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Apéry-like numbers for non-commutative harmonic oscillators

and automorphic integrals

Kazufumi Kimoto and Masato Wakayama

Abstract. The purpose of the present paper is to study the number theoretic properties of

the special values of the spectral zeta functions of the non-commutative harmonic oscillator

(NcHO), especially in relation to modular forms and elliptic curves from the viewpoint of

Fuchsian differential equations, and deepen the understanding of the spectrum of the NcHO.

We study first the general expression of special values of the spectral zeta function �Q.s/ of

the NcHO at s D n .n D 2; 3; : : : / and then the generating and meta-generating functions for

Apéry-like numbers defined through the analysis of special values �Q.n/. Actually, we show

that the generating function w2n of such Apéry-like numbers appearing (as the “first anomaly”)

in �Q.2n/ for n D 2 gives an example of automorphic integral with rational period functions

in the sense of Knopp, but still a better explanation remains to be clarified explicitly for n > 2.

This is a generalization of our earlier result on showing that w2 is interpreted as a �.2/-modular

form of weight 1. Moreover, certain congruence relations over primes for “normalized” Apéry-

like numbers are also proven. In order to describe w2n in a similar manner as w2, we introduce

a differential Eisenstein series by using analytic continuation of a classical generalized Eisen-

stein series due to Berndt. The differential Eisenstein series is actually a typical example of the

automorphic integral of negative weight. We then have an explicit expression of w4 in terms

of the differential Eisenstein series. We discuss also shortly the Hecke operators acting on such

automorphic integrals and relating Eichler’s cohomology group.
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1. Introduction

Let Q be a parity preserving matrix valued ordinary differential operator defined by

Q D Q˛;ˇ D
�

˛ 0

0 ˇ

��

�1

2

d2

dx2
C 1

2
x2

�

C
�

0 �1

1 0

��

x
d

dx
C 1

2

�

:

The system defined by Q is called the non-commutative harmonic oscillator (NcHO),

which was introduced in [35–38] (see also [33,34] for references therein and for recent

progress). Throughout the paper, we always assume that ˛; ˇ > 0 and ˛ˇ > 1. Under

this assumption, the operator Q becomes a positive self-adjoint unbounded operator

on L2.RI C2/, the space of C2-valued square-integrable functions on R, and Q has

only a discrete spectrum with uniformly bounded multiplicity:

0 < �1 � �2 � �3 � � � � .% 1/:

It was proved recently that the lowest eigenstate is multiplicity free [14] and also the

multiplicity of general eigenstate is less than or equal to 2 [46] (see [47] for the proof).

The aim of the present paper is to advance a number theoretic study of the spec-

trum of the NcHO through observing special values of the spectral zeta function �Q.s/

([16, 17]) defined by

�Q.s/ WD
1

X

nD1

��s
n .<.s/ > 1/;

and further to deepen the understanding of the spectrum. It is noted that, when ˛ D ˇ,

Q D Q˛;˛ is unitarily equivalent to the couple of quantum harmonic oscillators,

whence the eigenvalues are easily calculated as ¹
p

˛2 � 1.n C 1
2
/ j n 2 Z�0º having

multiplicity 2. Actually, when ˛ D ˇ, behind Q, there exists a structure corresponding

to the tensor product of the 2-dimensional trivial representation and the oscillator rep-

resentation (see, e.g., [15]) of the Lie algebra sl2. Namely, in this case, �Q.s/ is essen-

tially given by the Riemann zeta function �.s/ as �Q.s/ D 2.2s � 1/
p

˛2 � 1�.s/. In

other words, �Q.s/ is a ˛
ˇ

-analogue of �.s/. The clarification of the spectrum in the

general ˛ 6D ˇ case is, however, considered to be highly non-trivial. Indeed, while

the spectrum is described theoretically by using certain continued fractions [36–38]

and also by Heun’s ordinary differential equations (those have four regular singular

points) [40] in a certain complex domain [31, 47], almost no satisfactory informa-

tion on each eigenvalue is available in reality when ˛ ¤ ˇ (see [33] and references

therein).

It is nevertheless worth mentioning that, in recent years, special attention has

been paid to studying the spectrum of self-adjoint operators with non-commutative

coefficients, like the Jaynes–Cummings model, the quantum Rabi model and its gen-

eralized version, etc., not only in mathematics but also in theoretical/experimental



Apéry-like numbers 207

physics (see, e.g., [2, 8, 11, 50] and references therein). The NcHO has been expected

similarly to provide one of these Hamiltonians describing such quantum interact-

ing systems, i.e., a Hamiltonian describing such an interaction between photons and

atoms. Although it does not seem to be expected, it has been shown in [47] that (the

“Heun picture” of) the quantum Rabi model can be obtained by the second order ele-

ment of the universal enveloping algebra U.sl2/ naturally arising from the NcHO

through the oscillator representation. It is, in fact, caught by taking particular para-

meters and considering general confluence procedure, i.e., confluence of two singular

points in Heun’s ordinary differential equation obtained in the action of the non-

unitary principal series representation of sl2.

Therefore, in place of hunting each eigenvalue of Q, it is significant to study

the spectral zeta function �Q.s/ of the NcHOs as a sort of generating function of

the eigenvalues. From the physical point of view, �Q.s/ is also regarded as the Mellin

transform of the partition function of the system defined by the NcHO. This paper dis-

cusses the number theoretic properties of the special values of �Q.s/ at integer points.

We notice that special values are considered as moments of the partition functions.

We have actually studied congruence properties of the Apéry-like numbers in [20]

that have arisen naturally from the special values �Q.2/ at s D 2 by the same idea

guided in the studies for the Apéry numbers for �.2/ in [5] (and references therein).

This study of congruence properties led us further to show that the generating func-

tion w2 of the Apéry-like numbers for �Q.2/ is interpreted as a �.2/-modular form of

weight 1 [21] in the same way as in a pioneering study by Beukers [4,6] for the Apéry

numbers. In other words, the recurrence equation of these Apéry-like numbers defined

in [20] provide one of the particular examples listed in Zagier [51, (#19)].1 Moreover,

it is known in [23] that the Apéry-like numbers corresponding to �Q.2/ are described

by a finite convolution of the Hurwitz zeta function and certain variation of multiple

L-values. Also, recently, certain nice congruence relations among these Apéry-like

numbers that are quite resembled to the Rodriguez Villegas type congruence [30] and

conjectured in [20] are proved in [29]. Further interesting congruence that involves

Bernoulli numbers has been obtained in [28] (see also [45]). The congruence in [28]

can be considered as a one step deep congruence of the one proved in [29] corrected

by the remainder term.

It is hard in general to obtain the precise information of the higher special val-

ues of �Q.n/ .n > 2/ as the same level of �Q.2/. Thus, in this paper we introduce

the Apéry-like numbers Jk.n/ .k D 0; 1; 2; : : :/ for each n defined through the first

anomaly of �Q.n/ .n > 2/. These Apéry-like numbers share the properties of the one

1Although the terminology “Apéry-like” is the identical one, the usage/definition of the

name in the current paper is different from the one in the title of [51].
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for �Q.2/, e.g., satisfy a similar recurrence relation as in the case of �Q.2/ and hence

the ordinary differential equation satisfied by the generating function follows from the

recurrence relation. Remarkably, each of the homogeneous part of those differential

equations is identified to be a (n dependent) power of the homogeneous part of the

one corresponding to �Q.2/. Further, we observe that the meta-generating functions

of Apéry-like numbers are described explicitly by the modular Mahler measures stud-

ied by Rodriguez Villegas in [39]. Through this relation, we may expect to discuss an

interesting aspect of a discrete dynamical system behind the NcHO defined by some

group via (weighted) Cayley graphs (see [9]; also, e.g., [27]) in the future. Moreover,

we show that the generating function w2n of Apéry-like numbers corresponding to

the first anomaly in �Q.2n/ when n D 2 is given by an automorphic integral with a

rational period function in the sense of Knopp [24]. This is obviously a generalization

of our earlier result [21] showing that w2 is interpreted as a �.2/-modular form of

weight 1. However, it is still unclear whether there is a similar explicit (geometric and

algebraic) interpretation in general for �Q.n/ (n > 2). Further, the study of the special

values of the spectral zeta function for the quantum Rabi model [44] and comparison

to the ones for NcHO is a quite interesting future problem as NcHO is a “covering”

of the model.

The organization of the paper is as follows. In §2 we calculate (Theorem 2.6) the

special values of the spectral zeta function for the NcHO. These explicit formulas are

found already in [22] (see [18]) by multiple integrals like (a generalization of) the

original Apéry cases for �.2/ and �.3/ using Legendre functions [4,7]. The basic idea

is on the same line as [16] but some essentially new techniques are explored.

In §3 we derive the recursion formula for the Apéry-like numbers associated to the

first anomalies of special values of �Q.s/ and the differential equations satisfied by the

generating functions of such Apéry-like numbers. Although our study is very much

influenced by the classical (algebro-geometric) work on Apéry numbers in [4,6,7] and

its subsequent developments, since the family of generating functions for Apéry-like

numbers arising via the NcHO possesses a remarkable hierarchical structure, there is

a decisive difference between these two. We then define the normalized Apéry-like

numbers which are shown to be rational numbers, and present numerical data of these

numbers. In the end of this section, we give a certain conjecture (Conjecture 3.6) for

the congruence among those normalized Apéry-like numbers which are the gener-

alization of the results in [20] based on numerical experiments. We can only show

in this paper a weaker/partial result in Theorem 3.10, which may be considered as

a version of the classical Kummer congruence for the special values at negative odd

integer points of �.s/. We remark that, however, it is quite difficult to expect an exact

generalization of the congruence relation (i.e., of the same shape which is relevant

to the hypergeometric series) shown by employing p-adic analysis in [29] (and [28])

for �.2/.
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We study in §4 also meta-generating functions for Apéry-like numbers in relation

to the study on modular Mahler measures in [39]. In §5, we first recall briefly the

modular form interpretation of the generating function for the Apéry-like numbers

for �Q.2/ from [21] and discuss the corresponding generating function w2n for the

Apéry-like numbers for (the first anomaly in) �Q.2n/. We may also study the Apéry

numbers associated with �Q.2n C 1/, but the structure behind this is different from the

one in [7] that is relating with K3 surfaces. Actually, although the homogeneous part

of the differential equation satisfied by the Apéry-like numbers arisen from odd spe-

cial values are the same as the even case, even the value �Q.3/ can not be interpreted

as a picture of K3 spaces. We recall then in §5 a notion of automorphic integrals with

rational period functions in the sense of Knopp [24] (that is a slightly generalized

notion of the automorphic integrals [10]). Then we study w2n from the viewpoint of

Fuchsian differential equations. Indeed, we show that w2n can be expressed by the

linear space spanned by higher derivatives of automorphic integrals and w2. In other

words, we observe that w2k is obtained by some linear combination of the multiple

integral of the (same) modular forms. For instance, the explicit expression of w6 by

such a linear span of integrals is given in §5.5. In order to describe w2n in a similar

manner as w2, it is necessary to introduce a differential Eisenstein series by using

analytic continuation of a classical generalized Eisenstein series due to Berndt [3]

in §6. These differential Eisenstein series provide typical examples of the automorphic

integral of negative weight and we have an explicit expression of w4 in terms of the

differential Eisenstein series. We notice that the differential Eisenstein series is peri-

odic, whence has a Fourier expansion at the infinity. Further, we discuss shortly the

Hecke operators acting on such automorphic integrals and compute the associated

L-function of the differential Eisenstein series (which has an Euler product). In the

final § 7, we discuss briefly the Eichler cohomology groups relevant to the periodic

automorphic integrals. A part of ideas of the paper has been discussed in our proceed-

ings paper [22], but there is a certain misleading terminology [22] so that we will fix

that in this paper.2

2The general definition of “residual modular forms” in [22] is too demanding. Although the

example given in [22] satisfies such strong condition in the definition, if the level N is large, i.e.,

the number of inequivalent cusps is increasing, the definition of residual modular forms allows

only the zero form. In this paper, we find actually that the notion of the automorphic integrals

in the sense of [24] is sufficient for our study.
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2. Special values of the spectral zeta function

From the sequence of the eigenvalues 0 < �1 � �2 � �3 � : : : .! 1/ of Q, we define

the spectral zeta function of Q by the Dirichlet series

�Q.s/ D
1

X

nD1

1

�s
n

:

This series is absolutely convergent and defines a holomorphic function in s in the

region <s > 1. We call this function �Q.s/ the spectral zeta function for the non-

commutative harmonic oscillator Q, see [17]. The zeta function �Q.s/ is analytically

continued to the whole complex plane C as a single-valued meromorphic function

which is holomorphic except for the simple pole at s D 1. It is notable that �Q.s/

has ‘trivial zeros’ at s D 0; �2; �4; : : : from the presence of �.s/�1 at the analytic

continuation to the whole complex plane [17]. When the two parameters ˛ and ˇ are

equal, then �Q.s/ essentially gives the Riemann zeta function �.s/ (see Remark 2.2).

We are interested in the special values of �Q.s/, that is, the values �Q.s/ at s D
2; 3; 4; : : :. In [16] the first two special values are calculated as

�Q.2/ D 2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�2

�
�

�
�

2;
1

2

�

C
� ˛ � ˇ

˛ C ˇ

�2
Z

Œ0;1�2

4du1du2
q

.1 � u2
1u2

2/2 C .1 � u4
1/.1 � u4

2/=.˛ˇ � 1/

�

;

�Q.3/ D 2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�3

�
�

�
�

3;
1

2

�

C 3
� ˛ � ˇ

˛ C ˇ

�2
Z

Œ0;1�3

8du1du2du3
q

.1 � u2
1u2

2u2
3/2 C .1 � u4

1/.1 � u4
2u4

3/=.˛ˇ � 1/

�

;

where �.s; x/ D
P1

nD0.n C x/�s is the Hurwitz zeta function. These values are also

given by the contour integral expressions using a solution of a certain Fuchsian differ-

ential equation. Later, in [32] Ochiai gave an expression of �Q.2/ using the complete

elliptic integral or the hypergeometric function, and the present authors [20] gave a

similar formula for �Q.3/.

In this section, we present an explicit calculation of the special values of the spec-

tral zeta function �Q.k/ of the non-commutative harmonic oscillator Q for all positive

integers k > 1, and express them in terms of integrals of certain algebraic functions

(see Theorem 2.6 for the formula).
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2.1. Preliminaries for calculating special values

Following to the method in [16], we first explain how to calculate the special values

of �Q.s/.

Put

" ´ 1
p

˛ˇ
; � ´ ".1 � "2/�1=2 D 1

p

˛ˇ � 1

and

A ´
�

˛ 0

0 ˇ

�

; I ´
�

1 0

0 1

�

; J ´
�

0 �1

1 0

�

:

Notice that 0 < " < 1 and � > 0. Since it is difficult to find the heat kernel of the

NcHO

Q D 1

2
.�@2

x C x2/A C
�

x@x C 1

2

�

J;

we look at a slightly modified one

Q0 D A�1=2QA�1=2 D 1

2
.�@2

x C x2/ C "J
�

x@x C 1

2

�

;

whose heat kernel is explicitly obtained as we see below.

The heat kernel of the usual quantum harmonic oscillator is known as the Mehler

kernel and is given by

p.t; x; y/ D ��1=2e�t=2.1 � e�2t /�1=2 exp
�

�x2 � y2

2
� .e�tx � y/2

1 � e�2t

�

:

Namely, p.t; x; y/ satisfies

�@t p.t; x; y/ D 1

2
.�@2

x C x2/p.t; x; y/; p.t; x; y/ ! ı.x � y/ .t # 0/:

Put

q.t; x; y/ D .1 � "2/1=4p..1 � "2/1=2t; .1 � "2/1=4x; .1 � "2/1=4y/:

Then

�@t q.t; x; y/ D 1

2
.�@2

x C .1 � "2/x2/q.t; x; y/; q.t; x; y/ ! ı.x � y/ .t # 0/:

Define

K 0.t; x; y/ D q.t; x; y/ exp
�".x2 � y2/

2
J

�

:

We see that

�@t K
0.t; x; y/ D 1

2
.�@2

x C x2/K 0.t; x; y/ C "J
�

x@x C 1

2

�

K 0.t; x; y/;

K 0.t; x; y/ ! ı.x � y/I .t # 0/;
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which implies that K 0.t; x; y/ is the heat kernel of Q0 (see [16] for detail3). Hence,

the integral kernel Q�1.x; y/ of Q�1 is

Q�1.x; y/ D
1Z

0

A�1=2K 0.t; x; y/A�1=2 dt

D
1Z

0

A1=2K.u; .1 � "2/1=4x; .1 � "2/1=4y/A�1=2 du .u D e� t
2 /

since Q�1 D A�1=2Q0�1
A�1=2, where we put

K.u; x; y/ ´ 2��1=2.1 � "2/�1=4.1 � u4/�1=2E.u; x; y/B.x; y/;

E.u; x; y/ ´ exp

�

�
�

x y
�

� 1Cu4

2.1�u4/
�u2

1�u4

�u2

1�u4
1Cu4

2.1�u4/

��
x

y

��

;

B.x; y/ ´ A�1 exp
�.x2 � y2/

2
J:

Furthermore, we introduce the following functions

B.x1; : : : ; xk/ ´ tr.B.x1; x2/B.x2; x3/ : : : B.xk; x1//;

E.u1; : : : ; ukI x1; : : : ; xk/ ´ E.u1; x1; x2/E.u2; x2; x3/ : : : E.uk; xk; x1/;

F.u1; : : : ; uk/ ´
Z

Rk

E.u1; : : : ; ukI x1; : : : ; xk/B.x1; : : : ; xk/dx1: : : dxk;

where the symbol tr represents the matrix trace. Hence, for a positive integer k, we

have

�Q.k/ D Tr Q�k

D
Z

Œ0;1�k

� Z

Rk

tr.K.u1; x1; x2/K.u2; x2; x3/ � � � K.uk ; xk; x1//dx

�

du

D
� 2

p

�.1 � "2/

�k
Z

Œ0;1�k

F.u1; : : : ; uk/
du

q
Qk

j D1.1 � u4
j /

; (2.1)

3There is a typo in [16, (2.11b)]. The right equation should be

@t p .t; x; y/ D �1

2
Œ@2

x C .1 � 2/x2�p .t; x; y/;

in which the coefficient of x2 is replaced from .1 � 2/1=2 to 1 � 2. The result itself is,

however, correct.
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where dx D dx1 : : : dxk and du D du1 : : : duk for short, and the symbol Tr denotes

the operator trace. This is our basis to calculate the special values. Thus, we have only

to calculate F.u1; : : : ;uk/ to get the special values of the spectral zeta function �Q.s/.

2.2. Special values �Q.k/

The following lemma is crucial.

Lemma 2.1. For any positive integer k, it holds that

B.x1; x2; : : : ; xk/

D 2
�˛ C ˇ

2˛ˇ

�k°

1 C
X

0<2j �k

� ˛ � ˇ

˛ C ˇ

�2j X

1�i1<i2<���<i2j �k

cos
�

�

2j
X

rD1

.�1/rx2
ir

�±

:

Proof. For convenience, let us put i D
p

�1, a1 D ˛�1, a2 D ˇ�1 and tj D �x2
j =2

.j D 1; 2; : : : ; k/. The function B.x1; x2; : : : ; xk/ is then calculated as follows:

B.x1; x2; : : : ; xk/

D
X

s1;s2;:::;sk2¹1;2º
as1

as2
: : : ask

k
Y

mD1

cos
�

tm � tmC1 C smC1 � sm

2
�

�

D
X

s1;s2;:::;sk2¹1;2º
as1

as2
: : : ask

�
k

Y

mD1

i smC1�smei.tm�tmC1/ C i�.smC1�sm/e�i.tm�tmC1/

2

D 1

2k

X

s1;s2;:::;sk2¹1;2º

X

l1;l2;:::;lk2¹1;�1º

k
Y

mD1

asm
i lm.smC1�sm/ei lm.tm�tmC1/

D 1

2k

X

l1;l2;:::;lk2¹1;�1º

X

s1;s2;:::;sk2¹1;2º

k
Y

mD1

asm
i sm.lm�1�lm/ei tm.lm�lm�1/

D 1

2k

X

l1;l2;:::;lk2¹1;�1º

k
Y

mD1

.a1i lm�1�lm C a2i2.lm�1�lm//ei.lm�lm�1/tm ;

where we set s0 D sk , skC1 D s1, l0 D lk , lkC1 D l1, t0 D tk and tkC1 D t1. Here we

notice that

(i) i lm�1�lm D �.�1/ılm;lm�1 ,

(ii) # ¹m 2 ¹1; 2; : : : ; kº j lm�1 ¤ lmº is even (remark that l0 D lk),
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(iii) if there exist i1; : : : ; i2j 2 ¹1; 2; : : : ; kº such that i1 < � � � < i2j , lir �1 ¤ lir
for each r D 1;2; : : : ; 2j and lm�1 D lm for m 2 ¹1;2; : : : ; kºn¹i1; : : : ; i2j º,

then
Pk

mD1.lm � lm�1/tm D �2li1
P2j

rD1.�1/r tir .

Thus, it follows that

B.x1; x2; : : : ; xk/

D 1

2k

X

l2¹1;�1º

�

.˛�1 C ˇ�1/k

C
X

0<2j �k

.ˇ�1 � ˛�1/2j .ˇ�1 C ˛�1/k�2j

�
X

1�i1<���<i2j �k

cos
�

2l

2j
X

rD1

.�1/r tir

��

D 2
�˛ C ˇ

2˛ˇ

�k�

1 C
X

0<2j �k

� ˛ � ˇ

˛ C ˇ

�2j X

1�i1<���<i2j �k

cos
� 2j

X

rD1

.�1/r�x2
ir

��

:

This is the desired conclusion.

For u D .u1; u2; : : : ; uk/, we define the k by k matrix �k.u/ by

�k.u/ ´

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1�u4
k

u4
1

.1�u4
k

/.1�u4
1

/

�u2
1

1�u4
1

0 0 :::
�u2

k

1�u4
k

�u2
1

1�u4
1

1�u4
1

u4
2

.1�u4
1

/.1�u4
2

/

�u2
2

1�u4
2

0 ::: 0

0
�u2

2

1�u4
2

1�u4
2

u4
3

.1�u4
2

/.1�u4
3

/

�u2
3

1�u4
3

::: 0

0 0
�u2

3

1�u4
3

:::
:: :

:::

:::
:::

:::
:::

:: : �u2
k�1

1�u4
k�1

�u2
k

1�u4
k

0 0 :::
�u2

k�1

1�u4
k�1

1�u4
k�1

u4
k

.1�u4
k�1

/.1�u4
k

/

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

D
k

X

iD1

°

.E
.k/
i i C E

.k/
iC1;iC1/

� 1

1 � u4
i

� 1

2

�

C .E
.k/
i;iC1 C E

.k/
iC1;i/

�u2
i

1 � u4
i

±

:

It then follows that

E.u1; : : : ; ukI x1; : : : ; xk/ D exp.�x�k.u/x0/ (2.2)

and

det �k.u/ D
.1 � u2

1 : : : u2
k
/2

.1 � u4
1/ : : : .1 � u4

k
/

(2.3)

(see [16, Theorem A.2]). Here x D .x1; x2; : : : ; xk/, E
.k/
ij denotes the matrix unit

of size k. We also assume that the indices of E
.k/
ij are understood modulo k, i.e.,
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E
.k/
0;j D E

.k/

k;j
, E

.k/

kC1;j
D E

.k/
1;j , etc. The prime 0 indicates the matrix transpose. Notice

that �k.u/ is real symmetric and positive definite for any u 2 .0; 1/k. For ¹i1; i2; : : : ;

i2j º � Œk� D ¹1; 2; : : : ; kº, we also put

„k.i1; : : : ; i2j / ´
p

�1

2j
X

rD1

.�1/rE
.k/
ir ;ir

:

Since
2j

X

rD1

.�1/rx2
ir

D
p

�1 x„k.i1; : : : ; i2j /x0

and

cos
�

�

2j
X

rD1

.�1/rx2
ir

�

D 1

2

°

exp
�p

�1�

2j
X

rD1

.�1/rx2
ir

�

C exp
�

�
p

�1�

2j
X

rD1

.�1/rx2
ir

�±

;

we have

E.u1; : : : ; ukI x1; : : : ; xk/ cos
�

�

2j
X

rD1

.�1/rx2
ir

�

D 1

2
exp.�x.�k.u/ C �„k.i1; : : : ; i2j //x0/

C 1

2
exp.�x.�k.u/ � �„k.i1; : : : ; i2j //x0/: (2.4)

As in [16, Lemma A.1], one proves the following result.

Lemma 2.2. The determinant

det.�k.u/ C �„k.i1; : : : ; i2j // (2.5)

is even in �. In particular, this determinant is real-valued for each u 2 .0; 1/k and

� > 0.

Let Cm denote the cyclic subgroup of the symmetric group Sm of degree m gen-

erated by the cyclic permutation .1; 2; : : : ; m/ 2 Sm. By Lemma 2.2, it follows that

det.�k.u/ C �„k.i1; : : : ; i2j // D det.�k.u/ C �„k.j�.1/; : : : ; j�.2j ///

for any � 2 C2k since „k.j�.1/; : : : ; j�.2j // D sgn.�/„k.i1; : : : ; i2j /.

Let Sym�
k be the set of k by k complex symmetric matrices such that all principal

minors are invertible, and SymC
k

.R/ be the set of k by k positive real symmetric

matrices. Notice that �k.u/ 2 SymC
k

.R/ for any u 2 .0; 1/k . We need the following

two lemmas for later use in the evaluation of F.u1; : : : ; uk/.
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Lemma 2.3 (LDU decomposition). Let k be a positive integer. For any A 2 Sym�
k ,

there exists a lower unitriangular matrix L and a diagonal matrix D such that A D
LDL0. Moreover, D is given by

D D diag.d1; d2=d1; d3=d2; : : : ; dk=dk�1/;

where dj denotes the j -th principal minor determinant of A.

Proof. Let us prove the lemma by induction on k. The assertion is clear if k D 1.

Suppose that the assertion is true for k � 1. Take A 2 Sym�
k and write

A D
�

A0 a

a0 ˛

�

with A0 2 Sym�
k�1, a 2 Ck�1 and ˛ 2 C. By the induction hypothesis, there exist

lower unitriangular matrix L0 and diagonal matrix D0 of size k � 1 such that A0 D
L0D0L0

0. Put

L D
�

L0 o

v 0 1

�

; D D
�

D0 o

o0 d

�

;

where v D .L0D0/�1a and d D ˛ � a0A�1
0 a (notice that .L0D0/�1 and A�1

0 exist by

the induction hypothesis) and o 2 Ck�1 represents the zero vector. Then it is straight-

forward to check that A D LDL0. This proves the first assertion of the lemma. The

second assertion is obvious by the construction of D above.

Lemma 2.4. Let T 2 SymC
k

.R/ and D be a real diagonal matrix of size k. Denote

by dm the principal m-minor determinant of T C
p

�1D. Then it follows that

<.dmC1dm/ > 0 for m D 1; 2; : : : ; k � 1.

Proof. Clearly, it is enough to prove the positivity of <.dmC1dm/ with m D k � 1.

Write T and D as

T D
�

A a

a0 ˛

�

; D D
�

U o

o0 u

�

with A 2 SymC
m.R/, a 2 Rm, ˛ 2 R, u 2 R and a real diagonal matrix U of size m.

Here o 2 Rm is the zero vector. Since T is positive, we must have 0 < a0A�1a < ˛.

Put B D
p

A 2 SymC
m.R/, X D B�1UB�1 2 Symm.R/ and b D B�1a. Then we

have

dmC1dm D det

�
A C

p
�1U a

a0 ˛ C
p

�1u

��
A �

p
�1U o

o 1

�

D det

�
.A C

p
�1U /.A �

p
�1U / a

a0.A �
p

�1U / ˛ C
p

�1u

�
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D jdet.A C
p

�1U /j2.˛ C
p

�1u � a0.A C
p

�1U /�1a/

D det B4 det.I C X2/.˛ C
p

�1u � b0.I C
p

�1X/�1b/:

Since

.I C
p

�1X/�1 D .I C X2/�1 �
p

�1X.I C X2/�1;

it follows that

<.b0.I C
p

�1X/�1b/ D b0.I C X2/�1b � b0b D a0A�1a < ˛

or

<.˛ C
p

�1u � b0.I C
p

�1X/�1b/ > 0:

Thus, we have <.dmC1dm/ > 0 as desired.

We recall the well-known fact.

Lemma 2.5 (Gaussian integral). For any a; b 2 C with <a > 0, it follows that

Z

R

exp.�a.x � b/2/dx D
r

�

a
:

Here
p

a is chosen as <
p

a > 0.

By Lemma 2.3, A 2 Sym�
k is decomposed as A D LDL0 with a certain lower

unitriangular matrix L and a diagonal matrix D D diag.d1; d2=d1; : : : ; dk=dk�1/,

where dj is the j -th principal minor determinant of A. If all entries of D have positive

real parts, then it follows from Lemma 2.5 that

Z

Rk

exp.�xAx0/dx D �k=2

p
det A

: (2.6)

Now, the matrix �k.u/ C �„k.i/ belongs to Sym�
k for any u 2 .0; 1/k. Denote

by dk D dk.k; u; �; i/ the k-th principal minor determinant of �k.u/ C �„k.i/,

and put d0 D 1. It then follows from Lemma 2.4 that <.dj =dj �1/ > 0 for j D
1; 2; : : : ; k. Consequently, in view of (2.4), (2.5), (2.6), and Lemma 2.1, we can cal-

culate F.u1; : : : ; uk/ as

F.u1; : : : ; uk/

D 2
p

�k
�˛ C ˇ

2˛ˇ

�k° 1
p

det �k.u/

C
X

0<2j �k

� ˛ � ˇ

˛ C ˇ

�2j

�
X

1�i1<i2<���<i2j �k

1
p

det.�k.u/ C �„k.i1; : : : ; i2j //

±

:
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We also notice that
Z

Œ0;1�k

2kdu

1 � u2
1u2

2 � � � u2
k

D �.k; 1=2/

for k � 2. From these equations together with (2.1) and (2.3), we now obtain the

Theorem 2.6. For each positive integer k � 2, it follows that

�Q.k/ D 2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�k�

�.k; 1=2/ C
X

0<2j �k

� ˛ � ˇ

˛ C ˇ

�2j

Rk;j .�/
�

: (2.7)

Here Rk;j .�/ is given by a sum of integrals

Rk;j .�/ D
X

1�i1<i2<���<i2j �k

Z

Œ0;1�k

2kdu1 : : : duk
p

Wk.uI �I i1; : : : ; i2j /
;

where the function Wk.uI �I i1; : : : ; i2j / is given by

Wk.uI �I i1; : : : ; i2j / D det.�k.u/ C �„k.i1; : : : ; i2j //

k
Y

rD1

.1 � u4
r /:

Remark 2.1. The algebraic variety Wk.uI�I i1; : : : ; i2j / D 0 defined by the denomin-

ator of the integral Rk;j .�/ above is worth studying, e.g., from the viewpoint in [5–7].

Remark 2.2. If ˛ D ˇ, then we have �Q.k/ D 2.˛2 � 1/�k=2�.k; 1=2/, which is a

special case of the fact that �Q.s/ D 2.˛2 � 1/�s=2�.s; 1=2/ for ˛ D ˇ. In fact, when

˛ and ˇ are equal, we can show that Q Š
p

˛2 � 1.�1
2

d2

dx2 C 1
2
x2/I (see [33]).

We give an expansion of the determinants Wk.uI�I i1; : : : ; i2j / appearing in (2.7).

For j D ¹j1; j2; : : : ; jr º � Œk� with r > 0 and j1 < j2 < � � � < jr , define

Ck.uI j/ D
r

Y

iD1

�

1 �
Y

ji �s<jiC1

u4
s

�

:

We also define Ck.uI ;/ D .1 � u2
1u2

2 : : : u2
k
/2. Here we regard that jrC1 D k C j1

and uiCk D ui . For instance, if k D 9 and j D ¹3; 6; 8º, then

C9.uI j/ D .1 � u4
3u4

4u4
5/.1 � u4

6u4
7/.1 � u4

8u4
9u4

1u4
2/:

Lemma 2.7. For a given subset i D ¹i1; i2; : : : ; i2j º � Œk� with i1 < i2 < � � � < i2j ,

it follows that

Wk.uI �I i/ D
X

d�0

.��2/d
Wk;d .uI i/ (2.8)
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with

Wk;d .uI i/ ´
X

S�Œ2j �

#SD2d

.�1/kSkCk.uI i.S//: (2.9)

Here kSk ´
P

s2S s is the sum of the elements in S and i.S/ ´ ¹is1
; : : : ; isl

º if

S D ¹s1; : : : ; slº with s1 < � � � < sl .

Proof. Let di be the i -th column vector of �k.u/. We also denote by ¹ei ºk
iD1 the

standard basis of Ck . By the multilinearity of a determinant, we readily get

det.�k.u/ C �„k.i//

D det �k.u/ C
2j

X

rD1

.
p

�1�/r
X

1�s1<���<sr �2j

.�1/s1C���Csr det.d1; : : : ; eis1
; : : : ;

eisr
; : : : ; dk/:

The determinant det.d1; : : : ; eis1
; : : : ; eisr

; : : : ; dk/ is a product of r tridiagonal

determinants

Dp D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

da.p/C1;a.p/C1 da.p/C1;a.p/C2 : : : da.p/C1;a.pC1/�1

da.p/C2;a.p/C1 da.p/C2;a.p/C2 : : : da.p/C2;a.pC1/�1

:::
:::

: : :
:::

da.pC1/�1;a.p/C1 da.pC1/�1;a.p/C2 : : : da.pC1/�1;a.pC1/�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

;

where a.p/ D isp
, dij is the .i; j /-entry of �k.u/, and the indices are understood

modulo k. If a.p C 1/ D a.p/ C 1, then we understand that Dp D 1. It is easy to see

that

Dp D
1 � u4

a.p/
u4

a.p/C1
� � � u4

a.pC1/�1

.1 � u4
a.p/

/.1 � u4
a.p/C1

/ � � � .1 � u4
a.pC1/�1

/
:

Hence, we have

Wk.uI �I i/ D
X

S�Œ2j �

.�1/kSk.
p

�1�/#SCk.uI i.S//:

Since Wk.uI �I i/ is real-valued by Lemma 2.2, we have the conclusion by taking the

real parts.

2.3. Examples

2.3.1. Wk;d.uI i/ and Rk;j .�/. We give several examples of Wk;d .uI i/. For con-

venience, we prepare some notation for abbreviation. Let us put

Vk.u/ ´ .1 � u2
1 : : : u2

k/2; Ut.u/ ´
m

Y

iD1

�

1 �
tiY

j D1

u4
j C

P

k<i tk

�
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for a positive integer k and a sequence t D .t1; : : : ; tm/ 2 Tm.k/, where

Tm.k/ ´ ¹.t1; : : : ; tm/ 2 Œk�m j t1 C � � � C tm D kº:

For instance, if t D .2; 3; 2; 1/ 2 T4.8/, then

Ut.u1; : : : ; u8/ D .1 � u4
1u4

2/.1 � u4
3u4

4u4
5/.1 � u4

6u4
7/.1 � u4

8/:

Notice that Wk;0.uI i/ D Vk.u/ for any i.

Example 2.1. For i D ¹i; j º � Œk� with i < j , we have

Wk;1.uI i/ D .�1/1C2Ck.uI i.1; 2//

D �U.r;k�r/.ui ; uiC1; : : : ; uk; u1; : : : ; ui�1/;

where r D j � i . This fact immediately implies that Rk;1.�/ in (2.7) is given by

Rk;1.�/ D k

2

k�1
X

rD1

Z

Œ0;1�k

2kdu
p

Vk.u/ C �2U.r;k�r/.u/

D
X

0<2r�k

k

1 C ı2r;k

Z

Œ0;1�k

2kdu
p

Vk.u/ C �2U.k�r;r/.u/
: (2.10)

Example 2.2. For i � Œk� with #i D 2j , it follows in general that

Wk;j .uI i/ D .�1/j Ck.uI i/

since kŒ2j �k D j.2j � 1/ � j .mod 2/.

Example 2.3. For i D ¹i1; i2; i3; i4º � Œk� with i1 < i2 < i3 < i4, we have

Wk;1.uI i/ D .�1/1C2Ck.uI i1; i2/ C .�1/1C3Ck.uI i1; i3/ C .�1/1C4Ck.uI i1; i4/

C .�1/2C3Ck.uI i2; i3/ C .�1/2C4Ck.uI i2; i4/

C .�1/3C4Ck.uI i3; i4/

D � .1 � u4
i1

: : : u4
i2�1/.1 � u4

i3
: : : u4

i4�1/

� .1 � u4
i2

: : : u4
i3�1/.1 � u4

i4
: : : u4

i1�1/

� .1 � u4
i1

: : : u4
i2�1u4

i3
: : : u4

i4�1/.1 � u4
i2

: : : u4
i3�1u4

i4
: : : u4

i1�1/:

By Example 2.2, we also see that

Wk;2.uI i/ D Ck.uI i/

D .1 � u4
i1

: : : u4
i2�1/.1 � u4

i2
: : : u4

i3�1/

� .1 � u4
i3

: : : u4
i4�1/.1 � u4

i4
: : : u4

i1�1/:
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Thus, we have

det.�k.u/ C �„k.i1; i2; i3; i4//

k
Y

iD1

.1 � u4
i /

D Vk.u/ C .�2 C �4/.1 � u4
i1

: : : u4
i2�1/.1 � u4

i3
: : : u4

i4�1/

� .1 � u4
i2

: : : u4
i3�1/.1 � u4

i4
: : : u4

i1�1/

C �2.1 � u4
i1

: : : u4
i2�1u4

i3
: : : u4

i4�1/.1 � u4
i2

: : : u4
i3�1u4

i4
: : : u4

i1�1/:

If we take .t1; t2; t3; t4/ 2 T4.k/ such that ipC1 � ip C tp .mod k/ (p D 1; 2; 3; 4;

i5 D i1), then it follows that
Z

Œ0;1�k

du
q

det.�k.u/ C �„k.i1; i2; i3; i4//
Qk

iD1.1 � u4
i /

D
Z

Œ0;1�k

du
p

Vk.u/ C �2U.t1Ct3;t2Ct4/.u/ C .�2 C �4/U.t1;t2;t3;t4/.u/

by changing the variables of the integration as

.ui1; : : : ; ui2�1; ui3 ; : : : ; ui4�1; ui2 ; : : : ; ui3�1; ui4 ; : : : ; ui1�1/ 7! .u1; : : : ; uk/:

The cyclic group C4 of order 4 naturally acts on T4.k/ by

�:.t1; t2; t3; t4/ ´ .t�.1/; t�.2/; t�.3/; t�.4// .� 2 C4/:

Notice that the integral above is C4-invariant. For a given t D .t1; t2; t3; t4/ 2 T4.k/,

the number of subsets i D ¹i1; i2; i3; i4º in Œk� satisfying the condition ipC1 � ip C tp

.mod k/ is equal to k=#C4.t/, where C4.t/ denotes the stabilizer of t in C4. Con-

sequently,

Rk;2.�/ D
X

t2T4.k/=C4

k

#C4.t/

Z

Œ0;1�k

2kdu

S
D k

4

X

t2T4.k/

Z

Œ0;1�k

2kdu

S
; (2.11)

where

S WD
q

Vk.u/ C �2U.t1Ct3;t2Ct4/.u/ C .�2 C �4/U.t1;t2;t3;t4/.u/

and t D .t1; t2; t3; t4/. Similarly, the result in Example 2.1 can be also rewritten as

Rk;1.�/ D k

2

X

t2T2.k/

Z

Œ0;1�k

2kdu
p

Vk.u/ C �2U.t1;t2/.u/

D
X

t2T2.k/=C2

k

#C2.t/

Z

Œ0;1�k

2kdu
p

Vk.u/ C �2U.t1;t2/.u/
:
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2.3.2. Several special values. Using Theorem 2.6 and the formulas (2.10) and (2.11)

for Rk;1.�/ and Rk;2.�/ given in the previous examples, we show several examples

of the special values of �Q.s/.

Example 2.4. The values �Q.2/ and �Q.3/ are given by

�Q.2/ D 2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�2�

�
�

2;
1

2

�

C
� ˛ � ˇ

˛ C ˇ

�2

R2;1.�/
�

;

�Q.3/ D 2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�3�

�
�

3;
1

2

�

C
� ˛ � ˇ

˛ C ˇ

�2

R3;1.�/
�

with

R2;1.�/ D
Z

Œ0;1�2

4du1du2
p

V2.u/ C �2U.1;1/.u/

D
Z

Œ0;1�2

4du1du2
q

.1 � u2
1u2

2/2 C �2.1 � u4
1/.1 � u4

2/

;

R3;1.�/ D 3

Z

Œ0;1�3

8du1du2du3
p

V3.u/ C �2U.2;1/.u/

D 3

Z

Œ0;1�3

8du1du2du3
q

.1 � u2
1u2

2u2
3/2 C �2.1 � u4

1/.1 � u4
2u4

3/

:

This recovers the result obtained in [16].

Example 2.5. The values �Q.4/ and �Q.5/ are given by

�Q.4/D2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�4�

�
�

4;
1

2

�

C
� ˛ � ˇ

˛ C ˇ

�2

R4;1.�/ C
� ˛ � ˇ

˛ C ˇ

�4

R4;2.�/
�

;

�Q.5/D2
� ˛ C ˇ

2
p

˛ˇ.˛ˇ � 1/

�5�

�
�

5;
1

2

�

C
� ˛ � ˇ

˛ C ˇ

�2

R5;1.�/ C
� ˛ � ˇ

˛ C ˇ

�4

R5;2.�/
�

with

R4;1.�/ D 4

Z

Œ0;1�4

16du
p

V4.u/ C �2U.3;1/.u/
C 2

Z

Œ0;1�4

16du
p

V4.u/ C �2U.2;2/.u/
;

R5;1.�/ D 5

Z

Œ0;1�5

32du
p

V5.u/ C �2U.4;1/.u/
C 5

Z

Œ0;1�5

32du
p

V5.u/ C �2U.3;2/.u/
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and

R4;2.�/ D
Z

Œ0;1�4

16du
p

V4.u/ C �2U.2;2/.u/ C .�2 C �4/U.1;1;1;1/.u/
;

R5;2.�/ D 5

Z

Œ0;1�5

32du
p

V5.u/ C �2U.3;2/.u/ C .�2 C �4/U.2;1;1;1/.u/
:

2.3.3. Apéry-like numbers for �Q.2/ and the elliptic integral. We define the num-

bers J2.m/ (m � 0) by the expansion

R2;1.�/ D
1

X

mD0

�
�1=2

m

�

J2.m/�2m:

Then they satisfy the three-term recurrence relation [16]

4m2J2.m/ � .8m2 � 8m C 3/J2.m � 1/ C 4.m � 1/2J2.m � 2/ D 0 .m � 2/:

(2.12)

This implies that the generating function w2.z/ D
P1

mD0 J2.m/zm satisfies

°

z.1 � z/2 d2

dz2
C .1 � 3z/.1 � z/

d

dz
C z � 3

4

±

w2.z/ D 0: (2.13)

This differential equation is the Picard–Fuchs equation for the universal family of

elliptic curves equipped with rational 4-torsion. In fact, each elliptic curve in the fam-

ily is birationally equivalent to one of the curves

.1 � u2v2/2 C x2.1 � u4/.1 � v4/ D 0

in the .u; v/-plane, which appears in the denominator of the integrand of R2;1.x/.

The equation (2.13) can be reduced to the Gaussian hypergeometric differential

equation by a suitable change of variable and solved as follows [32]:

w2.z/ D 3�.2/

1 � z
2F1

�1

2
;

1

2
I 1I z

z � 1

�

;

from which we obtain

R2;1.�/ D 3�.2/2F1

�1

4
;

3

4
I 1I ��2

�2

:

Thus, we have the following formulas for �Q.2/, see [16, 32]:

�Q.2/ D
� �.˛ C ˇ/

2
p

˛ˇ.˛ˇ � 1/

�2
�

1 C 1

2�
p

�1

� ˛ � ˇ

˛ C ˇ

�2
Z

jzjDr

u.z/

z.1 C �2z/1=2
dz

�

D
� �.˛ C ˇ/

2
p

˛ˇ.˛ˇ � 1/

�2�

1 C
� ˛ � ˇ

˛ C ˇ

�2

2F1

�1

4
;
3

4
I 1I ��2

�2 �

;
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where u.z/ D w2.z/=3�.2/ is a normalized (unique) holomorphic solution of (2.13)

in jzj < 1 and �2 < r < 1. We also have similar formulas for �Q.3/, see [16, 20].

3. Apéry-like numbers

In what follows, we restrict our attention on Rk;1.�/ appearing in the special value

formula for �Q.s/. We may sometimes refer to Rk;1.�/ as the first anomaly in �Q.k/

for short. In this section, we define Apéry-like numbers Jk.n/, and study their recur-

rence equation and the differential equation satisfied by the generating function of

Jk.n/. We finally discuss congruence properties for the normalized Apéry-like num-

bers zJk.n/ (§3.4).

3.1. Apéry-like numbers associated to the first anomaly

We expand the first anomaly Rk;1.�/ as follows:

Rk;1.�/ D k

2

k�1
X

rD1

Z

Œ0;1�k

2kdu1 � � � duk
q

.1 � u2
1 � � � u2

k
/2 C �2.1 � u4

1 � � � u4
r /.1 � u4

rC1 � � � u4
k
/

D k

2

k�1
X

rD1

1
X

nD0

�
�1

2

n

�

Jr;k�r.n/�2n

D k

2

1
X

nD0

�
�1

2

n

�

Jk.n/�2n;

where we put

Jk.n/ D
k�1
X

rD1

Jr;k�r.n/;

Jr;k�r.n/ D 2k

Z

Œ0;1�k

.1 � u4
1 � � � u4

r /n.1 � u4
rC1 � � � u4

k
/n

.1 � u2
1 � � � u2

k
/2nC1

du1 � � � duk :

If we change the variables of the integral by

uj D e� 1
2

xj .j D 1; 2; : : : ; r/;

urCj D e� 1
2 yj .j D 1; 2; : : : ; k � r/;

then the corresponding domain of integration is

0 � x1 � x2 � � � � � xr ; 0 � y1 � y2 � � � � � yk�r ;



Apéry-like numbers 225

so that we have

Jr;k�r.n/ D
Z

0�x1�x2�����xr

0�y1�y2�����yk�r

.1 � e�2xr /n.1 � e�2yk�r /n

.1 � e�xr �yk�r /2nC1

� e� 1
2 .xr Cyk�r /dx1dx2 � � � dxr dy1dy2 � � � dyk�r

D
1Z

0

1Z

0

xr�1

.r � 1/Š

yk�r�1

.k � r � 1/Š

e� 1
2

.xCy/

.1 � e�x�y/2nC1
.1 � e�2x/n

� .1 � e�2y/ndxdy

D
1Z

0

e� 1
2

u

.1 � e�u/2nC1
du

uZ

0

t r�1

.r � 1/Š

.u � t/k�r�1

.k � r � 1/Š
.1 � e�2t /n

� .1 � e�2.u�t//ndt:

By the binomial theorem, we have

Jk.n/ D
k�1
X

rD1

Jr;k�r.n/ D
1Z

0

uk�2

.k � 2/Š

e� 1
2 u

.1 � e�u/2nC1
du

�
uZ

0

.1 � e�2t /n.1 � e�2.u�t//ndt

D 1

22nC1

1Z

0

uk�2

.k � 2/Š

enu

.sinh u
2
/2nC1

du

�
uZ

0

.1 � e�2t /n.1 � e�2.u�t//ndt: (3.1)

We call the numbers Jk.n/ the Apéry-like numbers associated to the first anomaly

Rk;1.�/ of �Q.k/, or k-th Apéry-like numbers for short.4 By the equation (3.1) above,

one has

Jk.n/ D 1

22nC1

1Z

0

uk�2

.k � 2/Š
Bn.u/du; (3.2)

Bn.u/ D enu

.sinh u
2
/2nC1

uZ

0

.1 � e�2t /n.1 � e�2.u�t//ndt (3.3)

for k D 2; 3; 4; : : : and n D 0; 1; 2; : : :. We notice that the function Bn.u/ is continu-

ous at u D 0 and is of exponential decay as u ! C1 (see [16, Proposition 4.10]). It is

4[Differences of conventions] J2.n/ in this article is equal to Jn in [16] (and J2.n/ in [20]).

J3.n/ in this article is equal to 2J 1
n in [16] (and 2J3.n/ in [20]), since our J3.n/ is defined to

be the sum J1;3�1.n/ C J2;3�2.n/, each summand in which is equal to J 1
n in [16].
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convenient to introduce the numbers J0.n/ and J1.n/ by

J0.n/ D 0; J1.n/ D 2nnŠ

.2n C 1/ŠŠ
D .1/n.1/n

. 3
2
/n.1/n

.n D 0; 1; 2; : : : /;

where .a/n D a.a C 1/ � � � .a C n � 1/ is the Pochhammer symbol.

Example 3.1. We see that

B0.u/ D 1

sinh u
2

uZ

0

dt D u

sinh u
2

;

B1.u/ D eu

.sinh u
2
/3

uZ

0

.1 � e�2t /.1 � e�2.u�t//dt

D 4
u

sinh u
2

C 2
u � sinh u

.sinh u
2
/3

D 4
u

sinh u
2

C 2
u

.sinh u
2
/3

� 4
cosh u

2

.sinh u
2
/2

:

Thus, we have

Jk.0/ D 1

2 � .k � 2/Š

1Z

0

uk�1

sinh u
2

du;

Jk.1/ D 1

2 � .k � 2/Š

1Z

0

uk�1

sinh u
2

du C 1

4 � .k � 2/Š

1Z

0

uk�2.u � sinh u/

.sinh u
2
/3

du

D 1

2 � .k � 2/Š

1Z

0

uk�1

sinh u
2

du C 1

4 � .k � 2/Š

1Z

0

uk�1

.sinh u
2
/3

du

� 1

2 � .k � 2/Š

1Z

0

cosh u
2

.sinh u
2
/2

uk�2du:

Using the formulas

�
�

s;
1

2

�

D 1

2�.s/

1Z

0

us�1

sinh u
2

du D 1

4�.s C 1/

1Z

0

cosh u
2

.sinh u
2
/2

usdu .<.s/ > 1/;

1Z

0

us�1

.sinh u
2
/3

du D .s � 1/

1Z

0

cosh u
2

.sinh u
2
/2

us�2du � 1

2

1Z

0

us�1

sinh u
2

du .<.s/ > 3/;
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we get

Jk.0/ D .k � 1/�
�

k;
1

2

�

;

Jk.1/ D .k � 3/�
�

k � 2;
1

2

�

C 3.k � 1/

4
�
�

k;
1

2

��

D Jk�2.0/ C 3

4
Jk.0/

�

for k � 4. It is worth noting that these formulas are also valid for k D 2 and k D 3;

J2.0/ D �
�

2;
1

2

�

; J2.1/ D 3

4
�
�

2;
1

2

�

I

J3.0/ D 2�
�

3;
1

2

�

; J3.1/ D 1 C 3

2
�
�

3;
1

2

�

:

Here we use the fact that

�
�

0;
1

2

�

D 0; lim
s!1

.s � 1/�
�

s;
1

2

�

D 1:

We have now the following series expansion of Jk.n/.

Lemma 3.1 (Series expression). We have

Jk.n/ D
k�1
X

rD1

1
X

mD0

�
2n C m

m

� n
X

j D0

.�1/j

�
n

j

�
1

. 1
2

C m C 2j /r

�
n

X

j D0

.�1/j

�
n

j

�
1

. 1
2

C m C 2j /k�r
:

Proof. It is elementary to see that

1Z

0

1Z

0

xr�1

.r � 1/Š

yk�r�1

.k � r � 1/Š

e� 1
2

.xCy/.1 � e�2x/n.1 � e�2y/n

.1 � e�x�y/2nC1
dxdy

D
1

X

mD0

.�1/m

�
�2n � 1

m

� 1Z

0

xr�1

.r � 1/Š
e� 1

2
x�mx.1 � e�2x/ndx

�
1Z

0

yk�r�1

.k � r � 1/Š
e� 1

2
y�my.1 � e�2y/ndy:
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Since

1Z

0

za�1

.a � 1/Š
e� 1

2
z�mz.1 � e�2z/ndz

D 1

.a � 1/Š

n
X

j D0

.�1/j

�
n

j

� 1Z

0

za�1e�. 1
2

CmC2j /zdz

D
n

X

j D0

.�1/j

�
n

j

�
1

. 1
2

C m C 2j /a
;

the desired series expansion follows immediately.

3.2. Recurrence relations among Apéry-like numbers

Third Apéry-like numbers J3.n/ satisfy the following inhomogeneous recurrence for-

mula, which is obtained in [16]:

4n2J3.n/ � .8n2 � 8n C 3/J3.n � 1/ C 4.n � 1/2J3.n � 2/ D 4J1.n � 1/ (3.4)

for each n � 2. One should remark that the homogeneous part of this recurrence

formula is the same as the one for J2.n/ given in (2.12).

We here show that the Apéry-like numbers Jk.n/ for k � 4 also satisfy a similar

three-term recurrence formula. Put

Tl;p.n/ D 1

22nC1

1Z

0

ul

l Š

�

tanh
u

2

�p

Bn.u/du

for l; p; n D 0; 1; 2; : : :. Notice that Jk.n/ D Tk�2;0.n/ for k � 2. We also note that

Tl;p.0/ D 1

2 � l Š

1Z

0

�

tanh
u

2

�p ulC1

sinh u
2

du:

We need [16, formulas (4.36) and (4.37)]:

2 tanh
u

2
B 0

n.u/ D 8nBn�1.u/ � .2n C 1/Bn.u/; (3.5)

n
�

tanh
u

2

�2

Bn.u/ D 2.2n � 1/Bn�1.u/ C 2.2n � 1/
�

tanh
u

2

�2

Bn�1.u/

� 16.n � 1/Bn�2.u/: (3.6)

It follows from (3.5) that

.p C 1/Tl;pC2.n/ � 2Tl�1;pC1.n/ D 2nTl;p.n � 1/ � .2n � p/Tl;p.n/:
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Moreover, it follows from (3.6) that

2nTl;pC2.n/ D .2n � 1/Tl;p.n � 1/ C .2n � 1/Tl;pC2.n � 1/ � 2.n � 1/Tl;p.n � 2/:

Combining these, we get

2n.2n � p/Tl;p.n/

� .8n2 � 4.p C 2/n C 3 C 2p/Tl;p.n � 1/ C 2.n � 1/.2n � 2 � p/Tl;p.n � 2/

D 4nTl�1;pC1.n/ � 2.2n � 1/Tl�1;pC1.n/:

We see that

n tanh
u

2
Bn.u/ � 2.2n � 1/ tanh

u

2
Bn�1.u/

D �2 � 8.n � 1/Bn�2.u/ � .2n � 1/Bn�1.u/

tanh u
2

D �4B 0
n�1.u/

by (3.6) and (3.5). This implies that

4n

22nC1

1Z

0

ul

l Š

�

tanh
u

2

�pC1

Bn.u/du � 2.2n � 1/

22n�1

1Z

0

ul

l Š

�

tanh
u

2

�pC1

Bn�1.u/du

D � 4

22n�1

1Z

0

ul

l Š

�

tanh
u

2

�p

B 0
n�1.u/du;

or

4nTl;pC1.n/ � 2.2n � 1/Tl;pC1.n � 1/

D 4Tl�1;p.n � 1/ C 2pTl;p�1.n � 1/ C 2pTl;pC1.n � 1/:

Hence, it follows that

2n.2n � p/Tl;p.n/ � .8n2 � 4.p C 2/n C 3 C 2p/Tl;p.n � 1/

C 2.n � 1/.2n � 2 � p/Tl;p.n � 2/

D 4Tl�2;p.n � 1/ C 2pTl�1;p�1.n � 1/ C 2pTl�1;pC1.n � 1/: (3.7)

In particular, if we put p D 0 and l D k � 2 in the equation above and join (3.4),

we obtain the following recurrence equation for Jk.n/ .k � 2/, which was announced

in [22].

Theorem 3.2. For k � 2 and n � 2,

4n2Jk.n/ � .8n2 � 8n C 3/Jk.n � 1/ C 4.n � 1/2Jk.n � 2/ D 4Jk�2.n � 1/: (3.8)
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Remark 3.1. The generalized Apéry-like numbers defined in [19] (which was named

as Jk.n/ in [19]) is identical to J1;k�1.n/ in this paper. It is quite interesting that those

generalized Apéry-like numbers, i.e., J1;k�1.n/, satisfy the following recurrence rela-

tion similarly to (3.8) (i.e., having the same homogeneous part of the Apéry-like

numbers)

4n2J1;k�1.n/ � .8n2 � 8n C 3/J1;k�1.n � 1/ C 4.n � 1/2J1;k�1.n � 2/

D 4J1;k�3.n/ (3.9)

for k � 4 and n � 2. From this observation, although J1;k�1.n/ does not describe

the special values �Q.n/, various Jr;k�r.n/ .r D 1; 2; : : : ; k � 1/ are having similar

nature as the Apéry-like numbers possess. This may suggest that there are certain

unexpectically significant number theoretic properties behind NcHO that should be

clarified.

3.3. Differential equations for the generating functions

For k � 0, we define

wk.z/ D
1

X

nD0

Jk.n/zn; (3.10)

gk.x/ D
1

X

nD0

�
�1

2

n

�

Jk.n/xn: (3.11)

We call wk.z/ the k-th generating function of the Apéry-like numbers. It is immediate

to see that w0.z/ D 0, g0.x/ D 0 and

w1.z/ D 2F1.1; 1I 3

2
I z/ D 1p

1 � z

arcsin
p

zp
z

;

g1.x/ D 2F1.
1

2
; 1I 3

2
I �x/ D arctan

p
zp

z
:

For later use, we notice two differential equations for w1.z/:

°

z.1 � z/
d2

dz2
C 3

2
.1 � 2z/

d

dz
� 1

±

w1.z/ D 0; (3.12)

°

2z.1 � z/
d

dz
C 1 � 2z

±

w1.z/ D 1: (3.13)
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Let us translate the formula (3.8) into the differential equations for the generating

functions wk.z/. We have

°

z.1 � z/2 d2

dz2
C .1 � z/.1 � 3z/

d

dz
C z � 3

4

± 1
X

nD0

Jk.n/zn

D Jk.1/ � 3

4
Jk.0/ C 1

4

1
X

nD2

.4n2Jk.n/

� .8n2 � 8n C 3/Jk.n � 1/ C 4.n � 1/2Jk.n � 2//zn�1:

Using (3.8) and Jk.1/ D Jk�2.0/ C 3
4
Jk.0/, we obtain

Theorem 3.3. One has

°

z.1 � z/2 d2

dz2
C .1 � z/.1 � 3z/

d

dz
C z � 3

4

±

wk.z/ D wk�2.z/ (3.14)

for k � 2.

Remark 3.2. We have

²

z.1 � z/2 d2

dz2
C .1 � z/.1 � 3z/

d

dz
C z � 3

4

³k

w2k.z/ D 0

and

°

z.1 � z/
d2

dz2
C 3

2
.1 � 2z/

d

dz
� 1

±

�
°

z.1 � z/2 d2

dz2
C .1 � z/.1 � 3z/

d

dz
C z � 3

4

±k

w2kC1.z/ D 0

for each k � 0. Namely, wk.z/ is a power series solution of a linear differential equa-

tion, which is holomorphic at z D 0.

To find an explicit formula for Jk.n/, it is useful to introduce the function

vk.t/ D .1 � z/wk.z/; t D z

z � 1

�

() wk.z/ D .1 � t/vk.t/; z D t

t � 1

�

:

(3.15)

Note that

v2.t/ D J2.0/ � 2F1

�1

2
;

1

2
I 1I t

�

D J2.0/

1
X

nD0

�
�1

2

n

�2

tn;

v1.t/ D 1

1 � t
2F1

�

1; 1I 3

2
I t

t � 1

�

D
1

X

nD0

tn

2n C 1
:
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The formula (3.14) is translated as

°

t.1 � t/
d2

dt2
C .1 � 2t/

d

dt
� 1

4

±

vk.t/ D �vk�2.t/: (3.16)

Let us look at the (hypergeometric differential) operator

Dt D t.1 � t/
d2

dt2
C .1 � 2t/

d

dt
� 1

4
: (D)

It is straightforward to check that

pn.t/ D � 1

.n C 1
2
/2

�
�1

2

n

��2 n
X

kD0

�
�1

2

k

�2

tk ;

satisfies the equation Dt pn.t/ D tn by using the fact

Dt tn D � .2n C 1/2

4
tn C n2tn�1

(see [20, Section 4]). Thus, if we put

�l .t/ D
1

X

nD0

�
�1

2

n

�2

Al;ntn .l � 0/;

then

Dt

²

�
1

X

nD0

�
�1

2

n

�2

Al;npn.t/

³

D ��l .t/:

On the other hand, we see that

�
1

X

nD0

�
�1

2

n

�2

Al;npn.t/ D
1

X

nD0

Al;n

1

.n C 1
2
/2

n
X

kD0

�
�1

2

k

�2

tk

D
1

X

kD0

�
�1

2

k

�2° 1
X

nDk

Al;n

.n C 1
2
/2

±

tk :

Hence, if we assume that the numbers Al;k satisfy the condition

AlC2;k D
1

X

nDk

Al;n

.n C 1
2
/2

; (3.17)

then the functions �l .t/ satisfy the relation

Dt �lC2.t/ D ��l .t/ .l � 0/:
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Notice that we have

AlC2m;n D
X

n�s1�s2�����sm

Al;sm

.s1 C 1
2
/2.s2 C 1

2
/2 � � � .sm C 1

2
/2

(3.18)

under the assumption (3.17).

Now, we determine the numbers Al;n so that they satisfy (3.17). If we set

Al;n D

8

ˆ̂
<

ˆ̂
:

1

2

1

n C 1
2

��1
2

n

��2

l D 1;

J2.0/ l D 2;

and extend by the relation (3.18), then the relation (3.17) is surely satisfied. We remark

that the series (3.18) indeed converges since A1;n and A2;n are bounded so that the

positive series AlC2m;n is dominated by a constant multiple of the series (multiple

zeta-star value)

�?
m.2; 2; : : : ; 2/ D

X

0<k1�k2�����km

.k1k2 : : : km/�2:

Notice that

�1.t/ D 1

1 � t
2F1

�

1; 1I 3

2
I t

t � 1

�

D v1.t/;

�2.t/ D J2.0/ � 2F1

�1

2
;

1

2
I 1I t

�

D v2.t/:

From the discussion above we have the following (see [22] for the proof).

Proposition 3.4. There exist constants Cj .j D 1; 2; : : :/ such that vl .t/ is given by

vl.t/ D �l.t/ C
X

0<j <l=2

Cl�2j v2j .t/: (3.19)

Moreover, the coefficients Cl�2; Cl�4; : : : are determined inductively.

From this proposition, we observe

wl.z/ D 1

1 � z
�l

� z

z � 1

�

C
X

0<j <l=2

Cl�2j w2j .z/; (3.20)

and in particular

Jl.n/ D
n

X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

Al;k C
X

0<j <l=2

Cl�2j J2j .n/: (3.21)

By this equation, we can determine Cl�2j by putting n D 0 inductively and obtain

explicit formulas of Jl.n/ for each l . We give first a few examples.
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Example 3.2. For l D 2; 3; 4, we have

J2.n/ D �
�

2;
1

2

� n
X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

;

J3.n/ D � 1

2

n
X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�
X

0�j <k

1

.j C 1
2
/3

�
�1

2

j

��2

C 2�
�

3;
1

2

� n
X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

;

J4.n/ D � �
�

2;
1

2

� n
X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�
X

0�j <k

1

.j C 1
2
/2

C 3�
�

4;
1

2

� n
X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

:

3.4. Numerical data of normalized Apéry-like sequences

In this section, certain numerical data of the Apéry-like sequences is presented.

The normalized Apéry-like numbers zJk.n/ are defined inductively by the condi-

tions

J2s.n/ D
s�1
X

j D0

J2s�2j .0/ zJ2j C2.n/;

J2sC1.n/ D
s�1
X

j D0

J2sC1�2j .0/ zJ2j C2.n/ C zJ2sC1.n/:

It is equivalent to define zJk.n/ by the recurrence relation

zJk.n/ D Jr.0/�1
�

Jk.n/ �
X

0<2j <k

Jk�2j .0/ zJ2j C2.n/
�

; r D

8

<

:

1 k � 1 .mod 2/;

2 k � 0 .mod 2/:

The numbers zJk.n/ satisfy the relation

4n2 zJk.n/ � .8n2 � 8n C 3/ zJk.n � 1/ C 4.n � 1/2 zJk.n � 2/ D 4 zJk�2.n � 1/:

(3.22)

Notice that this is identical to the one for Jk.n/. It is elementary to check that

zJ1.n/ D J1.n/ D 2nnŠ

.2n C 1/ŠŠ
; zJ2.n/ D J2.n/

J2.0/
D

n
X

j D0

.�1/j

�
�1

2

j

�2�
n

j

�
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and

zJk.0/ D
´

1 k D 1; 2;

0 otherwise;
zJk.1/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

2

3
k D 1;

3

4
k D 2;

1 k D 3; 4;

0 otherwise:

These are all rational numbers. Hence, by the recurrence relation (3.22) for zJk.n/, all

the normalized Apéry-like numbers zJk.n/ are rational.

Let us put

Zeven
s .k/ WD .�1/s

X

k>j1>���>js�0

1

.j1 C 1
2
/2 : : : .js C 1

2
/2

;

Zodd
s .k/ WD .�1/s

2

X

k>j1>���>js�0

1

.j1 C 1
2
/2 : : : .js�1 C 1

2
/2.js C 1

2
/3

�
�1

2

js

��2

;

for s D 1; 2; 3; : : : : We also set Zeven
0 .k/ D 1 for convenience. Then we have the

Theorem 3.5. For s D 1; 2; 3; : : :, we have

zJ2sC2.n/ D
n

X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

Zeven
s .k/;

zJ2sC1.n/ D
n

X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

Zodd
s .k/:

Proof. Define the numbers zAl;n by the relation (3.17) satisfied by Al;n together with

the normalized initial condition

zA1;n D A1;n D 1

2

1

n C 1
2

�
�1

2

n

��2

; zA2;n D 1:

We immediately have

Y even
s .n/ WD zA2sC2;n D

X

n�j1�����js

1

.j1 C 1
2
/2 : : : .js C 1

2
/2

;

Y odd
s .n/ WD zA2sC1;n D 1

2

X

n�j1�����js

1

.j1 C 1
2
/2 : : : .js C 1

2
/3

�
�1

2

js

��2

:



K. Kimoto and M. Wakayama 236

By the same discussion as in the previous section, we see that there exist certain

numbers Cj .j D 1; 2; 3; : : : / such that

zJl.n/ D
n

X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

zAl;k C
X

0<j <l=2

Cl�2j
zJ2j .n/: (3.23)

Put n D 0 in (3.23), we have 0 D zAl;0 C Cl�2 if l � 3 since zJ2.0/ D 1 and zJk.0/ D 0

if k > 2. Thus, we see that zJl.n/ are of the form

zJl.n/ D
n

X

kD0

.�1/k

�
�1

2

k

�2�
n

k

�

zBl;k

with

zBl;k D zAl;k �
X

0<j <l=2

zAl�2j C2;0
zB2j;k; zB2;k D zA2;k; zB3;k D zA3;k:

Therefore, it is enough to show that Zeven
s .k/’s and Zodd

s .k/’s satisfy the relations

Zeven
s .k/ D Y even

s .k/ �
s�1
X

j D0

Y even
s�j .0/Zeven

j .k/; (3.24)

Zodd
s .k/ D Y odd

s .k/ �
s�1
X

j D0

Y odd
s�j .0/Zeven

j .k/: (3.25)

Assume that s � 2, since these are directly proved when s D 1. We only prove (3.25)

by induction on k (the proof of (3.24) is parallel). If k D 0, then the both sides of (3.25)

is zero. Suppose that (3.25) is true for k. Notice that

Zeven
s .k C 1/ D � 1

.k C 1
2
/2

Zeven
s�1.k/ C Zeven

s .k/;

Y even
s .k C 1/ D � 1

.k C 1
2
/2

Y even
s�1 .k/ C Y even

s .k/;

Y odd
s .k C 1/ D � 1

.k C 1
2
/2

Y odd
s�1.k/ C Y odd

s .k/:

Using these relations together with the induction assumption, it is straightforward to

verify that the both sides of (3.25) for k C 1 coincide.

Remark 3.3. Note that

Zeven
s .n/ D Zodd

s .n/ D 0 .0 � n < s/; Zeven
s .s/ D Zodd

s .s/ D 1

.sŠ/2

�
�1

2

s

��2

;
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and hence

zJ2sC2.n/ D zJ2sC1.n/ D 0 .0 � n < s/; zJ2sC2.s/ D zJ2sC1.s/ D 1

.sŠ/2
:

We now provide several numerical data of zJk.n/:

zJ1.n/W 1;
2

3
;

8

15
;

16

35
;

128

315
;

256

693
;

1024

3003
;

2048

6435
;

32768

109395
I

zJ1.n/W 1;
3

4
;

41

64
;

147

256
;

8649

16384
;

32307

65536
;

487889

1048576
;

1856307

4194304
;

454689481

1073741824
I

zJ3.n/W 0; 1;
65

48
;

13247

8640
;

704707

430080
;

660278641

387072000
;

357852111131

204374016000
;

309349386395887

173581664256000
I

zJ4.n/W 0; 1;
11

8
;

907

576
;

1739

1024
;

6567221

3686400
;

54281321

29491200
;

7260544493

3853516800
;

709180003579

369937612800
I

zJ5.n/W 0; 0;
1

4
;

109

216
;

101717

138240
;

4557449

4838400
;

15689290781

13934592000
;

131932666373

102187008000
;

144010453389429161

99983038611456000
I

zJ6.n/W 0; 0;
1

4
;

73

144
;

3419

4608
;

29273

30720
;

151587391

132710400
;

232347221

176947200
;

2444144299823

1664719257600
I

zJ7.n/W 0; 0; 0;
1

36
;

515

6912
;

76667

576000
;

115560397

580608000
;

1051251017

3901685760
;

18813135818903

54935735500800
I

zJ8.n/W 0; 0; 0;
1

36
;

43

576
;

15389

115200
;

1659311

8294400
;

251914357

928972800
;

10258433947

29727129600
:

3.5. Congruence of normalized Apéry-like numbers

The congruence properties of zJk.2/ (and zJk.3/) obtained in [20] (see also [29]) are

considered to be one of the consequences of the modular property that the generating

function w2 possesses (i.e., w2 is an automorphic form for �.2/.Š �0.4/)). As we

will show in §5, there is a “weak modularity” for w2n (i.e., w2n is an automorphic

integral for G.2/: see §5.1). Therefore, we may expect similar congruence properties

among zJk.n/ .n � 4/. In fact, we provide below a certain reasonable conjecture on

congruence relations among zJk.n/. The aim of this section is to show some weak and

restricted version of the conjecture.

Based on a numerical experiment, we conjecture that the following congruence

relations among the normalized Apéry-like numbers should hold.
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Conjecture 3.6. For positive integers m;n;s and a prime number p such that mp � s

and mpn�1 � s, we have

p.2sC1/n zJ2sC1.mpn/

p2sC1 zJ2sC1.mp/
� p.2sC1/.n�1/ zJ2sC1.mpn�1/

p2sC1 zJ2sC1.mp/
. 6� 0/ .mod pn/;

p2sn zJ2sC2.mpn/

p2s zJ2sC2.mp/
� p2s.n�1/ zJ2sC2.mpn�1/

p2s zJ2sC2.mp/
. 6� 0/ .mod pn/:

Remark 3.4. When m < p
2

, the denominator of p2s zJ2sC2.mp/ is indivisible by p,

that is, p2s zJ2sC2.mp/ � pta .mod pn/ for some t 2 Z�0 and a 2 ZnpZ. In this

case, the second one in the conjecture above is equivalent to

p2sn�t zJ2sC2.mpn/ � p2s.n�1/�t zJ2sC2.mpn�1/ .mod pn/:

Here we prove slightly weaker results (Theorem 3.10). In what follows in Sec-

tion 3.6, p always denotes an odd prime. We recall the following basic congruences

on binomial coefficients (see [20, (6.7), (6.12), and (6.13)]).

Lemma 3.7. For any positive integers m; n; j , the following congruence relations

hold:
�

�1
2

pj

�2�
mpn

pj

�

�
�

�1
2

j

�2�
mpn�1

j

�

.mod pn/;

p − j H)
�

mpn

j

�

� 0 .mod pn/:

We also need the following elementary facts.

Lemma 3.8. Let ordp x be the exponent of p in x 2 Q, i.e., x D
Q

p pordp x for x 2 Q.

If 1 � 2j C 1 < pnC1, then

ordp

�
�1

2

j

�

� n � ordp.2j C 1/:

Proof. Put r D ordp.2j C 1/. Then there is some odd integer m such that 2j C 1 D
mpr < pnC1. In general, we see that

ordp

�
�1

2

j

�

D ordp

�
2j

j

�

D
X

l�1

�j2j

pl

k

� 2b2j

pl
c
�

D #
°

l � 1
ˇ
ˇ
ˇ ¹ j

pl
º � 1

2

±

;

where ¹xº D x � bxc is the fractional part of x 2 R. Notice that ¹x C 1º D ¹xº. It

follows then

1 � l � r H)
° j

pl

±

D
°mpr � 1

2pl

±

D
°m

2
pr�l � 1

2pl

±

D
°1

2
� 1

2pl

±

<
1

2
;
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and

l � n C 1 H) 0 � j

pl
<

pnC1�l

2
� 1

2
H)

° j

pl

±

<
1

2
:

Thus, we have

ordp

�
�1

2

j

�

D #
°

l � 1
ˇ
ˇ
ˇ

° j

pl

±

� 1

2
; r < l � n

±

� n � r

as desired.

Lemma 3.9. For k D 0; 1; : : : ; pn�1
2

,

p2snZeven
s .kp/ � p2s.n�1/Zeven

s .k/ .mod pn/ (3.26)

holds.

Notice that the denominator of p2snZeven
s .k/ is not divisible by p if 2k � 1 <

pnC1.

Proof. First we notice that

¹2j C 1 j 0 � j < kpº \ pZ D ¹p.2j C 1/ j 0 � j < kº:

In the sum

p2snZeven
s .kp/ D .�1/s

X

kp>j1>���>js�0

p2sn

.j1 C 1
2
/2 : : : .js C 1

2
/2

;

the summand is � 0 .mod pn/ if any of 2j1 C 1; : : : ; 2js C 1 is indivisible by p.

Hence, we have

.�1/sp2snZeven
s .kp/

D
X

k>j1>���>js�0

p2sn

.j1 C 1
2
/2 : : : .js C 1

2
/2

�
X

k>j1>���>js�0

p2sn

.p.j1 C 1
2
//2 : : : .p.js C 1

2
//2

.mod pn/

D
X

k>j1>���>js�0

p2s.n�1/

.j1 C 1
2
/2 : : : .js C 1

2
/2

D .�1/sp2s.n�1/Zeven
s .k/;

which implies (3.26).
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Theorem 3.10. If 1 � m < p
2

, then

p2sn zJ2sC2.mpn/ � p2s.n�1/ zJ2sC2.mpn�1/ .mod pn/ (3.27)

holds.

Proof. Using the lemma above, we have

p2sn zJ2sC2.mpn/ D
mpn
X

kD0

.�1/k

�
�1

2

k

�2�
mpn

k

�

p2snZeven
s .k/

�
mpn�1
X

kD0

.�1/kp

�
�1

2

kp

�2�
mpn

kp

�

p2snZeven
s .kp/ .mod pn/

�
mpn�1
X

kD0

.�1/k

�
�1

2

k

�2�
mpn�1

k

�

p2s.n�1/Zeven
s .k/ .mod pn/

D p2s.n�1/ zJ2sC2.mpn�1/

as desired.

Remark 3.5 (Odd case). We expect that the congruence formula in Theorem 3.10

also holds for the odd case. Explicitly, we conjecture that

p.2sC1/n zJ2sC1.mpn/ � p.2sC1/.n�1/ zJ2sC1.mpn�1/ .mod pn/ (3.28)

holds for 1 � m < p
2

. This is reduced to the congruence

p.2sC1/nZodd
s .kp/ � p.2sC1/.n�1/Zodd

s .k/ .mod pn/ (3.29)

as in the even case. To prove this, we need the following fact, which we have not

managed to prove. Let j 0 D p.2j C1/�1
2

, i.e., 2j 0 C 1 D p.2j C 1/. Then

p3.n�1/

.j C 1
2
/3

��
�1

2

j 0

��2

�
�

�1
2

j

��2�

� 0 .mod pn/ (3.30)

when 1 � 2j C 1 < pn. We note that by an elementary discussion, this congruence is

reduced to

ordp

0

B
B
B
@

1

2j C 1

0

B
B
B
@

1 �

�
�1

2

j 0

�2

�
�1

2

j

�2

1

C
C
C
A

1

C
C
C
A

� 1; (3.31)
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where ordp x for x 2 Q is the exponent of p in x, i.e., x D
Q

p pordp x . If 2j C 1 D
mpr .p − m/ and s D ordp

�
2j
j

�

, then (3.31) is equivalent to

�
2j 0

j 0

�

� .�1/
p�1

2

�
2j

j

�

.mod psCrC1/: (3.32)

We note that the modulo prC1 version of the congruence (3.32) can be proved eas-

ily as we sketch in the following. By a repeated use of the binomial theorem (see,

e.g., [6]), we get

.1 � X/mprC1�1 � .1 � Xp/mpr�1

p�1
X

j D0

X j .mod prC1/:

Comparing the coefficients of XapCb .0 � b < p/ in the both sides, we have

�
mprC1 � 1

ap C b

�

� .�1/b

�
mpr � 1

a

�

.mod prC1/

in general. In particular, when a D j and b D p�1
2

, we obtain

�
2j 0

j 0

�

� .�1/
p�1

2

�
2j

j

�

.mod prC1/:

3.6. A remark on Euler’s constant for the NcHO

We know that the spectral zeta function �Q.s/ can be meromorphically continued to

the whole complex plane with unique pole at s D 1, see [17]. Actually, it has a simple

pole at s D 1 with residue ˛Cˇp
˛ˇ.˛ˇ�1/

. By this fact, it would be reasonable to define

the Euler(-Mascheroni) constant Q for the NcHO by

Q WD lim
s!1

°

�Q.s/ � ˛ C ˇ
p

˛ˇ.˛ˇ � 1/

1

s � 1

±

:

Since we can not expect neither an Euler product nor functional equation for �Q.s/,

the analysis and results developed, e.g., in [12] for the Dedekind and Selberg zeta

function is seemingly difficult. Nevertheless, we expect that Q may possess certain

arithmetic significance like Kronecker’s limit formula [43], since it can be regarded as

a regularized value of “�Q.1/”. Exploring this problem would be desirable to obtain

new information of the spectrum.
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4. Apéry-like numbers and Mahler measures

In this section, we observe a certain mysterious relation between our Apéry-like num-

bers and the modular Mahler measures discussed in [39] through a generating function

of the generating functions vk.t/ of the Apéry-like numbers.

4.1. Meta-generating functions

We study a generating function of vk.t/ (sometimes we refer to it as the meta-gener-

ating (grandmother) function of Apéry-like numbers) as

V e.t; �/ WD
1

X

kD0

v2kC2.t/.�1/k�2k;

V o.t; �/ WD
1

X

kD0

v2kC1.t/.�1/k�2k:

For the time being, we will concentrate on the even meta-generating function V e.t;�/.

Since vk.0/ D wk.0/ D Jk.0/ D .k � 1/�.k; 1=2/, we have

V e.0; �/ D
1

X

kD0

.2k C 1/�
�

2k C 2;
1

2

�

.�1/k�2k D �2

2 cosh2 ��
:

Lemma 4.1. For a sufficiently small j�j, the function V e.t; �/ (resp. V o.t; �/) in the

variable t is holomorphic around t D 0.

Proof. Recall the integral expression (3.1) of Jk.n/

Jk.n/ D 1

22nC1

1Z

0

uk�2

.k � 2/Š

enu

.sinh u
2
/2nC1

du

uZ

0

.1 � e�2t /n.1 � e�2.u�t//ndt:

Since

.1 � e�2t /n.1 � e�2.u�t//n � .1 � e�u/2n

one observes that

0 < Jk.n/ D 1

.k � 2/Š

1Z

0

uk�2e� u
2

u

1 � e�u
du:
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Since u
1�e�u < 1

1�e�1 < 2 for 0 < u < 1 and u
1�e�u < 2u for u > 1, for any " > 0,

one sees that there exists a constant C" such that

1Z

0

uk�2e� u
2

u

1 � e�u
du < 2

1Z

0

uk�2e� u
2 du C 2

1Z

1

uk�1e� u
2 du

< C"

1Z

0

uk�2e� u
2C" du D C".2 C "/k�1�.k � 1/:

It follows that 0 < Jk.n/ < C".2 C "/k�1 (independent of n). Since

wk.z/ D
1

X

nD0

Jk.n/zn;

one has

jwk.z/j � C".2 C "/k�1.1 � jzj/�1 .jzj < 1/:

Recall that vk.t/ D .1 � z/wk.z/ with z D t
t�1

. Hence, one obtains

jvk.t/j � C".2 C "/k�1.jt � 1j � jt j/�1
�

<.t/ <
1

2

�

:

This immediately shows that if j�j < 1=
p

2 C "

jV e.t; �/j �
1

X

kD0

jv2kC2.t/.�1/k�2k j < C".jt � 1j � jt j/�1.1 � .2 C "/j�j2/�1:

This shows the assertion for V e.t; �/. For the odd parity function V o.t; �/, the proof

is the same.

It follows from the equation (3.16) that

Dt V
e.t; �/ D �2V e.t; �/; (4.1)

where Dt is the differential operator defined in (D). Namely, the function V e.t; �/ is

an eigenfunction of Dt with eigenvalue �2. Note that v2.t/ D V e.t; 0/ is a modular

form for �0.4/.

Remark 4.1. Similarly to the even case, we have

Dt V
o.t; �/ D

1
X

kD0

.�1/kDt v2kC1.t/�2k

D
1

X

kD0

.�1/k�1v2k�1.t/�2k

D �v�1.t/ C �2V o.t; �/;
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where

v�1.t/ D �Dtv1.t/ D �1

4

1
X

nD0

°

4.n C 1/2 1

2n C 3
� .2n C 1/2 1

2n C 1

±

tn

D �1

4

1
X

nD0

tn

2n C 3
D �1

4

v1.t/ � 1

t
:

Namely, one has

.Dt � �2/V o.t; �/ D 1

4t

° 1

1 � t
2F1

�

1; 1I 3

2
I t

t � 1

�

� 1
±

:

Rewrite (4.1) as

�

t.1 � t/
d2

dt2
C .1 � 2t/

d

dt
� 1

4
� �2

�

V e.t; �/ D 0:

Since V e.t; �/ is holomorphic around t D 0 and vk.0/ D .k � 1/�.k; 1=2/, one has

V e.t; �/ D �2

2 cosh2 ��
2F1

�1

2
C i�;

1

2
� i�I 1I t

�

: (4.2)

From this, it is immediate to see that

v2kC2.t/ D .2k/Š
d2k

d�2k

° �2

2 cosh2 ��
2F1

�1

2
C i�;

1

2
� i�I 1I t

�±ˇ
ˇ
ˇ
�D0

: (4.3)

In relation with the modular form interpretation of the generating function of

Apéry-like numbers for �Q.2/ developed in [21] (see §5) and [51], we naturally come

to the following problems.

Problem 4.1. Determine whether there are any pair of � 2 C and k 2 N such that

the function d2k

d�2k

�2

2 cosh2 �� 2F1. 1
2

C i�; 1
2

� i�I 1I t.�// in � can be a modular form

for some congruence subgroup � of SL2.Z/ and for some modular function t D t.�/

for � .

Problem 4.2. For some t D t.�/, is there any � such that 2F1. 1
2

C i�; 1
2

� i�I1I t.�//

is a modular form for some congruence subgroup � of SL2.Z/? Moreover, how many

such �’s; are these either finite or countably infinite, etc. locating on a certain line

or algebraic curve? Notice that, if � 2 Zn¹0º then 2F1. 1
2

C i�; 1
2

� i�I 1I t/ is a

polynomial so that the function in question is trivially a modular function.

Problem 4.3. Can we treat directly V e.t; �/ in the context of modular forms?
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4.2. Integral expression of V e.t; �/

Concerning the question as is stated in Problem 4.3, we first provide the integral

expression of V e.t; �/.

Proposition 4.2.

V e.t; �/ D 1

2

1Z

0

1Z

0

2e� uCv
2 cos.�.u C v//.1 � e�u�v/

.1 � e�u�v/2 � t.e�v � e�u/2
dudv:

Proof. Recalling (3.2), (3.3), (3.10), and (3.15), we have

V e.t; �/ D .1 � z/

1
X

kD0

.i�/2k

1
X

nD0

zn

22nC1

1Z

0

u2k

.2k/Š

²
enu

.sinh u
2
/2nC1

�
uZ

0

.1 � e�2s/n.1 � e�2.u�s//n ds

³

du

D .1 � z/

1Z

0

cos.�u/

� uZ

0

² 1
X

nD0

znenu

.2 sinh u
2
/2nC1

� .1 � e�2s/n.1 � e�2.u�s//n

³

ds

�

du

D .1 � z/

1Z

0

cos.�u/

� uZ

0

1

2 sinh u
2

²

1 � zeu

4 sinh2 u
2

� .1 � e�2s/.1 � e�2.u�s//

³�1

ds

�

du

D 1

2

1Z

0

� uZ

0

2e� u
2 cos.�u/.1 � e�u/

.1 � e�u/2 � t.e�s � es�u/2
ds

�

du

D 1

2

1Z

0

1Z

0

2e� uCv
2 cos.�.u C v//.1 � e�u�v/

.1 � e�u�v/2 � t.e�v � e�u/2
dudv

as desired.

When � D 1
i
. 1

2
� 1

l
/ for some integer l � 2, assuming t D T 2, we have

V e
�

T 2;
1

i

�1

2
� 1

l

��

D l2

2

1Z

0

1Z

0

1 C .xy/l�2

1 � .xy/l � T .xl � yl /
dxdy: (4.4)
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On the other hand, it follows from (4.2) that

V e
�

T 2;
1

i

�1

2
� 1

l

��

D �2

2 sin2 �
l

2F1

�1

l
; 1 � 1

l
I 1I T 2

�

: (4.5)

It follows then

�2
2F1

�1

l
; 1 � 1

l
I 1I T 2

�

D l2 sin2 �

l

1Z

0

1Z

0

1 C .xy/l�2

1 � .xy/l � T .xl � yl /
dxdy: (4.6)

Related to this function/integral, we now recall the result in [39], which is dis-

cussing the relation between Mahler measures and the special value of L-functions

for elliptic curves from the modular form point of view. The (logarithmic) Mahler

measure m.P / of a Laurent polynomial P 2 CŒx˙
1 ; : : : ; x˙

n � is defined as the follow-

ing integral over the torus:

m.P / D
1Z

0

� � �
1Z

0

logjP.e2�i�1 ; : : : ; e2�i�n/j d�1 : : : d�n:

It is known that, for instance, there is a remarkable identity such as m.1 C x C y/ D
L0.�; �1/, where L.�; s/ is the Dirichlet series associated to the quadratic character

� of conductor 3. Among others, the study in [39] shows the following result, which

asserts very explicitly the relation between Mahler measures and the special value of

L-functions for elliptic curves.

Proposition 4.3. For l D 2; 3; 4 and 6, put

ul .�/ D 1

.2�i/2

Z

T2

1

1 � �Pl .x; y/

dx

x

dy

y
; (4.7)

where T2 D
®

.z; w/ 2 C2
ˇ
ˇ jzj D jwj D 1

¯

and

P2.x; y/ D x C 1

x
C y C 1

y
; P3.x; y/ D x2

y
C y2

x
C 1

xy
;

P4.x; y/ D xy2 C x

y2
C 1

x
; P6.x; y/ D x2

y
� y

x
� 1

xy
:

Then one finds

ul .�/ D 2F1

�1

l
; 1 � 1

l
I 1I Cl�

l
�

.l D 2; 3; 4; 6/;

C2 D 24; C3 D 33; C4 D 26; C6 D 2433:
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The function ul.�/ is related to the Mahler measure of the polynomial Pl .x;y/ � 1=�

.which defines an elliptic curve/ as

m.Pl.x; y/ � 1=�/ D <
²

� log � �
�Z

0

.ul.t/ � 1/
dt

t

³

:

It is worth noting that, via the hypergeometric representation (4.5), this propos-

ition shows that the following relation between Mahler measures associated with

curves and our meta-generation functions of Apéry-like numbers holds.

Corollary 4.4. The following holds.

V e
�

Cl�
l ;

1

i

�1

2
� 1

l

��

D �2

2 sin2. �
l
/

ul.�/ .l D 2; 3; 4; 6/: (4.8)

Remark 4.2. Since there is an intimate relation between the Mahler measure for

elements in group ring of a finite group and the characteristic polynomial of the adja-

cency matrix of a weighted Cayley graph and characters of the group [9], it is natural

to expect the existence of a certain dynamical system behind the NcHO.

5. Automorphic integrals associated with Apéry-like numbers

The function w2.t/ becomes a modular form of weight 1 with respect to the congruent

subgroup �.2/ if we take t as a suitable �.2/-modular function. This is a reflection

of the fact that the differential equation for w2.t/ is the Picard–Fuchs equation for

an associated family of elliptic curves. In this section, we recall this story for w2.t/

and other generating functions wk.t/ of Apéry-like numbers from [22] and study the

Fourier expansions of certain integrals of modular forms, which appear naturally in

the story.

5.1. Automorphic integrals

We summarize notations used in what follows, and we briefly recall the notion of

automorphic integrals due to Knopp [24]. This is a slightly extended notion of auto-

morphic integrals studied in [10].

Let � be a Fuchsian group and m be an integer. Let � 2 h, h being the complex

upper half plane, and q WD e2�i� . Denote by F.h/ the linear space of all C-valued

functions on the complex upper half plane. The group � acts on h by � WD a�Cb
c�Cd

for

 D
�

a b
c d

�

2 � and � 2 h. The space F.h/ becomes a (right) �-module by the map

F.h/ � � 3 .f; / 7! f jm 2 F.h/ defined by

.f jm/.�/ D j.; �/�mf .�/: (5.1)
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Here j.; �/ WD c� C d for  D
�

a b
c d

�

and � 2 h. We denote by H .h/, M.h/, C.�/ the

subspaces of F.h/ consisting of holomorphic functions on h, meromorphic functions

on h and rational functions on h respectively. We also set CŒ� �k to be the space of

polynomial functions on h which is of at most degree k. Notice that these spaces are

�-submodules of F.h/ under the action f j�k .

The standard generators of the modular group SL2.Z/ are denoted by

T D
�

1 1

0 1

�

; S D
�

0 �1

1 0

�

:

Define the subgroup G.2/ of SL2.Z/ by G.2/ WD
˝

T 2; S
˛

. Notice that G.2/ contains

�.2/, the principal congruence subgroup of level 2;

G.2/ � �.2/ WD ¹ 2 SL2.Z/ j  � I mod 2º D hT 2; ST �2S�1i:

If f .�/ is an automorphic form of even integral weight m C 2 for � , then an

.m C 1/-fold iterated integral F.�/ of f .�/ is called an automorphic integral of f .�/.

By the Bol formula

dmC1

d�mC1
.j.; �/mF.�// D j.; �/�m�2F .mC1/.�/ . 2 SL2.R//; (5.2)

we see that .F j�m/.�/ � F.�/ is a polynomial in � of degree at most m C 1.

In [24], Knopp introduced an extended notion of the automorphic integrals; a

meromorphic function F on the upper half plane h is called an automorphic integral

of weight 2k for � with rational period functions ¹RF ./.�/ 2 C.�/ j 2 �º if

.F j2k/.�/ D F.�/ C RF ./.�/

for each  2 � and F is meromorphic at each cusp of � .

Example 5.1. The Eisenstein series E2.�/ of weight 2 satisfies

E2.� C 1/ D E2.�/; ��2E2

�

�1

�

�

� E2.�/ D 12

2�i�
:

Hence, E2.�/ is an automorphic integral of weight 2 with for SL2.Z/.

Notice that an automorphic integral obtained by an .m C 1/-fold iterated integ-

ral of the automorphic form of weight m C 2 is an automorphic integral of weight

�m with polynomial period functions. To emphasize the polynomiality of the period

functions, in what follows, we call an automorphic integral with polynomial period

functions an automorphic integral.
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5.2. Modular form interpretation of w2.t/

We first recall the result on the modularity of w2.t/ in [21] briefly. We recall the

following standard functions; the elliptic theta functions

�2.�/ D
1

X

nD�1
q.nC1=2/2=2; �3.�/ D

1
X

nD�1
qn2=2; �4.�/ D

1
X

nD�1
.�1/nqn2=2;

and normalized Eisenstein series

Ek.�/ D 1 C 2

�.1 � k/

1
X

nD1

�k�1.n/qn .k D 2; 4; 6; : : : /;

where �s.n/ D
P

d jn d s . Put

t D t.�/ D ��2.�/4

�4.�/4
D �.�/2

�.�/2 � 1
D �.�/8�.4�/16

�.2�/24
; (5.3)

which is a �.2/-modular function such that t.i1/ D 0. Here �.�/ is the Legendre

modular function and �.�/ is the Dedekind eta function:

�.�/ D 16�.�/8�.2�/�24�.4�/16:

We see that

1 � t D �3.�/4

�4.�/4
;

t

t � 1
D �2.�/4

�3.�/4
;

q

t

dt

dq
D 1

2
�3.�/4:

By the formula ([48, Section 22.3]),

2F1

�1

2
;

1

2
I 1I �2.�/4

�3.�/4

�

D �3.�/2;

it follows from (3.14) for k D 2 that

w2.t/ D J2.0/

1 � t
2F1

�1

2
;

1

2
I 1I t

t � 1

�

D J2.0/
�4.�/4

�3.�/2
D J2.0/

�.2�/22

�.�/12�.4�/8
;

which is a �.2/-modular form of weight 1.

5.3. Toward modular interpretation of wk.t/

The fact mentioned above on w2.t/ naturally leads us to a question what the nature

of wk.t/ is in general. In order to answer this question for the special case w4.t/, we

recall the following general fact (Lemma 5.1), which is a slight modification of [49,

Lemma 1] and is proved in the same manner. Let � be a discrete subgroup of SL2.R/

commensurable with the modular group.
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Lemma 5.1. Let A.�/ be a modular form of weight k and t.�/ be a non-constant

modular function on � such that t.i1/ D 0. Let

L WD #kC1 C rk.t/#k C � � � C r0.t/
�

# D t
d

dt

�

be the differential operator with rational coefficients rj .t/. Assume that A, as a func-

tion in t , satisfies the differential equation LA.t/ D 0. Let g.t/ D g.t.�// be another

modular form. Then a solution of the inhomogeneous differential equation LB.t/ D
g.t/ is given by the iterated integration

B.t/ D A.t/

qZ

� � �
qZ

„ ƒ‚ …

kC1

�qdt=dq

t

�kC1 g.t/

A.t/

dq

q
� � � dq

q
:

From Theorem 3.3, it follows that

�

t.1 � t/2 d2

dt2
C .1 � t/.1 � 3t/

d

dt
C t � 3

4

�k

w2kC2.t/ D w2.t/ (5.4)

for k � 1, which can be also written in terms of the Euler operator # as

Lkw2kC2.t/ D tk

.1 � t/2k
w2.t/ .k � 1/; (5.5a)

Lk D #2k C r2k�1.t/#2k�1 C � � � C r0.t/ .r0.t/; : : : ; r2k�1.t/ 2 C.t//: (5.5b)

Let us consider the function

Wk.t/ WD w2.t/

qZ

0

� � �
qZ

0
„ ƒ‚ …

2k

�qdt=dq

t

�2k tk

.1 � t/2k

dq

q
� � � dq

q

D
�

�1

4

�k

J2.0/
�4.�/4

�3.�/2

qZ

0

� � �
qZ

0
„ ƒ‚ …

2k

�

�2.�/4�4.�/4
�k dq

q
� � � dq

q
:

Let us look at the case where k D 1. If we apply Lemma 5.1 to (5.5), then we see

that the integral W1.t/ is a solution to (5.5), and hence w4.t/ � W1.t/ is a solution of

the homogeneous equation L1f D 0 of degree 2 which is holomorphic at t D 0. This

implies that w4.t/ � W1.t/ is a constant multiple of w2.t/. Thus, we have w4.t/ D
C w2.t/ C W1.t/ for a constant C , which is determined to be �2.D J4.0/=J2.0// by

looking at the constant terms. Namely, we get

w4.t/ D �2w2.t/ C W1.t/: (5.6)
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5.4. Automorphic integrals approach to Wk.t/

In what follows, we consider Wk.t/ for k 2 N in general. For convenience, let us put

f .�/ D �2.�/4�4.�/4 D 1

15
.E4.�=2/ � 17E4.�/ C 16E4.2�//; (5.7)

Ek.�/ D
qZ

0

� � �
qZ

0
„ ƒ‚ …

2k

f .�/k dq

q
� � � dq

q
; (5.8)

Gk.�/ D
qZ

0

� � �
qZ

0
„ ƒ‚ …

4k�1

f .�/k dq

q
� � � dq

q
D

qZ

0

� � �
qZ

0
„ ƒ‚ …

2k�1

Ek.�/
dq

q
� � � dq

q
: (5.9)

Notice that

Wk.t/ D
�

�1

4

�k

w2.t/Ek.�/ D 2�i

.16�2/k
w2.t/

d2k�1

d�2k�1
Gk.�/:

Clearly, Gk.�/ is a periodic function with period 2 and Gk.i1/ D 0. Since f .�/k is

a modular form of weight 4k with respect to �.2/ (or G.2/), the function Gk.�/ is

an automorphic integral for f .�/k by definition. Hence, by (5.6), we have the

Theorem 5.2. The fourth generating function w4.t/ of Apéry-like numbers is a linear

combination of w2.t/ and

W1.t/ D 2�i

16�2
w2.t/G0

1.�/;

which is a product of w2.t/ and the derivative G0
1.�/ of an automorphic integral for

G.2/ of weight �2, as

w4.t/ D �2w2.t/ C W1.t/: (5.10)

Note that the Fourier expansion of G1.�/ is given by

G1.�/ D
qZ

0

qZ

0

qZ

0

1

15
.E4.�=2/ � 17E4.�/ C 16E4.2�//

dq

q

dq

q

dq

q

D 16
�

8
X

n�1

��3.n/q
n
2 � 17

X

n�1

��3.n/qn C 2
X

n�1

��3.n/q2n
�

: (5.11)

In the next section we will give a formula for G1.�/ and w4.t/, in which they are

expressed in terms of differential Eisenstein series ((6.8) and Theorem 6.6).
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We calculate the period function of Gk.�/, especially to describe w4.t/ concretely

via G1.�/. The L-function corresponding to f .�/k is

ƒk.s/ D
1Z

0

t sf .i t/k dt

t
; (5.12)

which satisfies the functional equation ƒk.4k � s/ D ƒk.s/. By the inversion formula

of Mellin’s transform, one notices that

f .iy/k D 1

2�i

Z

<sD˛

y�sƒk.s/ds .y > 0; ˛ � 0/:

Put

„k.s/ D ƒk.s C 2k/
Q2k�1

j D1�2k.s � j /
; �k;j D Res

sDj
„k.s/ .j D 1 � 2k; : : : ; 2k � 1/:

The functional equation for ƒk.s/ implies the oddness „k.�s/ D �„k.s/, from

which we see that �k;�j D �k;j . Define Rk
S.�/ by

Rk
S .�/ D �.2�/4k�1

2k�1
X

j D1�2k

�k;j

��

i

�2k�1�j

:

Notice that Rk
S.�/ is a polynomial in � of degree 4k � 2. We have the

Lemma 5.3 ([22, Theorem 4]). One has

Gk.� C 2/ D Gk.�/; �4k�2Gk

�

�1

�

�

� Gk.�/ D Rk
S .�/:

Let us consider the particular case where k D 1. Explicitly, we have

ƒ1.s/ D 16��s�.s/�.s/�.s � 3/.1 � 2�s/.1 � 24�s/;

�1;�1 D �1;1 D 7�.3/

�3
; �1;0 D �1

2
; R1

S.�/ D 56�.3/.�2 � 1/ C 4�3

i
�:

Lemma 5.3 then reads

Lemma 5.4. The function

zG1.�/ WD G1.�/ � 56�.3/ (5.13)

satisfies

zG1.� C 2/ D zG1.�/; �2 zG1

�

�1

�

�

� zG1.�/ D 4�3

i
�: (5.14)
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5.5. Experimental calculation to determine the coefficients

In this section, we observe that the generating function w2k.t/ of the Apéry numbers

for �Q.2k/ is expressed by a certain linear combination of the multiple integral of

the (same) modular forms. Namely, we try to determine the coefficients c0
k;j

in the

equation

w2kC2.t/ D J2kC2.0/

J2.0/
w2.t/ C

k�1
X

j D1

c0
k;j Wj .t/ C Wk.t/ (5.15)

D w2.t/
°J2kC2.0/

J2.0/
C

k
X

j D1

�

�1

4

�j

c0
k;j Ej .�/

±

.c0
k;k D 1/: (5.16)

(Recall that Wj .t/ D .�1
4
/j w2.t/Ej .�/.) Let ˛

.m/

l
, ˇ

.m/

l
and 

.m/

l
be the l-th Fourier

coefficients of wm.t/, Em.�/ and tm respectively, that is,

wm.t/ D
1

X

lD0

˛
.m/

l
q

l
2 ; Em.�/ D

1
X

lD0

ˇ
.m/

l
q

l
2 ; tm D

1
X

lD0


.m/

l
q

l
2 :

Trivially we have 
.0/

l
D ıl;0. We also note that 

.m/

l
D ˇ

.m/

l
D 0 if l < m since t and

f .�/ vanish at i1. Thus, we have

wm.t/ D
1

X

nD0

Jm.n/tn D
1

X

nD0

Jm.n/

1
X

lD0


.n/

l
q

l
2 D

1
X

lD0

� l
X

nD0

Jm.n/
.n/

l

�

q
l
2 ;

or

˛
.m/

l
D

l
X

nD0

Jm.n/
.n/

l
:

Recall that Wj .t/ D .�1
4
/j w2.t/Ej .�/. Now, (5.15) reads

1
X

lD0

˛
.2kC2/

l
q

l
2 D J2kC2.0/

J2.0/

1
X

lD0

˛
.2/

l
q

l
2 C

k
X

j D1

�

�1

4

�j

c0
k;j

X

l;m�0

˛
.2/

l
ˇ.j /

m q
lCm

2

Comparing the coefficients of ql=2 of the both sides, we have

k
X

j D1

�

�1

4

�j
² l

X

mD0

˛
.2/

l�m
ˇ.j /

m

³

c0
k;j D ˛

.2kC2/

l
� J2kC2.0/

J2.0/
˛

.2/

l

for l D 1; : : : ; k.
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Example 5.2 (l D 1). We have

�1

4
J2.0/

.0/
0 ˇ

.1/
1 c0

k;1 D J2kC2.1/J2.0/ � J2kC2.0/J2.1/

J2.0/


.1/
1 D J2k.0/

.1/
1

since

J2kC2.1/J2.0/ � J2kC2.0/J2.1/

D
�

J2k.0/ C 3

4
J2kC2.0/

�

J2.0/ � 3

4
J2.0/J2kC2.0/ D J2k.0/J2.0/:

We see that


.1/
1 D �16; ˇ

.1/
1 D 64

Thus, we have

c0
k;1 D J2k.0/

J2.0/
:

For instance, we have

w6.t/ D w2.t/
°J6.0/

J2.0/
� 1

4

J4.0/

J2.0/
E1.�/ C 1

16
E2.�/

±

D w2.t/
°J6.0/

J2.0/
C J4.0/

J2.0/

2�i

16�2

d

d�
G1.�/ C 2�i

256�4

d3

d�3
G2.�/

±

:

Example 5.3 (l D 2). We see that


.1/
2 D �128; 

.2/
2 D 256; ˇ

.1/
2 D �128; ˇ

.2/
2 D 256:

For k � 2, we have

� 1

4

°

J2.0/ˇ
.1/
2 C J2.0/

.0/
1 ˇ

.1/
1 C J2.1/

.1/
1 ˇ

.1/
1

±

c0
k;1 C 1

16
J2.0/ˇ

.2/
2 c0

k;2

D J2kC2.1/J2.0/ � J2kC2.0/J2.1/

J2.0/


.1/
2 C J2kC2.2/J2.0/ � J2kC2.0/J2.2/

J2.0/


.2/
2 ;

which is reduced to

c0
k;2 D �8 � 14c0

k;1 C 16
J2kC2.2/J2.0/ � J2kC2.0/J2.2/

J2.0/2

D �8 C 8
J2k.0/

J2.0/
C 4

J2k�2.0/

J2.0/
:

Example 5.4. We have

c0
k;1 D J2k.0/

J2.0/
; c0

k;2 D 4J2k�2.0/

J2.0/
; c0

k;3 D 117J2k�2.0/ C 162J2k�4.0/

8J2.0/
;

c0
k;4 D �695J2k�2.0/ C 2794J2k�4.0/ C 1024J2k�6.0/

9J2.0/
:

A systematic study of the generating functions w2n for higher special values is

desirable.
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6. Differential Eisenstein series

We have shown in Theorem 5.2 that the function w4.t/ is a linear combination of

w2.t/ and the derivative G0
1 of an automorphic integral. To understand the integrals

Gj .�/ more concretely, we introduce a family of functions called differential Eisen-

stein series which play a role analogous to the ordinary Eisenstein series.

6.1. Periodic automorphic integrals

Let � be a congruence subgroup of level N and m be an integer. We take a �-sub-

module X of F.h/. We focus our attention on automorphic integrals of special types

defined as follows.

Definition 6.1 (periodic automorphic integrals). Let � be a (multiplicative) character

of � such that �.T N / D 1. A holomorphic function f 2 H .h/ is called a peri-

odic automorphic integral for � of weight m with character � and period functions

¹Rf;�./º2� � X if

f .� C N / D f .�/; (6.1)

.f jm/.�/ � �./f .�/ D Rf;�./.�/ for all  2 �; (6.2)

and for all  2 SL2.Z/ there exists ¹anºn2Z such that

.f jm/.�/ �
X

n2Z

anq
n
N 2 X; an D 0 .n � 0/: (6.3)

We denote by M
�
m.�; X/ the set consisting of such periodic automorphic integral.

When � is the trivial character, we omit the symbol � and simply write Mm.�; X/.

We call f an Eichler cusp forms if it is a periodic automorphic integral such that the

Fourier expansion part of f jm in (6.3) has no constant term for every  2 SL2.Z/.

The space of Eichler cusp forms is denoted by C
�
m.�; X/.

When m > 0, Mm.�/ WD Mm.�; ¹0º/ and Cm.�/ WD Cm.�; ¹0º/ are nothing

but the spaces of classical modular forms and cusp forms of weight m respectively.

Indeed, f 2 Mm.�/ is holomorphic at every cusp of � in this case.

Remark 6.1. If 1 2 X, that is, X contains constant functions, then any constant shift

f .�/ C c (c 2 C) of f 2 Mm.�; X/ also belongs to Mm.�; X/. In this case, it is

natural to study the quotient space Mm.�; X/=(constants).

Example 6.1. We give a non-trivial example of �-submodule X of F.h/ as follows.

Let V2k;m be a subspace of F.h/ generated by � j .j D 0; 1; : : : ; 2k/ and .� � ˛/�j

.˛ 2 Cn ¹1 j  2 �.2/º ; j D 1; 2; : : : ; m/. Notice that 0 62 ¹1 j  2 �.2/º. Then
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the space V2k;m is a �.2/-stable subspace of C.�/ under the action .f j�2k/.�/ D
j.; �/2kf .�/ . 2 �.2//. In fact, for  D

�
a b
c d

�

, if we put f .�/ D .� � ˛/�j .1 �
j � m/, we observe

.f j�2k/.�/ D .c� C d/2k
� a� C b

c� C d
� ˛

��j

D .c� C d/2kCj

..a � c˛/� C .b � d˛//j

D a polynomial of degree 2k C a polynomial of degree j � 1

.� � ˛/j
:

This clearly shows that .f j�2k/.�/ 2 V2k;m.

The period functions ¹Rf;�./º for f 2 Mm.�; X/ obey the relation

Rf;�.T N / D 0; (6.4)

Rf;�.12/ D �.1/Rf;�.2/ C Rf;�.1/jm2 .1; 2 2 �/: (6.5)

The latter identity is readily checked as follows.

Rf;�.12/ D f jm12 � �.12/f

D �.1/
�

f jm2 � �.2/f
�

C
�

f jm1 � �.1/f
�

jm2

D �.1/Rf;�.2/ C Rf;�.1/jm2: (6.6)

Hence, by (6.5), the condition (6.2) can be replaced by the one only for generators

of � .

For convenience, we give the definitions of the space of negative weight holo-

morphic automorphic integrals (with characters) in terms of the generators for the

specific groups G.2/ and �.2/.

Definition 6.2 (periodic automorphic integrals for G.2/ and �.2/). We set

Mm.G.2/; X/ WD

8

ˆ̂
<

ˆ̂
:

f 2 H .h/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f .� C 2/ D f .�/,

��mf
�

�1

�

�

� f .�/ 2 X,

f is holomorphic at i1

9

>>=

>>;

;

Mm.�.2/; X/ WD

8

<̂

:̂

f 2 H .h/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f .� C 2/ D f .�/,

.2� C 1/�mf
� �

2� C 1

�

� f .�/ 2 X,

f satisfies (6.3)

9

>=

>;

:

Remark 6.2. If f 2 H .h/ is holomorphic at i1 and satisfies the conditions

f .� C 2/ D f .�/; ��mf
�

�1

�

�

� f .�/ D Rf;�.S/.�/ 2 X;
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then we see that

.f jmT /.�/ D
X

n�0

.�1/nanq
n
2

when the Fourier expansion of f is given by f .�/ D
P

n�0 anq
n
2 . Namely, f satisfies

the condition (6.3) in the definition of periodic automorphic integrals for G.2/.

Example 6.2. By Lemma 5.3, we have Gk.�/ 2 M2�4k.G.2/;CŒ� �/ for each positive

integer k.

Remark 6.3. When f .�/ 2 Mm.G.2/; X/ with period functions ¹Rf ./º, by virtue

of (6.5), we have f .�/ 2 Mm.�.2/; X/. Indeed, we have

Rf .ST �2S�1/ D Rf .S/jmT �2S�1 C Rf .T �2/jmS�1 C Rf .S�1/ 2 X:

6.2. Differential Eisenstein series

We always assume that �� � argz < � for z 2 C to determine the branch of complex

powers. Define

G.s; x; �/ WD
X0

m;n2Z

.m� C n C x/�s;

G.s; �/ WD G.s; 0; �/;

G.N Ia;b/.s; �/ WD
X0

m;n2Z

m�a .mod N /
n�b .mod N /

.m� C n/�s .a; b 2 ¹0; 1; : : : ; N � 1º/

for s 2 C such that <.s/ > 2. Here
X0

m;n2Z
means the sum over all pairs .m; n/

of integers such that the summand is defined. We sometimes refer to these series as

generalized Eisenstein series (e.g., [3]). Remark that

G.N Ia;b/.s; �/ D N �sG
�

s;
a� C b

N
; �

�

;

in particular that G.N I0;0/.s; �/ D N �sG.s; �/.

It is known that G.s; x; �/ is analytically continued to the whole s-plane, and

G.s; x; �/ can be written in the form

G.s; x; �/ D
X

n>�x

1

.n C x/s
C 1

�.s/
A.s; x; �/;

when x 2 R, where A.s; x; �/ is holomorphic in s and � . In particular, we see that

G.�2k; �/ D G.2I1;1/.�2k; �/ D 0
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for any positive integer k (see [26, Theorem 1]; see also [3]). We now introduce the

notion of differential Eisenstein series.

Definition 6.3 (differential Eisenstein series5). For m 2 Z, define

dGm.�/ WD @

@s
G.s; �/

ˇ
ˇ
ˇ
sDm

;

dG.N Ia;b/
m .�/ WD @

@s
G.N Ia;b/.s; �/

ˇ
ˇ
ˇ
sDm

.a; b 2 ¹0; 1; : : : ; N � 1º/:

It is immediate to see that dGm.� C 1/ D dGm.�/ and dG.N Ia;b/
m .� C N / D

dG.N Ia;b/
m .�/. In the case where N D 2, it is convenient to introduce an abbreviation

dGa;b
m .�/ for dG.2Ia;b/

m .�/, which will appear frequently below.

For later use, we recall the definitions and several results on the double zeta func-

tions and double Bernoulli numbers [1]. Let
N
! D .!1; !2/ be a pair of complex

parameters. Barnes’ double zeta function is defined by

�2.s; z j
N
!/ WD

X

m;n�0

.m!1 C n!2 C z/�s .<s > 2/;

and the double Bernoulli polynomials B2;k.z j
N
!/ are defined by the generating func-

tion
t2ezt

.e!1t � 1/.e!2t � 1/
D

1
X

kD0

B2;k.z j
N
!/

tk

kŠ
:

It is well known that the Barnes double zeta function is extended meromorphically

to the whole complex plane and the special values at the non-positive integer points

are given by (see, e.g., [1])

Lemma 6.1. For each m 2 N, one has

�2.1 � m; z j
N
!/ D B2;mC1.z j

N
!/

m.m C 1/
:

Example 6.3. We have

�2

�

�2k;
� � 1

2

ˇ
ˇ
ˇ .�1; �/

�

D
B2;2kC2. ��1

2
j .�1; �//

.2k C 1/.2k C 2/
2 1

�
CŒ� �;

�2.�2k; � j .�1; �// D B2;2kC2.� j .�1; �//

.2k C 1/.2k C 2/
2 1

�
CŒ� �:

5We have used the notation dEm.�/ in [22] in place of dGm.�/. In this paper, however, we

use the notation dEm.�/ for representing the normalized differential Eisenstein series in §6.6,

which follows the standard use of Eisenstein series in the classical theory of modular forms.
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6.3. dG
�2k

is an automorphic integral

We notice the following elementary fact.

Lemma 6.2. If � 2 h and .a; b/ 2 R2 � ¹.0; 0/º, then

arg
�

�1

�

�

C arg.a� C b/ � � () a > 0; b � 0:

Lemma 6.3. For each k 2 N, one has

dG�2k

�

�1

�

�

D
�

�1

�

�2k

¹dG�2k.�/ � 4k�i�2.�2k; � j .�1; �//º:

Proof. It follows from Lemma 6.2 that

G
�

s; �1

�

�

D
X0

m;n2Z

�

�m
1

�
C n

��s

D
X0

m;n2Z

��

�1

�

�

.m� C n/
��s

D
�

�1

�

��s° X0

m;n2Z

.m� C n/�s C .e2�is � 1/
X

m>0
n�0

.m� C n/�s
±

D
�

�1

�

��s

¹G.s; �/ C .e2�is � 1/�2.s; � j .�1; �//º:

This yields

@

@s
G

�

s; �1

�

�ˇ
ˇ
ˇ
sD�2k

D @

@s

�

�1

�

��sˇ
ˇ
ˇ
sD�2k

¹G.�2k; �/ C .e�4k� � 1/�2.�2k; � j .�1; �//º

C
�

�1

�

�2k @

@s
¹G.s; �/ C .e2�is � 1/�2.s; � j .�1; �//ºjsD�2k

D
�

�1

�

�2k° @

@s
G.s; �/

ˇ
ˇ
ˇ
sD�2k

� 4k�i�2.�2k; � j .�1; �//
±

:

Thus, we have

dG�2k

�

�1

�

�

D
�

�1

�

�2k

¹dG�2k.�/ � 4k�i�2.�2k; � j .�1; �//º:

By a similar calculation, we also have the following result.

Lemma 6.4. For each k 2 N, one has

dG
1;1

�2k

�

�1

�

�

D ��2k.dG
1;1

�2k
.�/ � 4k�i�2.�2k; � � 1 j .�2; 2�///:
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By the lemmas above, we obtain the

Corollary 6.5. One has

dG�2k.�/ 2 M�2k.SL2.Z/; C.�//; dG
0;0

�2k
.�/; dG

1;1

�2k
.�/ 2 M�2k.G.2/; C.�//

for each k 2 N.

Remark 6.4. We observe that dG
0;0

�2k
.�/;dG

1;1
�2 .�/ 2 M�2.�.2/;V2;1/, V2;1 being the

space defined in Example 6.1.

Remark 6.5. A recent calculation due to Shibukawa [41] on the same analysis of the

lemmas above shows that dG�2k.�/ 2 M�2k.SL2.Z/; M.h// but … M�2k.SL2.Z/;

C.�// for k > 0.

Remark 6.6. Although we have given the proof of lemmas above directly, we may

extend these relations to the general case by a similar analysis in [3].

Remark 6.7. The function dG1;1
m .�/ can be written as

dG1;1
m .�/ D .1 C 2�m/dGm.�/ � 2�mdGm.�=2/ � dGm.2�/:

6.4. An expression of w4.t/ in terms of differential Eisenstein series

By Lemmas 6.3, 6.4 and 6.1, we have

dG
1;1
�2

�

�1

�

�

D ��2
�

dG
1;1
�2 .�/ � �i

3
B2;4.� � 1 j .�2; 2�//

�

;

dG�2

�

�1

�

�

D ��2
�

dG�2.�/ � �i

3
B2;4.� j .�1; �//

�

:

A straightforward calculation using these formulas shows that

7B2;4.� j .�1; �// C 2B2;4.� � 1 j .�2; 2�// D �3

2
�:

Therefore, if we put

�1.�/ WD �8�2¹7dG�2.�/ C 2dG
1;1
�2 .�/º; (6.7)

then we have

�1.� C 2/ D �1.�/; �2�1

�

�1

�

�

� �1.�/ D 4�3 �

i
:

These relations are exactly the same as the ones (5.14) for zG1.�/ D G1.�/ � 56�.3/.

Therefore, the difference G1.�/ � 56�.3/ � �1.�/ is a classical holomorphic modular

forms of weight �2 for �.2/. Since M�2.�.2// D ¹0º, we have

G1.�/ D �1.�/ C 56�.3/: (6.8)
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Putting this expression into (5.10), we obtain the following

Theorem 6.6. The generating function w4.t/ of Apéry-like numbers J4.n/ is given

by

w4.t/ D �4

2

�4.�/4

�3.�/2

h

1 C 1

�i

d

d�
¹7dG�2.�/ C 2dG

1;1
�2 .�/º

i

;

where t D t.�/ D ��2.�/4�4.�/�4.

6.5. Fourier expansion of dG
�2k

.�/

We now compute the Fourier expansion of the differential Eisenstein series dG�2k.�/

using the result in [41]. Similarly to the classical Eisenstein series, we will find that

the Fourier expansion of dG�2k.�/ is given by the Lambert series. In particular, we

notice that dG�2k.�/ is not a cusp form.

We first recall the result for the bilateral zeta function in [41]. For .!1; !2/, the

bilateral zeta function �2.s; z j !1; !2/ is defined by

�2.s; z j !1; !2/ WD �2.s; z C !1 j !1; !2/ C �2.s; z j �!1; !2/: (6.9)

We take !1 as 0 < arg.!1/ � � in the subsequent discussion. Then the following

Fourier expansion of �2.s; z j �1; !/ is known ([41, Theorem 4.7 and Corollary 4.8]).

Proposition 6.7. Suppose z; ! 2 h. Then we have

�2.s; z j �1; !/ D e�.�=2/is.2�/s

�.s/

1
X

nD1

ns�1e2�inz

1 � e2�in!
: (6.10)

Moreover, one notices that the bilateral zeta function �2.s; z j !1; !/ is an entire

function in s 2 C and for m 2 N

�2.1 � m; z j !1; !/ D 0: (6.11)

Using this proposition, we prove the following

Theorem 6.8. The Fourier expansion of the differential Eisenstein series dG�2k.�/

.k 2 N/ is expressed by the Lambert series as

dG�2k.�/ D .�1/k.2k/Š

.2�/2k

°

2

1
X

nD1

n�2k�1

1 � e2�in�
� �.2k C 1/

±

D .�1/k.2k/Š

.2�/2k

°

�.2k C 1/ C 2

1
X

nD1

��2k�1.n/e2�in�
±

:
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In particular, the constant term is given by the multiple of �.2k C 1/ as

dG�2k.i1/ D .�1/k.2k/Š

.2�/2k
�.2k C 1/ ¤ 0:

Proof. We observe that

G.s; �/ D
X0

m0; m12Z

.m0 C m1�/�s

D
X0

m02Z; m12Z�0

.m0 C m1�/�s C
X0

m02Z; m12Z�0

.m0 � m1�/�s �
X

m0 6D0

m�s
0

D .1 C e�is/
° X0

m02Z; m12Z�0

.m0 C m1�/�s � �.s/
±

:

By (6.11), since

0 D �2.1 � 2k; z j �1; �/ D
X0

m02Z; m12Z�0

.z C m0 C m1�/�sjsD�2k C z2k;

for k 2 N, we have

X0

m02Z; m12Z�0

.m0 C m1�/�sjsD�2k D 0:

It follows that

@

@s
G.s; �/

ˇ
ˇ
ˇ
sD�2k

D 2
@

@s

° X0

m02Z; m12Z�0

.m0 C m1�/�s
±ˇ
ˇ
ˇ
sD�2k

� 2�0.�2k/: (6.12)

On the other hand, we observe

�2.s; z j �1; ��/ D �2.s; z � 1 j �1; ��/ C �2.s; z j 1; ��/

D
1

X

m0;m1D0

.z � 1 � m0 C m1�/�s C
1

X

m0;m1D0

.z C m0 C m1�/�s

D
X

m02Z

1
X

m1D0

.z C m0 C m1�/�s

D
X0

m02Z; m12Z�0

.z C m0 C m1�/�s C z�s :

By the Fourier expansion (6.10), using the fact

d

ds

1

�.s/

ˇ
ˇ
ˇ
sD�2k

D .2k/Š;
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we have

@

@s
�2.s; z j �1; �/

ˇ
ˇ
ˇ
sD�2k

D .�1/k.2k/Š

.2�/2k

1
X

nD1

n�2k�1e2�inz

1 � e2�in�
: (6.13)

Therefore, we have

@

@s

° X0

m02Z; m12Z�0

.m0 C m1�/�s
±ˇ
ˇ
ˇ
sD�2k

D
° @

@s
�2.s; z j �1; �/

ˇ
ˇ
ˇ
sD�2k

C .log z/z2k
±ˇ
ˇ
ˇ
zD0

D .�1/k.2k/Š

.2�/2k

1
X

nD1

n�2k�1

1 � e2�in�
:

It follows from (6.12) that

dG�2k.�/ D @

@s
G.s; �/

ˇ
ˇ
ˇ
sD�2k

D 2.�1/k.2k/Š

.2�/2k

1
X

nD1

n�2k�1

1 � e2�in�
� 2�0.�2k/: (6.14)

Using the functional equation

2s�1�s

�.s/
�.1 � s/ D cos

�s

2
�.s/

and
d

ds

1

�.s/

ˇ
ˇ
ˇ
sD�2k

D .2k/Š;

we have

�0.�2k/ D .�1/k.2k/Š

2.2�/2k
�.2k C 1/:

Hence, we complete the proof of the theorem.

Remark 6.8. We note that the function �1.�/ is expressible only by dG�2 as

�1.�/ D 8�2.8dG�2.�=2/ � 17dG�2.�/ C 2dG�2.2�//:

By Theorem 6.8, we have

dG�2.�/ D � 1

2�2

°

�.3/ C 2

1
X

nD1

��3.n/qn
±

:

Comparing with (5.11), we obtain (6.8) again.
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Remark 6.9. Like Ramanujan did, we may evaluate values of the Lambert series at

� D i if k 2 N is odd as follows:

1
X

nD1

1

n2kC1.1 � e�2�n/
D ki.2�/2kC1

2.�1/k.2k C 2/Š
B2;2kC2.i j .�1; i// C 1

2
�.2k C 1/:

(6.15)

In fact, by Lemma 6.3 together with Example 6.3, we have

dG�2k.i/ D 2k�i
B2;2kC2.i j .�1; i//

.2k C 1/.2k C 2/
;

whenever k is odd. Hence, the formula follows immediately from Theorem 6.8.

6.6. Hecke operators acting on automorphic forms of negative weight

We give a short remark on the Hecke operators acting on the negative weight auto-

morphic forms.

Let n 2 N and set Mn WD ¹g 2 Mat2.Z/ j det g D nº. Since the group SL2.Z/

acts on Mn on the left, one may decompose Mn into orbits. We now consider the

automorphic forms of weight �k (k 2 N). For f 2 M�k.SL2.Z/; X/, we set

.T .n/f /.�/ D n�k=2�1
X

�2SL2.Z/nMn

.f j�k�/.�/: (6.16)

Here we notice that the sum
P

�2SL2.Z/nMn
f j�k� depends on the choice of a sys-

tem of representatives ¹�º for the orbits SL2.Z/nMn. Actually, if we take another

representatives ¹�º ( 2 SL2.Z/) we observe that

X

�2SL2.Z/nMn

f j�k.�/ D
X

�2SL2.Z/nMn

f j�k j�k�

D
X

�2SL2.Z/nMn

.f C R�k
f .//j�k� 2

X

�2SL2.Z/nMn

f j�k� C X:

This fact shows that T .n/f is determined modulo the space X for another choice

¹�º of the representatives for SL2.Z/nMn. This observation, however, proves also

that

Lemma 6.9. Let f 2 M�k.SL2.Z/; X/. Then for  2 SL2.Z/ we have

T .n/f j�k � T .n/f mod X (6.17)

for any choice of a system of representatives ¹�º for SL2.Z/nMn.
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This lemma shows that for n 2 N the operator T .n/ defines a well-defined linear

endomorphism of M�k.SL2.Z/; X/. We call T .n/ the Hecke operator of index n

(acting on the automorphic integrals of negative weight). Similarly to the classical

case, we have the following

Proposition 6.10. The Hecke operator T .n/ .n D 1;2; : : :/ on M�k.SL2.Z/;X/ pos-

sesses the following properties.

(i) The operator T .n/ has the following expression.

.T .n/f /.�/ WD n�k�1
X

a�1
adDn

0�b<d

dkf
�a� C b

d

�

D 1

n

X

a�1
adDn

0�b<d

a�kf
�a� C b

d

�

:

(6.18)

(ii) Let f .�/ D
P1

lD0 �.l/ql .q D e2�i� /. Then

.T .n/f /.�/ D
1

X

lD0

� X

d j.n;l/

d�k�1�
� nl

d2

��

ql : (6.19)

In particular, the space of cusp forms C�k.SL2.Z/;X/ is stable under T .n/.

(iii) Let m; n 2 N. Then

T .n/T .m/ D
X

d j.n;m/

d�k�1T .nm=d2/ D T .m/T .n/: (6.20)

In particular, T .n/T .m/ D T .nm/ whenever .n; m/ D 1.

Proof. The proof can be done in the same way as the classical case. Actually, since

every matrix � 2 Mn can be made upper triangular by multiplying it on the left by  2
SL2.Z/, we have a system of representatives for SL2.Z/nMn as ˙

�
a bCdr
0 d

�

.ad D n/

with a > 0 and 0 � b < d . With this choice of representatives, by the definition (6.16),

we have the expression (i). Using the elementary relation

d�1
X

bD0

f
�a� C b

d

�

D d

1
X

mD0

�.md/qmd ;

we have the formula of (ii) from (i). We notice that the constant term in q equals

��k�1.d/�.0/, whence C�k.SL2.Z/; X/ is stable under T .n/. The last assertion (iii)

can be deduced from the formula (ii) by computation. This completes the proof.

We now show that the differential Eisenstein series dG�2k 2M�2k.SL2.Z/;C.�//

is a joint eigenfunction of T .n/ for all n 2 N.
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Lemma 6.11. We have

.T .n/dG�2k/.�/ D ��2k�1.n/dG�2k.�/

for each n; k 2 N.

Proof. Consider the function

Fn.s; �/ D ns�1
X

a�1
adDn

0�b<d

d�sG
�

s;
a� C b

d

�

D 1

n

X

a�1
adDn

0�b<d

asG
�

s;
a� C b

d

�

:

Then we observe

@

@s
Fn.s; �/

ˇ
ˇ
ˇ
sD�2k

D 1

n

X

a�1
adDn

0�b<d

° @

@s
as

ˇ
ˇ
ˇ
sD�2k

G
�

�2k;
a� C b

d

�

C a�2k @

@s
G

�

s;
a� C b

d

�ˇ
ˇ
ˇ
sD�2k

±

D 1

n

X

a�1
adDn

0�b<d

a�2kdG�2k

�a� C b

d

�

D .T .n/dG�2k/.�/:

On the other hand, we have

Fn.s; �/ D ns�1
X

a�1
adDn

0�b<d

X0

m;l2Z

.dm C .a� C b/l/�s D �s�1.n/G.s; �/;

and hence

@

@s
Fn.s; �/

ˇ
ˇ
ˇ
sD�2k

D @

@s
�s�1.n/

ˇ
ˇ
ˇ
sD�2k

G.�2k; �/ C ��2k�1.n/
@

@s
G.s; �/

ˇ
ˇ
ˇ
sD�2k

D ��2k�1.n/dG�2k.�/:

Thus, we have the lemma.

This lemma implies again that dG�2k can have the Fourier series expansion as

dG�2k.�/ D dG�2k.i1/ C Ck

1
X

nD1

��2k�1.n/qn .q D e2�i� /;
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for some constant Ck . From Theorem 6.8 one finds that Ck D 2 .�1/k.2k/Š

.2�/2k . We define

the normalized differential Eisenstein series dE�2k of weight �2k as

dE�2k.�/ WD 2

Ck�.2k C 1/
dG�2k.�/

D 1 C 2

�.2k C 1/

1
X

nD1

��2k�1.n/qn:

Then the associated L-function of dE�2k is given by

L.dE�2k; s/ D
1

X

nD1

��2k�1.n/

ns
D �.s/�.s C 2k C 1/:

Namely, dE�2k is a Hecke form (see [13]). We observe in particular that L.dE�2k; s/

has a unique pole at s D 1, while there is no pole at s D �2k. Notice that since

L.E2k; s/ D �.s/�.s � 2k C 1/, E2k being the classical Eisenstein series of weight

2k for SL2.Z/, L.E2k; s/ has a unique pole at s D 2k but not at s D 1 for k > 1.

Further, the completed L-function

„�2k.s/ D �.s/�.s C 2k C 1/; �.s/ D ��s=2�
� s

2

�

�.s/

satisfies the functional equation

„�2k.�2k � s/ D „�2k.s/:

Remark 6.10. Note that the function „�2k.s/ is meromorphic but not entire. It would

be interesting to study a Hecke-Weil type theorem about the correspondence between

negative weight automorphic integrals and their L-functions (Euler products).

7. Periodic Eichler cohomology for automorphic integrals

We construct a cochain complex from the period functions of negative weight periodic

automorphic integrals. Let us fix an integer m. Denote by � a congruence subgroup

of level N , and � a multiplicative character of � such that �.T N / D 1. Suppose that

X is a �-submodule of the space F.h/ of functions on h via the action f
ˇ
ˇ
m

 ( 2 �).

7.1. First cohomology

Let C 1.�;X/ be the space of all maps from � to X. We call R� 2 C 1.�;X/ a .twisted/

1-cocycle with weight � if it satisfies

R�.12/ D �.1/R�.2/ C R�.1/
ˇ
ˇ
m

2:
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Notice that R�.I / D 0 if R� is a 1-cocycle. We denote by Z1
Œm�

.�; X/ the set of all

(twisted) 1-cocycles (Here and after, to avoid complications, we do not specify the

character � in notation). Obviously Z1
Œm�

.�; X/ is a subspace of C 1.�; X/.

Define the element ıf 2 C 1.�; X/ for f 2 X by

.ıf /./ D f
ˇ
ˇ
m

 � �./f . 2 �/:

By a similar calculation as in (6.6) one has the

Lemma 7.1. ıf 2 Z1
Œm�

.�; X/ for each f 2 X.

Define the subgroup B1
Œm�

.�; X/ of Z1
Œm�

.�; X/ by

B1
Œm�.�; X/ D im ı D ¹ıf j f 2 Xº :

We call an element of B1
Œm�

.�; X/ by a .twisted/ 1-coboundary. The quotient group

defined by

H 1
Œm�.�; X/ WD Z1

Œm�.�; X/=B1
Œm�.�; X/

is called the first Eichler cohomology group of weight m for the �-module X.

Periodic cohomology. Assume that � is a congruence subgroup of level N . For f 2
Mm.�; X/, put

Rm
f ./ WD f

ˇ
ˇ
m

 � �./f . 2 �/:

It is easy to check that Rm
f

gives an element in Z1
Œm�

.�; X/ (see (6.5)). We notice that

Rm
f

.T N / D f .� C N / � f .�/ D 0 by definition.

Definition 7.1. Define

zZ1
Œm�.�; X/ WD ¹R 2 Z1

Œm�.�; X/ j R.T N / D 0º;
zB1

Œm�.�; X/ WD ¹ıf 2 B1
Œm�.�; X/ j f 2 X; f .� C N / D f .�/º.� zZ1

Œm�.�; X//;

zH 1
Œm�.�; X/ WD zZ1

Œm�.�; X/= zB1
Œm�.�; X/:

We call zH 1
Œm�

.�; X/ the first periodic Eichler cohomology group (of weight m).

Let f 2 Mm.�; X/. We see that Rm
f

2 zZ1
Œm�

.�; X/. If Rm
f

2 zB1
Œm�

.�; X/, then

there exists some g 2 X such that Rm
f

D ıg and g.� C N / D g.�/. It follows that

.f � g/
ˇ
ˇ
m

 D f � g, which implies that f � g 2 Mm.�/ and hence g 2 Mm.�;X/ C
Mm.�/ D Mm.�; X/. Thus, we have an injection

M �
m.�; X/ ,! zH 1

Œm�.�; X/;

where we put

M �
m.�; X/ WD Mm.�; X/=.X \ Mm.�; X/ C Mm.�//: (7.1)
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If m < 0 and X � C.�/, then we have

M �
m.�; X/ D

´

Mm.�; X/=.constants/ 1 2 X;

Mm.�; X/ 1 … X:

In particular, we have the inequality

dim M �
m.�; X/ � dim zH 1

Œm�.�; X/: (7.2)

We also have

dim zH 1
Œm�.�; X/ � dim H 1

Œm�.�; X/ � 1 (7.3)

when X D C.�/ or X D CŒ� ��m (see [22, Lemma 17]).

Notice that 1 D j.; �/�2¹1 � .1 � j.; �/2/º 2 M�2.G.2/; CŒ� �2/. By (7.2)

and (7.3), we have

1 � dimC M �
�2.G.2/; CŒ� �2/ � dimC H 1

Œ�2�.�.2/; CŒ� �2/ � 1

since zG1 2 M�2.G.2/; CŒ� �2/. It is known in [10] that

H 1
Œ�2k�.�.2/; CŒ� �2k/ Š M2kC2.�.2// ˚ C2kC2.�.2//;

C2kC2.�.2// being the space of cusp forms of weight 2k C 2 for �.2/. Since one has

both dimC M4.�.2// D 2 and dimC C4.�.2// D 0 (see, e.g., [42]), one concludes that

dimC M �
�2.�.2/; CŒ� �2/ D 1. Thus, we have the following result.

Corollary 7.2. M�2.G.2/; CŒ� �2/ D M�2.�.2/; CŒ� �2/ D C � zG1 ˚ C � 1.

This shows that the M�2.G.2/; CŒ� �2/ is essentially given by w4, i.e., the special

value �Q.4/.

The following lemma is obvious.

Lemma 7.3. Assume that a congruence subgroup � of level N contains S . If f 2
M�k.�; X/ we have

R�k
f .T N /.�/ D 0; R�k

f .S/.S�/ D ���kR�k
f .S/.�/:

In particular, R�k
f

./ 2 zZ1
Œm�

.�; X/. From the cocycle condition, one knows that R 2
zZ1

Œm�
.�; X/ is determined by the double coset of �1 D hT N i:

R.T N /.�/ D R./.�/; R.T N /.�/ D R./.T N �/:
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7.2. Cochain complex

Let us put

C n D C n.�; X/ WD Map.�n; X/;

for n D 1; 2; 3; : : : and C 0 D C 0.�; X/ WD X. For an n-tuple
N
 D .1; : : : ; n/ 2 �n,

we define

Tj

N
 WD .1; : : : ; j �1; j C1; : : : ; n/; Cj

N
 WD .1; : : : ; j C1j

„ ƒ‚ …

j -th

; : : : ; n/

.j D 1; 2; : : : ; n/ for convenience. Define the linear operator ınW C n ! C nC1 by

.ınf /.
N
/ WD f .T1

N
/jm1 C .�1/nC1�.nC1/f .TnC1

N
/ C

n
X

j D1

.�1/j f .Cj
N
/ (7.4)

for f 2 C n and
N
 D .1; : : : ; nC1/ 2 �nC1.

Although we have given the proof of the following fact in [22], we give here a

shorter one.

Lemma 7.4. ınC1 ı ın D 0.

Proof. Take arbitrary f 2 C n. Let
N
 D .1; : : : ; nC2/ 2 �nC2. One has

.ınf /.Tk
N
/ D f .T1Tk

N
/

ˇ
ˇ
m

Tk
N
1 C .�1/nC1�.Tk

N
nC1/f .TnC1Tk

N
/

C
n

X

j D1

.�1/j f .Cj Tk
N
/

and

.ınf /.Cj

N
/ D f .T1Cj

N
/

ˇ
ˇ
m

Cj

N
1 C .�1/nC1�.Cj

N
nC1/f .TnC1Cj

N
/

C
n

X

lD1

.�1/lf .ClCj

N
/

for 1 � k � n C 2 and 1 � j � n C 1, where Tk
N
r , Cj

N
r are the r-th entry of Tk

N
 ,

Cj

N
 . We have

Tk
N
1 D

´

2 k D 1;

1 k > 1;
Tk

N
nC1 D

´

nC1 k D n C 2;

nC2 k < n C 2;

and

Cj
N
1 D

´

21 j D 1;

1 j > 1;
Cj

N
nC1 D

´

nC2nC1 j D n C 1;

nC2 j < n C 1:
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Using these, we have

..ınC1 ı ın/f /.
N
/ D .ınf /.T1

N
/

ˇ
ˇ
m

1 C .�1/n�.nC2/.ınf /.TnC2
N
/

C
nC1
X

j D1

.�1/j .ınf /.Cj

N
/

D
nC1
X

j D1

.�1/j

n
X

lD1

.�1/lf .ClCj
N
/; (7.5)

which surely vanishes.

Thus, we can now define cocycles and coboundaries

Zn
Œm�.�; X/ WD ker ın; Bn

Œm�.�; X/ WD im ın�1

in C n.�; X/ and the cohomology group

H n
Œm�.�; X/ WD Zn

Œm�.�; X/=Bn
Œm�.�; X/

for each n D 0; 1; 2; : : :.

The following is a special case of the result by Gunning [10].

Proposition 7.5. H n
Œm�

.�; CŒ� ��m/ D 0 if n > 1 and m < 0.

Periodic cohomology. We define the groups zZn
Œm�

.�; X/; zBn
Œm�

.�; X/ and zH n
Œm�

.�; X/

as follows:

zC n.�; X/ WD ¹f 2 C n.�; X/ j f .T k1N ; : : : ; T knN / D 0; k1; : : : ; kn 2 Zº;
zZn

Œm�.�; X/ WD Zn
Œm�.�; X/ \ zC n.�; X/;

zBn
Œm�.�; X/ WD Bn

Œm�.�; X/ \ zC n.�; X/;

zH n
Œm�.�; X/ WD zZn

Œm�.�; X/= zBn
Œm�.�; X/:

Proposition 7.6. If H n
Œm�

.�; X/ D 0, then zH n
Œm�

.�; X/ D 0. In particular,

zH n
Œm�.�; CŒ� ��m/ D 0 if n > 1 and m < 0.

Proof. This is obvious because Zn
Œm�

.�; X/ D Bn
Œm�

.�; X/ readily implies

zZn
Œm�.�; X/ D zBn

Œm�.�; X/

by definition.

Problem 7.1. When H n
Œm�

.�; X/ vanishes? How about the periodic case zH n
Œm�

.�; X/?
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Zero-dimensional cohomology. The group H 0
Œm�

.�; X/ is easily described. Indeed,

since B0
Œm�

.�; X/ D im ı�1 D 0, we have

H 0
Œm�.�; X/ D Z0

Œm�.�; X/ D ¹f 2 X j f .�/ D �./j.; �/mf .�/ for all  2 �º:
(7.6)

If m < 0, X D CŒ� ��m, � is trivial and � is a congruent subgroup of level N , then we

have

H 0
Œm�.�; CŒ� ��m/ �

°

f 2 CŒ� ��m

ˇ
ˇ
ˇ f .� C N / D f .�/;

f
� 1

N� C 1

�

D .N� C 1/mf .�/
±

D 0;

from which it also follows that zH 0
Œm�

.�; CŒ� ��m/ D 0.
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