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Cube moves for s-embeddings and ˛-realizations

Paul Melotti, Sanjay Ramassamy, and Paul Thévenin

Abstract. Chelkak introduced s-embeddings as tilings by tangential quads which provide the
right setting to study the Ising model with arbitrary coupling constants on arbitrary planar
graphs. We prove the existence and uniqueness of a local transformation for s-embeddings
called the cube move, which consists in flipping three quadrilaterals in such a way that the
resulting tiling is also in the class of s-embeddings. In passing, we give a new and simpler
formula for the change in coupling constants for the Ising star-triangle transformation which
is conjugated to the cube move for s-embeddings. We introduce more generally the class of
˛-embeddings as tilings of a portion of the plane by quadrilaterals such that the side lengths of
each quadrilateralABCD satisfy the relationAB˛ CCD˛ DAD˛ CBC˛ , providing a com-
mon generalization for harmonic embeddings adapted to the study of resistor networks (˛ D 2)
and for s-embeddings (˛ D 1). We investigate existence and uniqueness properties of the cube
move for these ˛-embeddings.

1. Introduction

The star-triangle transformation was first introduced by Kennelly in the context of
resistor networks [16] as a local transformation which does not change the electrical
properties of the network (such as the equivalent resistance) outside of the location
where the transformation is performed. It consists in replacing a vertex of degree 3
by a triangle as in Figure 1, and the conductances after the transformation are given
as some rational functions of the conductances before the transformation. It follows
from the classical connection between resistor networks and random walks [15] that
applying this star-triangle transformation to a graph with weights on the edges also
preserves the probabilistic properties of the random walk on this graph. Conversely,
a triangle can be made into a star, and the terminology “star-triangle transformation”
is often used to refer to both of these operations.

Another probabilistic model known to possess a star-triangle transformation is the
Ising model, a celebrated model of magnetization which samples a random config-

2020 Mathematics Subject Classification. Primary 82B20; Secondary 05C10, 05C62, 16T25.
Keywords. Star-triangle, Y -delta, Yang–Baxter equations, cube flips, cube moves,
s-embedding, Ising model, embedding, harmonic embedding, integrable system.

https://creativecommons.org/licenses/by/4.0/


P. Melotti, S. Ramassamy, and P. Thévenin 782

J5 J3

J1

J2J6

J4

Figure 1. Star-triangle transformation.

uration of spins living at the vertices of a graph; this property appears in [26, 28],
see also [3, Chapter 6]. The probability distribution of this configuration depends on
coupling constants attached to the edges of the graph. When these coupling constants
are all positive (which is called the ferromagnetic regime), one can perform a local
transformation of the graph as in Figure 1 without changing the correlations of spins
outside of the location where the transformation is performed [26,28]. Note, however,
that the formulas relating the coupling constants before and after the transformation
are not the same as those for the conductances in resistor networks.

Let G be a planar graph, that is, a graph that can be embedded in the plane or,
equivalently, in the sphere. We denote by G˘ its diamond graph, whose vertex set is
composed of the vertices and dual vertices of G and whose faces are all quadrilater-
als, one for each edge of G (see Figure 2). We note that planar graphs are graphs that
can be embedded in the plane but which do not come with a distinguished embed-
ding. From now on we will assume that every planar graph G is 3-connected, which
implies [29] that it possesses a unique embedding up to homeomorphisms of the
sphere. In particular, the faces of G are well-defined. Hence its diamond graph G˘

is well-defined, is also 3-connected and has well-defined faces.
To each of the two models described above (random walk and Ising model) is

associated a class of graph embeddings. More precisely, if G denotes a planar graph

Figure 2. A piece of a planar graph G (black dots and solid lines), its dual vertices (white dots)
and its diamond graph G˘ (dotted lines).
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carrying positive edge weights (conductances for the random walk, coupling constants
for the Ising model), one embeds in the plane its diamond graph G˘.

The embeddings associated to random walks are called the Tutte embeddings or
harmonic embeddings [27] and have the property that the faces of G˘ are embedded
as orthodiagonal quads, that is, their diagonals are perpendicular. The conductance of
an edge of G corresponding to an orthodiagonal quad embedding of a face of G˘ is
given by a ratio of the lengths of the diagonals of the quad. The embeddings associated
to the ferromagnetic Ising model were introduced by Chelkak [6,7] under the name of
s-embeddings; in this case the faces of G˘ are embedded as tangential quads, which
are quads admitting a circle tangential to the four sides. The coupling constant of an
edge e ofG corresponding to a tangential quad embedding of a face ofG˘ is given by
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�1C sin �e
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�
;

where

tan2 �e D
cotan ı C cotanˇ
cotan˛ C cotan 

;

and ˛, ˇ,  , ı denote the half-angles of the tangential quad, as shown in Figure 3.
In the special case when the tangential quad is a rhombus, the angle �e arises as the
half-angle of a corner of the quad corresponding to a primal vertex. In the general
case, �e does not seem to have a geometric realization as an angle.
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Figure 3. Relation between an abstract weighted graph and an s-embedding.

Existence and uniqueness questions for both harmonic embeddings and s-em-
beddings may be asked either for finite weighted graphs or infinite weighted graphs
periodic in two directions. Complete answers are known for harmonic embeddings
in both cases and for s-embeddings in the periodic case, see [6, 18] for a discussion.
However, such questions are not relevant for our purposes, as we will start from one
given embedding and discuss whether or not there exists another embedding related
by a local transformation.

To avoid unnecessary complications related to boundary issues in the case of finite
graphs, we will always assume that the edges involved in our star-triangle transfor-
mations are not boundary edges. Note that one could consider a broader framework
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including such boundary edges, provided that one replaces the notion of a dual graph
by that of the augmented dual graph, which has several dual vertices associated with
the outer face, one between each pair of consecutive boundary vertices, see, e.g., [18].

A harmonic embedding or an s-embedding of the diamond graph G˘ determines
a drawing of G, since the vertices of G form a subset of the vertices of G˘. How-
ever, a drawing of G does not uniquely determine a harmonic embedding or an
s-embedding.

Such embeddings provide the appropriate geometric setting to observe confor-
mally invariant objects such as Brownian motion or SLE processes when taking the
scaling limits of random walks and Ising models on generic planar graphs [4, 6, 7].
They generalize isoradial embeddings (embeddings of the faces of G˘ as rhombi),
for which specific techniques can lead to proofs of scaling limits (for instance in
[5, 8, 9, 12, 17] and others), but which correspond to specific choices of weights on an
already embedded graph.

The star-triangle move for random walks (resp. the Ising model) translates into
a geometric local move for harmonic embeddings (resp. for s-embeddings), whereby
three orthodiagonal quads (resp. tangential quads) sharing a vertex as on the left-hand
side picture of Figure 4 get erased and replaced by three other orthodiagonal quads
(resp. tangential quads) with the same hexagonal outer boundary, as on the right-
hand side picture of Figure 4. We call this geometric local move a cube move, phrase
which was originally introduced in [19] only with a combinatorial meaning (and not
a geometric one). We emphasize that cube moves for us are geometric local moves
which apply to tilings of the plane by quads, while star-triangle transformations are
combinatorial local moves which apply to graphs with edge weights.

The existence and uniqueness of the cube move for harmonic embeddings follows
from a classical theorem of planar geometry called Steiner’s theorem [18, 21]. In this
article, we show the existence and uniqueness of the cube move for s-embeddings
(see definitions in Section 2 and Theorem 3.1 for the exact statement).

Figure 4. The transformation on G˘ induced by the star-triangle transformation on G: a cube
move.
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Figure 5. The star-triangle transformation for the Ising model is conjugated to a local geometric
transformation called a cube move, via Chelkak’s s-embeddings introduced in [6,7]. Notice that
in the embedded graphs, only the central points P and P 0 differ.

Theorem 1.1. For any s-embedding with the combinatorics of the graph on the left-
hand side of Figure 4, erase the central black point and keep all the other points fixed.
Then there exists a unique central white point that gives an s-embedding with the
combinatorics of the graph on the right-hand side of Figure 4.

Moreover, it follows from the construction in Section 3 of the s-embedding after
the cube move that the coupling constants associated with this new s-embedding
are the same as those obtained by applying the star-triangle transformation to the
coupling constants associated with the s-embedding before the cube move. In other
words, the star-triangle transformation of the Ising model only has a local effect on
s-embeddings. This is illustrated by a commutative diagram in Figure 5. Our proof of
existence relies only on [7, Proposition 4.7] by Chelkak, which connects a linear sys-
tem on the graph (called propagation equations) to the construction of s-embeddings.
We prove uniqueness via self-contained geometric arguments (see Section 3).

In passing, we prove new and simpler formulas for the transformation of coupling
constants under the Ising star-triangle transformation.

Theorem 1.2. Denote by J2, J4, J6 (resp. J1, J3, J5) the coupling constants before
(resp. after) the star-triangle transformation for the Ising model, as in Figure 1. For
every 1 � i � 6, let �i be the unique angle in .0; �

2
/ such that
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Then

8i 2 ¹2; 4; 6º; cos.�i / D
sin �iC3 cos �iC1 cos �iC5

sin �iC3 C sin �iC1 sin �iC5
; (1.1)

8i 2 ¹1; 3; 5º; sin.�i / D
cos �iC3 sin �iC1 sin �iC5

cos �iC3 C cos �iC1 cos �iC5
; (1.2)

where the indices are considered modulo 6.

Formulas (1.1) and (1.2) are considerably less involved than the classical trans-
formation procedure which is described in Proposition 3.9. We stress that the relation
between the coupling constants before and after the star-triangle transformation is the
same as in [3, 26, 28]; what is new is the simpler expression for that relation.

In addition to the results on local transformations for s-embeddings and the Ising
model presented above, the second main contribution of this article involves a new
class of embeddings, called ˛-embeddings, which we introduce as a one-parameter
common generalization of harmonic embeddings and s-embeddings. Given ˛ 2 R�,
we call a quadrilateral ABCD drawn on the plane an ˛-quad if its side lengths satisfy
AB˛ CCD˛ D AD˛ CBC ˛ . The quadrilateral ABCD may be non-convex or even
have its edges intersecting away from their endpoints. An ˛-embedding of a graph
G is an embedding of its diamond graph G˘ such that each face of G˘ is drawn
as an ˛-quad. This definition is, firstly, motivated by the introduction of a unified
framework for properties of harmonic and s-embeddings, which correspond to the
cases ˛ D 2 and ˛ D 1, respectively. Secondly, the celebrated isoradial embeddings
are ˛-embeddings for every ˛, since rhombi are ˛-quads for every ˛. More generally,
kite embeddings are ˛-embeddings for every ˛, see Section 5. Thirdly, as we shall see,
there is a whole range of parameters for which these quadrilaterals satisfy a version
of a cube move. This property suggests the presence of an integrable system, and
it would be remarkable to find a family of such systems indexed by a continuous
parameter.

To state this version of the cube move, we introduce the weaker notion of an ˛-
realization of G as a map from the vertices of G˘ to the plane such that each face
of G˘ is mapped to an ˛-quad, with edges possibly intersecting. We also provide
a definition of the above notions in the cases where ˛ 2 ¹�1; 0;C1º. In addition,
we show that, for ˛ > 1, the cube move is possible for ˛-realizations (although the
solution may not be unique). See Theorem 4.7 for a precise statement.

Theorem 1.3. Let ˛ > 1 be a real number. For any ˛-realization with the combina-
torics of the graph on the left-hand side of Figure 4, erase the central black point and
keep all the other points fixed. Then there exists a central white point that gives an ˛-
realization with the combinatorics of the graph on the right-hand side of Figure 4.
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One may wonder whether a probabilistic model can be associated to ˛-embed-
dings beyond the cases where ˛ is 1 or 2. In other words, is there a way to define the
interaction constants of a probabilistic model from the local geometry of ˛-embed-
dings in such a way that the cube move for ˛-embeddings is conjugated to the star-
triangle move for the probabilistic model? The FK-percolation model is a common
generalization of the Ising model and of spanning trees (which have the same star-
triangle transformation as random walks). This model also has a star-triangle transfor-
mation; however, it can be applied only when the weights satisfy some local constraint
[11, 17], whereas the star-triangle transformation for the Ising model and spanning
trees holds without any condition on the weights. We did not succeed in relating
˛-embeddings to FK-percolation for arbitrary weights that would satisfy the local
constraint and do not expect such a general connection to hold true. Nevertheless,
there exists a subclass of weights among those satisfying the local constraint which
can be associated to isoradial embeddings, that is, embeddings where the quadrilat-
erals are rhombi. In that case, the star-triangle transformation corresponds to a cube
move for rhombus tilings, which exists and is unique.

Organization of the paper. We define in Section 2 our main object of interest,
˛-quads; we introduce ˛-embeddings and ˛-realizations, before defining their cube
move. Section 3 is devoted to the specific case ˛ D 1, where we recall the connection
with the Ising model and prove the existence and uniqueness of the cube move for
properly embedded graphs. We also prove Theorem 1.2. In Section 4, we show that
for ˛ > 1, such a move is always possible under weaker conditions, which leads to the
proof of Theorem 1.3. Finally, in Section 5, we investigate some more basic geometric
properties of ˛-quads and we propose a general framework to study a broader class of
quadrilaterals. Appendix A contains a brief introduction to Jacobi elliptic functions,
which are one of our main tools in the proofs of Section 3.

2. Definitions

This section is devoted to the definition of the so-called ˛-quads—which are the main
object of interest of this paper—of their embeddings and of their realizations. We
introduce an operation on them called a cube move, before defining an important tool
to prove this property, which we call construction curves.

In what follows, we denote by R� the set R n ¹0º and by R the set R[ ¹�1;C1º

of extended real numbers. For two pointsA,B in the plane,AB denotes the Euclidean
distance between A and B , and we use a dot to write products of lengths such as
AB:CD.
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2.1. ˛-embeddings and realizations

Let us start by defining the notion of ˛-quads.

Definition 2.1. A quadrilateral ABCD is called an ˛-quad for ˛ 2 R� if

AB˛ C CD˛
D AD˛

C BC ˛:

It is called a 0-quad if
AB:CD D AD:BC;

aC1-quad if
max.AB;CD/ D max.AD;BC/

and a �1-quad if
min.AB;CD/ D min.AD;BC/:

Note that the ˛-quads are not required to be convex nor even proper (see Defini-
tion 2.2), meaning that edges may intersect away from their endpoints.

One can immediately notice that ˛-quads (for ˛ 2 R) are simply quadrilaterals
ABCD such that f˛.AB;CD/D f˛.AD;BC/, where for x;y > 0we set f˛.x;y/D
x˛ C y˛ if ˛ 2 R�, f0.x; y/ D xy, fC1.x; y/ D max.x; y/ and f�1.x; y/ D
min.x; y/. Such a notation calls for a generalization from f˛ to any homogeneous
symmetric function f of two variables, which is done at the end of Section 5.

Of particular interest are the following three families of ˛-quads, which were
already defined in a different context:

• 1-quads correspond to tangential quads, i.e., quads such that there is a circle tan-
gential to their four sides (see, e.g., [13]);

• 2-quads correspond to orthodiagonal quads, i.e., quads whose diagonals are per-
pendicular (see, e.g., [14]);

• 0-quads are known under the name of balanced quads [13] and contain a well-
studied class of quads, the harmonic quads, which are defined as cyclic 0-quads
(that is, 0-quads inscribed in a circle, see [2] for details).

Definition 2.2. For n � 3, an n-tuple of distinct points A1; : : : ; An is said to be
a proper polygon if the line segments ŒA1A2�; ŒA2A3�; : : : ; ŒAn�1An�; ŒAnA1� do not
intersect except possibly at their endpoints. In other words, the closed piecewise linear
curve A1; A2; : : : ; An; A1 is a Jordan curve.

A proper polygon is said to be positively (resp. negatively) oriented if the points
on its boundary oriented counterclockwise (resp. clockwise) are A1; A2; : : : ; An in
this order.
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LetG be a planar graph, finite or infinite. Denote its dual graph byG�, whose ver-
tices are faces of G and where we connect two dual vertices if the two corresponding
faces share an edge. We construct the graph G˘ as the bipartite graph whose black
(resp. white) vertices are the vertices of G (resp. G�) and where an edge connects
a black vertex to a white vertex whenever the black vertex is on the boundary of the
face associated with the white vertex. In particular, all the faces of G˘ are quadrilat-
erals, see Figure 2.

Definition 2.3. Let ˛ 2R. An ˛-embedding ofG is an embedding ofG˘ in the plane
such that every internal face of G˘ is an ˛-quad.

The fact that G˘ is embedded in the plane implies that the ˛-quads corresponding
to internal faces are proper. In particular, for embedded graphs, edges cannot collapse
to a point, two distinct edges cannot meet outside of their endpoints, faces have non-
empty interiors and two distinct faces have disjoint interiors. This setting is the one
preferred for the study of statistical mechanical models such as spanning trees and
the Ising model. However, in the more general setting we consider, we need to allow
drawings of graphs that are not necessarily embeddings.

Definition 2.4. Let ˛ 2 R. An ˛-realization of G is defined to be any map from the
vertices of G˘ to the plane such that every face of G˘ is mapped to an ˛-quad.

See Figure 7 for an example of a 4-embedding and a 4-realization of the same
graph.

As mentioned in the introduction, there are two notable classes of examples of
˛-embeddings. The class of 1-embeddings of a planar graph corresponds to the class
of s-embeddings defined by Chelkak in [6, 7] (see also [24]), while the class of 2-
embeddings corresponds to the class of harmonic embeddings [18, 27].

A0

A4

A1

A3 A5

A6A2

A4

A1

A7

A3 A5

A6A2

Figure 6. The combinatorics of a cube move for ˛-embeddings and ˛-realizations.
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Figure 7. Here ˛ D 4. Left: an ˛-embedding of the portion of the graph on the left-hand side of
Figure 6. Right: an ˛-realization of the portion of the graph on the right-hand side of Figure 6.
The quad A4A5A6A7 on the right is not proper.

2.2. The cube move: setting

We now define the property that we want to study on ˛-quads, which we call the flip
property. This property states that it is possible to perform a cube move like that of
Figure 6 locally on the realization or embedding, while keeping the global structure
unchanged.

Definition 2.5. For any ˛ 2 R, the set of all ˛-realizations is said to satisfy the flip
property if, for any six distinct points in the plane A1, A2, : : : ; A6 such that A1, A3,
A5 (resp. A2, A4, A6) are not aligned, the following are equivalent:

• there exists a point A0 such that A0; A1; : : : ; A6 is an ˛-realization of the graph
on the left-hand side of Figure 6;

• there exists a point A7 such that A1; : : : ;A7 is an ˛-realization of the graph on the
right-hand side of Figure 6.

The set of ˛-embeddings is said to satisfy the proper flip property if, in the equiv-
alence of Definition 2.5, it is also required that the figures are ˛-embeddings, and that
each of the quadrilaterals is proper, with its boundary vertices oriented in the same
order as in Figure 6.

In both cases, it is said to satisfy the unique (proper) flip property if it satisfies the
(proper) flip property and if, in addition, when the points A0 and A7 exist they are
unique.

Our ultimate goal is to understand for which values of ˛ these properties are satis-
fied by the set of ˛-realizations or ˛-embeddings. In this direction, we notably prove
Theorem 3.1 for 1-embeddings and Theorem 4.7 for ˛-realizations with ˛ > 1, and
conjecture a generalization to other values of ˛ (see Conjecture 3.2). Note that it is
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A3

A2
A1 A5

A4

A6

A0

Figure 8. A configuration for ˛ D 1, with the corresponding construction curves. The green
construction curves have an intersection point A0 but the purple ones do not intersect.

already known that the set of 2-embeddings satisfies the unique proper flip property
and that the set of 2-realizations satisfies the unique flip property. This can be proved
using a theorem of Steiner, see [18, 21].

There is a necessary condition on the outer hexagon A1 : : : A6 in order to be in
a position to flip three quads.

Proposition 2.6. Let A1; : : : ; A6 be six distinct points and let ˛ 2 R. Suppose that
there is either a point A0 producing an ˛-realization of the left-hand side of Figure 6
or a point A7 producing an ˛-realization of the right-hand side of Figure 6. Then the
side lengths of the hexagon A1 : : : A6 must satisfy

A1A
˛
2 C A3A

˛
4 C A5A

˛
6 D A2A

˛
3 C A4A

˛
5 C A6A

˛
1 if ˛ ¤ 0; (2.1)

A1A2:A3A4:A5A6 D A2A3:A4A5:A6A1 if ˛ D 0: (2.2)

Proof. When ˛ ¤ 0, formula (2.1) follows immediately from summing the three
equations defining the three ˛-quads involving A0 (resp. A7). The case ˛ D 0 works
similarly.

The example on Figure 8 with ˛ D 1 illustrates the fact that condition (2.1) is not
sufficient to have an ˛-realization. Indeed, the existence of a point A0 implies that
condition (2.1) is satisfied, but there exists no point A7. We also point out that there
is no analogue of Proposition 2.6 when ˛ D ˙1.
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A

B
C

˛ D C1
˛ > 2

˛ D 2

1 < ˛ < 2

˛ D 1

˛ D �1

˛ < 0

˛ D 0

0 < ˛ < 1

Figure 9. Construction curves with foci A and B going through C . The fact that they intersect
only at C and at its symmetric with respect to .AB/ is a consequence of Proposition 5.4. The
asymptotic behavior of construction curves is described in Lemma 4.6.

2.3. Construction curves

In order to check the existence of the points A0 and A7 introduced in Definition 2.5,
we will see them as intersection points of certain curves called construction curves.
Let us first define them properly.

Definition 2.7. Let A, B and C be three distinct points in the plane and let ˛ 2 R.
The ˛-construction curve with foci A, B going through C is the set of pointsM such
that ACBM is an ˛-quad.

Let A1; : : : ;A6 be the distinct vertices of a hexagon. The ˛-construction curves of
the hexagonA1 : : :A6 are the six curves Ci where for every 1� i � 6, Ci is defined to
be the ˛-construction curve with foci Ai�1 and AiC1 going through Ai . Here indices
are taken modulo 6.

The role of construction curves in our problem is the following. Start with a hexa-
gon A1A2A3A4A5A6 and let ˛ 2 R. The existence of a point A0 as on the left-hand
side of Figure 6 is equivalent to the fact that C2, C4 and C6 have a common point, see
Figure 10. Similarly the existence of a point A7 as on the right-hand side of Figure 6
is equivalent to the fact that C1, C3 and C5 have a common point.

Remark 2.8. In order for the flip property to be satisfied when ˛ 2 R, it is actu-
ally enough to consider the intersection of two construction curves rather than three.
Indeed, if ˛ ¤ 0 and if A0; A1; : : : ; A6 are seven points such that the quadrilater-
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als A1A2A3A0, A3A4A5A0 and A5A6A1A0 are all ˛-quads, then by Proposition 2.6
formula (2.1) is satisfied. Hence, if C1 and C3 have a common point A7, then combin-
ing the equation of the two ˛-quads A2A3A4A7 and A6A1A2A7 with formula (2.1)
yields thatA7 also lies on C5. The case ˛D 0works similarly, replacing formula (2.1)
by formula (2.2).

In a few cases, the construction curves are well known. Fix two points A and B in
the plane. If C is a point such that AC D BC , then clearly for any ˛ the construction
curve going through C is the perpendicular bisector of ŒAB�, which we denote from
now on by P.AB/. Without loss of generality, we may assume in what follows that

A4

A000

A00

A0

A3 A5

A7

A1
A2 A6

A4

A5
A3

A6A1A2

A7 A00

A0

A07

A4

A5

A6A1A2

A3

A0

A00

Figure 10. Examples of construction curves for some hexagons. Top left: for ˛D 0, two possible
pointsA0 and no pointA7. Top right: for ˛D 0, two pointsA0 and two pointsA7. Pictures with
the same number of solutions as the top two pictures can be obtained for ˛ close to 0. Bottom:
for ˛ D 10, three points A0 and one point A7.
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BC < AC . See Figure 9 for the general shape of construction curves depending on
the value of ˛.

For any pointO , we denote by C.O;C / the circle with centerO going through C ,
and by D.O; C / the closed disk enclosed by C.O; C /. The following proposition
characterizes the construction curves in the special cases ˛ 2 ¹�1; 0; 1; 2;C1º.

Proposition 2.9. Let A, B and C be three points such that BC < AC . We denote
by H the closed half-plane bounded by P.AB/ containing B . Then one has the fol-
lowing description for the ˛-construction curve with foci A, B going through C :

• For ˛ D �1, it is the union of the circular arc C.B; C / \H and the segment
P.A;B/ \D.B; C /.

• For ˛ D C1, it is the union of the circular arc C.A; C / \H and the two half-
lines P.A;B/ \D.A; C /c .

• For ˛ D 0, it is a circle going through C .

• For ˛ D 1, it is the branch closest to B of the hyperbola with foci A, B going
through C .

• For ˛ D 2, it is the perpendicular to .AB/ going through C .

Proof. For ˛ D �1, the curve is ¹M 2 R2 j min.AM;BC/D min.BM;AC/º. The
explicit description follows from a simple case handling, depending of the length
realizing the minimum. The same goes for ˛ D C1.

For ˛ D 0, the curve is the set of points M such that the ratio MA
MB

is fixed, which
is a circle by Apollonius’s circle theorem.

For ˛ D 1, the curve is the set of pointsM such thatAM �BM is a fixed positive
number, which is a branch of hyperbola with foci A, B .

For ˛ D 2, as stated in Section 5, the quadrilateral ACBM is a 2-quad if and only
if .AB/ and .CM/ are perpendicular.

3. The cube move for ˛ D 1

Our goal in this section is to prove the unique proper flip property for 1-embeddings.

Theorem 3.1. The set of 1-embeddings satisfies the unique proper flip property.

Although our proof only works in this specific case, based on the observation of
many numerical examples we expect the following more general result to hold.

Conjecture 3.2. For any ˛ 2 Œ�1; 1� and for any six distinct points in the plane
A1;A2; : : : ;A6 such that A1, A3, A5 (resp. A2, A4, A6) are not aligned, the following
are equivalent:
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• there exists a unique point A0 such that A0; A1; : : : ; A6 is an ˛-embedding of the
graph on the left-hand side of Figure 6;

• there exists a unique point A7 such that A1; : : : ; A7 is an ˛-embedding of the
graph on the right-hand side of Figure 6.

Notice that this is weaker than the unique proper flip property, as it is possible that
several points A0 exist and no point A7. Such a configuration is shown in the top-left
picture of Figure 10. For the sake of completeness, let us also mention that the set of 1-
realizations does not satisfy the flip property (when there is no “proper” requirement):
there exist configurations such that there is a pointA0 yielding 1-realizations, but there
is no point A7 (see Figure 8).

The rest of this section is devoted to the proof of Theorem 3.1.

3.1. Uniqueness

In this first part, we prove the following proposition, which states the uniqueness of
the point A0, if it exists.

Proposition 3.3. For any proper positively oriented hexagon A1; A2; : : : ; A6, there
exists at most one point A0 such that A0; A1; : : : ; A6 is a proper 1-embedding of the
left-hand side of Figure 6.

In order to prove it, we first need some information on the geometric properties of
1-quads. Notice that if three distinct points A, B , C are fixed, then the construction
curve for 1-quads is the set of points D such that

AD � CD D AB � BC:

Hence, it is a hyperbola branch with foci A, C (with possible degenerate cases being
the perpendicular bisector of ŒAC �, and half-lines AC t .A � C/ or C C t .C � A/
for t � 0). We put all these cases under the same name:

Definition 3.4. Let A, C be two distinct points in the plane. For any � 2 R, the set of
points D in the plane such that

AD � CD D � (3.1)

is called a generalized hyperbola branch with foci A and C .

The next lemma already implies that there are at most two admissible points A0,
in the sense of Proposition 3.3.

Lemma 3.5. Assume that two generalized hyperbola branches have exactly one com-
mon focus, then they have at most two intersection points.
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Although this result, which appears in [25, 30], has a very classical flavor, we
could not find any earlier reference. We give an alternative proof below.

Let us start with some definitions. The focus of a hyperbola branch B which
belongs to (resp. does not belong to) the convex hull of B is said to be the interior
(resp. exterior) focus of B. For example, in Figure 11, A1 is the interior focus of both
branches while A3 and A5 are the exterior foci of these branches. Assume that B1

is a hyperbola branch with foci A and C and B2 is a hyperbola branch with foci A
and E, with A, C , E distinct. Then any intersection point of B1 and B2 lies on
a hyperbola branch B3 with foci C and E (whose equation is obtained by subtracting
equation (3.1) for B1 and B2), and we can also suppose that B3 is not a line or a half-
line. Then there is at least one of the three points A, C orE which is the interior focus
of one branch and the exterior focus of another branch. Without loss of generality, we
assume that A is the interior focus of B1 and the exterior focus of B2. We will show
that these two branches intersect in at most two points.

A1

A3

A5

Figure 11. A case of two branches intersecting at two points. The focus A1 is the interior focus
of both branches.

Suppose that B1 and B2 intersect at three distinct points S , T , U . As these points
belong to a non-degenerate hyperbola branch, they are not aligned. The lines .ST /,
.T U /, .SU / therefore delimit exactly seven open regions in the plane, three of which
touch the triangle ST U only at one vertex. We call these three regions the corner
chambers of S , T , U .

Lemma 3.6. Let S , T and U be three distinct points on a hyperbola branch B. Then
the exterior focus of B belongs to a corner chamber of S , T , U , while the interior
focus does not.

Proof of Lemma 3.5. If one of the generalized branches is a line or a half-line, the
result easily comes from the fact that a hyperbola and a line have at most two points
of intersection.
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Suppose now that it is not the case. The proof of Lemma 3.5 follows from Lem-
ma 3.6, as A should be both in a corner chamber of S , T , U (because A is the exterior
focus of B2) and not in one (because A is the interior focus of B1).

Proof of Lemma 3.6. For any two distinct points A, B on B, the line .AB/ cuts the
interior of the convex hull of B into a finite part and an infinite part. The half-plane
delimited by .AB/ that contains the finite part is called the exterior half-plane ofA,B .
It is easy to see that the exterior focus belongs to the exterior half-plane of A, B , for
instance by noting that this property is invariant by affine transformations of the plane,
and is straightforward to prove for the special branch ¹.x; y/ 2 .0;1/2 j xy D 1º.

Suppose that T belongs to the exterior half-plane of S , U (which is equivalent
to saying that S , T , U are met in that order when following the branch B). Then,
applying the previous property to .S; T / and .T; U /, we get that the exterior focus
has to belong to the corner chamber that touches T .

We now consider the interior focus of B. By convexity of B, the corner chambers
are disjoint from the interior of the convex hull of B, which by definition contains its
interior focus. The result follows.

We can now prove Proposition 3.3.

Proof of Proposition 3.3. By Lemma 3.5, there exists at most two such points. Sup-
pose that there are two, A0 and A00. We claim that A1, A3, A5 belong to a unique
hyperbola branch with foci A0, A00. Indeed, since A0, A00 are on the same hyperbola
branch with foci A1, A3, we have A1A0 �A3A0 D A1A00 �A3A

0
0. This is equivalent

to A1A0 �A1A00 D A3A0 �A3A
0
0, which in turn means that A1, A3 are on the same

hyperbola branch with foci A0, A00. The same holds for A5.
Therefore, by Lemma 3.6, one of the points A0, A00 is in a corner chamber of

the triangle A1A3A5, and the other is not. But notice that for any point M that
does not belong to the lines .A1A3/, .A1A5/, .A3A5/, the cyclic order of the vec-
tors
���!
MA1,

���!
MA3,

���!
MA5 is always the same when M belongs to the union of the

three corner chambers, and the opposite when M is outside that union. However,
the cyclic order of the vectors

���!
A0A1,

���!
A0A3,

���!
A0A5 should be the same as the cyclic

order of the vectors
���!
A00A1,

���!
A00A3,

���!
A00A5, since this order should be fixed by the proper

embedding. Therefore, it is impossible for both A0 and A00 to correspond to proper
embeddings.

3.2. Existence

The second part of this section consists in proving that, if we start with a proper
1-embedding A0; A1; : : : ; A6 of the left-hand side of Figure 6, then there actually
exists a point A7 inducing a proper 1-embedding of the right-hand side. To show this,
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we transform the problem into a linear one by using the propagation equations and s-
embeddings defined by Chelkak [6,7]. We briefly explain this construction (we refer to
Chelkak’s original papers for more details), then give a few extra properties concern-
ing the ordering of the vertices of the quads it gives, and finally apply it to our setting.

3.2.1. Ising model, propagation equations and s-embeddings. LetG WD .V;E/ be
a finite planar graph, in which each edge e 2 E carries a positive weight Je > 0. The
weights .Je/e2E are called the coupling constants of the ferromagnetic Ising model
on G, that is, every spin configuration � 2 ¹˙1ºV is assigned the Boltzmann weight

w.�/ D exp
� X
eD¹u;vº2E

Je�u�v

�
;

and a spin configuration is randomly sampled with probability proportional to its
Boltzmann weight. Note however that we will not refer to any statistical mechanical
property of the Ising model thereafter; all the proofs are of purely geometric nature.

One checks that, for every e 2 E there exists a unique �e 2 .0; �2 / such that

Je D
1

2
ln
�1C sin �e

cos �e

�
: (3.2)

We also set

xe D tanhJe D tan
�e

2
2 .0; 1/: (3.3)

Let Gc be the weighted graph whose vertices are the corners of the faces of G,
and whose edges are of two types:

(1) those connecting two corners that correspond to the same vertex and to the
same edge e of G; such edges carry the weight cos �e;

(2) those connecting two corners that correspond to the same face and to the same
edge e of G; such edges carry the weight sin �e .

See Figure 12 for an illustration. There exists a double cover ‡� of Gc that branches
around every edge, vertex and face of G, graphically represented around an edge in
Figure 13 (see also Figure 17), which inherits the edge weights of Gc .

Let V � be the vertices of ‡�. We say that a function X W V � ! C satisfies the
propagation equation if, for every v 2 V � with neighbours v0; v00 2 V � around an
edge e like in Figure 13,

Xv D sin �eXv0 C cos �eXv00 :

It is easy to check that if X satisfies the propagation equation, its value is multiplied
by �1 whenever we change sheets above a vertex of Gc .

If X is a solution to the propagation equation, then one can construct a function
� WG˘ ! C, which is called the s-embedding associated to X , in the following way.
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sin �e

ecos �e

Figure 12. The corner graph Gc (dashed) around an edge e of G (solid).

e

v v0

v00

Figure 13. The double cover ‡� around the edge e of G.

Fix the image �.u0/ of a base vertex u0 of G in the plane. Then define � such
that for every vertex u of G and every face f adjacent to it, denoting by c the corner
between u and f ,

�.f / � �.u/ D X2c ; (3.4)

where Xc is any of the two values of X above the corner c; both values produce the
same constraint on � . See Figure 14 for an example. Notice that it is not clear a priori
that � is well-defined, as one needs to check at least that conditions (3.4) are closed
around an edge, as in Figure 14. We will rely on the following result of Chelkak [7]
that asserts that the s-embedding � is well-defined, and identifies s-embeddings with
our notion of 1-embedding.

Proposition 3.7 ([7]). For any solution X of the propagation equation such that
Re.X/, Im.X/ are two vectors independent over R, the associated s-embedding �

is well-defined, and is such that every face of G˘ is sent to a proper 1-quad in the
complex plane. Conversely, for any 1-embedding T of G, for any edge e 2 E let �e
be the unique angle in .0; �

2
/ such that, using the notation of Figure 3,

tan2 �e D
cotan ı C cotanˇ
cotan˛ C cotan 

:

Then T is an s-embedding associated to a solution of the propagation equations onG
with parameters .�e/e2E .
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�.u/
�.v/

�.x/

�.y/

b2

c2
d2

a2

v
e

u

a

�a

d

�d

c

�c

b

�b

x

y

Figure 14. An edge e 2 E with vertices u, v and adjacent faces x, y, with a solution of its
propagation equation, and the corresponding s-embedding, where the numbers a2; : : : ; d2 are
the complex coordinates of the vectors bounding the quad.

The plan of our proof of the existence part of the flip property is therefore to
translate the initial configuration into a solution of the propagation equations, then
show that one can apply a star-triangle transformation on this solution, and finally go
back to embeddings. However, we need more information than what is contained in
Proposition 3.7, as we want to keep track of the orientation of quadrilaterals. This is
the aim of the following subsection.

3.2.2. Orientation of quads in s-embeddings.

Lemma 3.8. Let a; b; c; d 2 C� be a solution to the propagation equation at an edge
e 2E with parameter � 2 .0; �

2
/, set around e as in Figure 14. Suppose that b=a …R.

Then the following are equivalent:

(i) The 1-quad �.u/�.x/�.v/�.y/ is positively oriented.

(ii) Im.b=a/ > 0.

(iii) The cyclic order around the circle of the arguments of ˙a, ˙b, ˙c, ˙d is
.a; d; c; b;�a;�d;�c;�b/ (see Figure 15).

Proof. The three statements are unaltered if we multiply all the complex numbers a,
b, c, d by the same non-zero complex number. Hence we can suppose aD 1. Since the
quad �.u/�.x/�.v/�.y/ is proper by Proposition 3.7, the sum of the representatives
in .0; 2�/ of the oriented angles between pairs of vectors 2.a2; d2/, 2.b2; a2/, 2.c2; b2/,
2.d2; c2/ has to be either 2� if the quad is oriented positively or 6� if the quad is

oriented negatively. In particular, the quad is oriented positively (resp. negatively) if
and only if the arguments of a2, d2, c2, b2 (resp. b2, c2, d2, a2) are in that cyclic
order around the circle.
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�d

�a

�c

�b

a

d
c

b

Figure 15. Cyclic order of the arguments of the complex numbers a, b, c, d .

• .iii/) .i/: Immediate consequence of the previous sentence.

• .ii/) .iii/: Suppose that Im.b/ > 0. Solving the propagation equation gives

c D
b

cos �
C tan �; d D

1

cos �
C b tan �:

Thus c and d are positive combinations of 1 and b, so their complex arguments
lie between 0 and the argument of b. Moreover, one can compute:

Im
� c
d

�
D

cos2 � Im.b/
j1C b sin � j2

> 0

and we deduce that the order of the arguments matches the one of Figure 15.

• .i/) .ii/: Assume that (ii) is not verified, that is, Im.b/ < 0. Then consider xb,
xc, xd , which is still a solution to the propagation equation as this equation has
real coefficients. These values do satisfy (ii), hence also (iii) and thus (i) by the
previous points. Note that they correspond to a quadrilateral that is the image by
a reflection of our desired quad �.u/�.x/�.v/�.y/, and therefore for our initial
solution (i) does not hold.

3.2.3. Star-triangle transformation on propagation equations. This part consists
in rephrasing Baxter’s results on the star-triangle transformation of the Ising model
(see [3, Section 6.4]). It is slightly easier to present it in the triangle-star direction,
i.e., from the right-hand side to the left-hand side of Figure 16, although the converse
is also possible.

Let us suppose that the graph G contains a triangle, as on the right-hand side of
Figure 16. We label its edges with the parameters �i and define xi , Ji as in (3.2)
and (3.3). It is possible to transform the triangle into the star displayed on the left-
hand side, while finding parameters such that both Ising models are coupled and agree
everywhere except at A7. This is called the star-triangle transformation.
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A4

A0

A1

�1

�3�5

A5

A6

A7 �2�6

�4

A3

A2

A4

A5A3

A6A2

A1

Figure 16. Star-triangle transformation on G (black vertices).

Proposition 3.9 ([3]). Let k0 2 .0;1/ be defined as

k0 D
.1 � x21/.1 � x

2
3/.1 � x

2
5/

4
p
.1C x1x3x5/.x1 C x3x5/.x3 C x1x5/.x5 C x1x3/

:

Then the parameters �2, �4, �6 obtained by the star-triangle transformation are the
unique angles in .0; �

2
/ such that

8i 2 ¹1; 3; 5º; tan �i tan �iC3 D
1

k0
; (3.5)

where the labels of the angles are considered modulo 6.

Remark 3.10. This transformation may be expressed in different ways; in this re-
mark, we recall a convenient elliptic parametrization due to Baxter [3], also used
in [5]. The previous definition of k0 naturally comes from the use of an elliptic modu-
lus k 2 iR [ Œ0; 1/ such that k2 C k02 D 1; see Appendix A for a short introduction
to elliptic functions.

We can define elliptic angles �1; : : : ; �6 and � 01; : : : ; �
0
6 by

�i D F.�i ; k/; � 0i D
��i

2K.k/
;

where F (resp. K) is the incomplete (resp. complete) integral of the first kind; see
Appendix A for definitions and details. The normalization is such that both � and � 0

variables live in .0; �
2
/, while � variables live in .0;K.k//. Then k can be seen as the

only modulus such that the � 0 angles satisfy

� 01 C �
0
3 C �

0
5 D

�

2
: (3.6)

In these parameters, the star-triangle transformation simply reads [3, 5]

8i 2 ¹1; 3; 5º; � 0iC3 D
�

2
� � 0i : (3.7)
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We emphasize that this simple formula requires the introduction of a local elliptic
modulus, while equations (1.1) and (1.2) do not.

The graphs ‡� corresponding to the star and to the triangle configurations are
represented in Figure 17. We show that when the angles � are chosen to satisfy the
star-triangle relations (3.5), the propagation equations “seen from the boundary ver-
tices” w1; : : : ; w6 are the same.

5

1

3

w1

w2

w3 w4

w5

w6

y1

y3
y5

4

6 2

w1

w2

w3 w4

w5

w6

z2

z4

z6

Figure 17. Star-triangle transformation of ‡�.

Proposition 3.11. Suppose that �1; : : : ; �6 2 .0; �2 / satisfy the star-triangle rela-
tions (3.5). Let .w1; w2; w3; w4; w5; w6; y1; y3; y5/ be a solution of the propagation
equation on the “triangle” graph on the right of Figure 17. Then there exists a unique
triple .z2; z4; z6/ such that .w1; w2; w3; w4; w5; w6; z2; z4; z6/ is a solution of the
propagation equation on the “star” graph on the left. Conversely, for any solution
.w1; w2; w3; w4; w5; w6; z2; z4; z6/ on the left, there exists a unique triple y1, y3, y5
such that .w1; w2; w3; w4; w5; w6; y1; y3; y5/ is a solution on the right.

Proof. It is easy to see that any values of .y1; y3; y5/ uniquely characterize the solu-
tion of the propagation equation on the triangle graph. Thus, the set of possible vectors
.w1; : : : ; w6/ is a 3-dimensional subspace V . By setting .y1; y3; y5/ to be the ele-
ments of the canonical basis of C3 and solving the propagation equation, we get
a basis of V :

u1 D

0BBBBBBB@

1= cos �5
tan �5
0

0

tan �3
1= cos �3

1CCCCCCCA ; u3 D

0BBBBBBB@

tan �5
1= cos �5
1= cos �1

tan �1
0

0

1CCCCCCCA ; u5 D

0BBBBBBB@

0

0

tan �1
1= cos �1
1= cos �3

tan �3

1CCCCCCCA :
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Similarly, the set of values of .w1; : : : ; w6/ for the star graph is a subspace V 0 with
basis

v2 D

0BBBBBBB@

1= sin �4
1= sin �6
1= tan �6

0

0

1= tan �4

1CCCCCCCA ; v4 D

0BBBBBBB@

0

1= tan �6
1= sin �6
1= sin �2
1= tan �2

0

1CCCCCCCA ; v6 D

0BBBBBBB@

1= tan �4
0

0

1= tan �2
1= sin �2
1= sin �4

1CCCCCCCA :

We want to show that these subspaces are equal. By an argument of dimension,
we just need to show that v2; v4; v6 2 V . Let us do it for v2, the other cases being
symmetric. We claim that

1

cos �3 tan �4
u1 C

1

cos �1 tan �6
u3 �

tan �1
tan �6

u5 D v2:

This is checked immediately for the third and fourth entries; the fifth and sixth entries
are similar after noting that by (3.5),

tan �1
tan �6

D
tan �3
tan �4

: (3.8)

The first and second entries are a bit more tedious. For the first one, we want to show
that

1

cos �3 tan �4 cos �5
C

tan �5
cos �1 tan �6

D
1

sin �4
: (3.9)

In terms of the elliptic variables �i D F.�i ; k/ (see Appendix A), this amounts to
showing (we omit the elliptic parameter k):

nc.�3/ cs.�4/ nc.�5/C nc.�1/ sc.�5/ cs.�6/ � ns.�4/ D 0: (3.10)

By (3.7), �4 D K.k/ � �1 and �6 D K.k/ � �3, and by (3.6), �1 D K.k/ � .�3 C �5/.
Thus we can express all the arguments in terms of �3, �5. Using the change of argu-
ments in elliptic functions (A.1), the left-hand side of (3.10) is equal to

nc.�3/ nc.�5/ cs.�3 C �5/C sc.�3/ sc.�5/ ds.�3 C �5/ � ns.�3 C �5/

D nc.�3/ nc.�5/ ns.�3 C �5/

� .cn.�3 C �5/C sn.�3/ sn.�5/ dn.�3 C �5/ � cn.�3/ cn.�5//:

By (A.2), this is equal to zero.
For the second entry, we want to show that

tan �5
cos �3 tan �4

C
1

cos �1 tan �6 cos �5
D

1

sin �6
: (3.11)
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By (3.5), we have that
tan �5
tan �4

D
tan �1
tan �2

:

Hence (3.11) is equivalent to

tan �1
cos �3 tan �2

C
1

cos �1 tan �6 cos �5
D

1

sin �6
:

Up to a cyclic shift, this is the same as (3.9), so it holds by the previous discussion.

As a byproduct of the previous proof, we obtain Theorem 1.2, which provides
formulas expressing the change of � parameters in the star-triangle transformation.
These formulas are much simpler than the classical computation described in Propo-
sition 3.9 and to the best of our knowledge, they are new.

Proof of Theorem 1.2. For i D 4, this follows from combining (3.8) and (3.9). Cyclic
shifts of indices give the cases i D 2 and i D 6.

To obtain the other three values of i , we apply the Kramers–Wannier duality of
the Ising model [22], which has the effect of transforming the variables �i into �

2
� �i .

In this duality, the star graph becomes its dual, i.e., a triangle, and vice-versa. Hence
the formula can be deduced from the previous one by changing sines into cosines and
vice-versa.

We now have all the elements to prove the unique proper flip property of 1-
embeddings.

Proof of Theorem 3.1. We start with A0; A1; : : : ; A6, a proper embedding of the left-
hand side of Figure 6. As uniqueness is a consequence of Proposition 3.3, we just have
to prove that there exists a point A7 such that A1; A2; : : : ; A7 is a proper embedding
of the right-hand side.

By Proposition 3.7, there exists a solution .w1; w2; w3; w4; w5; w6; y1; y3; y5/ of
the propagation equation as on the left-hand side of Figure 17 such that the points
A0; A1; : : : ; A6 are the s-embedding of this solution. Hence, by Proposition 3.11,
there exists .z2; z4; z6/ such that .w1; w2; w3; w4; w5; w6; z2; z4; z6/ is a solution to
the propagation equation of the right-hand side of Figure 17. Let us consider its s-
embedding. It has the same boundary as the initial one—hence the points A1; : : : ; A6
are unchanged—and we have a new point A7. It remains to prove that the three new
1-quads are proper and oriented as on the right-hand side of Figure 6. Then w1=w2 is
not a real number. Indeed, if it were the case, the propagation equations would imply
that the variables .w1;w2;w3;w4;w5;w6; z2; z4; z6/ all have the same argument, and
the initial embedding would not be proper. Moreover, the initial quad A1A2A3A0 is
proper and positively oriented. Hence, we can apply Lemma 3.8 to obtain the ordering
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w2

y3

w3

w4

y5
w5

w6
y1
w1

w1

w2

w3

w4

w5

w6

w25

w26

w21
w22

w23

w24

Figure 18. The cyclic order of the arguments of the variables wi and yi .

of the arguments of w1, w2, y3, y1. By doing the same for the other two initial quads,
the order of the arguments of the variables wi and yi is that on the left of Figure 18.

Let us prove that the new (proper) quad A1A2A7A6 is positively oriented. By
Lemma 3.8, it is enough to prove that Im.w6=w1/ > 0. If this is not the case, then
we are in the situation of the second configuration of Figure 18, where all the argu-
ments are included in a half-circle. Therefore we can get the order of the arguments
of the w2i , as in the picture on the right of Figure 18. However, as in the proof of
Lemma 3.8, the successive internal angles of the hexagon A1A2A3A4A5A6 can be
expressed as the successive oriented angles in direct order in this last figure, and, in
particular, their sum is 2� . This contradicts the fact that the hexagon is non-crossed,
as the sum should be 4� . By symmetry, the three new quads are properly oriented,
which concludes the proof.

Remark 3.12. The so-called exact bosonization operation provides a map from two
independent Ising models on some planar graph G to a bipartite dimer model on
a modified graph zG [10]. Under this correspondence, the Ising star-triangle move cor-
responds to the composition of six local moves for the dimer model called urban
renewals [20, Figure 6]. On the other hand, embeddings as centers of circle pat-
terns are known to be adapted to bipartite dimer models and the counterpart of urban
renewal for these geometric objects is called the Miquel move [18]. From all this,
we conclude that it is possible to write the star-triangle move for s-embeddings as
a composition of six Miquel moves.

4. The cube move for ˛ > 1

In this section, we prove that the set of ˛-realizations for ˛ > 1 satisfies the flip prop-
erty. In order to achieve this, we first study basic properties of construction curves,
namely (un)boundedness, connectedness and asymptotic behaviour.
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4.1. Properties of construction curves

Recall that construction curves for ˛ 2 ¹�1; 0; 1; 2;C1º are completely charac-
terized by Proposition 2.9. In the rest of this section, we restrict ourselves to ˛ 2
R n ¹0; 1; 2º.

Without loss of generality, to study an ˛-construction curve with foci A, B , we
can assume that A D .0;�1/ and B D .0; 1/. Then any ˛-construction curve is char-
acterized by a parameter � 2 R, such that the curve is the set of points ¹M 2 R2 j

MA˛ �MB˛ D �º. Hence, it is a level set of the function F˛WM 7!MA˛ �MB˛ , or

F˛.x; y/ D .x
2
C .y C 1/2/˛=2 � .x2 C .y � 1/2/˛=2:

We denote this curve by C.˛;�/ WD F �1˛ .¹�º/. Remark that when �D 0 the curve
C.˛;0/ isP.AB/, which in that case is the horizontal axis. Moreover, changing � into
�� has the effect of reflecting the curve across P.AB/. Finally, note that the curve
may be empty for some values of ˛ and �.

The following result is immediate.

Lemma 4.1. Let M be a point distinct from A, B . Let M 0 be the image of M by
the reflection across .AB/, and M 00 the image of M by the reflection across P.AB/.
Then one has F˛.M/ D F˛.M

0/ D �F˛.M
00/. In particular, F˛ is the zero function

on P.AB/. Moreover, F˛ has a constant sign on each half-plane bounded by P.AB/.

Corollary 4.2. For ˛ 2 R� and � > 0, C.˛; �/ is symmetric with respect to the axis
.AB/ and remains on one side of P.AB/ (namely, the side containing B if ˛ > 0 and
the side containing A if ˛ < 0).

In order to understand the level sets of the function F˛ , let us study its profile. As a
result of the symmetries of Lemma 4.1, it is sufficient to do so in the quadrant .RC/2.

Lemma 4.3. For any M D .xM ; yM / 2 .RC/2,

(i) if ˛ < 0, then:

• F˛ is C1 on R2 n ¹A;Bº;

• limM!B F˛.M/ D �1 and limx2
M
Cy2

M
!1

F˛.M/ D 0;

• F˛.M/ < 0 for yM > 0 and M ¤ B;

• @F˛
@x
.M/ > 0 for xM > 0 and yM > 0;

• @F˛
@y
.M/ < 0 for xM D 0 and yM < 1; @F˛

@y
.M/ > 0 for xM D 0 and

yM > 1;

(ii) if 0 < ˛ < 1, then:

• F˛ is continuous on R2, and C1 on R2 n ¹A;Bº;

• limx2
M
Cy2

M
!1

F˛.M/ D 0;
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• F˛.M/ > 0 for yM > 0;

• @F˛
@x
.M/ < 0 for xM > 0 and yM > 0;

• @F˛
@y
.M/ > 0 for xM D 0 and yM < 1; @F˛

@y
.M/ < 0 for xM D 0 and

yM > 1;

(iii) if ˛ > 1 with ˛ ¤ 2, then:

• F˛ is C 1 on R2, and C1 on R2 n ¹A;Bº;

• limyM!1 F˛.M/ D C1 for any fixed xM � 0;

• F˛.M/ > 0 for yM > 0;

• @F˛
@x
.M/ < 0 for xM > 0, yM > 0 and ˛ < 2; @F˛

@x
.M/ > 0 for xM > 0,

yM > 0 and ˛ > 2;

• @F˛
@y
.M/ > 0 for xM ; yM � 0.

Proof. Firstly, all the claims on the regularity of F˛ are clear. Furthermore, the sign
of this function on the quadrant .RC/2 is apparent as well, since MA � MB with
equality only if xM D 0.

Let us now deal with the asymptotic behaviour of F˛ . For ˛ < 0, MB˛ tends to
C1 asM !B and therefore limF˛ D�1. On the other hand, for any ˛ < 1, notice
that by the mean value theorem, for any M there exists a u 2 ŒMA;MB� such that

F˛.M/ D .MA �MB/˛u˛�1 � ˛AB:MB˛�1;

where we used the triangular inequality. This tends to 0 as MB grows. In the case
˛ > 1, let xM be fixed. For any large enough yM , by the mean value theorem, there
exists a u 2 ŒyM � 1; yM C 1� such that

F˛.M/ D u˛.x2 C u2/˛=2�1:

For large yM , this is equivalent to ˛y˛�1M and so it tends toC1.
We finally consider the partial derivatives of F˛ . For any M 2 .R�C/

2, one can
compute

@F˛

@x
.M/ D ˛xM .MA

˛�2
�MB˛�2/;

and its sign is apparent. Regarding the second partial derivative of F˛ , we compute

@F˛

@y
.M/ D ˛.yM C 1/.x

2
M C .yM C 1/

2/
˛
2�1

� ˛.yM � 1/.x
2
M C .yM � 1/

2/
˛
2�1: (4.1)

Let us investigate the case ˛ < 1. When xM D 0 and yM ¤ 1, this reduces to

˛.sgn.yM C 1/jyM C 1j˛�1 � sgn.yM � 1/jyM � 1j˛�1/:
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A study of the function t 7! sgn.t/jt j˛�1 shows that, for ˛ 2 .0; 1/, this quantity is
positive when yM < 1 and negative when yM > 1 (and conversely for ˛ < 0).

Finally, we treat the case ˛ > 1. Using the expression (4.1), in order to prove that
@F˛
@y
.M/ > 0, we only have to prove that gWu! u.x2M C u

2/˛=2�1 is increasing for
any xM � 0. For xM D 0, the previous argument applies. For xM > 0, g is differen-
tiable and, for u 2 R, g0.u/ D Œx2M C .˛ � 1/u

2�.x2M C u
2/˛=2�2 > 0. Hence, g is

increasing and the result follows.

The study of the function F˛ allows one to prove that the curveC.˛;�/ is obtained
from the graph of a real function.

Corollary 4.4. Let ˛ 2 R n ¹0; 1; 2º and � 2 R�. We assume that ˛� > 0, which
ensures that the curve C.˛; �/ is in the upper half-plane.

For ˛ < 1, the curve C.˛; �/ is bounded. If the curve is non-empty, there exists
0<y�<1<yC such thatC.˛;�/\ .AB/D¹.0;y�/; .0;yC/º. For any y 2 Œy�;yC�,
there exists a unique g˛.y/ � 0 such that .g˛.y/; y/ 2 C.˛; �/. Furthermore, the
function g˛ is C 1 on .y�; yC/.

For ˛ > 1, the curve C.˛; �/ is unbounded and, for any x 2 R, there exists
a unique f˛.x/ 2 R such that .x; f˛.x// 2 C.˛; �/. The function f˛ is C 1 on R.
Moreover, for all x 2 R, f˛.x/ > 0, and on the interval Œ0;1/, the function f˛ is
increasing for 1 < ˛ < 2, decreasing for ˛ > 2.

Proof. The (un)boundedness of the curve follows from the limits of Lemma 4.3, while
the existence of g˛ , f˛ follows from the intermediate value theorem. In addition, by
the implicit function theorem, all these functions are C 1. From the definition of the
construction curve, we get that, for any x 2 R:

@F˛

@x
.x; f˛.x//C f

0
˛.x/

@F˛

@y
.x; f˛.x// D 0:

By Lemma 4.3, for all x 2 R, @F˛
@x
.x; f˛.x// > 0; moreover @F˛

@y
.x; f˛.x// > 0 if

˛ > 2 and @F˛
@y
.x; f˛.x// < 0 if 1 < ˛ < 2. The result follows.

Corollary 4.5. C.˛; �/ is a connected curve.

Proof. By Lemma 4.3, for any .x; y/ 2 R2, @F
@y
.x; y/ > 0. We can therefore use the

implicit function theorem along with Corollary 4.4 to get the result.

We now investigate the asymptotic behaviour of the function f˛ atC1 (and thus
the asymptotic direction of the associated construction curve). The following lemma
states that, in the case 1 < ˛ < 2, the construction curve admits the perpendicular
bisector of ŒAB� as asymptotic direction, and in the case ˛ > 2, it is the actual asymp-
tote of the curve.
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Lemma 4.6. Let ˛ 2 .1;1/ n ¹2º, and � ¤ 0. As jxj ! 1, f˛.x/ has the following
asymptotic behaviour:

f˛.x/ �
�

2˛
jxj2�˛:

Proof. By the symmetry properties of C.˛; �/, we only have to focus on the case
x !C1. For any x > 0, by the mean value theorem, there exists ux 2 .f˛.x/ � 1;
f˛.x/C 1/ such that

� D .x2 C .f˛.x/C 1/
2/˛=2 � .x2 C .f˛.x/ � 1/

2/˛=2

D 2˛ux.x
2
C u2x/

˛=2�1
D 2˛u˛�1x

�ux
x

�2�˛�
1C

�ux
x

�2�˛=2�1
:

For 1 < ˛ < 2, this implies that ux
x

tends to 0 as x !1; otherwise the right-
hand term would take arbitrarily large values. From this observation, we get that
u˛�1x .ux

x
/2�˛ D �.1C o.1// and therefore that ux � �

2˛
x2�˛ . Since ux 2 .f˛.x/ � 1;

f˛.x/C 1/, the same holds for f˛.x/.
For ˛ > 2, as x !1, ux has to converge to 0, and therefore f˛.x/ is bounded.

Asymptotically, as x !1,

� D .x2 C .f˛.x/C 1/
2/˛=2 � .x2 C .f˛.x/ � 1/

2/˛=2

�
˛

2
x˛�2Œ.f˛.x/C 1/

2
� .f˛.x/ � 1/

2� � 2 f̨˛.x/x
˛�2;

and the result follows.

4.2. Flip property for ˛ > 1

We now go back to the study of the flip property of ˛-realizations. We get the follow-
ing result in the case ˛ > 1:

Theorem 4.7. For any real number ˛ > 1, the set of ˛-realizations satisfies the flip
property.

Proof. Fix ˛ > 1 and consider six distinct points A1; : : : ; A6 such that A1, A3,
A5 (resp. A2, A4, A6) are not aligned. Suppose that there is a point A0 such that
the quadrilaterals A1A2A3A0, A3A4A5A0 and A5A6A1A0 are all ˛-quads. By Re-
mark 2.8, it suffices to show that the ˛-construction curves of the hexagon C1 and C3

have a common point. By Lemma 4.6, C1 admits P.A2A6/ as an asymptotic direction
and C3 admits P.A2A4/ as an asymptotic direction. These two lines are not parallel,
since A2, A4, A6 are not aligned. Therefore, considering the behaviour of C1 and C3

at infinity and using Corollary 4.5, these two construction curves have to intersect at
least once.
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Remark 4.8. It may be interesting to bound the number of intersection points of two
construction curves having a focus in common, in order to control the number of
potential points that could appear. Based on simulations, we expect that for ˛ < 1

there are at most two points of intersection, and for ˛ > 1 there are at most three (see
the examples of Figure 10). It may be possible to use an analysis similar to that of
Lemma 4.3 to get properties of convexity of the construction curves and deduce the
previous bounds.

5. The space of ˛-quads and f -quadrilaterals

In this last section, we provide different geometric characterizations of ˛-quads. It ap-
pears that one of them holds in the broader context of f -quadrilaterals (see Def-
inition 5.5). The first characterization of ˛-quads is related to the existence in the
quadrilateral of a so-called extremal pair.

Definition 5.1. A pair of opposite sides of a quadrilateral is called an extremal pair
if these two sides achieve both the maximum and the minimum of the side lengths of
the quadrilateral.

Proposition 5.2. A quadrilateral is an ˛-quad for some ˛ 2 R if and only if it has an
extremal pair.

Proof. Let Q be a quadrilateral whose side lengths are denoted by `1, `2, `3, `4 in
cyclic order (starting from any of them). Assume that Q has no extremal pair. Then,
without loss of generality, one may assume that `1 is the maximal length and `4 the
minimal length, and they are distinct. Since .`1; `3/ is not an extremal pair, `3 does not
achieve the minimum. Thus, `3 > `4 andQ is not a �1-quad. Similarly, `2 does not
achieve the maximum; thus, `2 < `1 and Q is not aC1-quad. By these inequalities,
`˛1 C `

˛
3 > `˛2 C `

˛
4 if ˛ > 0 and `˛1 C `

˛
3 < `˛2 C `

˛
4 if ˛ < 0 (and in any of these

cases Q is not an ˛-quad). Furthermore, `1`3 > `2`4 and Q is not a 0-quad. Hence,
Q is not an ˛-quad for any ˛ 2 R.

Conversely, suppose that Q has an extremal pair. We can assume that `1 is the
maximal length, `3 the minimal length, and that `2 � `4 (up to a possible mirror sym-
metry). If `2 D `3 or if `4 D `1, then Q is a �1-quad or a C1-quad, respectively.
Hence, we can assume that `3 < `2 � `4 < `1. Consider now the function g on R�

defined as

gW ˛ 7!
`˛1 C `

˛
3 � `

˛
2 � `

˛
4

˛
:

The function g can be extended to a continuous function on R by setting g.0/ D
ln. `1`3

`2`4
/. By the previous inequalities, for ˛!�1, g.˛/� `˛

3

˛
< 0 and for ˛!C1,



P. Melotti, S. Ramassamy, and P. Thévenin 812

g.˛/ �
`˛
1

˛
> 0. Hence, by the intermediate value theorem, there exists ˛ 2 R such

that g.˛/ D 0 and Q is an ˛-quad.

We now characterize quadrilaterals that are ˛-quads for at least two distinct values
of ˛.

Definition 5.3. A quadrilateral ABCD is said to be a kite if its side lengths satisfy

¹AB;CDº D ¹BC;DAº:

Remark, in particular, that a kite is an ˛-quad for all values of ˛ 2 R.

Proposition 5.4. Let ˛ ¤ ˛0 2 R, and let Q be a quad which is an ˛-quad and an
˛0-quad at the same time. Then Q is a kite.

This generalizes a result of [13] which claims that a quad which is both a 0-quad
and a 1-quad is a kite.

Proof. Denote by `1, `2, `3, `4 the side lengths of Q in cyclic order. Assume first
that neither ˛ nor ˛0 take the values �1,1 or 0. Then, up to replacing `i by `˛

0

i , one
may assume that ˛0 D 1. Write s D `1 C `3 and t D `˛1 C `

˛
3 . Since Q is a 1-quad,

we have `4 D s � `2. Since Q is also an ˛-quad, we have

`˛2 C .s � `2/
˛
D t; (5.1)

and 0 � `2 � s. The function x 7! x˛ C .s � x/˛ is strictly monotonic on Œ0; s=2�
and symmetric with respect to x D s=2, so that the only solutions of equation (5.1)
are `2 D `1 and `2 D `3. Hence ¹`1; `3º D ¹`2; `4º, and Q is a kite.

Assume now that ˛ D 0 and ˛0 is finite. One may again assume that ˛0 D 1, in
which case the sums and products of each pair ¹l1; l3º and ¹l2; l4º are equal, and Q
is again a kite. If ˛ 2 ¹�1;1º and ˛0 is finite non-zero, one may again assume that
˛0 D 1 and the conclusion follows easily. The case when ˛ 2 ¹�1;1º and ˛0 D 0 is
similar. Finally, the case when ¹˛; ˛0º D ¹�1;1º is also easy.

We finally provide another characterization, involving circumradii of the four tri-
angles delimited by the sides and diagonals of the quad. This last characterization
actually holds in a more generic setting, which we now introduce. In what follows,
we say that a symmetric function of two variables f W .RC/2 ! R is homogeneous if
there exists u 2 R such that for any �; x; y > 0, we have f .�x; �y/ D �uf .x; y/.

Definition 5.5. Let f W .RC/2! R be a non-constant homogeneous symmetric func-
tion of two variables. A quadrilateral ABCD is called an f -quadrilateral if

f .AB;CD/ D f .BC;AD/:
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Multiplying f by a non-zero scalar, or more generally, post-composing it with
a bijection, produces the same class of quads. As an example, for ˛ 2 R�, ˛-quads
correspond to the function f˛W .x; y/ 7! x˛ C y˛ . By definition, 0-quads,C1-quads
an �1-quads are also f -quadrilaterals for some homogeneous function.

Proposition 5.6. Let ABCD be a quad. Let P denote the intersection point of its
diagonals and suppose that P is distinct from A, B , C , D. We denote the respective
circumradii of the triangles ABP , BCP , CDP andDAP byR1,R2,R3 andR4. Let
f W .RC/2! R be a symmetric homogeneous function. The following are equivalent:

(1) ABCD is an f -quadrilateral;

(2) f .R1; R3/ D f .R2; R4/.

This result was already known for orthodiagonal quads and tangential quads [14]
and our proof below is a straightforward extension of the proof of [14, Theorem 9].

Proof. Let us denote the centers of the circumcircles of ABP , BCP , CDP ,DAP by
O1, O2, O3, O4, respectively. Since AO1B is isosceles in O1, we have

AB D 2R1 sin
1AO1B
2

:

Since P lies on the circle centered at O1 and going through A and B , we have that

1AO1B
2
2
®1APB;� �1APB¯;

hence
AB D 2R1 sin 1APB:

Similarly, we have

BC D 2R2 sin 1BPC; CD D 2R3 sin 1CPD; DA D 2R4 sin 1DPA:

Observing that 1APB D1CPD D � �1BPC D � �1DPA, we deduce that the quadru-
ples .AB; BC; CD;DA/ and .R1; R2; R3; R4/ are proportional. Since f is homo-
geneous, f .AB; CD/ D f .BC; DA/ if and only if f .R1; R3/ D f .R2; R4/. This
concludes the proof.

Remark 5.7. Let h1, h2, h3 and h4 be the altitudes through P in the triangles ABP ,
BCP , CDP and DAP . For ˛ 2 ¹1; 2º, ABCD is an ˛-quad if and only if

h�˛1 C h
�˛
3 D h

�˛
2 C h

�˛
4 ;

see [14, Section 5]. However, this does not hold for general values of ˛.
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We end this section with an open question.

Question 5.8. Apart from f˛ , are there homogeneous functions f such that f -quad-
rilaterals satisfy one of the flip properties discussed in this paper?

A. Jacobi elliptic functions

In this appendix, we give a very brief presentation of elliptic functions and formulas
used in the paper, with variable names that are not classical but fit the framework of
our paper. For a more complete introduction, we refer to [1, 23].

Consider a number k 2 Œ0; 1/[ iR, which we call elliptic modulus. We first define
the incomplete integral of the first kind:

F.�; k/ D

Z �

0

dt
p

1 � k2 sin2 t
:

The function F.�; k/ is a bijection from R to R, and we denote its inverse by am.�; k/.
Then the first two Jacobi elliptic functions are defined for any � 2 R by

cn.�; k/ D cos.am.�; k//; sn.�; k/ D sin.am.�; k//:

These functions can be thought of as generalizations of usual cosine and sine func-
tions. For k D 0, the function F.�; k/ is clearly the identity, hence cn and sn reduce to
cos and sin. In general, they are periodic functions, of period 4K.k/ whereK denotes
the complete integral of the first kind, also named quarter-period:

K.k/ D F
��
2
; k
�
:

Apart from cn and sn, we also define

dn.�; k/ D
p
1 � k2 sn.�; k/:

Then, for any two distinct letters p; q 2 ¹c; s; d; nº, we define a function pq as pn
qn

,
with the convention that nn D 1. For instance,

nc.�; k/ D
1

cn.�; k/
; sc.�; k/ D

sn.�; k/
cn.�; k/

;

etc.
The following formulas, which can be found in [1, Chapter 16.8], describe how

these elliptic functions are affected by the change of variable � 7! K.k/ � � . As is
customary, we omit the dependence in k to simplify notations. Letting k0 D

p
1 � k2,

one has

cn.K � �/ D k0 sd.�/; sn.K � �/ D cd.�/; dn.K � �/ D k0 nd.�/: (A.1)
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The effect of the same change of variable on any other function pq can be deduced
from these three.

We also make use of an addition identity, that can be found in [23, Chapter 2,
p. 48, 32 (i)]. For any �; � 0 2 R;

cn.� C � 0/C sn.�/ sn.� 0/ dn.� C � 0/ � cn.�/ cn.� 0/ D 0: (A.2)
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