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A simple symmetric exclusion process driven
by an asymmetric tracer particle

Arvind Ayyer

Abstract. We consider an exclusion process on a periodic one-dimensional lattice where all
particles perform simple symmetric exclusion at rate 1 except for a single tracer particle, which
performs partially simple asymmetric exclusion with rate p to the right and rate q to the left.
This model was first considered by Ferrari, Goldstein and Lebowitz (1985) as a test for the
validity of the Einstein relation in microscopic systems. The main thrust of this work is an exact
solution for the steady state of this exclusion process. We show that the stationary probabili-
ties factorize and give an exact formula for the nonequilibrium partition function. We provide
formulas for the current and two-point correlations. When the tracer particle performs totally
asymmetric exclusion (q D 0), the results are shown to simplify significantly and we find an
unexpected connection with the combinatorics of set partitions. Finally, we study the system
from the point of view of the tracer particle, the so-called environment process. In the environ-
ment process, we show that the density of particles decays with the scaled position in front of
the tracer particle in the thermodynamic limit.

1. Introduction

We consider an exclusion process on a finite interval with periodic boundary con-
ditions where all particles, except one, perform simple symmetric exclusion. The
exceptional particle, which we call a tracer particle borrowing terminology from [5],
performs partially simple asymmetric exclusion with forward and backward rates p
and q �p, respectively. The other particles perform standard simple symmetric exclu-
sion.

This process was one of several variants investigated by Ferrari, Goldstein and
Lebowitz [9, Section IV (c)] to understand the validity of the Einstein relation in
microscopic dynamics. Later, the dynamics of the tracer particle in such an exclu-
sion process on Z was studied in a series of papers [4, 5]. In particular, it was shown
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that the mean displacement of the tracer particle starting with Bernoulli initial condi-
tions grows like

p
t , as opposed to t in other models (where the motion is ballistic).

A variant of this model, in which particles are also allowed to attach and escape from
the lattice at some fixed rate, was also studied in [1], where the density of the other
particles is calculated as seen from the point of view of the tracer particle.

Many rigorous results are known for the tracer particle when p D q D 1 on Z.
In this case, the tracer particle is indistinguishable from all the other particles and
is commonly referred to as a ‘tagged particle’ in the literature [8]. We use the term
‘tracer particle’ also to avoid confusion. Since the literature on tagged particles in
exclusion process is immense and we are primarily interested in the case when p ¤ q,
we refer to Liggett’s books [17, Chapter VIII.4] and [16, Chapter III.4] for an intro-
duction to this vast topic. We also note in passing that there have been studies on
exclusion processes on Z where each particle carries a different rate [2, 13], but the
nature of the results is very different.

The first rigorous result for this process on Z with p ¤ q is a law of large numbers
for the displacement of the tracer particle [14], confirming the picture of [4, 5]. Later
on, a central limit theorem for this displacement was also obtained in [15]. For a large
class of processes on Zd , the Einstein relation has been proven to hold in [12], but
for a similar process as the one in this article on Zd , the Einstein relation has been
disproven [19] for d � 3.

We obtain numerous exact results for the natural finite variant of this symmetric
exclusion process with a single asymmetric tracer particle, which we now describe
along with the plan of the rest of the paper. In Section 2, we define the model and
state the main results. In Section 3, we will prove the formula for the steady state
probabilities. We will also derive formulas for the generating function of the nonequi-
librium partition function there. The special case q D 0 has a particularly illustrative
combinatorial structure, and that will be dealt with in Section 3.1. We next prove exact
formulas for the current of particles as well as 1-point and 2-point correlations in Sec-
tion 4. The process, as seen from the point of view of the tracer particle, is known
as the environment process. We will calculate the exact density profile both in front
of and behind the tracer particle in Section 5. Further, we will show that the density
decays with the scaled position ahead of the tracer in the infinite volume limit, thus
confirming predictions of [1,20]. The calculation of the asymptotics used in Section 5
is relegated to Section 6. The asymptotic formulas involve implicit functions for arbi-
trary p and q, but they are expressible in terms of the Lambert W function when
p D 1 and q D 0. This special case is discussed in Section 6.1. The infinite volume
limit with finitely many particles is analyzed in Section 6.2.

Note added in proof. After this work was made public, Lobaskin and Evans upload-
ed a preprint [18] where they consider a similar model, but with many totally asym-
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metric tracer particles. We note however that they work in the totally asymmetric set-
ting in which many of the computations simplify considerably. Unlike this work, they
exploit the connection of this model to the zero-range process to derive their results.

2. Model definition and statement of results

Our model is an asymmetric exclusion process on L sites with periodic boundary
conditions, containing n particles, one distinguished particle, which we call the tracer
particle (a total of n C 1 particles), and the remaining vacancies. The tracer parti-
cle will be denoted O1, the other particles will be denoted 1 and vacancies will be
denoted 0.

The dynamics is as follows. All particles except the tracer one perform simple
symmetric exclusion with rate 1,

10
1
•
1
01: (2.1)

The tracer particle performs simple asymmetric exclusion with rates as follows:

O10
p
•
q
0O1: (2.2)

We note that although there is no restriction on the values of p and q in principle, we
will restrict ourselves to 0 � p; q � 1 since the other particles cannot have velocities
higher than 1 and the exclusion relation will force the tracer to also have a small
velocity. Further, we will always fix q � p without loss of generality.

Let �L;n be the set of configurations of the ASEP with L sites, n particles and
a tracer. We note that our model is slightly more general than that of [14,15] because,
in their language, we allow the exponential clock attached to the tracer particle to ring
at rate p C q, which need not be equal to 1.

Example 2.1. For example, with L D 3 and n D 1, the column-stochastic generator
for the process in the ordered basis

�3;1 D
®
.0; 1; O1/; .0; O1; 1/; .1; 0; O1/; .1; O1; 0/; .O1; 0; 1/; .O1; 1; 0/

¯
is given by 0BBBBBBB@

�p � 1 0 1 0 0 q

0 �q � 1 0 1 p 0

1 0 �q � 1 p 0 0

0 1 q �p � 1 0 0

0 q 0 0 �p � 1 1

p 0 0 0 1 �q � 1

1CCCCCCCA :



A. Ayyer 690

The steady state is then the null right-eigenvector and turns out to be

1

3.p C q C 2/
.q C 1; p C 1; p C 1; q C 1; q C 1; p C 1/:

For any configuration � D .�1; : : : ; �L/, let �.�/ denote the steady state probability
of � . Since the local dynamics is independent of the position, we have the following
translation invariance.

Proposition 2.2. The steady state probabilities are invariant under translation, i.e.,

�.�1; �2; : : : ; �L/ D �.�2; : : : ; �L; �1/:

Furthermore, the steady state is reflection-invariant if p D q by virtue of the
dynamics of the particles in (2.1) and (2.2). The more general statement is as follows.

Proposition 2.3. The steady state probabilities are invariant under reflection and the
interchange of p and q, i.e.,

�.�1; �2; : : : ; �L/ D �.�L; : : : ; �2; �1/jp$q:

From Proposition 2.2, it suffices to consider the stationary probabilities of config-
urations that begin with O1. For a configuration � with �1 D O1, define

w.�/ D

LY
iD2
�iD0

.1C pmi .�/C qni .�//; (2.3)

where mi .�/ (resp. ni .�/) is the number of 1’s to the left (resp. right) of i in � . For
example, when � D .O1; 0; 1; 0; 1; 1; 0/, m4.�/ D 1 and n4.�/ D 2.

Theorem 2.4. In the system with L sites and n 1’s, the steady state probability of
� 2 �L;n with �1 D O1 is given by

�.�/ D
w.�/

ZL;n
; (2.4)

where
ZL;n.p; q/ D

X
�2�L;n

w.�/

is the (nonequilibrium) partition function or normalization factor.

The nature of the formula for w.�/ in (2.3) shows that the steady state in The-
orem 2.4 is a nonequilibrium state if p ¤ q, that is, there is no detailed balance.
Equivalently, the process is irreversible. Theorem 2.4 will be proved in Section 3.
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Remark 2.5. The factorization of the steady state in Theorem 2.4 can also be ex-
plained by a standard mapping to the zero-range process, for which the factorization
is a well-established property [7]. However, we emphasize that deciphering the actual
formula for the steady state is a nontrivial task, and this is made more complicated
since we choose to work with arbitrary p and q. When q D 0, the proofs simplify
considerably.

From Proposition 2.2 and Theorem 2.4, it follows that ZL;n is L times a poly-
nomial in p and q with integer coefficients. We thus define the restricted partition
function, denoted by²

L

nC 1

³
p;q

D

X
�2�L;n

�1DO1

w.�/ D
ZL;n.p; q/

L
: (2.5)

To explain our notation for the restricted partition function, we recall some basic com-
binatorial facts. Let Œn� WD ¹1; : : : ; nº and

®
Œn�
k

¯
denote the collection of set partitions

of Œn� into exactly k parts. For example,²
Œ4�

2

³
D ¹123j4; 124j3; 134j2; 1j234; 12j34; 13j24; 14j23º;

where we have divided the subsets in the set partition by vertical bars. Set partitions
of finite sets are well-studied combinatorial objects (see, e.g., [11, Section 6.1]), and
the number of set partitions of Œn� into k parts is known as the Stirling number of the
second kind, denoted

®
n
k

¯
. It is not difficult to see that this is a triangular sequence,

i.e., 1 � k � n, and it satisfies the recurrence relation²
nC 1

k

³
D

²
n

k � 1

³
C k

²
n

k

³
; (2.6)

with
®
n
1

¯
D
®
n
n

¯
D 1. One can check from (2.6) that

®
4
2

¯
D 7 and this matches the above

example.
We analyze the special case of totally asymmetric motion of the tracer particle

in Section 3.1. We find that in the extreme case where the tracer particle performs
totally asymmetric exclusion with rate 1, the restricted partition function simplifies
considerably. The following result, which explains our choice of notation, will be
proved there.

Corollary 2.6. The restricted partition function for the case pD 1 and q D 0 is given
by the Stirling number of the second kind,²

L

nC 1

³
1;0

D

²
L

nC 1

³
:
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To perform asymptotic analysis, it will be helpful to compute the generating func-
tion for the restricted partition function. As we will see in Corollary 3.2, the stationary
distribution is uniform when p D q. We will therefore restrict our attention to the case
p > q for this analysis. The main result in this direction is an unexpectedly explicit
formula for the bivariate generating function, which is exponential in the L variable
and ordinary in the n variable.

Theorem 2.7. The mixed bivariate generating function of the restricted partition
function when p > q is given by

1X
LD1

L�1X
nD0

²
L

nC 1

³
p;q

xn
yL�1

.L � 1/Š
D exp

�
y C x

exp.py/ � exp.qy/
p � q

�
: (2.7)

Theorem 2.7 will be proved in Section 3. Using Theorem 2.7, we will show in Sec-
tion 6 that the asymptotics of the restricted partition function

®
L
nC1 p̄;q

as n;L!1
so that n=L! � 2 .0; 1/ is given by²

L

�LC 1

³
p;q

�
1p

2�L.� � .p�y0 � 1/.q�y0 � 1//

exp.y0 � 1/
yL�10

�

�L
e

�L.1��/�1�exp.py0/ � exp.qy0/
�.p � q/

��L
; (2.8)

where y0 is the unique positive real solution to the equation

exp..p � q/y/ D
�qy � 1

�py � 1
;

and where we use aL � bL to mean limL!1 aL=bL D 1. See Figure 1 for a com-
parison between the actual and asymptotic values of the restricted partition function.
As L gets larger, it is clearly seen that the ratio approaches 1.

From (2.8), it is clear that the partition function in this case grows faster than
exponentially in L. As a result, what is sometimes called the nonequilibrium free
energy, defined by the limit

lim
L!1

logZL;�L
L

;

does not exist. Strictly speaking, the partition function is not well-defined because one
could rescale all the w.�/’s arbitrarily. However, if we insist that the GCD of all the
weights w.�/ for � 2 �L;n is equal to 1, to avoid spurious common factors, then we
do not have any more freedom and the statement above is well-defined.

It is well understood that the nonequilibrium free energy is not a free energy in the
sense of conventional equilibrium statistical mechanics. Therefore, its nonexistence
does not violate any known laws. However, in all exactly-solvable examples that we
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Figure 1. A plot of the ratio of the asymptotic to the exact formula for the restricted partition
function with n D 0:5L, p D 0:55 and q D 0:78 for even values of L ranging from 12 to 120.

know of, this nonequilibrium free energy is well-defined for almost all points in the
phase diagram. Moreover, the non-analyticity of this free energy signals phase tran-
sitions in the nonequilibrium steady state. This is the case, for example, for the open
simple totally asymmetric exclusion process (TASEP) [6] and for many other mod-
els [3]. In contrast, the free energy is not well-defined for any values of the parameters
p > q in our model.

Using our results, we now compute important correlation functions in this process.
We find an exact formula for the current. We denote the current of 1’s and O1’s in the
steady state by J1 and J O1, respectively.

Theorem 2.8. In the lattice with L sites and n 1’s, the currents are given by

J O1 D .p � q/

®
L�1
nC1 p̄;q

ZL;n
; J1 D .p � q/

n
®
L�1
nC1 p̄;q

ZL;n
:

Theorem 2.8 will be proved in Section 4. We will also show in Section 4 that the
asymptotic value of the current is zero when we take L; n!1 so that n=L! � 2

.0; 1/, i.e.,
lim
L!1

J O1 D lim
L!1

J1 D 0:

This is not surprising since one does not expect that a single particle with a drift can
generate a global current in a large system.

We are also interested in seeing the profile of particles from the point of view
of the tracer particle. This is known as the environment process. By computing two-
point correlation functions between the tracer particle and other particles, we obtain
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a formula for the density profile in the environment process. Let hh�iiL;n denote the
expectation in the environment process. Since we will be interested in the density
of particles both ahead of and behind the tracer particle, we will consider positions
which are both positive and negative (relative to the tracer, which we will place at
position 0).

Theorem 2.9. In the system with L sites and n 1’s,

hh�i iiL;n D

L�n�1X
jD0

jX
kD0

�
L � 1 � i

k

��
i � 1

j � k

�
pkqj�k

®
L�j�1
n p̄;q®
L
nC1 p̄;q

;

hh��i iiL;n D

L�n�1X
jD0

jX
kD0

�
L � 1 � i

k

��
i � 1

j � k

�
qkpj�k

®
L�j�1
n p̄;q®
L
nC1 p̄;q

;

for 1 � i � L � 1.

Theorem 2.9 will be proved in Section 5 as a consequence of the two-point cor-
relation functions between the tracer particle and other particles in Theorem 4.3.
We now use (2.8) to calculate the density profile in the environment process in the
limit of large system size and finite density �. Let hh�ii be the distribution as seen
from the tracer particle in the thermodynamic limit. In Section 5, we show that the
density profile ahead of and behind the tracer particle at a distance xL, x 2 Œ0; 1�, is
given by

hh�xLii � �y0.p � q/
exp.�.p � q/y0x/
1 � exp.�.p � q/y0/

;

hh��xLii � �y0.p � q/
exp..p � q/y0x/

exp..p � q/y0/ � 1
:

(2.9)

As a test of our formula, we plot the exact density profile ahead of the tracer
particle for a large system and the asymptotic formula in Figure 2, and we find very
good agreement. This falloff in density has also been observed in a similar exclusion
process with a tracer particle with adsorption and deposition [1, Figure 2].

Detailed asymptotic studies of the partition function are performed in Section 6.
The analysis of (2.9) for the interesting special case of p D 1, q D 0 is performed in
Section 6.1.

3. Steady state

We now compute the steady state for the model. Since the transition graph of this
Markov process is identical to that of the single-species SSEP, it is clear that the
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Figure 2. A plot of the exact density of particles (red dots) ahead of the tracer particle in a sys-
tem of sizeLD 75with nD 17, pD 0:75 and qD 0:4, along with the expected curve from (2.9)
(blue curve).

process is ergodic if q ¤ 0. For q D 0, this can also be shown easily. Hence the steady
state is unique.

Proof of Theorem 2.4. Since the steady state is unique, it suffices to verify (2.4) by
the master equation,X

� 02�L;n

rate.� ! � 0/�.�/ D
X

� 02�L;n

rate.� 0 ! �/�.� 0/: (3.1)

The left-hand (resp. right-hand) side is the total outgoing (resp. incoming) contribu-
tion from (resp. to) � .

We write a generic state � in block form as

� D O10�11�1 : : : 0�k1�k0�kC1 ;

where �1; �kC1 � 0 and all other �i ; �i > 0. There are four different kinds of states
on whether �1, �kC1, both or none are zero. We will only consider the case when
�1 > 0 and �kC1 D 0. The arguments for the other three cases are very similar and
can be verified by the interested reader.

The total outgoing contribution in this case to (3.1) is .p C 2k � 1/�.�/. Now let
us consider the incoming contribution. For 1 � i � k � 1, there will be two contri-
butions each involving the 1’s in the boundary of the i ’th block of 1’s. There will be
only one contribution for the k’th block, and one for the movement of O1. Therefore,
we have 2k terms in the incoming contribution as well. We now analyze these.
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Corresponding to the first block of 1’s, we have

� .1/ D O10�1�110
!
1�1�1 : : : 0�k1�k0�kC1 ;

� .2/ D O10�1�11�1�101
 
0�2�1 : : : 0�k1�k0�kC1 ;

both of which make a transition to � with rate 1. The arrows below the sites indicate
the transition that the 1 has to make to reach � . Applying (2.4), we see that

�.� .1//

�.�/
D
1C p C .n � 1/q

1C nq
;

�.� .2//

�.�/
D
1C .�1 � 1/p C .n � �1 C 1/q

1C �1p C .n � �1/q
:

Considering the contribution to the second block of 1’s similarly from configura-
tions � .3/ and � .4/, we find that

1 � �.� .3//

�.�/
D
1C .�1 C 1/p C .n � �1 � 1/q

1C �1p C .n � n � 1/q
;

1 � �.� .4//

�.�/
D
1C .�1 C �2 � 1/p C .n � �1 � �2 C 1/q

1C .�1 C �2/p C .n � �1 � �2/q
:

Now note that
�.� .2//C �.� .3//

�.�/
D 2:

Continuing this way, we find that the same equation will hold when we sum �.� .2i//

and �.� .2iC1//, for 2 � i < k. It only remains to analyze the transition from

� .2k/ D O1
 
0�1�11�1 : : : 0�k1�k0

with rate q, where we have used Proposition 2.2 to ensure that the first site is O1. Then,
we have

q � �.� .2k//

�.�/
D q

1C np

1C nq
;

so that
�.� .1//C q�.� .2k//

�.�/
D
1C p C nq C npq

1C nq
D 1C p:

In summary, the total incoming contribution is .1 C p C 2.k � 1//�.�/, which is
exactly the outgoing contribution, completing the proof in this case. The other three
cases for �1 and �kC1 work in a completely analogous manner.

By virtue of (2.3) and Proposition 2.3, we have:

Corollary 3.1. The restricted partition function
®
L
nC1 p̄;q

is a symmetric polynomial
in p and q with integer coefficients.
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From the definition of the weight in (2.3), the following special case immediately
follows.

Corollary 3.2. When p D q, the stationary distribution is uniform. Furthermore, it
is easy to verify that the process is reversible in that case.

Recall that
®
n
k

¯
is the Stirling number of the second kind. For the restricted par-

tition function with n particles and a small number of vacancies, we can show by
brute-force computation using (2.5) that²

nC 2

nC 1

³
p;q

D nC 1C

²
nC 1

n

³
.p C q/;²

nC 3

nC 1

³
p;q

D

�
nC 2

2

�
C 3

�
nC 2

3

�
.p C q/C

²
nC 2

n

³
.p2 C q2/

C
3n � 1

2

�
nC 2

3

�
pq:

But the formulas for the restricted partition function get more complicated as L � n
gets larger. We now establish a recurrence that generalizes that of the Stirling numbers
in (2.6).

Proposition 3.3. The restricted partition function satisfies the recurrence relation²
L

nC 1

³
p;q

D .1C nq/

²
L � 1

nC 1

³
p;q

C .1C p/L�n�1
²
L � 1

n

³
p

1Cp
; q

1Cp

;

for L > n � 0, with the initial conditions
®
L
1 p̄;q

D
®
L
L p̄;q

D 1.

Proof. Decompose the set of words in �L;n beginning with O1 into those beginning
with O10 and those with O11. From the definition of w in (2.3), it is clear that the contri-
bution of the first subset gives the first term on the right-hand side, the extra 0 in front
contributing 1C nq.

The second subset requires a little more care. Consider a word

� D .O1; �2; : : : ; �L�1/ 2 �L�1;n�1;

and form � 0 2 �L;n as � 0 D .O1; 1; �2; : : : ; �L�1/. Comparing w.� 0/ and w.�/, we see
that they have the same number of factors since the number of 0’s in both is L � n.
Moreover, each factor in w.� 0/ is p plus the corresponding factor in w.�/. It is now
easy to see that replacing p by p=.1C p/ and q by q=.1C p/ in w.�/ will give rise
to the same factor as w.� 0/ except for an overall power of 1 C p. This proves the
result.
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The column generating function for the Stirling numbers is given by [22, Sec-
tion 1.6] the product formula,X

n�k

²
n

k

³
xn D

xk

.1 � x/.1 � 2x/ � � � .1 � kx/
: (3.2)

Now consider the generating function

Fn.x/ D

1X
LDnC1

²
L

nC 1

³
p;q

xL�n�1

in the formal variable x. Then we have the following two-variable generalization
of (3.2).

Theorem 3.4. The generating function Fn.x/ is given by

Fn.x/ D

nY
jD0

1

1 � .1C jp C .n � j /q/x
:

Proof. Clearly, the configurations are specified by the position of the n 1’s. Using
(2.3), the desired generating function is

Fn.x/ D
X

m0;:::;mn�0

w.O10m010m1 : : : 0mn�110mn/xn

D

�X
m0�0

.1C nq/m0xm0

��X
m1�0

.1C p C .n � 1/q/m1xm1

�
� � �

�

� X
mn�0

.1C np/mnxmn

�
;

which is easily summed to obtain the desired result.

From the column generating function of the Stirling numbers in (3.2) one can
derive the explicit formula (see [22, Section 1.6])²

n

k

³
D

kX
rD1

.�1/k�r
rn

rŠ.k � r/Š
; (3.3)

which has the remarkable property of holding true even when n < k. As an immediate
corollary of Theorem 3.4, we find a similar expression for the restricted partition
function.

Corollary 3.5. The restricted partition function is given by²
L

nC 1

³
p;q

D

nX
jD0

.�1/n�j

j Š.n � j /Š

.1C jp C .n � j /q/L�1

.p � q/n
: (3.4)
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Proof. Expand Fn.x/ in Theorem 3.4 using partial fractions,

Fn.x/ D

nX
jD0

cj

1 � .1C jp C .n � j /q/x
: (3.5)

Standard calculations show that

cj D
.�1/n�j

j Š.n � j /Š

�1C jp C .n � j /q
p � q

�n
:

Expand the right-hand side of (3.5) as a geometric series,

Fn.x/ D

1X
mD0

nX
jD0

cj .1C jp C .n � j /q/
mxm:

The coefficient of xm is precisely
®
L
nC1 p̄;q

and this completes the proof.

We note that although Corollary 3.5 is explicit, it is not useful for asymptotic
computations because the summands are not all positive. However, it is very useful
for fast exact computations on a computer for numerical values of p and q.

Remark 3.6. Corollary 3.5 can be seen as a two-variable generalization of (3.3).
Moreover, the formula for the partition function in (3.4) also gives the correct answer,
namely 0, whenL� n in complete analogy with (3.3). This is clear from the definition
of the generating function Fn.x/, but it is not so obvious from (3.4).

The mixed bivariate generating function of the Stirling numbers is given by the
remarkably simple expression [22, Section 1.6]X

n�0

nX
kD0

²
n

k

³
xn

nŠ
yk D exp.y.exp.x/ � 1//: (3.6)

Theorem 2.7 is a two-variable generalization of (3.6), which we are now ready to
prove.

Proof of Theorem 2.7. We first simplify the inner sum using Corollary 3.5,

L�1X
nD0

²
L

nC 1

³
p;q

xn D

L�1X
nD0

nX
jD0

.�1/n�j

j Š.n � j /Š

.1C jp C .n � j /q/L�1

.p � q/n
xn

D

L�1X
jD0

L�1X
nDj

.�1/n�j

j Š.n � j /Š

.1C jp C .n � j /q/L�1

.p � q/n
xn

D

LX
jD0

L�jX
mD0

.�1/m

j ŠmŠ

.1C jp Cmq/L�1

.p � q/jCm
xjCm;
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where we have interchanged the sums in the first step and shifted the inner sum in the
second step. We now use Remark 3.6 to replace the index L � 1 by M for any M
larger than L � 1. Since the equality holds for arbitrarily large values of M , we take
the limit M !1 to obtain

L�1X
nD0

²
L

nC 1

³
p;q

xn D

1X
jD0

1X
mD0

.�1/m

j ŠmŠ

.1C jp Cmq/L�1

.p � q/jCm
xjCm:

We now plug this in (2.7) to see that the left-hand side equals

1X
LD1

1X
jD0

1X
mD0

.�1/m

j ŠmŠ

.1C jp Cmq/L�1

.p � q/jCm
xjCm

yL�1

.L � 1/Š

D

1X
jD0

1X
mD0

.�1/m

j ŠmŠ

xjCm

.p � q/jCm
exp.y.1C jp Cmq//

D exp.y/
� 1X
jD0

exp.ypj /xj

j Š.p � q/j

�� 1X
mD0

.�1/m exp.yqm/xm

mŠ.p � q/m

�
:

These exponential sums are easily performed, leading to the desired result.

3.1. Special case: q D 0

When the tracer particle moves totally asymmetrically (q D 0), the restricted parti-
tion function

®
L
nC1 p̄;q

takes on a particularly combinatorial flavor. We generalize the
Stirling numbers by setting²

n

k

³
p

D

X
�2
®
Œn�
k

¯p#¹number of elements in the subset containing 1 in �º�1:

Continuing the example in Section 2,
®
4
2 p̄
D 1 C 3p C 3p2. It can be easily veri-

fied that these polynomials satisfy a triangular recurrence relation (just like (2.6) is
satisfied by the Stirling numbers)²

nC 1

k

³
p

D

²
n

k � 1

³
p

C .k � 1C p/

²
n

k

³
p

(3.7)

with initial conditions
®
n
n p̄
D 1 and

®
n
1 p̄
D pn�1. Then we have the following result.

Theorem 3.7. The restricted partition function in the case q D 0 is given by²
L

nC 1

³
p;0

D pL�n�1
²
L

nC 1

³
1=p

:
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Proof. We will verify that both sides satisfy the same recurrence relation and initial
conditions. When n D L � 1 and n D 0, the right-hand side is 1. Let us consider the
left-hand sides. The only configuration in �L;L�1 is O11 : : : 1, and �.O11 : : : 1/ D 1

by (2.4). Similarly, �L�n;0 has a single configuration with �.O10 : : : 0/ D 1 by (2.4).
Thus, the left-hand side is also 1 in both cases.

Now, every configuration � in�L;n with �1 D O1 is obtained by either appending 1
to a configuration � 0 in �L�1;n�1 with � 01 D O1 or 0 to a configuration � 00 in �L�1;n
with � 001 D O1. In the former case, �.�/D �.� 0/ by (2.4) since q D 0. In the latter case,
�.�/ D .1C np/�.� 00/. We therefore obtain²

L

nC 1

³
p;0

D

²
L � 1

n

³
p;0

C .1C np/

²
L � 1

nC 1

³
p;0

and complete the proof by noting that this is equivalent to (3.7).

Corollary 2.6 now follows by setting p D 1 in Theorem 3.7. It can also be seen
directly from (3.2) and Theorem 3.4

4. Correlation functions in steady state

The current of a particle across a bond is the amount per unit time it jumps across
the bond in the forward direction minus that in the reverse direction. Let � (resp. � )
denote the occupation variable for O1 (resp. 1). That is to say, �i D 1 (resp. �i D 1)
if and only if the i ’th site is occupied by a O1 (resp. 1), and otherwise �i (resp. �i ) is
zero. We will denote averages with respect to the stationary distribution using angular
brackets, h�iL;n.

Lemma 4.1. For L > n � 0 and 2 � i � L � 1, we have

h�1�i .1 � �iC1/iL;n � h�1.1 � �i /�iC1iL;n D .p � q/

®
L�1
nC1 p̄;q

ZL;n.p; q/
h�1�i iL�1;n:

Proof. From the definitions,

h�1�k.1 � �kC1/iL;n � h�1.1 � �k/�kC1iL;n

D
1

ZL;n.p; q/

X
˛1;˛2

.w.O1˛110˛2/ � w.O1˛101˛2//;

where the sum is over words ˛1, ˛2 in ¹0; 1º of lengths .k � 2/ and .L � 1 � k/,
respectively, with a total of .L � n � 2/ 0’s and .n � 1/ 1’s. Using (2.3), we observe
that for all possible words ˛1, ˛2

w.O1˛110˛2/ � w.O1˛101˛2/ D .p � q/w.O1˛11˛2/:
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Now, each configuration on the right-hand side is an element of �L�1;n and con-
versely, every configuration in �L�1;n occurs exactly once as ˛1, ˛2 vary. Thus the
sum is

®
L�1
nC1 p̄;q

h�1�i iL�1;n, proving the result.

We are now in a position to prove the formula for the current. Recall that the
current of 1’s and O1’s in the steady state is denoted by J1 and J O1, respectively.

Proof of Theorem 2.8. We first consider the current of O1 across a bond. Since the bond
itself does not matter, we fix the bond to be the one between sites 1 and L. Then the
current of O1 is given by

J O1 D ph�L.1 � �1 � �1/iL;n � qh.1 � �L � �L/�1iL;n:

By translation invariance of the stationary distribution (see Proposition 2.2), we obtain

J O1 D
1

ZL;n.p; q/

X
˛

.pw.O10˛/ � qw.O1˛0//;

where w is the weight function defined in (2.3) and the sum is over all words ˛ with
.L � n � 2/ 0’s and n 1’s. Using the formula for the weight in (2.3), this can be
written as

J O1 D
1

ZL;n.p; q/

�
p.1C nq/

²
L � 1

nC 1

³
p;q

� q.1C np/

²
L � 1

nC 1

³
p;q

�
;

which simplifies to give the result.
The current of 1’s again across the bond between sites L and 1 is given by

J1 D h�L.1 � �1 � �1/iL;n � h.1 � �L � �L/�1iL;n:

By conditioning on the location of the tracer particle, we obtain

J1 D

L�1X
kD2

�
h�L.1 � �1 � �1/�kiL;n � h.1 � �L � �L/�1�kiL;n

�
D

L�1X
kD2

�
h�1�L�kC1.1 � �L�kC2/iL;n � h�1.1 � �L�kC1/�L�kC2iL;n

�
;

where we have used translation invariance again in the last step to ensure that the first
site is occupied by O1. Now, replace k by L � k C 1 to obtain

J1 D

L�1X
kD2

�
h�1�k.1 � �kC1/iL;n � h�1.1 � �k/�kC1iL;n

�
D .p � q/

®
L�1
nC1 p̄;q

ZL;n.p; q/

L�1X
kD2

h�1�kiL�1;n
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by Lemma 4.1. Therefore, the sum on the right-hand side is just the total number of
regular particles, which is n. This concludes the proof.

Using the formula for the current in Theorem 2.8, we can compute the limiting
value of the current of O1 and 1’s. Let L; n!1 so that n=L! � 2 .0; 1/. We then
use (2.8) to compute the ratio of

®
L�1
nC1 p̄;q

and
®
L
nC1 p̄;q

. It is reasonable to assume
� and y0 (defined in (6.3)) are the same for both restricted partition functions in the
large size limit. We then find that

J O1 �
p � q

L

y0e

L

�
1 �

1

L

�L.1��/�2
�
.p � q/y0e

�

L2
;

which tends to 0 as L!1. Using the same computation,

J1 �
.p � q/y0�e

�

L
;

which also tends to 0.
We now want to calculate other correlation functions. Translation invariance of

the stationary distribution (see Proposition 2.2) gives the densities.

Proposition 4.2. In the system with L sites and n 1’s,

h�i iL;n D
1

L
; h�i iL;n D

n

L
:

The computation of special two-point correlations, namely those involving the
tracer particle, is more interesting. These will help understand the profile from the
point of view of the tracer particle, i.e., in the environment process.

Theorem 4.3. In the system with L sites and n 1’s,

h�1�i iL;n D

L�n�1X
jD0

jX
kD0

�
L � i

k

��
i � 2

j � k

�
pkqj�k

®
L�j�1
n p̄;q

ZL;n.p; q/
; (4.1)

for 2 � i � L.

Proof. We will prove this result by a double induction argument. One is an induction
on L and the other is a reverse induction on i . If L D nC 1, then both j and k are
forced to be 0 in (4.1) and we obtain 1, as expected. Now suppose L > nC 1. At the
last site, we find that

h�1�LiL;n D .1C q/
L�n�1

®
L�1
n

¯
p=.1Cq/;q=.1Cq/

ZL;n.p; q/
;
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by following the same steps as the proof of Proposition 3.3. Now, plug in the expres-
sion from Corollary 3.5 on the right-hand side to obtain

h�1�LiL;n D
.1C q/L�n�1

ZL;n.p; q/

n�1X
jD0

.�1/n�1�j

j Š.n � 1 � j /Š

.1C jp C .n � j /q/L�2

.p � q/n�1
: (4.2)

We will now show that we obtain the same expression from (4.1). Substitute i D L in
the right-hand side of (4.1) and again use Corollary 3.5 for

®
L�k�1
n p̄;q

to get

L�n�1X
kD0

�
L � 2

k

�
qk

n�1X
jD0

.�1/n�1�j

j Š.n � 1 � j /Š

.1C jp C .n � 1 � j /q/L�2�k

ZL;n.p; q/.p � q/n�1
:

Interchange the j and k sums to find the expression

n�1X
jD0

.�1/n�1�j

ZL;n.p; q/j Š.n � 1 � j /Š.p � q/n�1

�

L�n�1X
kD0

�
L � 2

k

�
qk.1C jp C .n � 1 � j /q/L�2�k :

Note that we can replace the upper limit of the k sum by L� 2 because ZL;n D 0 for
L � n (see Remark 3.6). Then the inner sum becomes a standard binomial sum and
we obtain the same expression as (4.2), proving the base case.

Now, we suppose that (4.1) is correct for i C 1. To prove the formula at site i we
have to show that

h�1�i iL;n � h�1�iC1iL;n D

L�n�1X
jD0

jX
kD0

��
L � i

k

��
i � 2

j � k

�
�

�
L � 1 � i

k

��
i � 1

j � k

��
pkqj�k

®
L�j�1
n p̄;q

ZL;n.p; q/
: (4.3)

Now, we observe that

h�1�i iL;n � h�1�iC1iL;n D h�1�i .1 � �iC1/iL;n � h�1.1 � �i /�iC1iL;n:

Using Lemma 4.1, we have

h�1�i iL;n � h�1�iC1iL;n D .p � q/

®
L�1
nC1 p̄;q

ZL;n.p; q/
h�1�i iL�1;n:
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By the induction assumption on L, use (4.1) for the right-hand side to obtain

h�1�i iL;n � h�1�iC1iL;n

D .p � q/

L�n�2X
jD0

jX
kD0

�
L � 1 � i

k

��
i � 2

j � k

�
pkqj�k

®
L�j�2
n p̄;q

ZL;n.p; q/
:

First, shift j to j C 1 on the right-hand side. We will now work purely with the k
sum. Use .p � q/pkqj�k D pkC1qj�k � pkqj�kC1 to split the right-hand side into
two sums, and shift k to k � 1 in the first sum to get

jX
kD0

��
L � 1 � i

k � 1

��
i � 2

j � k

�
�

�
L � 1 � i

k

��
i � 2

j � k � 1

��
pkqj�kC1:

A little bit of algebra shows that the expression in the parentheses above can also be
written as �

L � i

k

��
i � 2

j � k

�
�

�
L � 1 � i

k

��
i � 1

j � k

�
;

leading to the summand in (4.3). The limits of the j sum are 1 and L� n� 1, but this
does not cause a problem because the term j D 0 in (4.3) contributes nothing. This
proves the result.

Theorem 4.3 simplifies considerably when p D 1, q D 0. In this case, the sum-
mand k is forced to be equal to j and we obtain the following:

Corollary 4.4. When p D 1 and q D 0, the density of particles in the system with L
sites and n particles is given by

h�1�i iL;n D
1

ZL;n.1; 0/

L�n�1X
jD0

�
L � i

j

�²
L � j � 1

n

³
;

for 2 � i � L.

5. Profile in the environment process

In this section, we obtain the density profile as seen from the tracer particle, first
for the finite system and then in the thermodynamic limit. We begin with the proof of
Theorem 2.9, building on the results in the previous section. Recall from Section 2 that
hh�iiL;n denotes the expectation in the environment process. Since all positions will be
measured relative to the tracer particle, the position of the tracer particle is arbitrary
and can be chosen to be 0. Throughout this section, we will label the positions from 0

to L � 1.
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Proof of Theorem 2.9. By the translation invariance in Proposition 2.2,

hh�i iiL;n D

L�1X
jD0

h�j �jCi i D Lh�0�i i:

We now use formula (4.1) for the latter from Theorem 4.3 (after replacing i by i C 1)
to obtain hh�i iiL;n for i > 0.

When looking at the densities behind the tracer, we will look at positions �i
for 1 � i � L � 1. Because of the circular geometry, position�i is the same asL � i .
We therefore again use formula (4.1) for h�0�L�iC1i from Theorem 4.3 to obtain
hh��i iiL;n, completing the proof.

Now, we use Theorem 2.9 to compute the density both in front of and behind the
tracer particle in the infinite volume limit. We fix a position i � xL in the system of
size L, where �1 � x � 1, and there are n � �L particles. We will compute the ratio
of
®
L�j�1
n p̄;q

and
®
L
nC1 p̄;q

assuming that j is fixed. This is a reasonable thing to
do since the partition function grows superexponentially and therefore the ratio will
decay faster than exponentially in j . Thus, one expects only a finite number of terms
to contribute. When j is finite, it is not difficult to see that the density of particles in
the system with L � j � 1 sites and n � 1 particles is also � to the lowest order. For
the same reason, y0 (defined in (6.3)) is also the same to the lowest order. Using (2.8),
we find that®

L�j�1
n p̄;q®
L
nC1 p̄;q

�
.L � j � 1/L�j�2

.n � 1/n�1
nn

LL�1
exp.j /yjC10 .p � q/

exp.py0/ � exp.qy0/

�
�y
jC1
0 .p � q/L�j

exp.py0/ � exp.qy0/
: (5.1)

Recall that hh�ii denotes the limiting distribution in the environment process. Substi-
tuting (5.1) into the first formula in Theorem 2.9 with 0 � x � 1, and approximating
the sum by taking the j limit to infinity, we find that the density in front of the particle
is given by

hh�xLii �

1X
jD0

jX
kD0

.xq/j�k..1 � x/p/k

.j � k/ŠkŠ

�y
jC1
0 .p � q/

exp.py0/ � exp.qy0/

D
�y0.p � q/

exp.py0/ � exp.qy0/

1X
jD0

y
j
0

j Š

jX
kD0

�
j

k

�
.xq/j�k..1 � x/p/k

D
�y0.p � q/

exp.py0/ � exp.qy0/

1X
jD0

y
j
0

j Š
.xq C .1 � x/p/j

D �y0.p � q/
exp.�.p � q/y0x/
1 � exp.�.p � q/y0/

; (5.2)
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where we have used the binomial theorem to obtain the third line. Therefore, we have
found that the density decays as a function of the scaled position ahead of the tracer
particle. See Figure 2 for a comparison with exact data for a small system.

To calculate the density behind the particle, we essentially repeat this calculation
by plugging in (5.1) into the second formula in Theorem 2.9 with 0 � x � 1. We then
obtain

hh��xLii � �y0.p � q/
exp..p � q/y0x/

exp..p � q/y0/ � 1
: (5.3)

This validates the formulas in (2.9).

6. Asymptotics of the restricted partition function

We will first compute the asymptotics of
®
L
nC1 p̄;q

when L, n become infinite with
a finite density of particles. In Section 6.1, we will compute the asymptotics as in the
previous section specialized to p D 1, q D 0. In Section 6.2, we will fix n and let L
approach infinity. The results in this section are not at the same level of rigor as in the
other sections, but we believe they could be made rigorous with some effort. However,
we have performed extensive numerical checks of the results to convince ourselves of
their validity.

It is customary to take L; n!1 so that there is a finite density of particles in
the limit. Let � D limn!1.nC 1/=.L/ be the limiting density of particles, which we
assume to exist and satisfy 0 < � < 1. We will first derive an asymptotic formula for
the restricted partition function

®
L
nC1 p̄;q

, closely following Temme’s approach [21]
for uniform asymptotics of the Stirling numbers.

From the generating function in Theorem 2.7, it immediately follows thatX
L�nC1

²
L

nC 1

³
p;q

yL�1

.L � 1/Š
D

exp.y/
nŠ

�exp.py/ � exp.qy/
p � q

�n
:

From this, we obtain the contour integral formula²
L

nC 1

³
p;q

D
.L � 1/Š

nŠ

1

2�i

I
C

exp.y/
yL

�exp.py/ � exp.qy/
p � q

�n
dy; (6.1)

where C is a small contour around the origin. Write the integrand as exp.�.y//=y,
where using n D �L,

�.y/ D y C �L log.exp.py/ � exp.qy// � �L log.p � q/ � .L � 1/ logy: (6.2)
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We now use the saddle point method to estimate the integral. Setting �0D 0 and taking
the large L limit, we obtain the equation

exp..p � q/y/ D
�qy � 1

�py � 1
: (6.3)

Although y D 0 is a solution, that is not of interest. It is an exercise in calculus to
show that (6.3) has a unique positive real solution, y0, say. The standard saddle point
approximations do not give the best results, at least for p D 1, q D 0, and so we will
follow Temme’s strategy [21]. For y ! 0C, exp.py/ � exp.qy/ � .p � q/y, and
therefore �.y/ � .n � LC 1/ log y. And, as y !1, �.y/ � .1C np/y, where we
have assumed p > q. These two limits suggest the transformation y! t .y/ such that

�.y/ D .1C np/t C .n � LC 1/ log t C A; (6.4)

where A does not depend on t . The derivative of the right-hand side vanishes at t0 D
L�n�1
1Cnp

. Then the following correspondences hold between the variables y and t :

y 0 y0 1

t 0 t0 1

Substituting y D y0 and t D t0 into (6.4) shows that

A D �.y0/ � .1C np/t0 C .L � n � 1/ log t0: (6.5)

Then a change of variables brings (6.1) to the form²
L

nC 1

³
p;q

D
.L � 1/Š

nŠ

exp.A/
2�i

I
C 0

exp..1C np/t/f .t/
tL�n

dt; (6.6)

where f .t/ D t
y

dy
dt is analytic in a large domain of the complex plane including the

origin. We deform the initial contour of a small circle around the origin to the con-
tour C 0 which passes through t0. Differentiating (6.4) with respect to t and using the
definition of t0 shows that

f .t/ D
.1C np/.t � t0/

y�0.y/
: (6.7)

We now apply the Cauchy integral formula to the contour integral (6.6) and obtain
a first-order approximation to the restricted partition function²

L

nC 1

³
p;q

�

�
L � 1

n

�
exp.A/f .t0/.1C np/L�n: (6.8)



A simple symmetric exclusion process driven by a tracer 709

To complete the analysis, we have to derive a formula for exp.A/ and f .t0/. The first
is straightforward. From (6.5), we get

exp.A/ D
�exp.py/ � exp.qy/

p � q

�n exp.y0/
yL�10

�L � n � 1
e.1C np/

�L�n�1
: (6.9)

Applying L’Hôpital’s rule to (6.7), we see that

f .t0/ D
1C np

y0�00.y0/

�dy
dt

ˇ̌̌
tDt0;yDy0

��1
:

But we know by definition of f that

dy
dt

ˇ̌̌
tDt0;yDy0

D
f .t0/y0

t0
;

and substituting this above, we find that

f .t0/ D
1

y0

s
.1C np/t0

�00.y0/
: (6.10)

Since we already know the value of t0, all that remains is to calculate �00.y0/. Taking
the double derivative of (6.2), setting y D y0 using (6.3) and simplifying, we obtain

�00.y0/ D �
exp..p C q/y0/.p � q/2.L � 1 � y/2

ny20�
2.p exp.py0/ � q exp.qy0//2

C
L � 1

y20

�
1

y20

�
L � 1 �

.p�y0 � 1/.q�y0 � 1/

n

�
:

Plugging this into (6.10) and substituting the value of t0, we get

f .t0/ �

s
�.1 � �/

� � .p�y0 � 1/.q�y0 � 1/
: (6.11)

Finally, we substitute (6.11) and (6.9) into (6.8) and use the Stirling formula for the
binomial coefficient to obtain the final result in (2.8).

6.1. Special case: p D 1, q D 0

As before, we take the limit L; n ! 1 so that n=L ! � 2 .0; 1/. There are a lot
of simplifications when p D 1 and q D 0, and it is worth going through this case in
detail. By Corollary 2.6, the partition function is the Stirling number

®
L
nC1

¯
.

The solution of (6.3) turns out to be explicitly solved by y0 D 1=� � G, where
G � G.�/ D �W0.� exp.�1=�/=�/ and W0 is the principal branch of the Lambert
W function. Recall that the Lambert W function is a family of functions defined by
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the inverse function of f .z/D z exp.z/. It is multivalued since f is not injective, that
is why we consider the principal branch.

By using known properties of the Lambert function, we can show that exp.y0/ D
1=.�G/. Substituting p D 1, q D 0 and this value of y0 in (2.8), we obtain, after some
manipulations,²

L

nC 1

³
�

1p
2��L.1 �G/

� �L

1 � �G

�L��L�1
e�L.1�G/C1=��G :

We note that we could obtain this result directly from [21].
The density at position i � xL in front of the tracer particle is given by setting

p D 1, q D 0 in (5.2). Again, using properties of the Lambert function, we find that
the prefactor becomes 1, and therefore

hh�xLii � exp.x.G � 1=�// D .�G/x :

Thus, the density at position xL decays with x as L ! 1. Moreover, for x D 0,
the density is 1. Suppose we take i to be fixed, i.e., independent of L. Since the
range of the sum in Corollary 4.4 is independent of i , we expect the answer to be
the same as that for i D 2 when L is large. Therefore, we find that the density at any
fixed distance ahead of the tracer particle is precisely 1. This is intuitively clear since
the tracer particle performs totally asymmetric motion and the exclusion interaction
means that more and more particles accumulate as time grows. In the thermodynamic
limit, this causes an infinite traffic jam! This justifies the heuristic picture proposed in
[20, Section 3, last paragraph]. Similarly, the density at position �i � �xL behind
the tracer particle is given by setting p D 1, q D 0 in (5.3) and we obtain

hh��xLii � .�G/
1�x :

In contrast, the density immediately behind the tracer particle is not zero, but is given
by �G. The function �G grows monotonically with � and is a concave function. See
Figure 3 to see the nature of the function.

6.2. Special case: finite number of particles

We now consider the limit in which n is fixed and we let the size of the system tend
to infinity. We can assume p � q as before. Since the case of p D q is settled by
Corollary 3.2, we can assume p > q. In that case, we obtain the following asymptotic
result.

From Theorem 3.4, the generating function Fn.x/ has poles of order one at
¹1=.1C jp C .n � j /q/º for 0 � j � n. From the standard theory of analytic com-
binatorics (see [10, Chapter VI], for example), it is well known that the pole closest
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Figure 3. A plot of �G versus � for small values of �.

to the origin contributes the most to the asymptotics. Since p > q and all the poles lie
on the positive real axis, the dominant contribution is from the smallest pole. This is
given by 1=.1C np/. Then the asymptotics are given by²

L

nC 1

³
p;q

�

n�1Y
jD0

1

1 � .1C jp C .n � j /q/=.1C np/

� 1

1C np

��LCnC1
;

which simplifies to ²
L

nC 1

³
p;q

�
.1C np/L�2

nŠ.p � q/n�1
as L!1:

Using this expression and Theorems 2.8 and 4.3, one can easily verify that the current
and the density go to zero as L!1, as it was expected.
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