! J

of the Newton polytopes of the numerator and denominator polynomials {a; } and {b; }.
The integral in equation (1.1) is convergent if

(R1) the denominator polytope B is (n — 1)-dimensional,

(R2) the numerator polytope #A is contained in the relative interior of B: A C
relint B,

(R3) all denominator polynomials {b;} are completely non-vanishing on P,

Remark 2.4. Because each of the {q;} and {b;} polynomials is homogeneous, nei-
ther + nor B is full-dimensional in R”. The condition in equation (1.2), which implies
that ) ; Rev; dega; = ) _; Re p; degb;, guarantees that + and 8 both lie in the same
hyperplane 4, 8 C {v € R":1 - v =£}, where § =), Rev; dega; = ) _; Rep; degh;,
in which 8 is required to be full-dimensional by requirement (R1).
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A similar theorem in the equivalent context of Euler—Mellin integrals was proven
in [85] (see also [10]). The tropical approximation, which we will introduce later, will
lead to an alternative proof of Theorem 2.3, which we postpone to Section 4.

2.2. Monte Carlo quadrature

We will be interested in situations where the dimension n of the integral in equa-
tion (1.1) is ‘not small’. The dimension of an integral is small from the perspective of
numerical quadrature if fast-converging deterministic quadrature methods are feasi-
ble. The computational demands of deterministic quadrature methods such as Gauss-
quadrature grow exponentially with the dimension. For this reason, it is necessary
to use non-deterministic methods which do not suffer from an exponential slow-down
if n is not small. Monte Carlo quadrature is the most elementary of these. The working
principle behind it is the following fact:

Theorem 2.5 (Monte Carlo quadrature (see, for instance, [57])). If xD L x@W) gre
independent random variables with probability density measure [, i.e., 1 = fF u and
u > 0 on the domain T and

N
1
6™ = L3 r)
{=1

then
E[G™)] = E[f(x)] = /F ey

and
1
Varl6 ™) = Va0l where Varl )] = [ 1£6) ~ ELGoIP
r
provided that the integrals in the last two lines exist.

This theorem may be applied to approximate the integral fr f(x)u as long as
we have a way of generating samples from the distribution p. The condition that
the integral for the variance shall exist effectively restricts the set of functions f,
which can be integrated numerically, to the set of square-integrable functions under
the measure p over the domain I'. Note that in our convention of the statement of
Theorem 2.5 the expectation value E[-] may be complex, but the variance Var|[-] is
always real and non-negative.

The integral in equation (1.1) is not directly amendable to Monte Carlo quadra-
ture, since the differential form €2 over the domain Pﬁgl as defined for equation (1.1)
is not a probability distribution: it is not normalizable. Even if we use the affine repre-
sentation in equation (1.3) and map R” ; onto a bounded domain via a variable trans-
formation (for instance, by x +— x/(1 4 x), which maps R~ — (0, 1) smoothly and



M. Borinsky 644

injectively), the resulting integral will not, in the general case, be square-integrable.
A pragmatic solution to this problem is sector decomposition [12], where the inte-
gral [ is expressed as a sum of integrals, which are each individually directly amend-
able to Monte Carlo integration.

2.3. Sector decomposition

In the context of quantum field theory, sector decomposition goes back to Hepp and
Speer, who used the technique to prove the finiteness of renormalized Feynman inte-
grals [64, 100]. Even though Hepp/Speer sector decomposition can be employed to
deal with the singularities of Euclidean Feynman integrals, it turned out to be insuffi-
cient to handle more general singularities which appear in Minkowski space Feynman
integrals (see [59] and [99, Chapter 4] for reviews on the topic). A more general
approach was pioneered by Binoth and Heinrich [12], who introduced a recursive
algorithm that decomposes general integrals of the form as in equation (1.1) (or, equiv-
alently, as in equation (1.3)) into a set of sector integrals

; x) "4
1=%"1, ]s:CS/ x”’"n’p“( aly 2.1

poer [0,1]7—1 l_[j qs,j(x) k=1 Yk

such that the auxiliary polynomials p,;(x) and gy ;(x) do not vanish inside the
integration domain [0, 1]*~! (at least as long as all the coefficients of the initial
denominator polynomials b; are positive, which implies that these polynomials are
completely non-vanishing) and C; is a prefactor for each sector s € S. If all compo-
nents of the vector m®) are positive, i.e., m(s) > 0 forall k € {l,. — 1}, asimple

L )
reparametrization § = x™ * produces an integral with a bounded 1ntegrand

[1; ﬁs”z( &))"
I =C, : 2.2)
/[o 1 T1 37 (x (6)) 1 H a5

to which basic Monte Carlo as described in Theorem 2.5 can immediately be applied
using the uniform measure yu = ]_[2;11 d&y on the unit (n — 1)-cube I' = [0, 1]*~1.

Although a problem of the method which impeded the recursion from terminat-
ing was solved by Bogner and Weinzierl [15], this class of algorithms suffers from
a proliferation in the numbers of sectors with rising complexity of the underlying
polynomials. Moreover, a new set of polynomials Py ;, gs,; is associated to each sec-
tor. This means that we are not necessarily dealing with a partition of the integration
domain, but a non-trivial distribution of the volume of the integral into each of the
sectors s € S.

A both conceptual and practical innovation was achieved by Kaneko and Ueda,
who reinterpreted this decomposition as a geometric problem [68]. This geometric
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viewpoint results in more economical decompositions, in terms of the total number
of sectors (see [98] for a comparison of different methods), while also arguably being
conceptually more elegant.

2.4. Analytic continuation

By Theorem 2.3, the convergence of the integral in equation (1.1) depends on the
values of the parameters {v;} and {p;}. Provided that there is an extended domain of
such parameters where the integral is convergent, we can interpret it as a function of
these parameters and perform an analytic continuation. It turns out that this analytic
continuation is a meromorphic function in these parameters [10, 85].

A sector decomposition as in equation (2.1) provides a pragmatic way to per-
form this analytic continuation. A violation of the condition 4 C relint 8 in Theo-
rem 2.3 corresponds to a component of m®®) in the integral in equation (2.1) being
non-positive, i.e., m,(:) < 0 for some sector s € S. Hence, if we assume that the
polynomials Py ;, gs,; are non-vanishing on the integration domain, then the asso-
ciated integral I is divergent. Performing an analytic continuation of this integral,
interpreted as a function of the coefficients of m‘®, is a simple task. A standard
approach is to integrate over a Pochhammer contour instead of the unit interval in
equation (2.2). This avoids the singularity at the integration boundary and agrees
with the integral over the unit interval if convergence is ensured (see, for instance,
[103, Sections 12-43]).

For explicit computations, it is sufficient to compute a Taylor expansion of the
rational function in equation (2.2) up to an appropriate order, integrate the analytically
continued expansion terms analytically and the remainder term numerically. See, for
instance, [12, Part III], where this process is described in detail.

A more sophisticated strategy to perform this analytic continuation is based on
iteratively performing ‘directed integration by parts’ on the integral in equation (1.1)
and thereby extending the domain of {v;}, {p;} parameters in which the integral
converges. The inner workings of this procedure are of geometric nature and make
use of the structure of the polytopes +, 8. See [85, Theorem 2] and thereafter and
also [10, Theorem 2.4] for a description of this method. This approach gives, after
being applied to a given integral such as the one in equation (1.1), a sum of inte-
grals of the same type where each integral has a larger region of convergence than the
original one. A similar procedure has been developed independently in [102] for the
special case of parametric Feynman integrals.

In this work, we will therefore assume that the integral has been subjected to such
a procedure and we can assume that we are within the region of convergence in terms
of the {v; }, {p; } parameters.
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3. The tropical approximation

For the considerations in this article, the following tropical approximation of a poly-
nomial will be central:

Definition 3.1. For a polynomial p € C[xy,..., x,] define

p(x) = max x*t.

£esupp(p)

Such an object has been defined by Panzer [89] for the Kirchhoff polynomial to
study the Hepp-bound, a graph invariant relevant for Feynman period integral calcu-
lations. We adopt Panzer’s notation and denote tropically approximated polynomials
with a superscript ”.

To give some additional motivation to consider this ‘tropical approximation’, sup-
pose that a polynomial p has only real and positive coefficients, and interpret it as
a function p:RZ, — R . The tropical limit is

weel—

lim p(xf,...,xﬁ)% = lim ( E ng“) = max x'=p"(x).
£—00 §—>00 £esupp(p)
£&supp(p)

This way, p" can be seen as a deformed version of p: the function p(xs)é interpolates
between p and p" with £ between 1 and co. A limit as § — oo with the associated
phenomenon of transforming a very smooth object—in this case, a polynomial—into
a function with non-differentiable singularities, is something commonly encountered
in physics. For instance, the thermodynamical limit is of similar nature. These kinds
of limits give rise to numerous critical phenomena. Also, the weak string coupling
limit &’ — 0 shows this behavior [5].

In our case, p" is of ‘simpler’ nature than the original polynomial p. Informa-
tion is lost while going from a polynomial to its tropical approximation, as p™ only
depends on the support of p. In fact, p" is nothing but a realization of a geometric
object: the Newton polytope of the polynomial p.

To make this explicit, change to logarithmic coordinates y; = log x; in Defini-
tion 3.1 and use the fact that the Newton polytope is the convex hull of the support of
the underlying polynomial. We find that

n
log p(x) = max logx® = max Vily = max y-£ = max y-v,
£&supp(p) £esupp(p) ]; £&supp(p) veEN )

which is a piece-wise linear function R” — R, y + maxye, y - v. This function is
the support function of the Newton polytope N, [61]. Often it is useful to write p"
in exponential form using the support function:
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Proposition 3.2. One has p¥(e?) = ™ vNp Y'Y \where we used the notation e? =
(e?1,...,er") to denote the component-wise exponential.

This support function is also a tropicalization of the polynomial p, which uses
the trivial valuation on C to tropicalize. Because much of the algebro-geometrical
information of the polynomial p carries over to its tropicalization, tropical geome-
try developed into a fruitful branch of algebraic geometry in recent years [80]. It is
tempting to call p' the tropicalization of p. Unfortunately, this name is reserved for
y = log p"(e?), and we will use the name tropical approximation instead. The moti-
vation for this is that, besides the fact that p' is a simplification of p, it can also be
used to approximate p.

3.1. The approximation property

The main theorem of this article is the following approximation property of p" with
respect to the polynomial p.

Theorem 3.3.A. For every polynomial p € C[x1,...,Xy], there is a constant C > 0
such that

|p(x)| < Cp"(x) forallx € RZ,.

Proof: C =3 ycqm(p lct!- L]

Theorem 3.3.B. If p € C[xy,...,x,] is completely non-vanishing on R, then there
is a constant C > 0 such that

Cp"(x) <|p(x)| forallx € RZ,.

This property trivially extends to homogeneous polynomials, which are naturally
considered to be functions on projective space.

Corollary 3.4. For every homogeneous polynomial p € Clxy, ..., x,], there is a
constant C > 0 such that

|p(x)| < Cp“(x) forall x € P2y,

and if p is additionally completely non-vanishing on ]P)Zgl, then there is a constant
C > 0 such that

Cp"(x) < |p(x)| forall x € Py

Strictly speaking, p(x) and p"(x) are not well-defined objects for x € PZ;!. The
quotient p(x)/p"(x), on the other hand, makes sense for all projective x € PZ!.
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Inequalities such as the one above, which can be written as quotients of homogeneous
objects, shall be interpreted accordingly, in this obvious sense as statements on these
quotients.

Proof. If p is homogeneous and completely non-vanishing on Pﬁo_l, it is also com-

pletely non-vanishing on RZ,. The inequalities in Theorems 3.3.A and 3.3.B are
homogeneous, therefore they trivially extend to Pgo_l. ]

By Theorems 3.3.A and 3.3.B, p" can indeed be used to ‘approximate’ p, i.e., it
provides a lower and an upper bound of p with appropriate prefactors, as long as p
is completely non-vanishing.

Theorem 3.3.B is substantially harder to prove than Theorem 3.3.A. This proof
of Theorem 3.3.B will be given in the next Section 3.2. Only a special case is also
trivial: if the polynomial p has only positive coefficients (which implies that p is
completely non-vanishing on RZ ), there is a simple lower bound for |p(x)|: take,
for instance, C = mingeqpp(p) C¢. For such a lower bound to exist, it is not necessary
for the polynomial to have only positive coefficients; it is sufficient for the polynomial
to be completely non-vanishing. In fact, the existence of such a lower bound is also
sufficient for a polynomial to be completely non-vanishing, which can be proven using
a similar argument as in the proof of Theorem 3.3.B below.

3.2. Cones and normal fans

A (polyhedral) cone is a subset of R” that is closed under linear combinations with
only non-negative scalars, e.g., € = {d Au®: Ap > 0} for some set of given vec-
tors uM, u® ... € R”. A fan in R" is a family & = {€;,€,, ...} of cones with the
property that every face of a cone in ¥ is also in ¥ and that the intersection of two
cones €1, €, € ¥ is a face of both €; and €,. The normal cone associated to a face F
of the polytope & is the set of all linear functionals that are maximal on the respective
face

‘€F={y eRn;y.vzmaxy-wforallvEF}. (31)
wep

The set of normal cones of a polytope is its normal fan: ¥y = {€f: F € faces(P),
F # (}. The normal fan is always complete, which means R” = |t 7 relint €,
where W denotes the disjoint union. If a face F has dimension d, then the associ-
ated normal cone € has dimension n — d, where 7 is the dimension of the ambient
space. The maximal cones in the fan are the cones of maximal dimension. Figures 1 (a)
and (b) depict a polytope and its normal fan. Note that the maximal cones can be asso-
ciated to the vertices of the polytope.
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Figure 1. A polytope and its normal fan. (a) A polytope £ C R? with indicated normal direc-
tions. (b) The normal fan of & with the maximal cones labelled. (c) The normal fan of & with
the modified cones € indicated.

For the proof of Theorem 3.3.B, it is convenient to have three further properties
of the tropical approximation p" and the associated polytopes at hand.

Lemma 3.5. For each face F of the Newton polytope N, of a polynomial p, the
truncated polynomial pf fulfills

pr(Et) = p(e’)pr(e’) foralls € €r and t € R".

Proof. Use Definition 2.1, equation (3.1) and Proposition 3.2. |
Lemma 3.6. One has p"(e*™t) < p(e®) p™(e") forall s, t € R".
Proof. This follows from Proposition 3.2 and

max (s +¢)-v < maxs-v + maxf - v. [
vVEP vVEP vVEP

Lemma 3.7. If  C R" is a polytope, then there exists a constant C > 0 such that

maxy-v—y -k >CR

vepP

forall R > 0 and all faces F C P with k € vert(P) \ F and

yeer\ |J (€r+Br).

dim F/>dim F

where vert(P) is the set of vertices of P, the union is over all faces of P of higher
dimension than F and Bg C R" is a ball of radius R.
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A set of modified cones €F = € \ g proaim 7 (€F” + BR) is depicted in Fig-
ure 1 (c). Note that the size of the ‘gaps’ between the modified cones is the diameter
2R of the ball Bp.

Proof. Foragiven face F C P and k € vert(P) \ F, choose some vertex v € vert(F)
and consider the hyperplane H, = {y € R":y - (k — v) = 0}. By definition of the
normal cone, this hyperplane will not intersect with the interior of €r,asy -v>y - w
forallwe &# and y € E’F We can project any point y € €f onto H, using the
orthogonal projection y* = y — (k — v)w € H,. The line segment from y
to yL will intersect a face of €. Let €Fs be this face. Clearly, dim F’ > dim F.
If y € €p/ 4+ Bp, then the vector y must have a larger distance than R from all points
in €x/. By construction, the orthogonal projection y= is at least as far away from y
as the closest point in €z/. Hence, ||y~ — y|| = |y - (v —k)|/||lv — k| > R and it
follows that

y-(—k)> Rlv—k|

forally € € \ (€f/ + BRr), v € vert(F) and k € vert(#) \ F. Here we used that
y-(v—k)>=0forallve F,k € P and y € €f. To prove the statement, choose
C = mlnv;éwEVCrt(;P) lv—wl. un

Theorem 3.3.B follows now as a corollary from the following:

Proposition 3.8. If p € C[xy,...,xn] is completely non-vanishing on R” ; and also
R > 0, then there is a constant C > 0 such that

Cp(e*t") < |p(e*™)| foralls € €p, t € Bg foreachface F C N,, (3.2)

where Bg C R" is a ball of radius R.

Proof. We are going to prove this by induction in the codimension of F'. Starting with
codimension 0, i.e., ' = N, we have by Definition 2.1, Lemmas 3.5 and 3.6

|p(e")]
pt(e)

forall s € €y, and t € R”. Because p(e’) is non-vanishing on the compact domain

1P )] = |pw, )| = p(*)|pe")] = p (e ) ——

t € Bg, we can choose the constant C = minsep, |p(e’)|/p"(e') > 0 to get the
desired bound.

Suppose F is of codimension d and equation (3.2) holds for all faces up to codi-
mension d — 1. By the induction hypothesis, for each R’ > 0 there exists a constant
C > 0 such that equation (3.2) is fulfilled in a ball of radius R’ around all cones €~ of
lower dimension, dim €/ < dim €. We therefore only need to prove the existence
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of such a constant for the smaller domain, €r = €¢ \ U proaim r (CF’ + BR'),
where the union is over all faces of N, of higher dimension than F'. See Figure 1 (c)
for an illustration of this smaller domain.

By definition of the truncated polynomial, we can write p(eS*?) as

pE™) = pp(efTh) + Z cxe Tk foralls € €p and t € R”
kesupp(p)\F

and estimate, using Proposition 3.2, Lemmas 3.5, 3.6 and 3.7,

|p(es+t)| > ptr(eS)(|pF (et)| _ Z |Ck|et-kes-k—maxvewp s-v)

kesupp(p)\F
t-k
> ptr(es-‘rt) |pF(et)| _e_R’C/ Zkesupp(p)\F lckle
- ptr(et) ptr(et)
P _re
= e (L m e Y al
P kesupp(p)\F

for all s € ‘gp and t € R", where C’ is the constant we obtained from Lemma 3.7.
We can choose a constant C such that 2C = minsep,, |pr(e*)|/p“(e') > 0and R >
% log(ZkESUpp(p)\F |ck|/C). This gives the desired bound. [

Proof of Theorem 3.3.B. Use Proposition 3.8 and the completeness property of the
normal fan. u

Remark 3.9. In the proofs of Lemma 3.7 and Proposition 3.8, we actually con-
structed explicit bounds for the constants in Theorem 3.3, which depend on the geom-
etry of the relevant polytopes and polynomials. These explicit bounds might be useful
for further consideration, but we will not make use of them in this article.

4. Geometric sector decomposition

The rough overall plan of our take on the integral in equation (1.1) is as follows: we
can trivially ‘factorize’ its integrand and write it as

[T, af () ( [T, ai(0)" /a ()R )

] =
post [ bR \ T, by ()77 /b ()<

The second factor is bounded by Corollary 3.4 as long as the {;} polynomials are
completely non-vanishing. The first term has a geometric interpretation in terms of the
polytopes 4 = > _;(Rev;) Ng; and B = > ;(Re p;) N, as defined in Theorem 2.3.
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As before, it will be handy to change to logarithmic coordinates to expose this

geometric interpretation. The component-wise exponential Exp: R” — RZ,, y
e? = (eV1,...,e’"), extends to a smooth bijective map Exp: R” /1R — ]P’>0 , as

Exp respects the respective equivalence relation. That means if x = ¢” and x’ = ¢¥’
with y,y’ € R” then y’ = y + pu1 for some p € R if and only if x’ = Ax for some
A € R-y. For this reason, the quotient R” /1R is also called tropical projective space.

According to Proposition 3.2 and the definition of the weighted Minkowski sum
with x = e”,

1—[‘ a@r(x)Rev,
i —exp ZRev, mﬁx y- v—ZRep, max y-v

[T, 0% (x)Rers veNs,

=e ma -V —ma -v). 4.1
Xp<,,e;¢y maxy o) @0

If A and B fulfill the requirements (R1) and (R2) of Theorem 2.3, this exponent is
falling sufficiently fast for large y for the integral in equation (1.1) to be convergent.

Lemma 4.1. Let A and B be the polytopes defined in Theorem 2.3. If A and B fulfill
the requirements (R1) and (R2) of Theorem 2.3, then there is a constant ¢ > 0 such
that

maxy v —maxy v > ¢||yllgrar  forally € R" /1R,

ve

where || y|rn/ar = infuer ||y + pl|| is the norm on the quotient space R" /1R
induced from the standard norm || - || on R”".

Proof. First note that the inequality in the statement is well-defined for y € R" /1R,
as 4 and B both lie in the same hyperplane A4, B C Hg = {v € R":1-v = §} for
some £ € R. Therefore, y-v =y -wforallv e A, we Band y € 1R.

As B is full-dimensional in Hg (see Remark 2.4) and A C relint B8, we can
Minkowski add a ball B to 4 such that A 4+ B, C 8B, provided that this ball only
extends in the subspace orthogonal to 1R which is parallel to He and ¢ is sufficiently
small. Let B, = {v € R":1-v =0 and ||v|| < &} be such a ball. The resulting convex
set A + B, is the outer parallel body of 4 restricted to its affine hull.

Observe that maxyep, y - v =¢einfyer ||y + pl|| = ¢||y [[r7 /2R - By the definition
of the Minkowski sum and because 4 + B, C B,

maxy-v -+ ¢ = max v + max v
max y Iy IR /1R maxy v+ maxy-

= max y-v<maxy-v forally e R". [
veA+B. veB

To be able to handle Kaneko—Ueda geometric sector decomposition with our trop-
ical approach, we will need additional tools from convex geometry.
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A cone is called pointed if it contains no 1-dimensional subspace. A fan is pointed
if all its cones are pointed. If a polytope &> C R” is full-dimensional, its normal
fan ¥ is pointed. For lower-dimensional polytopes &2 C R”, the normal cone €gp
associated to the polytope itself is non-trivial: €p = PL ={y e R":y - v =y -w
for all v, w € £}. It consists of all linear functionals that are constant on &. This
subspace is contained in each cone of the normal fan. Taking the quotient with respect
to this subspace within each cone in the normal fan € € ¥ results in a pointed fan
F /P~ on the quotient vector space R” /P L. This fan is the reduced normal fan.

Given a fan ¥, another fan ¥’ refines ¥ if every cone in ¥ is a union of cones
in . If ¥ and § are both fans, then their common refinement is defined as

FAg={€nc:Cec¥F € c8).

Let ¥ 48 be the common refinement of the normal fans of the polytopes + and B
which were defined in Theorem 2.3. Recall that the polytopes 4 and B are not
full-dimensional, because they are weighted Minkowski sums of the Newton poly-
topes of homogeneous polynomials (see Remark 2.4). As B is required to be full-
dimensional in an (n — 1)-dimensional hyperplane which is orthogonal to the 1-
vector, we have B+ = 1R. We will therefore consider the reduced refined normal fan
Fas /1R, which is pointed. The following lemma identifies the exponentiated cones
of € € F48/1R as the domains where the function [; aj(x)*i / [, by (x)Re#s
behaves like a monomial.

Lemma 4.2. Let A and B be the polytopes defined in Theorem 2.3. If A and B
Sulfill the requirements (R1) and (R2) of Theorem 2.3 and € is a cone in the reduced
common refinement ¥ 4g/1R, then

tr Rev;
% =x"" forall x € Exp(€),
J o

where w = wg — w4 and wy € A, wg € B suchthat y - w4 = Maxyens y - v and
y-wg = Maxyeg y -V forall y € €. Moreover, 1-w =0 and y -w > 0 for all

y € €\ {0}.

Proof. As € is a refinement of the normal fans of # and B, there must be normal
cones t)?;«, and ‘C’?B associated to respective faces Fy4 C + and Fg C 8B such that
€ C ?f’?:A N f?ﬁ. Hence, maxyeg y - v —maxyes y v = y - (wg — wy) for all
y € €, where we can choose arbitrary w4 € F4 and wg € Fg by definition of the
normal cone in equation (3.1).

Since 4 and B are required to lie in the same hyperplane orthogonal to the 1-
vector, we alsohave 1 - (wg —wy4) =1 - w =0.Due to Lemma 4.1, maxyeg y - v —
MaXyes Y -V =y (Wg —wy) > ¢l|y|gr/ar > 0 forall y € € \ {0}, and the state-
ment follows from equation (4.1). ]
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A cone € is simplicial if it is generated as € = {Zgzl Au®: A, > 0}, where
u®, . u are linear independent. For a given cone €, we can always find a set of
simplicial cones eA, ‘(?ZA, ...suchthat € = Ul ‘GA and ‘€A N ‘(?A is a simplicial cone
which is a face of both ‘€A and ‘CA Such a set of simplicial cones is called a triangu-
lation of €. Let ¥ Jfﬁ /1R be a szmplzczal refinement of ¥ 43 /1R, i.e., a refinement
of ¥ 48/1R such that each cone in F 4 A g/ 1R is simplicial.

A feature of simplicial cones is that there are convenient coordinates describing
points in their interior. This fact is important while proving the following lemma:

Lemma 4.3. If a pointed simplicial cone € C R" /1R is generated by linear inde-
pendent vectors u™V ... . u"~V e R"/1R, i.e., € = {Zz;ll Aeu®: ) >0), w e R”
withl-w=0andy -w > 0forall y € €\ {0}, then

_ |det@®, ... a1V 1) n
[ xrrme- : Fee@) [ .
Exp(€) Hk 1 u® - w [0,1)"! k=1

where f:P25" — C is a measurable homogeneous function of degree 0 and x (§) €
Exp(©) is given component-wise by xj = 1_[[_1 _uk)/(u(l) w)
Remark 4.4. Slightly abusing the notation, we identified the vectors IO B GV
with appropriate representatives in R” in the statement of this lemma. The value of the
integral does not depend on the specific choice of representatives, because 1 - w = 0
and f is homogeneous of degree zero. Hence, the expression on the right hand side
is invariant under shifts #® — u#® + w1 for all g € R. It is also invariant under
rescalings of the vectors u® = 2,u® for all Ax > 0 as it should be due to the
equivalence of the cone representation. Even though changing the representatives of
the u-vectors modifies the vector x (&), it only does so by an overall scaling, not
modifying the point in P?5! which x (§) represents.

Proof. Start by changing to logarithmic coordinates x = e”,

/ X f(r)Q = / e f(e),
Exp(€) €

where Q@ = Exp* Q = Yo (=D Ry A A dyg A -+ Ady, is the pullback
of  under Exp. Using barycentric coordinates y = ZZ;II u® )y shows that this is
equal to

n—1
|det@™®, ..., u® D, 1) e Yh=i Ak"(k)'wf(ezz;ll Ak"(k)) 1_[ dAg.
RZ,! k=1
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The form of the determinant follows from the form €, Laplace’s expansion and

dyl/\"'/\d/y\k/\"'/\dyn

e O T U IS
= : : dAi Ao AdA, 7.
u(le’"_l) .. u,(:f’"_l) ... use’"_l)

Asy-w > O0forall y € €\ {0}, it follows thatu(k) w>O0forallk € {1,...,n—1}.
We can therefore change variables via A = _u(k) log &, which proves the state-

ment. ]

With these tools at hand, we are ready to give our tropical formulation of geomet-
ric sector decomposition.

Theorem 4.5 (Geometric sector decomposition). Let A and B be the polytopes de-
fined in Theorem 2.3. If A and B fulfill the requirements (R1) and (R2) of Theo-
rem 2.3 and Mﬁﬂ - 3‘7A g/ 1R is the set of maximal cones, i.e., the cones of maximal
dimension, in a simplzczal refinement of the reduced common normal fan of A and B,
then we can write the integral

atr(x)Rev,
Pﬁal 1—[] btr( )Rep
asasum I[f] = themﬁﬁ Le[ f] with

1f]= f(x)Q

|det(u(€’1) L u®©@n=D 1)
(f k). w(e) [0,1]11,71

le[f] =

n—1
fE@@) [Td&. @2
k=1

k
where

o f:P2;' — C is a measurable homogeneous function of degree 0,

e w® = wgf) f) with some wf) € A and wg) € B such that y - wf) =
maXyes y -V andy - wfg) = maXyeg y -V forall y € €,
o the vectors u©V ..  g©n-1D ¢ R” /1R span the simplicial cone € such that

€ = (Y02} R0y > 0) C R"/1R,
—uCD) y(y (€.0) 4y (E)
e x®)e Exp(€) is given component-wise by x(??) _ l—[7=_11 ulED /@€ ),
[det@©-D,....u©-1—D 1)

[T72) uC0).w(®

* the prefactor is finite and positive for each € € M ﬁ 2

Proof. The fan ¥ ¢ A g/ 1R is complete, i.e., it corresponds to a partition of R"” /1R =
UfeFA /IR €. Because Exp: R”/IIR — P! is smooth and bijective, this parti-

tion gives also a partition of P?;? = Weer A_/IR Exp(€). Since we would like to
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integrate over P?;! (or equivalently, over R” /1R), it is enough to only consider the
cones of maximal dimension ,Mﬁ g C7F dﬁ@ /1R as other cones in ¥ Jfﬁ /1R only
describe measure zero subsets of IP’QO_I. Hence,

J = Z Ie, ],3:/ Mf(x)g_

< b (x)Ren;
cenh, Expce) [ 1; 07 (x)
Because each cone € € QMiB refines a cone in ¥ 45/1R and by Lemma 4.2,

Ie = / x_w(f)f(x)SZ forall € € Mﬁﬂ,
Exp(€)

()

with some w,” € Aand wg"~ € B suchthaty - w

where w(©) = wg) — w(f)

MaXyexs ¥y -v and y - wg) = maxyeg y - v for all y € €. By Lemma 4.2, we also
have 1-w® =0and y - w® > 0forall y € €\ {0}.
Equation (4.2) follows from Lemma 4.3, because we can always pick a set of

©) ©) _
A A

generators #(C-D . u®©n=D ¢ R” /1R for every simplicial cone € € Mﬁﬂ. As
y - w® >0forall y € €\ {0}, we have u©K) . w®© > 0forallk € {I,...,n—1}.
The positivity of the determinant is obvious due to the linear independence of the
vectors u(CK), n

If we specify f(x) = Rg/p(x) given by

[, s ()" /a )"
[T b3 () /b5 ()R

in Theorem 4.5, we recover the integral in equation (1.1).

Rap(x) = (4.3)

Proof of Theorem 2.3. We only need to prove that each sector integral in the geomet-
ric sector decomposition of Theorem 4.5 with f(x) = R,/p(x) from equation (4.3)
is finite. As all the denominator polynomials {b;} are completely non-vanishing,
Corollary 3.4 implies that | R,/ (x)| is bounded on P?;. So, each integral Ie[Ry/p]
is finite. |

Theorem 4.5 provides a sector decomposition as it was formulated in (2.1) because
the sector integrands in Theorem 4.5 are bounded as long as the function f is bounded
on ngl. This way, Theorem 4.5 not only ensures finiteness of the integral in equa-
tion (1.1) under appropriate conditions, but also allows to evaluate the integral via
Monte Carlo quadrature.

If we have triangulated the reduced normal fan ¥4 g /1R, i.e., we have computed
a simplicial refinement ¥ 25 /1R and stored the vectors u V), ... u®©=1 and w(©
for each maximal cone € € M ﬁ g C F fﬂ /1R in a table, then we can estimate the

integral using Algorithm 1.
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Algorithm 1. Basic Monte Carlo quadrature of Euler—Mellin integrals

for all maximal cones € € M ﬁ g do
for £e€1,...,N do
Draw a random vector & € [0, 1]”~! from the distribution

-1
1= _[[0,1]1171 H?:] d‘i:l
_y(CD) p(€.0) .y (E)
{4 —1 U, /u ‘w
Setx(? =/t g
end for )€1 )|
(N) 1 |det@'C-D, L uCn=D g N 4
Set Ie ' [Rajp) = N T amper— b=t Rayp(x©).
end for
Return /) = Z‘C’emﬁﬁ I‘é’N)[Ra/b]~

forallk =1,...,n.

Proposition 4.6. Ifthe conditions of Theorem 2.3 are fulfilled, then the random value

IN) returned by Algorithm | has expectation value equal to the integral in equa-
tion (1.1), I = E[I™] and Var[IM)] = % with some constant C > Q.

Proof. Algorithm 1 is an application of Theorem 2.5 on the integral le[f] for each
cone € € 'M.;Am from Theorem 4.5 with f(x) = Rg/p(x):

n—1

©)
/[0’1],,_1 Rapp(x©®) [T dé-

k=1

As |Rg/p(x)| is bounded on P?;! and x®© (&) e P21 by construction, the integrand
is bounded and therefore also square-integrable. Hence, there is a constant Ce > 0
for each cone integral such that

Var[IéN)] = Ce¢/N and Var[I™M] = Z Var[IéN)] =C/N. n

A
CeEM o

Effectively, Proposition 4.6 ensures that we can consider the random variable 7 ¥ )
as an approximation for / with relative accuracy § = %,/ C/N. Estimating the con-
stant C is usually easy in practice: as long as sufficiently high powers of the integrand
f(x) are integrable, we can also use Theorem 2.5 to estimate Var[ f(x)].

Variants of Algorithm 1| are implemented, for example, as SecDec-3 [24] and
as FIESTA 3 [97]. Both these implementations provide a variety of different ways
to perform the preprocessing triangulation step which computes M ﬁ g- A dedicated
tool to perform such a triangulation is Normaliz [34] which is also used internally in
SecDec-3. Subsequently, both programs use a version of the VEGAS algorithm [56,
78] to numerically integrate I'e[ f] in equation (4.2) over the unit hypercube [0, 1]
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or, equivalently, to execute the inner loop of Algorithm 1 for each individual cone
€eMhg

We can estimate the computational complexity of the algorithm by counting the
number of necessary evaluations of the function R,/,(x). This is justified because
we can assume that the runtime to evaluate R, ;5 (x) overshadows the time it takes to
compute a random vector & € [0, 1]*~! and the value of x (§) € P?;! from it. There-
fore, the estimation step summarized in Algorithm 1 needs N |M ﬁ g| evaluations to
produce the estimate 7 ™) for the integral in equation (1.1). Equivalently, as the rel-
ative accuracy § ~ I ™) /I of the resulting estimate is inverse proportional to +/N,
the number of evaluations needed is proportional to § ~2|.M ﬁ g to achieve an estimate
of § accuracy.

A severe bottleneck is the number of maximal cones | M ﬁ g| which tends to grow
exponentially with growing dimension n of the problem. A particularly unsatisfying
aspect of this bottleneck is that the value of the individual sector contributions l¢ typ-
ically varies quite much in magnitude. Consequently, only a fraction of the geometric
sector contributions in equation (4.2) are relevant for the overall integral /, and much
of the computational effort spent to estimate each of the integrals l¢ is wasted. In the
next section, we will explain how to overcome this bottleneck.

5. Tropical sampling

In summary, the strategy to overcome this problem is the following: instead of numer-
ically integrating each of the sector integrals individually and eventually summing all
the resulting numbers to obtain an estimate for the integral in equation (1.1), we can
use a more ‘inclusive’ Monte Carlo approach, where we evaluate both the individ-
ual integrals I'e[Rg/p] in (4.2) and the sum over these integrals Zfemﬁﬁ I'e[Rayp)
via Monte Carlo methods. This approach is much more efficient than the traditional
one because there is a canonical way to perform importance sampling on the sum.
That means that we can expose the individual sectors to our sampler ‘undemocrati-
cally’ such that more important sectors are sampled more often than less important
contributions.

To do this, it is convenient to define a tropically approximated version of the inte-
gral in equation (1.1):

tr Rev;
It :/ MQ_ (5.1
pogt I1; By (e)"e?

Such tropically approximated integrals have been considered as a simple avatar of
period Feynman integrals [89] and identified to appear in the weak string coupling
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limit [5]. Moreover, this tropically approximated integral also gives rise to the canon-
ical function of a polytope under certain conditions on the polynomials {a; } and {b; },
which has applications in the theory of scattering amplitudes [3, 5].

It follows from Theorem 4.5 with f(x) = 1 that 7" is finite and that 7" > 0,
provided that the conditions (R1) and (R2) on the polytopes 4 and 8B in Theorem 2.3
are fulfilled. Moreover, the integrand in equation (5.1) is obviously positive for all
x € IP’QO_I. Hence, we can define a probability distribution given by the differential
form

tr Rev;
o_ 1 Iliaf () 52)
Ju Hj b]t_r(x)Repj

such that 1 = anal 1. The integral in equation (1.1) can now be written as
>

r=1 [ Rapnt

>0

with R,/p as defined in equation (4.3). As " is a properly normalized probability
distribution on ]P’Qal, we can use Theorem 2.5 to get a direct estimation algorithm
for I from this, provided that we have a reasonably efficient way to sample from the
distribution u".

Algorithm 2 is not obviously simpler or more efficient than Algorithm 1, as the
complicated part (generating a sample from the random distribution given by u') has
been conveniently outsourced.

Algorithm 2. Monte Carlo quadrature using tropical sampling
for{el,...,N do
Generate a random sample x© P21 distributed as u from equation (5.2).
end for
Return /) = IW" Z?’:l Ra/b(x(z)).

A simple method to sample from " is to use a geometric sector decomposition
again. By Theorem 4.5, the tropically approximated integral in equation (5.1) can be
written as a sum

|det(u(€’1), a1 ]l)|
T2t uCh) . ()

"= Y Ifwith I = : (5.3)

A
CeMy 5

where 7§ > 0 for all maximal cones € € Mﬁ g- Hence, we can interpret 1.5/1" as
a probability assigned to each cone € € M j g and draw a random cone accordingly.
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Drawing a random sample from a finite discrete probability distribution is a classic
problem. It can be solved in constant time, independent of the number of possible
outcomes, if a table of the probabilities of the respective outcomes is appropriately
preprocessed, for instance, by using the alias method [70, Section 3.4.1]. Provided
that we have generated such a table together with a table of appropriate values of w(©)
and u®©V . u©7=1D e can execute the following algorithm:

Algorithm 3. Algorithm to generate a sample with distribution '

Draw a random cone € € M ﬁ g With probability IZ /1"
Draw a random vector & € [0, 1]”~! from the uniform distribution.

_u(CD) (e g (E)
Set x; = [[/=} iuk f@ )forallke{l,...,n}.

Return x = [x1 :...: x,] € Exp€ C Py and €.

Proposition 5.1. Algorithm 3 generates a sample x € ]P’QO_I, distributed as u" in

equation (5.2).

Proof. For any test function f:P”;! — C and a random sample x € P”;! generated
by Algorithm 3, we have

n—1
E[fx)]= Y I{;/I“/[Ol]nl fE@@) ] dé.
’ k=1

CeML 5
Using equation (5.3) and Theorem 4.5 gives

B 1 l_[i a;r(x)Rer
R

To run both Algorithms 2 and 3 together, we need N evaluations of the function
R, /p(x). Equivalently, we need proportional to §2 evaluations to obtain an esti-
mate [ of § accuracy. This is a significant improvement over Algorithm 1 as the
runtime is now independent of the number of sectors |M i gl

It has to be stressed that this suggested direct comparison between Algorithm 1
and the combination of Algorithms 2 and 3 is flawed by the inherent difference in

fwe= [ four

the respective proportionality factors for 2 or, equivalently, in the number of sam-
ples N that results in a given accuracy. In a situation in which the sector integrals all
contribute roughly the same value to the overall integral, Algorithms 2 and 3 offer no
advantage over Algorithm 1. For practical applications, the values of the sector inte-
grals tend to differ heavily in magnitude, which makes Algorithms 2 and 3 favorable.
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Just as for Algorithm 1, a preprocessing step needs to be performed for Algo-
rithms 2 and 3: the triangulation Mﬁ g and the associated table need to be calcu-
lated. This computation is also necessary to compute the normalization factor /" =

IX. In th he time it tak h le will -
Zfe«“ﬁs ¢- In the best case, the time it takes to create such a table will be propor

tional to the number of sectors | M ﬁ gl» but we only need to compute this table once
and can evaluate an arbitrarily large number of samples afterwards.

Therefore, even though we are still effectively constrained by the dimension of
the problem, which has to be small enough for the preprocessing step to be finished in
a reasonable time, this constraint on the dimension is decoupled from the achievable
accuracy.

Recall that so far we considered completely general integrals in equation (1.1).
Although we already managed to accelerate the integration for the general case in
comparison to the traditional approach, further improvements are possible if more
specific properties of the integrand are used. Especially, integrals that come from
physical applications are well known to carry a very rich geometric structure, whose
exploitation offers a whole new set of tools to improve numerical approximation
methods. In the following, we will achieve a further improvement in runtime, memory
requirement and overall complexity by using a specific structure which is exhibited
by a large family of integrals. Integrals of this family appear in many contexts in high
energy physics. This family consists of all integrals as in equation (1.1) where the
Newton polytopes of the polynomials {a; } and {b;} are generalized permutahedra.

6. Generalized permutahedra

The permutahedron IT,, is an (n — 1)-dimensional polytope in R”. It can be defined
as the convex hull of n! vertices determined by permutations in S, :

I, = { Z pICIR Z Ay = land Ay 20} C R”,

geSy, o€eSy,

where the vector v® = (0(1),...,0(n)) € R” encodes the permutation o. The per-
mutahedron is contained in the hyperplane I1,, C {v € R*:1-v = n(n + 1)/2} and
is full-dimensional within this hyperplane. The permutahedron IT3 is depicted in Fig-
ure 2 (a). The cones of maximal dimension in the reduced normal fan %11, /1R of II,
are labelled by permutations as well. They are of the form

C ={y e R"/1IR: y501) < -+* < Yom)} (6.1)
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X3 Y3
(0,0,6) - ‘
€z Cins
v
V213 123 1R
Vi LAEY) Can > Cin
LESSN V231 X5 ] — y2
. ) : Ca Ca3 )
X1 (6,0,0) 0.6,0) y1
(a) (b)

Figure 2. The permutahedron II3 and its reduced normal fan. Vertices and maximal cones
are both labelled by the associated permutations. (a) The permutahedron I3 € R3 which is
contained in the hyperplane x; + x2 + x3 = 6 as indicated. (b) The braid arrangement fan
F11,/1R which partitions R3/1R with equivalent hyperplanes orthogonal to 1R indicated.

such a domain is called a Weyl chamber. It is not hard to see that these are simplicial
cones as

- . iy | -1 ifk<i,
€, = {Zxku("’ )i dg > o} with u ) = - (6.2)
k=1 0 else,

where we chose the set of representatives in R” of the vectors in u®%) € R” /1R
by fixing u((f(,f)) =0 forall k € {l,...,n — 1}. The remaining cones of the reduced
normal fan 1y, can be constructed by taking arbitrary intersections of these cones.
This fan is also called the braid arrangement fan. The reduced normal fan of I3 is

illustrated in Figure 2 (b).

Definition 6.1 (Generalized permutahedron [91, Definition 6.1]). A polytope whose
normal fan is a coarsening of ¥y, is a generalized permutahedron.

Generalized permutahedra have a large number of remarkable properties [1,91].
One of them is the following theorem.

Theorem 6.2 ([91, Definition 6.1], [1, Theorem 12.3]). A supermodular boolean func-
tion is a function z: 2" — R that assigns a value to each subset of [n] = {1, ...,n},
such that z(9) = 0 and z(A) + z(B) < z(AN B) + z(AU B) for all A, B C [n].
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Each generalized permutahedron '§, has a facet presentation
g, = {v e R™: Z v; = z([n]) and Zvi >z(I) foralll C [n]}, (6.3)
i€[n] iel

where z is a supermodular boolean function. In fact, every supermodular boolean
function gives rise to a generalized permutahedron by the inequality description in
equation (6.3)."

Corollary 6.3. Ifboth §,, and §,, are generalized permutahedra and z1(A) > z,(A)
for all non-empty A < [n] and z,([n]) = z2([n]), then §;, C relint §,,.

Proof. By Theorem 6.2, it follows immediately that §,, C §,,. The inequalities in
equation (6.3) are strict [1, Theorem 12.3]. Therefore, the statement follows. [

The Minkowski sum of two generalized permutahedra is again a generalized per-
mutahedron (see, for instance, [46, Lemma 2.2.2]).

Lemma 6.4. If both G, and §., are generalized permutahedra, then also their Min-
kowski sum §;,, = §z, + §;, is a generalized permutahedron with the boolean func-
tions z1, 22, 212: 2" — R related by

z12(A) = z1(A) + z2(A4)

forall A Cnl={1,...,n}.

A vector v € §, which maximizes all linear functionals in a Weyl chamber € is
a vertex of §,. This gives a canonical map from permutations o € S, to the vertices
of a generalized permutahedron. We can use a result of Fujishige and Tomizawa to
explicitly construct this map.

Lemma 6.5 ([51, Lemmas 3.1 and 3.2]). If z is a supermodular function z: 20 S R,
o € S, a permutation, and w'®?) € R" is the vector given component-wise by

wc(;?kz)) = z(A7) —z(AR_,) forallk € [n],

where A} ={0(1),...,0(k)} C [n] ={1,...,n}, then w'@?) is a vertex of the gen-
eralized permutahedron '§, and

y - w©@?) — maxy-v forally € €,
vEG,

where €y is a Weyl-chamber in the braid arrangement fan as defined in equation (6.1).

'We are using a different sign notation than [1], but agree with [91].
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6.1. Tropical sampling for generalized permutahedra

In general, it is necessary to compute a triangulation of the reduced refined normal
fans of the # and 8B polytopes to perform the procedure described in Section 5. This
cumbersome computation can be circumvented if the 4 and B polytopes are gener-
alized permutahedra. In this case, there is an especially simple way to sample from
the associated tropical measure u" defined in equation (5.2) without the need for an
explicit triangulation as required for Algorithm 3.

From now on, we will therefore assume that the polytopes #4 and B are both gen-
eralized permutahedra. This implies, by Theorem 6.2, that there are unique boolean
functions z4, zg: 2" — R which describe these polytopes. Using these functions
and the properties of generalized permutahedra introduced above, we can state the
following:

Theorem 6.6 (Geometric sector decomposition for generalized permutahedra). Let A
and B be the polytopes defined in Theorem 2.3. If A and B are generalized permu-
tahedra with associated boolean functions z 4, zg: 2071 5 R which Sulfill the require-
ments (R1) and (R2) of Theorem 2.3, then we can write the integral

Hi a;r(x)Re v;

gt T, B 07

asasum I[f] =3 cs I f]with

1f]= f(x)Q

1

Lifl = =5
Y T

n—1
(0)
[ @ [ o

where

. f: IP’QO_I — C is a measurable homogeneous function of degree 0,

e A7 ={o(1),...,0(k)} C[n] ={1,...,n},

o 1r(A) = z4(A) — zg(A), which fulfills r (A) > 0 for all non-empty proper subsets
A < [n] and

1/r (A7)
a

o x© (&) € Exp(€,) is given component-wise by Xo(k) = 7;,1 £ nd

Xom) = L.

Proof. This theorem is a specialization of Theorem 4.5 to the generalized permutahe-
dron case. The braid arrangement fan defined in equation (6.1) provides an appropriate
reduced simplicial fan. By Lemma 6.5, we have vertices w(®?4) € A and w®?8) ¢ B
such that y - w(7A) = maxyey y-vandy - w(®?8) = maxycg y-vforallo € S,
and y € €,. Using the explicit representatives of the generators u (V... u©@»=1
of the cone €, from equation (6.2) together with Lemma 6.5 gives u(@%) . (©@24) =
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—z4 (A7) and u@f . w028 = 7 g (A). It follows from this and Lemma 4.1 that
u(@k)  p(@:28) _ (o) 4(0:24) — Z4(A7) — z8(A7) > O holds for all o € S, and
k €{l,...,n — 1} which implies r(A) > 0 for all non-empty A < [n]. From the form
of the u(®k) vectors in (6.2) it is obvious that | det(u@V, ..., u@"=D 1)|=1. =

Theorem 6.6 ensures that we can proceed as above and perform the Monte Carlo
Algorithms 2 and 3 just as in the general case. It is clear that the preprocessing step
will be straightforward as generalized permutahedra come with an appropriately sim-
plicial fan ‘built in’. Algorithm 3 requires us to generate a table of size n! as we need
one entry for each cone in the braid arrangement fan. For this algorithm to be applica-
ble in a computationally feasible way, that table needs to be stored in the memory of
the computer. Hence the naive algorithm is only practically applicable for relatively
small values of 7.

However, a further significant improvement can be achieved: it is not necessary to
store an entry for each permutation in a table. If a small additional computation for
each sampled point is performed, a table of size proportional to 2" suffices. We will
describe this specialized version of Algorithm 3 in the rest of this section.

First, observe that the overall normalization factor needed to apply Algorithm 3 is
given by

1

= > I§ withI§ = (6.4)
ogES), l_[k 1 r(Ao)

where r(A) = z4(A) — zg(A) for all non-empty A < [r]. This equation is just equa-
tion (5.3) specified using Theorem 6.6 to the generalized permutahedron case. For
the following considerations, it will be convenient to declare r (@) = 1, which opens

the way towards the following generalization that promotes /™ to a boolean function
on 211,

Definition 6.7. For a boolean function r: 2" — R with r(@) = 1 and r(A4) > 0 for

all non-empty A < [n], we define the boolean function J,: 20 R recursively by

Jr(A
Jr(A) = ;4 r((A—\\ee)) for all non-empty A C [n], where J, () = 1.

Proposition 6.8. Ifr(A) = z4(A) — zg (A) for all non-empty A < [n] and r (@) = 1,
then I = J,.([n]).

Proof. We will prove that

1
Jr(A -
D= > TR

o:[m]—A
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where the sum is over all bijections o: [m] — A. Fixing such a bijection is equiva-
lent to fixing a pair (e, i) of an element e € A and a bijection u: [m — 1] — A\ e.
Decomposing the sum in this way and using equation (6.4) gives the statement. |

Remark 6.9. This recursive method to calculate the normalization factor /' might
also be useful in other contexts. For instance, this can be used to calculate the volume
of the polar dual of a generalized permutahedron fairly efficiently. In the context of
scattering amplitudes, this recursion can also be used to calculate the canonical form
of a generalized permutahedron.

If we prepare a table of the values J,(A4) and r(A) for all A C [n], we can run the
following algorithm:

Algorithm 4. Algorithm to generate a sample from u" for generalized permutahedra
Set A = [n]and k = 1.
while A # @ do
Pick a random e € A with probability p, =

1 Jr (A\e)
Jr(4) r(d\e) -

Remove e from A4, i.e.,set A < A\ e.
Seto(|A]) = e.
Set x, = k.
Pick a uniformly distributed random number & € [0, 1].
Set k < k&7,
end while
Return x = [x1,...,x,] € Exp(€,;) C P! ando = (0(1),...,0(n)) € S,.

Note that the probability distribution p, = 7; } D Jr’((;f\\:)) over the elements e € A

is properly normalized due to Definition 6.7.

Proposition 6.10. If r(A) = z4(A) — zg(A) for all non-empty A < [n], r(9) =1
and J; is the boolean function given in Definition 6.7, then Algorithm 4 generates
a sample x € Pﬁal, distributed as 1" in equation (5.2) in the generalized permuta-
hedron case.

Proof. For any test function f:P”;! — C and a random sample x € P”;! generated
by Algorithm 4,

1 J,(A,,\e,,)mz 1 Jr(A1\ er)

BV = D S A e Jr(A1) r(A\en)

en€Ay

J
[0.1]

>

e1€A

n—1
@) [ dé,
k=1
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where we gave distinguished subscripts to the numbers e and sets A in the reverse
order from Algorithm 4, and x (£) is component-wise x., = ]_[:’;,1 El.l/ r(41) We iden-
tify Ay \ ex = Ag—1. The terms J,.(Ag \ ex) cancel, J, (@) = r(@d) = 1 and we get

n—1

1
Z Z r(An)r(Al) [0,1]7—1 f(x(g))kl:[ldsk

en€Ay 61€A1

E[f(x)] =

1
Jr(4n)

The sum can be written as a sum over all permutations in o € S, and 4y = A7. The
statement follows from Proposition 6.8 and Theorem 6.6. ]

Algorithm 4 allows us to integrate any integral of the form as in equation (1.1) via
Monte Carlo quadrature without actually performing any complicated triangulation or
non-trivial sector decomposition step if the polytopes 4 and B are generalized per-
mutahedra. Compared to the naiver approach where a table of size n! is needed, only
a table of size 2" is required. The complexity of the preprocessing step is similarly
reduced as the recursion in Definition 6.7 gives an efficient way to calculate all the
necessary constants: The table for J,.(A) can be calculated in O (n2") steps.

All this achieves not only a huge improvement in the required runtime and mem-
ory of the algorithm, but also significantly reduces the complexity of the overall
algorithm. Triangulating an n-dimensional polytope is an involved algorithmic task.
Circumventing this triangulation with the approach above makes it straightforward
to implement an efficient integration algorithm. A detailed example is given in the
following section.

7. Feynman integrals

A scalar Feynman integral associated to a Feynman graph G with E edges and V ver-
tices in parametric representation in D-dimensional Euclidean space can be written as

_ [l W) \e®
o= /Pfo—l o (vewm) & D

which depends on the edge weights vy, ..., vg, which we will assume to be positive
and real. The superficial degree of divergence w(G) is given by o(G) = >, ve —
£(G)D/2, where £(G) is the number of loops of G (i.e., the first Betti number of G).
The Kirchhoff-Symanzik polynomials Vg and ®¢ are homogeneous of degree £(G)
and £(G) + 1 in the x, variables. Obviously, the integral /¢ is a specific instance of an
integral of the form in equation (1.1). To simplify the notation, we omitted a prefactor
of T'(wg)/ [, T'(ve), which is usually included in the definition of scalar Feynman
integrals. See, for instance, [83] for details on this representation of Feynman inte-
grals.
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A complete finiteness proof of the Euclidean space Feynman integral /s, together
with an analysis of its analytic continuation properties in the vy, ..., Vg parameters,
was achieved by Speer [100]. More recently, Brown [29] showed that there is a canon-
ical way to associate the integral /g to a motivic avatar, which can be thought of as
a specific representation of a conjectured cosmic Galois group. This group suggests
the existence of a coaction principle which relates different Feynman integrals in a
highly non-trivial way and allows us to analyse Feynman integrals with a whole new
toolkit of homological methods and representation theory.

For our endeavour to merely evaluate the integrals /g, we can make use of parts
of Brown’s analysis [29] to ensure that the relevant polytopes associated to the Wg
and ®¢g polynomials are generalized permutahedra. We will start by giving some
additional details on these polynomials, including an efficient way to evaluate them.

7.1. Symanzik polynomials

Explicitly, the polynomials can be expressed as sums over spanning trees T and span-
ning 2-forests (spanning forests with two connected components) 7> of the graph G:

Vo) =) [[x @cx)=) Ip@)I* [ xe +¥6(x) Y xem, (7.2)

T e¢T) T> e¢Tr e

where p(T3) is the total momentum flowing between the two components of the 2-
forest T5. Only the @ polynomial depends on the external physical parameters: a set
of momenta p®, ..., p) e RP incoming into each of the vertices and a set of
masses my,...,mg € R associated to the edges of the graph. These polynomials can
also be written in terms of the weighted V' x V Laplace matrix of the graph (see, for
instance, [16]), which is component-wise

-1

—X, if there is an edge e between v and w,
_ -1 i
Lv,w - Ze incident to v Xe ifv = w,
0 else.

This matrix is only positive semi-definite whereas the reduced Laplacian L, which is
given by an arbitrary leading principle minor of the matrix L, is positive definite. The
Symanzik polynomials can be written as

Ws(x) = (]_[xe) det(I), ®g(x)= ‘IJG(x)(Tr(PTZ_lP) + ermg), (1.3)

e

where P is the (V — 1) x D matrix, given row-wise by the incoming momenta, pW e
RP: Py = p,(f), wherev =1,...,V —1, and p is a D-dimensional spacetime index.



Tropical Monte Carlo quadrature for Feynman integrals 669

Note that due to momentum conservation, no information is lost when only V' — 1 of
the V' incoming momenta are used.

The second representation of the Symanzik polynomials in equation (7.3) is more
suitable for numerical evaluation than equation (7.2). The number of spanning trees
of a graph grows exponentially with the number of vertices V' [82], and the evalua-
tion of the expressions in equation (7.2) quickly becomes intractable when the graph
gets large. The evaluation of the determinant with the other matrix operations in equa-
tion (7.3) is computationally much more favorable: with a Cholesky decomposition
of the matrix L, the values of both Wg (x) and ®g (x) can be immediately calculated.
Computing the Cholesky decomposition of a (V — 1) x (V — 1)-matrix takes @ (V3)
time. Due to the special structure of the problem—the matrix L being the reduced
Laplace matrix of a graph—there even exists a nearly linear time approximation algo-
rithm [101] to compute this decomposition.

To give a precise account of the Newton polytopes of the Symanzik polynomi-
als, we need some additional notation from [29] for subgraphs of Feynman graphs.
A subgraph y C T is equivalent to a subset of the edges of the graph I". The set of
subgraphs is therefore isomorphic to the set 2[E1 and we will identify boolean func-
tions 2[F1 — R with functions defined on the set of subgraphs of the graph G. Just
as for G, we will denote the first Betti number of a subgraph (i.e., the number of
loops) by £(y). A subgraph y C G is called mass-momentum-spanning (m.m.) in G
if the second Symanzik polynomial of the contracted graph G/y vanishes ®¢/,, = 0.
Mass-momentum-spanning graphs can also be defined combinatorially as subgraphs
that contain all massive edges and one connected component which connects all ver-
tices with non-zero incoming momentum. See [29, Definition 2.6] for details on these
types of subgraphs.

Theorem 7.1. If we restrict to Euclidean and non-exceptional kinematics, then the
Newton polytopes of Vg and ©g are generalized permutahedra. A facet presentation
of these polytopes is given by the supermodular functions

zyg () = £(y).
Zon () = Ly)+1 ifyismm. inG,
etV = L(y) else

for all subgraphs y C T.

See [29, Section 1.7] for a definition of non-exceptional or generic kinematics.
Briefly, this condition ensures that there is no non-trivial combination of the external
momenta that adds up to 0. It is worth remarking that this condition is not necessary if
the combinatorial concept of mass-momentum-spanning is slightly generalized while
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keeping the equivalence g/, = 0 < mass-momentum-spanning. With this general-
ization, it is sufficient to require that any external momenta are non-zero.

Proof. Theorem 7.1 has been proven by Schultka [96, Theorem 4.15] using results
from Brown [29].

The first statement that the Newton polytopes of Wg and &g are generalized
permutahedra can be traced back to Hepp [64] and Speer [100], who realized that
a complete ordering of the integration parameters in equation (7.1) is sufficient to cap-
ture the relevant singularities of parametric integrals in the Euclidean non-exceptional
case. See also [98] for a comparison of this viewpoint with modern sector decompo-
sition techniques.

The form of the boolean functions zy, and zg, follows directly from the fac-
torization laws [29, Proposition 2.2], [29, Proposition 2.4] and [29, Theorem 2.7] of
the W and @ polynomials. Their supermodularity follows from the argument found
in [96] after Corollary 4.12. ]

Remark 7.2. It was implicitly proved by Panzer [89, Lemma 2.8] that the Newton
polytope of W¢ is a generalized permutahedron using an elegant argument based on
Kruskal’s algorithm [76]. This argument can also be generalized to the ® polyno-
mial by an extension of Kruskal’s algorithm to minimal 2-forests.

Remark 7.3. Theorem 7.1 is also of interest in a different context: generalized per-
mutahedra have a universal property with respect to their Hopf monoid structure.
Feynman graphs carry a Hopf algebra structure which is deeply intertwined with
renormalization [40] and encodes the singularity structure of the integrand [13, 29].
The relationship between these two structures remains to be explored.

Remark 7.4. For general non-Euclidean kinematics, the Newton polytope of ®g is
not a generalized permutahedron. An explicit counterexample is given in [99, Sec-
tion 2.4]. We emphasize that the general tropical sampling algorithm introduced in
Section 5 still applies. The caveat is that an explicit triangulation has to be computed,
in contrast to the generalized permutahedron case, where no explicit triangulation is
necessary.

7.2. Tropical Monte Carlo quadrature of Euclidean Feynman integrals

To perform the generalized permutahedron tropical Monte Carlo routine from Sec-
tion 6 on the parametric Feynman integral in equation (7.1), we still have to ensure that
the numerator monomials [, x. are generalized permutahedra. This is of course triv-
ial, as the Newton polytope of a monomial is zero-dimensional and its normal fan is
trivial. The braid arrangement fan is automatically a refinement of this fan and the con-
ditions for Definition 6.1 are fulfilled. The facet presentation of these 0-dimensional
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polytopes associated to the Newton polytope of the polynomial p.(x) = x. in the
form of Theorem 6.3 is given by the boolean function z,,(y) = 1 if e € y and
Zp.(y) = 0if e & y for all subgraphs y.

Because we assume that the edge weights v,, the dimension D and the superficial
degree of divergence w(G) are real, we have

1
A= v Np, +0(G) Ny, B = SDNug +0(G) Nog i 0(G) 20,
e

1
A= Ve Np, +(-0(G) Nog. B = 30 Mg +(-0(6)) Mg if o(G) <0.

We can define the boolean function rg: 2lE] _, R as in Theorem 6.6,

rg(y) = za(y) —zs(y)

= ez ()~ 5 206 () + 06 v (1) — 206 ()

D
= Z Ve — 3€()/) — ®(G)dpm.(y) forall non-empty y C G,

ecy

where we used Lemma 6.4 and Theorem 7.1 and where 6, (y) = 1 if y is mass-
momentum-spanning and 0 otherwise. Note that, up to the 6y, -term, the function
rg () is equal to the superficial degree of divergence w(y) of a subgraph.

For Euclidean kinematics, the polynomials Wg and ¢ have only positive coef-
ficients. Therefore, they are completely non-vanishing on P£;~!. We can apply The-
orem 6.6 independently of the sign of w(G) and find that the parametric integral in
equation (7.1) is convergent if 7g (y) > 0 for all non-empty proper y < G using Corol-
lary 6.3 which implies # C relint B in this case. In fact, it is sufficient that rg(y) > 0
holds for all proper motic subgraphs y as defined in [29, Definition 3.1] for /¢ to be
convergent.

As defined in equation (5.2), the tropical differential form associated to /g is

L Hexz" (\Pg(x)>w(G)Q
1§ WE (x)P/2\ D (x)

wG =

with an appropriate normalization factor /} such that 1 = ng—l ,uté. For o(G) =0
this normalization factor is a certain invariant of the graph G which has been studied
by Panzer [89]. This invariant is the Hepp-bound. The Hepp-bound is independent of
the physical parameters encoded in the masses and external momenta. It mirrors many
properties of the period, which is given by the integral in equation (7.1) in the same
special case w(G) = 0. The period is another graph invariant which has interesting
number theoretical properties [25,28,33,60].
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By Definition 6.7, the normalization factor can be generalized to a subgraph func-
tion Jg: 2!1 — R which is determined by the recursion

e \e)
e =2 e

for all non-empty y C G with Jg(@) = 1 and rg (@) = 1. The actual normalization
factor is recovered for y = G, i.e., I = JG(G) by Proposition 6.8. With a precal-
culated table of the values rg(y) and Jg(y) for all y C G, Algorithm 4 provides
an efficient way to sample from the distribution given by the differential form s
on IP’ZO_I. Using this sampling algorithm, we can obtain estimates for the parametric
Feynman integral equation (7.1) by the standard Monte Carlo procedure from Theo-
rem 2.5 or equivalently Algorithm 2.

7.3. Expansions in regularization parameters

Often not only the integral in equation (7.1) is of interest, but also the Taylor expan-
sions of the parameters D and v, around specific points. Very important is the e-
expansion of the parametric Feynman integral in equation (7.1) in the context of
dimensional regularization. Effectively, such an expansion results in integrals of the

form

= [1. xe¢ /¥ (x)\@@ P

fo= 57 (i) ([Tloe o)) log'(¥a) log' (¥/ )2,
¢ /Pfo_l U (x)P/2\dg(x) l:[ 0g"¢ (xe) ) log®(¥g) log' (W / Pc)
for some set of integers s, € N and k1, ...,kg € N. The estimation of this general-

ization is also possible with the help of Algorithm 3 or Algorithm 4. Using

F _u 1 W6 (x)/ WE (x)\ (©)
fo=le /Pfo—l (WG (x)/ W (x)PP2 (%(x)/cbz(x))

x ([ Ttog" (xe)) log" (We) log' (W6 /@6 )u™

gives the desired estimate. A caveat is that the integrand is not bounded anymore, as
the logarithms will exhibit singularities at the boundary of the integration domain.
This is not a severe problem, as these singularities are square-integrable and Theo-
rem 2.5 may still be applied.

7.4. Some experimental results

A proof-of-concept C++ implementation of this algorithm, which evaluates general
Euclidean Feynman integrals, is available on the author’s personal web page and in
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E €(G) o7/I Samples,1/s Preprocessing time,s RAM

6 3 0.9 1.1-10° 3.0-107 1 KB
8 4 1.1 7.5-10° 1.3-107% 4 KB
10 5 1.3 51-10° 6.0-107% 16 KB
12 6 1.6 4.1-10° 2.7-1073 64 KB
14 7 1.8 3.2-10° 1.2-1072 256 KB
16 8 2.1 2.6-10° 53-1072 1 MB
18 9 2.5 2.1-10° 2.3-107! 4 MB
20 10 2.8 1.4-10° 1.1-10° 16 MB
22 11 3.2 1.0-10° 4.7-10° 64 MB
24 12 3.7 8.6-10% 2.1-10! 256 MB
26 13 4.2 6.9-10* 9.5-10! 1 GB
28 14 4.8 59.-10* 4.4-10% 4 GB
30 15 5.3 5.1-10* 1.9-103 16 GB
32 16 6.3 4.3.10* 8.7-103 64 GB
34 17 7.2 3.6-10% 3.9.10% 256 GB

Table 1. Benchmark of Feynman integral evaluations with different numbers of edges.

the ancillary files to the arXiv version of this article.” The algorithm has been tested
on various graphs from @*-theory in four dimensions, which have been generated
using tools from [17]. To illustrate the performance of the algorithm, a benchmark
is given in Table 1. The benchmark has been performed on a single core of an AMD
EPYC 7702P processor. The columns £ and £(G) show the number of edges (equiv-
alently the dimension of the integral 41) and the corresponding number of loops of
the underlying ¢*-graph. The column o7 /1 gives the relative standard deviation of
the samples, i.e., if §72 - o7 /1 samples are drawn, then a relative accuracy § can be
expected from the resulting estimate. Up to this expected accuracy, all obtained esti-
mates are consistent with the available analytic results from [25,32, 90, 94, 95]. The
implementation has also been checked using numerical calculations of non-¢* graphs
with non-trivial masses and kinematics performed with pySecDec [22,23].

Recall that the algorithm can be applied to arbitrary D-dimensional scalar Feyn-
man integrals with arbitrary kinematics in the Euclidean regime, and the benchmark
results can be expected to be representative for the evaluation of all such graphs with
the same number of edges. The choice for p*-theory and D = 4 is practical because
much analytic data is available even at high loop orders, which allows for convenient
checks of the numerical estimates.

2See https://michaelborinsky.com and https://arxiv.org/abs/2008.12310.
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~

Figure 3. An 8-loop ¢*-graph whose period does not evaluate to a linear combination of mul-
tiple zeta values or multiple polylogarithms at roots of unity.

As can be seen from the table, the number of samples per second decreases slowly
with the looporder or equivalently the dimension of the problem. The necessary time
for the preprocessing step, on the other hand, depends exponentially on the dimension.
For example, it takes 2.5 CPU-seconds to evaluate a graph with 10 edges and general
kinematics up to § = 1073 relative accuracy. The necessary time for the preprocessing
step of 6.6 - 10™% seconds is negligible, and the memory requirements of 16 KB are
insignificant. It takes 20 CPU-seconds to evaluate a graph with 20 edges and general
kinematics up to the same relative accuracy. The time for the preprocessing step is 1
second and the memory requirements of 16 MB are still very manageable. Similarly,
it takes about 2 CPU-minutes to evaluate a Feynman graph with 30 edges up to this
accuracy after the preprocessing step has been performed. At this point, this prepro-
cessing step, unfortunately, already takes about 30 minutes and 16 GB of RAM are
necessary.

The evaluation step of the algorithm is fully parallelizable and the preprocess-
ing step is partially. The memory requirements can be reduced in the special case
®(G) = 0 or by using a more efficient storage of the relevant constants. The overall
picture of exponentially growing memory demands and an exponential time for the
preprocessing step will not change without modifying the algorithm significantly.

An interesting example of a p*-graph in D = 4, whose evaluation was not ap-
proachable by any previously existing techniques, is the graph in Figure 3. It is one of
the smallest graphs in ¢*-theory whose period is not a linear combination of multiple
zeta values or multiple polylogarithms at roots of unity. This was proven in [31, Sec-
tion 6.2] for a graph which is equivalent with respect to its period by the completion
identity [94]. Sampling 10'2 points in about 24 hours on 54-CPU-cores results in the
following estimate for the period of this graph,

Ig = / 1, xe Q ~ 422.9610 £ 0.0009.
pEs1 Wg(x)?
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8. Further research directions

1. Markov chain Monte Carlo based sampling. The tropical Monte Carlo algorithms
are still very limited in terms of the complexity of the integrals to which they apply
because of the cumbersome preprocessing step that has to be performed for each inte-
gral. To overcome this bottleneck without relying on special structures of the integrals,
it would be necessary to find a more efficient way to sample from u' than Algorithm 3
or Algorithm 4, while also having access to the normalization factor /. Eventually,
one has to settle with a still relatively slow algorithm for this task, as we have a ‘no-
go theorem’ in a special case: if all the numerator polynomials are monomials, i.e.,
ai(x) = x;j, then I corresponds to the volume of a certain polytope. Computing or
approximating the volume of a general n-dimensional polytope is a task that cannot
be performed deterministically in polynomial time [6]. A workaround is to use a non-
deterministic algorithm both to compute the normalization factor /" and to obtain
samples from p". There are many highly advanced Markov chain Monte Carlo algo-
rithms that have been developed to perform exactly this task (see, for instance, [48,79]
and the references therein). It is very plausible that adapting these polytope integra-
tion and sampling algorithms to our algebraic integral quadrature application should
result in the sought after polynomial time algorithm for algebraic and Feynman inte-
gral evaluation.

2. Physical integration regions and components of coamoeba. The last condition in
Theorem 2.3 is closely related to the coamoeba of the set of polynomials {b;}. If
a polynomial p € C[xy, ..., x,] has zero locus Z, = {z € (C \ {0})": p(z) = 0},
then the coamoeba of p is the image of Z, under the coordinate-wise complex arg-
function: ), = Arg(Z,) C [0, 2x]". The coamoeba is related to the amoeba, which
goes back to Gelfand, Kapranov and Zelevinsky [54] and has numerous applications
in tropical geometry. By a result proven independently by Johansson [67] and Nisse,
Sottile [86], a polynomial is completely non-vanishing if the origin is not in the clo-
sure of its coamoeba 0 ¢ ,f%. In [85] it was shown via Cauchy’s theorem that the
integration cycle R”;! of the integral in equation (1.3) can be replaced by Arg~1(6)
as long as 6 and 0 lie in the same connected component of the intersection of the
coamoeba of the denominator polynomials. A similar argument works for the projec-
tive version of generalized Euler—Mellin integrals which was considered here.

A strikingly reminiscent procedure is necessary while evaluating Feynman inte-
grals with kinematics in Minkowski space. The necessary analytic continuation in
this case is governed by the i e-prescription, which ultimately results from causality
and unitarity constraints on the amplitude [49]. Formulating this procedure in terms
of a canonical choice of a component in the respective coamoeba would result in
a canonical analytic continuation procedure in the Minkowski case. See also [44],
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where related observations regarding parametric Feynman integrals and coamoeba
were made.

3. Further acceleration of the algorithms by using more structures. In the w(G) = 0
case, the normalization factor of the ju¢, distribution for the parametric Euclidean
Feynman integral in equation (7.1) reduces to the Hepp-bound studied by Panzer [89].
He gave more efficient ways to compute this normalization factor 1%, which likely
can also be used to sample from the j1, distribution more efficiently. Moreover, these
more elaborate ways to compute the Hepp-bound can probably be generalized to deal
with the w(G) # 0 case using results from Brown [29].

In a broader sense, an extension of Algorithm 4 beyond the generalized permu-
tahedron case could be possible. Especially attractive would be an extension which
includes the interesting Minkowski space Feynman integral case. Further analysis of
the relevant structures for the tropical geometric framework, starting, for instance,
with the explicit counterexample in [99, Section 2.4], could lead to an appropriate
refinement of the braid arrangement fan. Such a refinement could lead to a direct
generalization of the generalized permutahedron sampling Algorithm 4, which would
make the integration of high-dimensional Feynman integrals (i.e., with ~ 30 edges)
also possible in the Minkowski regime.

4. BPHZ renormalization. As mentioned above, Feynman integrals, as the one in
equation (7.1) with non-integrable singularities, are often interesting. A common
approach to deal with these singularities is to subject the integral to an analytic con-
tinuation procedure before any numerical integration is performed. Ultimately, these
singularities have a well-studied physical origin and are handled via renormalization.
The momentum BPHZ renormalization scheme takes care of these singularities before
any integration is performed. This renormalization scheme can be implemented at the
level of the parametric integrand [30]. Such an implementation would make the ana-
lytical continuation step in the v, edge weights and the dimension D unnecessary.

5. Estimates for large loop order B-functions. The estimates that can be obtained
using the proof-of-concept implementation of Feynman graph integrals up to loop
order 17 in ¢*-theory can immediately be used for a numerical estimation of the
B-function up to this loop order. This has phenomenological applications for the cal-
culation of critical exponents for various complex systems and even works without the
need for an analytic continuation, as it has been observed that the non-primitive con-
tributions to the B-function become negligible with sufficiently large loop order. The
approach can be further amplified by making use of the observed Hepp-bound/period
correlation which was applied by Panzer and Kompaniets [71] to obtain estimates of
the ¢*-theory B-function up to order 13.
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Even if it is not possible to evaluate all necessary Feynman diagrams individu-
ally for the respective loop order, a numerical approach could be sufficient to gain
enough insights on the distribution of the value of these integrals. If such statistical
knowledge is available, the number of (renormalized) Feynman diagrams is sufficient
to extrapolate values for the entire S-function contribution [18].

Such an approach naturally extends to a question for the inherently large-order
regime: suppose that G is a random 1PI ¢*-graph without subdivergences and £(G)
loops. Is there a limiting distribution

Ve G
im Ciy [, gocsr (ec)
U(G)—> o0 @ Pf&l lI/G(JC)D/Z CDG(x)

with an appropriate normalization constant Cy, for each loop order L = £(G), and if
yes, what does it look like? The analysis [43] gives some positive indication for the
existence of such a distribution.

An overall normalization constant for such a distribution, which normalizes its
expectation value to one, can be calculated using instanton methods [81] and renor-
malized graph counting [18], as was pointed out by Panzer [88]:

4e3VE 3\ L+3
=)
2w A®

2
where yg is the Euler—Mascheroni constant and A is the Glaisher—Kinkelin con-
stant.

An exhaustive statistical analysis using the algorithms from this article should
give further indication for or against the existence of such a limit. A combination
with analytic combinatorial methods for Dyson—Schwinger equations might lead to
an explicit form of a limit distribution of Feynman integrals [41,74,75].

6. Phase-space integration. Simple phase space integrals, which are another type of
integrals necessary for particle physics phenomenology, also fall under the category
of integrals in equation (1.1). For more elaborate phase space integrals, more com-
plicated non-simplicial integration domains are necessary. It is possible that the algo-
rithms discussed in this article may be extended to these more complicated domains.
Writing the phase space integrals in terms of kinematic variables as in [52] and using
a geometric subtraction scheme for the infrared singularities [65] could be instrumen-
tal for this extension.

7. Tropical sampling applied to sums of Feynman diagrams. The general tropical
sampling algorithm described in Section 5 is made possible by a well-calculated
emancipation from the rigid concept of sectors as parts of the integral, each of which
has to be attacked individually.
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Following a line of thought from [3], we can say that a similar but much stronger
bias exists on the level of the amplitude. The time-honoured approach to amplitude
calculation is to write it as a sum over Feynman graphs with the same number of
loops L (pictorially in disregard of renormalization and the explicit form of the inte-
grals),

1
AL =) |AutG|/(...)sz,

L(G)=L

and evaluate the indicated integrals one by one. There are promising indications that
there is a superior structure which can be ‘triangulated’ into Feynman integrals in an
appropriate sense, yielding a sum as the one above, similar to the sector decomposition
approach, where an individual integral is decomposed in terms of the triangulation of
the respective normal fan.

An especially suggestive candidate for such a superior object in the case of scalar
quantum field theories is Outer space [42] and its quotient formed under the action of
Out(F,), which is the moduli space of graphs. For instance, unitarity and branch cut
properties of Feynman integrals can be understood using Outer space [8, 14,73]. This
space can be seen as a tropical analogue of Teichmiiller space [38] and the moduli
space of curves, which holds a similar superior role in string theory. Recently, quan-
tum field theory inspired techniques have been successfully applied in the theory of
Outer space [20].

A problem to overcome for such an approach are the UV-divergences that nat-
urally appear in renormalizable QFT calculations. It is well known how such diver-
gences can be handled both on the amplitude or on a per integral level [39], and also
mathematically these divergences are quite well understood, even in the large-order
regime [18, 19]. These divergences would also appear in a geometric setting for the
amplitude, and dealing with them would mean working on a certain compactification
of Outer space and the moduli space of graphs. One such compactification has been
constructed by Berghoff [8] (see also [9]), which might be usable for the numerical
evaluation of amplitudes.

8. Quasi-Monte Carlo. State of the art implementations for numerical Feynman inte-
gral integration employ quasi-Monte Carlo methods [84] for the actual integration of
the sector integrals instead of traditional Monte Carlo methods. This has the simple
and obvious advantage of a significantly increased rate of convergence. The disad-
vantage of the quasi-Monte Carlo approach is that it is mathematically much more
challenging to handle. It is plausible that the algorithms introduced in this article can
be accelerated using quasi-Monte Carlo methods. A challenge will be the handling
of the mixture of discrete and continuous probability distributions in the sampling
algorithms from Sections 5 and 6.
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9. Systematic tropical expansions. The tropical approximation p" can be interpreted
as a certain limit, as shown in Section 3. It is natural to ask if one can interpret p"
as the ‘zeroth’ order in a systematic expansion and it is plausible that a systematic
improvement of the technique can be obtained this way. The ultimate aim of such
investigations would be an efficient approximation scheme that gets by without a final
Monte Carlo step and immediately yields a deterministic result.
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