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Apéry-like numbers for non-commutative harmonic oscillators
and automorphic integrals

Kazufumi Kimoto and Masato Wakayama

Abstract. The purpose of the present paper is to study the number theoretic properties of
the special values of the spectral zeta functions of the non-commutative harmonic oscillator
(NcHO), especially in relation to modular forms and elliptic curves from the viewpoint of
Fuchsian differential equations, and deepen the understanding of the spectrum of the NcHO.
We study first the general expression of special values of the spectral zeta function (o (s) of
the NcHO at s = n (n = 2, 3,...) and then the generating and meta-generating functions for
Apéry-like numbers defined through the analysis of special values (o (). Actually, we show
that the generating function wz, of such Apéry-like numbers appearing (as the “first anomaly”)
in (o (2n) for n = 2 gives an example of automorphic integral with rational period functions
in the sense of Knopp, but still a better explanation remains to be clarified explicitly for n > 2.
This is a generalization of our earlier result on showing that w» is interpreted as a I'(2)-modular
form of weight 1. Moreover, certain congruence relations over primes for “normalized” Apéry-
like numbers are also proven. In order to describe w»,, in a similar manner as w», we introduce
a differential Eisenstein series by using analytic continuation of a classical generalized Eisen-
stein series due to Berndt. The differential Eisenstein series is actually a typical example of the
automorphic integral of negative weight. We then have an explicit expression of w4 in terms
of the differential Eisenstein series. We discuss also shortly the Hecke operators acting on such
automorphic integrals and relating Eichler’s cohomology group.
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1. Introduction

Let Q be a parity preserving matrix valued ordinary differential operator defined by

a 0 1 d? 1, 0 -1 d 1
0= Qup = (0 ﬂ)(—iﬁ Hy) (1 0 )(’% +3)
The system defined by Q is called the non-commutative harmonic oscillator (NcHO),
which was introduced in [35-38] (see also [33,34] for references therein and for recent
progress). Throughout the paper, we always assume that o, 8 > 0 and «8 > 1. Under
this assumption, the operator Q becomes a positive self-adjoint unbounded operator

on L2(R;C?), the space of C2-valued square-integrable functions on R, and Q has
only a discrete spectrum with uniformly bounded multiplicity:

0<A; <A <A3<---(/ 00).

It was proved recently that the lowest eigenstate is multiplicity free [14] and also the
multiplicity of general eigenstate is less than or equal to 2 [46] (see [47] for the proof).

The aim of the present paper is to advance a number theoretic study of the spec-
trum of the NcHO through observing special values of the spectral zeta function g (s)
([16,17]) defined by

[e.e]
Lo(s) =Y A, (R(s) > ),
n=1
and further to deepen the understanding of the spectrum. It is noted that, when @ = 8,
Q = (Qq, is unitarily equivalent to the couple of quantum harmonic oscillators,
whence the eigenvalues are easily calculated as {va? — 1(n + %) | n € Z>o} having
multiplicity 2. Actually, when o = 8, behind Q, there exists a structure corresponding
to the tensor product of the 2-dimensional trivial representation and the oscillator rep-
resentation (see, e.g., [15]) of the Lie algebra sl,. Namely, in this case, g (s) is essen-
tially given by the Riemann zeta function {(s) as {o(s) = 2(2* — 1)va? — 1{(s). In
other words, {g(s) is a %—analogue of ¢(s). The clarification of the spectrum in the
general o # f case is, however, considered to be highly non-trivial. Indeed, while
the spectrum is described theoretically by using certain continued fractions [36—38]
and also by Heun’s ordinary differential equations (those have four regular singular
points) [40] in a certain complex domain [31, 47], almost no satisfactory informa-
tion on each eigenvalue is available in reality when o # B (see [33] and references
therein).

It is nevertheless worth mentioning that, in recent years, special attention has
been paid to studying the spectrum of self-adjoint operators with non-commutative
coefficients, like the Jaynes—Cummings model, the quantum Rabi model and its gen-
eralized version, etc., not only in mathematics but also in theoretical/experimental
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physics (see, e.g., [2, 8, 11, 50] and references therein). The NcHO has been expected
similarly to provide one of these Hamiltonians describing such quantum interact-
ing systems, i.e., a Hamiltonian describing such an interaction between photons and
atoms. Although it does not seem to be expected, it has been shown in [47] that (the
“Heun picture” of) the quantum Rabi model can be obtained by the second order ele-
ment of the universal enveloping algebra U(sl,) naturally arising from the NcHO
through the oscillator representation. It is, in fact, caught by taking particular para-
meters and considering general confluence procedure, i.e., confluence of two singular
points in Heun’s ordinary differential equation obtained in the action of the non-
unitary principal series representation of sl,.

Therefore, in place of hunting each eigenvalue of Q, it is significant to study
the spectral zeta function o (s) of the NcHOs as a sort of generating function of
the eigenvalues. From the physical point of view, {o (s) is also regarded as the Mellin
transform of the partition function of the system defined by the NcHO. This paper dis-
cusses the number theoretic properties of the special values of ¢ (s) at integer points.
We notice that special values are considered as moments of the partition functions.
We have actually studied congruence properties of the Apéry-like numbers in [20]
that have arisen naturally from the special values {p(2) at s = 2 by the same idea
guided in the studies for the Apéry numbers for (2) in [5] (and references therein).
This study of congruence properties led us further to show that the generating func-
tion w, of the Apéry-like numbers for {p (2) is interpreted as a I"(2)-modular form of
weight 1 [21] in the same way as in a pioneering study by Beukers [4,6] for the Apéry
numbers. In other words, the recurrence equation of these Apéry-like numbers defined
in [20] provide one of the particular examples listed in Zagier [51, (#19)].! Moreover,
it is known in [23] that the Apéry-like numbers corresponding to {p(2) are described
by a finite convolution of the Hurwitz zeta function and certain variation of multiple
L-values. Also, recently, certain nice congruence relations among these Apéry-like
numbers that are quite resembled to the Rodriguez Villegas type congruence [30] and
conjectured in [20] are proved in [29]. Further interesting congruence that involves
Bernoulli numbers has been obtained in [28] (see also [45]). The congruence in [28]
can be considered as a one step deep congruence of the one proved in [29] corrected
by the remainder term.

It is hard in general to obtain the precise information of the higher special val-
ues of {p(n) (n > 2) as the same level of {p(2). Thus, in this paper we introduce
the Apéry-like numbers Ji(n) (k = 0,1,2,...) for each n defined through the first
anomaly of {g (n) (n > 2). These Apéry-like numbers share the properties of the one

"'Although the terminology “Apéry-like” is the identical one, the usage/definition of the
name in the current paper is different from the one in the title of [51].
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for o (2), e.g., satisfy a similar recurrence relation as in the case of {p(2) and hence
the ordinary differential equation satisfied by the generating function follows from the
recurrence relation. Remarkably, each of the homogeneous part of those differential
equations is identified to be a (n dependent) power of the homogeneous part of the
one corresponding to {g (2). Further, we observe that the meta-generating functions
of Apéry-like numbers are described explicitly by the modular Mahler measures stud-
ied by Rodriguez Villegas in [39]. Through this relation, we may expect to discuss an
interesting aspect of a discrete dynamical system behind the NcHO defined by some
group via (weighted) Cayley graphs (see [9]; also, e.g., [27]) in the future. Moreover,
we show that the generating function w,, of Apéry-like numbers corresponding to
the first anomaly in {p(2n) when n = 2 is given by an automorphic integral with a
rational period function in the sense of Knopp [24]. This is obviously a generalization
of our earlier result [21] showing that w, is interpreted as a I'(2)-modular form of
weight 1. However, it is still unclear whether there is a similar explicit (geometric and
algebraic) interpretation in general for g (n) (n > 2). Further, the study of the special
values of the spectral zeta function for the quantum Rabi model [44] and comparison
to the ones for NcHO is a quite interesting future problem as NcHO is a “covering”
of the model.

The organization of the paper is as follows. In §2 we calculate (Theorem 2.6) the
special values of the spectral zeta function for the NcHO. These explicit formulas are
found already in [22] (see [18]) by multiple integrals like (a generalization of) the
original Apéry cases for {(2) and ¢ (3) using Legendre functions [4,7]. The basic idea
is on the same line as [16] but some essentially new techniques are explored.

In §3 we derive the recursion formula for the Apéry-like numbers associated to the
first anomalies of special values of {¢ (s) and the differential equations satisfied by the
generating functions of such Apéry-like numbers. Although our study is very much
influenced by the classical (algebro-geometric) work on Apéry numbers in [4,6,7] and
its subsequent developments, since the family of generating functions for Apéry-like
numbers arising via the NcHO possesses a remarkable hierarchical structure, there is
a decisive difference between these two. We then define the normalized Apéry-like
numbers which are shown to be rational numbers, and present numerical data of these
numbers. In the end of this section, we give a certain conjecture (Conjecture 3.6) for
the congruence among those normalized Apéry-like numbers which are the gener-
alization of the results in [20] based on numerical experiments. We can only show
in this paper a weaker/partial result in Theorem 3.10, which may be considered as
a version of the classical Kummer congruence for the special values at negative odd
integer points of (s). We remark that, however, it is quite difficult to expect an exact
generalization of the congruence relation (i.e., of the same shape which is relevant
to the hypergeometric series) shown by employing p-adic analysis in [29] (and [28])
for ¢(2).
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We study in §4 also meta-generating functions for Apéry-like numbers in relation
to the study on modular Mahler measures in [39]. In §5, we first recall briefly the
modular form interpretation of the generating function for the Apéry-like numbers
for {p(2) from [21] and discuss the corresponding generating function w,, for the
Apéry-like numbers for (the first anomaly in) {o (2n). We may also study the Apéry
numbers associated with {o (2n + 1), but the structure behind this is different from the
one in [7] that is relating with K3 surfaces. Actually, although the homogeneous part
of the differential equation satisfied by the Apéry-like numbers arisen from odd spe-
cial values are the same as the even case, even the value {p(3) can not be interpreted
as a picture of K3 spaces. We recall then in §5 a notion of automorphic integrals with
rational period functions in the sense of Knopp [24] (that is a slightly generalized
notion of the automorphic integrals [10]). Then we study w,; from the viewpoint of
Fuchsian differential equations. Indeed, we show that w,, can be expressed by the
linear space spanned by higher derivatives of automorphic integrals and w,. In other
words, we observe that w,j is obtained by some linear combination of the multiple
integral of the (same) modular forms. For instance, the explicit expression of we by
such a linear span of integrals is given in §5.5. In order to describe w,, in a similar
manner as wo, it is necessary to introduce a differential Eisenstein series by using
analytic continuation of a classical generalized Eisenstein series due to Berndt [3]
in §6. These differential Eisenstein series provide typical examples of the automorphic
integral of negative weight and we have an explicit expression of w4 in terms of the
differential Eisenstein series. We notice that the differential Eisenstein series is peri-
odic, whence has a Fourier expansion at the infinity. Further, we discuss shortly the
Hecke operators acting on such automorphic integrals and compute the associated
L-function of the differential Eisenstein series (which has an Euler product). In the
final § 7, we discuss briefly the Eichler cohomology groups relevant to the periodic
automorphic integrals. A part of ideas of the paper has been discussed in our proceed-
ings paper [22], but there is a certain misleading terminology [22] so that we will fix
that in this paper.”

2The general definition of “residual modular forms” in [22] is too demanding. Although the
example given in [22] satisfies such strong condition in the definition, if the level N is large, i.e.,
the number of inequivalent cusps is increasing, the definition of residual modular forms allows
only the zero form. In this paper, we find actually that the notion of the automorphic integrals
in the sense of [24] is sufficient for our study.
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2. Special values of the spectral zeta function

From the sequence of the eigenvalues 0 < A; <A, <A3 <...(— 00) of O, we define
the spectral zeta function of Q by the Dirichlet series

to() =Y 5.
n=1""

This series is absolutely convergent and defines a holomorphic function in s in the
region Hs > 1. We call this function {g(s) the spectral zeta function for the non-
commutative harmonic oscillator Q, see [17]. The zeta function {¢ (s) is analytically
continued to the whole complex plane C as a single-valued meromorphic function
which is holomorphic except for the simple pole at s = 1. It is notable that {o (s)
has ‘trivial zeros’ at s = 0, —2, —4, ... from the presence of I'(s)™! at the analytic
continuation to the whole complex plane [17]. When the two parameters « and 8 are
equal, then o (s) essentially gives the Riemann zeta function {(s) (see Remark 2.2).

We are interested in the special values of {o (s), that is, the values {o(s) at s =

2,3,4,....In [16] the first two special values are calculated as
o+ p 2
o0y =2(— 2P
2aB(af —1)

1
X(f(z’z)
/‘ 4dudu, )
“*ﬂ =22+ (a1 —ud)/@p 1))

B a+p 3
zg(s)—z(—z oz,B(oz,B—l)>

x(z<z,;>

/ 8duidurdus )
\/(1 —ududu3)? + (1 —uhH)(1 —uiu}) /(@B — 1)

where (s, x) = Y pe(n + x)7 is the Hurwitz zeta function. These values are also
given by the contour integral expressions using a solution of a certain Fuchsian differ-
ential equation. Later, in [32] Ochiai gave an expression of {¢ (2) using the complete
elliptic integral or the hypergeometric function, and the present authors [20] gave a
similar formula for o (3).

In this section, we present an explicit calculation of the special values of the spec-
tral zeta function ¢ (k) of the non-commutative harmonic oscillator Q for all positive
integers k > 1, and express them in terms of integrals of certain algebraic functions
(see Theorem 2.6 for the formula).



Apéry-like numbers 211

2.1. Preliminaries for calculating special values

Following to the method in [16], we first explain how to calculate the special values

of Lo ().
Put 1 !
o — 212 _
e —\/a_ﬂ, k:=¢(l—¢%) Tm
and

O 5 RS )

Notice that 0 < ¢ < 1 and « > 0. Since it is difficult to find the heat kernel of the
NcHO

_ 1 2 2 1
0 =5 (-2 +xM)A+ (xax + 5)],

we look at a slightly modified one
1 1
Q' =A"1204712 = 5(—8,% +x%) +eJ (xax + 5),

whose heat kernel is explicitly obtained as we see below.
The heat kernel of the usual quantum harmonic oscillator is known as the Mehler
kernel and is given by

2_ .2 ~t 2
12,=t/2(1 _ p=21)=1/2 exp(—x ;y _ (6’1 X _—2yt) )
—e

p(t.x,y) =mn"

Namely, p(t, x, y) satisfies

—0:p(t,x,y) = %(—ai +x2)p(t,x,y),  plt,x,y) = 8x—y) (0.
Put
q(t,x,y) = (1 =)V p((1 = )V21, (1 = eH)V4x, (1 = e2)4y).
Then
—0iq(t,x, ) = %(—ai +(1—Hx)q(t,x,y), qlt,x,y) > 8x—y) (t{0).
Define

O

K,(t’x’y):q(t’x’y)exp( 2

We see that
/ 1 2 2 / 1 /
~0K'(1,x,y) = S (8% + x))K'(t.x.y) + sJ(xax + E)K (t,x, y),
K'(t,x,y) > 8(x—y)I (t]0),
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which implies that K'(z, x, y) is the heat kernel of Q’ (see [16] for detail®). Hence,
the integral kernel Q~!(x, y) of Q7 lis
0o
07 (x,y) = /A_l/zK’(t,x,y)A_l/z dt

0
1

= /Al/zK(u, (1 — )4y, 1- 82)1/4)/)14_1/2 du (u= e_%)
0

since 071 = A7Y/20Q"71 471/2 where we put
K(u,x,y) = 277 12(1 - 82)_1/4(1 —uHV2E(u, x, y)B(x,y),

1-4—1444 ii X
E(u.x,y) :=exp(—(x Y)(Z(l—lg) L )(y))

1—u4 2(1—u?)
2_ .2
wgﬁjlji

B(x,y):=A"!
Furthermore, we introduce the following functions

B(x1,...,xg) :=tr(B(x1, x2) B(x2,x3) ... B(xk, x1)),
E(uy,...,ug;x1,...,xx) = E(u1,x1,x2)E(uz, x2,x3) ... E(ug, Xg, x1),

F(uy,...,ug) ::/E(ul,...,uk;xl,...,xk)B(xl,...,xk)dxl...dxk,
Rk

where the symbol tr represents the matrix trace. Hence, for a positive integer k, we

have
Co(k)y=TrQ~*
:/(/tr(K(ul,xl,xz)K(ug,xz,X3)---K(uk,xk,xl))dx)du
[0,1]% ]R"'
du
=( — / TR TS L @.1)
7T( —& 0.1]¢ ]_[_l(l—u)

3There is a typo in [16, (2.11b)]. The right equation should be
1
atpy(l7x7 y) = _5[a§c + (1 - yz)xz]py(lvxv y)7

in which the coefficient of x? is replaced from (1 — )2 to 1 — y2. The result itself is,

however, correct.
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where dx = dx; ...dx; and du = du; . ..duy for short, and the symbol Tr denotes
the operator trace. This is our basis to calculate the special values. Thus, we have only
to calculate F (u1, . . ., ug) to get the special values of the spectral zeta function {g (s).

2.2. Special values ¢ g (k)
The following lemma is crucial.

Lemma 2.1. For any positive integer k, it holds that
B(x1,x2,...,Xk)

— 2j 2/
() X (G5p) B elemd))

0<2j<k 1§i1<i2<~"<i2j <k

Proof. For convenience, let us puti = v/~1,a; = ™', a, = 7' and t; = kx7/2

(j =1,2,...,k). The function B(x1, x5, ..., xx) is then calculated as follows:
B(x1,x2,...,Xxk)
k S S
+1—
= Z Qs Qsy . . . Agy l_[ cos(tm —tmt1 + %n)
51,852,...,8% €{1,2} m=1

= E Qg Ay . . . Qg

$15825055k €{1,2}

i Sm1=8m i (tm—tm1) + i~ Omr1=5m) p=iEm—tm41)

k
<[] >
m=1
— ik Z Z ﬁ ay l'lm(Sm-H—Sm)eilm(fm_tm+l)
2 m

S1582555k €{1,2} 11,02,....[x €{1,—1} m=1

k
_ 1 3 T sy on=r =) g n =1
2k "
Il sl €{1,—1} s1,82,...,5 €{1,2} m=1
1 k
- l_[ (all'lm—l—lm + azl‘z(lm—l_lm))ei(lm—lm—l)fm
k b

1,02, e{1,—1} m=1

where we set 5o = Sg, Sk+1 = 51, lo = Ik, lk+1 = [1,to =ty and t 1 = t;. Here we
notice that
Q) jlm—1=Im — _(_1)51m,1m_1 i

() #{me{l,2,...,k}|lu—1 # Ln}is even (remark that [y = Ij),
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(iii) if there existiy,...,izj € {1,2,...,k} suchthati; <--- <ip;,l;,—1 #I;,
foreachr =1,2,...,2j and ;1 =l form € {1,2,.. ., k}\{i1..... iz},
then K _ (b — lm—1)tm = =201, Y2 (=Dt

Thus, it follows that

B(x1,x2,...,Xk)
1
4T e
S e

0<2j<k

2j
X Z cos(ZZ;(—l) t,-,))

1<iy <~~~<i2j <k

— J 2/ 2
=25 (+ X (G5p)7 X (L))

0<2j<k 1<iy<w<inj<k

This is the desired conclusion. n

Foru = (uy,us,...,uy), we define the k by k matrix Ag(u) by

l—uiu‘l1 —uq 0 0 —uk
a—upHa—uh 1—uf 1—uf
—u% l—u‘l‘u‘z1 —u% 0 0
1—ut a—upa—u3) 1-uj
—u% l—ugug —u%
0 1—ud A—ud)(1—ud) 1-ud 0
L 2 2 3 3
Ag(u) := 2
0 0 —3
1—u4
3
_"%—1
l—uz_1
_u% 0 0 _u%—l l_ui—luk
l—ul‘\1 l—u;},_l (l—ul\ 1)(l—ui)
k 1 1 u?
_ (k) (k) (k) (k) U
= Z{(Eii + Ei+1,i+1 (1 1 5) + (Ei,i-H + Ei+1,i) 1 — 4}-
i=1 ui ui
It then follows that
E(uy,...,ug;x1,....xx) = exp(—=xAg (n)x’) (2.2)
and 5 -
(1 —uf...u3)
det Ay (u) = ——— (2.3)
(I—up)...(1—uy)
(see [16, Theorem A.2]). Here x = (x1, X2, ..., X&), El.(]].‘) denotes the matrix unit

of size k. We also assume that the indices of El(]k) are understood modulo %, i.e.,
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® _ o0 0 )
Ey;=E  Exyy=Epjs

that A (u) is real symmetric and positive definite for any u € (0, 1)¥. For {i}, i3, ...,
i2j} C [k] ={1,2,...,k}, we also put

etc. The prime ’ indicates the matrix transpose. Notice

2j
o )
Bklin, . vizj) = V=1 ) (-1 EX) .
r=1

Since
2j

D (=1 x = V=IxE(ir. ... ig))X

r=1

and

COS(K ij:(—l)rx,-z,) = %{exp(x/—_lk i(-l)’xi) + eXp(—\/—_lK 2Xj:(—l)’)cizr>},
r=1 r=1 r=1

we have

2j
E(uy,...,up;x1,...,x%) COS(K Z(—l)rxl-zr)
r=1

1
=5 exp(—x (Ax(w) + kEx (i1, ..., i27))X)
1
+ Eexp(—X(Ak(u)—KEk(il,...,izj))X/). 2.4)

Asin [16, Lemma A.1], one proves the following result.

Lemma 2.2. The determinant
det(Ag(u) + kEx (i1, ...,125)) (2.5)

is even in k. In particular, this determinant is real-valued for each u € (0, l)k and
Kk > 0.

Let €,, denote the cyclic subgroup of the symmetric group &,, of degree m gen-
erated by the cyclic permutation (1,2,...,m) € &,,. By Lemma 2.2, it follows that

det(Ak(ll) + KEk(il, e, izj)) = det(Ak(u) 4+ KEk(jg(l), . ,jg(zj)))

forany o € €y since Ex(jo(1)s - - -» Jo2j)) = sgn(o) Bk (i1, ..., i2j).

Let Sym;; be the set of k by k complex symmetric matrices such that all principal
minors are invertible, and Sym,‘cIr (R) be the set of k by k positive real symmetric
matrices. Notice that Ag(u) € Sym,‘cIr (R) for any u € (0, 1)¥. We need the following
two lemmas for later use in the evaluation of F (uy, ..., ug).
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Lemma 2.3 (LDU decomposition). Let k be a positive integer. For any A € Symy;,
there exists a lower unitriangular matrix L and a diagonal matrix D such that A =
LDL'. Moreover, D is given by

D = diag(dy,d>/dy,d3/d>, ... di/dx—1),
where d; denotes the j-th principal minor determinant of A.

Proof. Let us prove the lemma by induction on k. The assertion is clear if k = 1.
Suppose that the assertion is true for k — 1. Take A € Sym,’ and write

A
=2
a «
with Ag € Sym;_,, a € Ck=! and « € C. By the induction hypothesis, there exist
lower unitriangular matrix Lo and diagonal matrix Dg of size k — 1 such that 4y =

Ly DOL6- Put
Lo o Dy o
L = ) D = )
(1) 2= (2 3)
where v = (LoDo) 'aandd = a —a’Aj'a (notice that (Lo Do) ! and A, exist by
the induction hypothesis) and o € Cck-1 represents the zero vector. Then it is straight-
forward to check that A = L DL’. This proves the first assertion of the lemma. The
second assertion is obvious by the construction of D above. ]

Lemma 2.4. Let T € Sym,‘(Ir (R) and D be a real diagonal matrix of size k. Denote
by dy, the principal m-minor determinant of T + ~/—1D. Then it follows that

R(dms1dm) >0 form=12,...k—1.

Proof. Clearly, it is enough to prove the positivity of R(dm41dp) with m =k — 1.

Write T and D as
T (A/ 3)7 D (U/ 0)
a « o u

with A € Sym/ (R),a € R™, o € R, u € R and a real diagonal matrix U of size m.
Here 0 € R™ is the zero vector. Since T is positive, we must have 0 < a’ A7 la < q.
Put B=+A¢€ Sym?!(R), X = B"'UB™! € Sym,,(R) and b = B~'a. Then we
have

d T det A+ ~—1U a A—~—1U o
m+18m = a’ o+ ~/—lu ) 1

_det((A+\/—_1U)(A—\/—_1U) a )
B a'(4 — /—10U) o + /—1u
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= |det(4 + vV —1U) 2 (@ + V—1u —a'(4 + v—=1U)a)

= det B*det(I + X?)(a + v—1u —b'(I + V/=1X)"'b).
Since

(I+~V=1X)'=U + X' —V=1XxU + x>,
it follows that
RO +V—=1X)"TD) =b'I +X>)'b<bb=adla<a
or
R + vV—1u —b' (I + V=1X)"'b) > 0.

Thus, we have R (dym41dm) > 0 as desired. [

We recall the well-known fact.

Lemma 2.5 (Gaussian integral). For any a,b € C with ta > 0, it follows that

/exp(—a(x —b)?)dx = \/g.

R

Here \/a is chosen as W/a > 0.

By Lemma 2.3, A € Sym; is decomposed as A = LDL’ with a certain lower
unitriangular matrix L and a diagonal matrix D = diag(dy, d>/d, ..., dx/dr—1),
where d; is the j-th principal minor determinant of A. If all entries of D have positive
real parts, then it follows from Lemma 2.5 that

k/2

JdetA

/ exp(—xAx")dx = (2.6)

RK

Now, the matrix Ag(u) + « E (i) belongs to Sym, for any u € (0, 1). Denote
by dr = di(k,u, «, i) the k-th principal minor determinant of Ag(u) + x Ex (i),
and put dp = 1. It then follows from Lemma 2.4 that %i(d;/d;—1) > 0 for j =
1,2,...,k. Consequently, in view of (2.4), (2.5), (2.6), and Lemma 2.1, we can cal-
culate F (uq, ..., ux) as

+ B\ 1
=2 ka(a ){\/m

()

0<2j<k

1
x Z \/det(Ak(u)+KEk(i17'-'vi2j))}'

1<iy<ip<-<ip;<k
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‘We also notice that

kd
/‘% = {(k,1/2)

2
'1 —UjUs - Uj
[0,1]%

for k > 2. From these equations together with (2.1) and (2.3), we now obtain the

Theorem 2.6. For each positive integer k > 2, it follows that

Lo (k) = 2(#0[5_1))16(6(& 1/2) + 0;};}((%)” R ;). @7

Here Ry (k) is given by a sum of integrals

Z 2%duy ... duy

. . ’
1<i <ip<-<ip; <k (0.1] \/Wk(u’K’ oo 2g)

Ry, j (k) =

where the function Wi (W; ki1, ...,12;) is given by

k
Weuskiin,. .. izj) = det(Ag(u) + kBi(i.....i25) [ [(1 = u}).
r=1

Remark 2.1. The algebraic variety Wi (u;«;iy,...,i2;) = 0 defined by the denomin-
ator of the integral Ry _; (k) above is worth studying, e.g., from the viewpoint in [5-7].

Remark 2.2. If o = B, then we have g (k) = 2(a? — 1)7%/2¢(k, 1/2), which is a
special case of the fact that £ (s) = 2(a? — 1)7/2¢(s, 1/2) for & = B. In fact, when

« and B are equal, we can show that Q =~ Va2 — 1(—%;—; + %xz)l (see [33]).

We give an expansion of the determinants Wy (u;«;iy,...,i;) appearing in (2.7).
For j = {j1,j2,..., Jr} C [k] withr > 0 and j; < j, <--- < J, define

,
Cetws j) = [T(1 - [Tut)-
=1 JjisSs<jJi41

We also define Cy(u; #) = (1 —uiu3...u7)> Here we regard that j,41 =k +
and u; 1 = u;. For instance, if k = 9 and j = {3, 6, 8}, then

Co(u: j) = (1 — udugud)(1 — ugud) (1 — uguduiu3).

Lemma 2.7. For a given subseti = {i1.,is,...,iz;} C [k] withii <ip <.+ <y,
it follows that
Weuikii) = Y (%) We g (uii) (28)
d>0
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with
Wea:i):= > (=DISIC u:i(9)). (2.9)
Scl2j]
#S=2d
Here ||S| := Y ;e s is the sum of the elements in S and i(S) := {is,,....i5} if
S ={s1,....8} withs; <--- <s].

Proof. Let d; be the i-th column vector of Ag(u). We also denote by {ei}f‘zl the
standard basis of C, By the multilinearity of a determinant, we readily get

det(Ag(u) + kEr(i))

2j
=detAe(w) + ) (V=0T Y (DT detdy ey
r=1

1<s]<--<sp<2j eis"“.’dk).
The determinant det(dy, ..., €ig s s €igrnns dy) is a product of r tridiagonal
determinants
dap+1ap+1 dap)+tap+2 -+ da(p)+1a(p+1)-1
b da(py+2.a(p)+1  dap+2.ap+2 -+ da(p)+2.a(p+1)-1
p = . ) ) ,
da(p+1)—1,a(p)+1 da(p+1)—1,a(p)+2 cee da(p+1)—1,a(p+1)—1

where a(p) = iy,, d;j is the (i, j)-entry of Ag(u), and the indices are understood
modulo k. If a(p + 1) = a(p) + 1, then we understand that D, = 1. It is easy to see
that . . .
L= umham+1 " Ya+-1

7 2 2 :
(1- ua(p))(1 - ua(p)+1) (1= ua(p+1)—1)

D, =

Hence, we have
Weu:k:i) = Y (DI V=16)* Cp(u:i(5)).
scl2/]

Since ‘Wi (u; k; i) is real-valued by Lemma 2.2, we have the conclusion by taking the
real parts. ]

2.3. Examples
2.3.1. Wi 4(u;i) and Ry j (k). We give several examples of ‘W 4(u; ). For con-
venience, we prepare some notation for abbreviation. Let us put

m

L
Vi(u) :=(1 _”%"'ulzc)z’ Ui(u) := 1_[(1 - 1_[ u;+2k<i tk)

i=1 j=1
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for a positive integer k and a sequence t = (¢1,...,t,) € T (k), where
Tmk) :={(t1,....tm) €[K]" | t1 + - + tm = k}.
For instance, if t = (2,3,2,1) € 74(8), then
Ue(uy, ... ug) = (1 —ufud)(1 —ufugud)(1 —ugus)(1 —ug).
Notice that Wi g(u; i) = Vi (u) for any i.
Example 2.1. Fori = {i, j} C [k] withi < j, we have

Wea(uii) = (1) 2Cr(u:i(1,2)
= _U(r,k—r)(uhui-i—l’-~-,uk,u1,---7ui—l)y

where r = j —1i. This fact immediately implies that Ry ; (k) in (2.7) is given by
k-1
k 2k du
Ri1 (k) = ) Z [ >
= V' Vi) 4+ €20 k) (u)

k 2kdu
=D 5 . : (2.10)
oszre !+ Ok [0.1]¢ vV Vi) + U, (W)

Example 2.2. Fori C [k] with #i = 2j, it follows in general that
Wi, (i) = (—=1)/ Gy (us i)
since [|[2/][| = j(2j — 1) = j (mod 2).
Example 2.3. Fori = {iy,i2,i3,i4} C [k] with i} < iy < i3 < i4, Wwe have

Wea(u;i) = (~1)'P2C (ui iy, in) + (=) P3Cr(ui iy, iz) + (1) Cr(uiiy, ia)
+ (—1)2P3Cr(u; iz, i3) + (= 1)*T*Cr (u; iz, i)
+ (=134 Cr(u; iz, ig)
-(1- u?l . ..u?z_l)(l — u% . ..u?4_1)
x (1— u?z . u?3_1)(1 — u?4 .. u?l_l)

4 4 4 4 4 4 4 4
- (1 - Mil PR ui2_1Mi3 oo ul4_1)(1 - Miz PR Mi3_1ui4 PR Mil_l).

By Example 2.2, we also see that

We2(u; i) = G (u; i)
=(1- u?l . .u?z_l)(l - u?z . .u?3_1)
x (1— u?3 . .u?4_1)(1 — u?4 . .u?l_l).
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Thus, we have

k
det(Ag(u) + K E (i1 2. 3.14)) [ (1 = uf)
i=1

= Vi(u) + (> + kA —uf . ouf, ) —uf i)
x (1 — u?z .. .u;g_l)(l — u?4 . .u?l_l)

2 4 4 4 4 4 4 4 4
(U —uy, vy, qugy g, ) (D —ug, U g, Uy ).

If we take (¢, 12,13, 14) € Ta(k) such that i, =i, +1, (mod k) (p =1,2,3,4;
i5s = i1), then it follows that

du
V(A () + K Eilin, b2, 5, ia)) TTEy (1 = )
[0,1]% 012543, i=1 i
du
k\/Vk(u) + K2U(tl+t3,t2+t4)(u) + (K2 + K4)U(11,12,t3,t4)(u)

[0,1]
by changing the variables of the integration as
Uiy s e s Ui 1, Uigs ooy Uiy 1y Uiy ooy Uig—1s Uiy oo o Uiy —1) > (U1, ..o UE).
The cyclic group €4 of order 4 naturally acts on T3 (k) by
0.(t1. 12,13, 14) := (l(1). lo(2): Lo (3) lo(a)) (0 € C4).

Notice that the integral above is €4-invariant. For a givent = (¢, 12, 13, t4) € T4(k),
the number of subsets i = {i,i2,i3,14} in [k] satisfying the conditioni,+; =i, + 1,
(mod k) is equal to k/#C4(t), where €4(t) denotes the stabilizer of t in €4. Con-
sequently,

k kdu  k 2¢du
R _ _ , 2.11
L ACL [0.1]¢ T4 k) 1o 1y

where

©:= \/Vk () + KzU(t1+t3,t2+t4)(“) + (k% + K4)U(t1,t2,t3,t4)(u)
and t = (¢1, 12, 13, t4). Similarly, the result in Example 2.1 can be also rewritten as
2%du

Ri1(k) =
teTz(k) \/Vk (ll) + K2U(tl,12)(u)

_ Z k 2%du
tef2()/e, #€Z(t)[0,1]k VVi) + 62U, 1) (w)
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2.3.2. Several special values. Using Theorem 2.6 and the formulas (2.10) and (2.11)
for Ry 1(k) and Ry (k) given in the previous examples, we show several examples
of the special values of {g (s).

Example 2.4. The values {o(2) and {p(3) are given by
to(2) = 2(2\/%)2(5(2, %) + (%)2&,1(@),
t0) =2(5 ) (6(3.5) + (5) Rt

with
4du1du2

Raal) = \/Vz(ll) + k2U(,1y(a)

/‘ 4duidus
[0,1]2 \/(1 —uju3)? + > (1 —uhH (1 —u3)
8duidurdus

\/V3(“) + «k2U(2,1)(u)

3/ 8du1du2du3
\/(1 —uusu3)? + k2(1 —uf)(1 —uju)

R31(k) =3

[0,1?
This recovers the result obtained in [16].
Example 2.5. The values {o(4) and {p(5) are given by

o (Mz%%)“(@(« 3+ (= +’Z) Ra (k) + (T§)4R4,2(K)),

: f
t0)=2(; ) (5:5) + (55) Raa + (255) Rsatw)

with
16du 4o 16du

V' Va() 4+ «2Ug 1y (u) o1 VVa@) + Uz ) (w)
32du p 32du

; V' Vs(@) 4 «2Ugq 1) () o VVs() + 12U 2)(u)

R41(k) =
[0,1]*

Rs1(k) =5
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and

R (6) / 16du
42(K) = s
014 \/V4(u) + k2U,2) () + (k2 + k*)Uq,1,1,1) ()

5/‘ 32du
[0.11° VVs) + 120G o) (@) + (2 + kDU 11.1)(w)

Rs»(k) =

2.3.3. Apéry-like numbers for ¢ ¢ (2) and the elliptic integral. We define the num-
bers J,(m) (m > 0) by the expansion

Rt =3 (7)) 2) Ly,

m=0
Then they satisfy the three-term recurrence relation [16]
4m? Jr(m) — 8m? —8m + 3)Jo(m — 1) + 4(m — 1) Ja(m —2) =0 (m > 2).

(2.12)
This implies that the generating function wy(z) = Y oo_, J2(m)z™ satisfies

{2(1—2)2 —|—(1—3z)(1—z)— —|—Z—%}w2(2) —0.  (213)

This differential equation is the Picard—Fuchs equation for the universal family of
elliptic curves equipped with rational 4-torsion. In fact, each elliptic curve in the fam-
ily is birationally equivalent to one of the curves

1—u?v®)? + 21 —uH(1—-vH =0
in the (u, v)-plane, which appears in the denominator of the integrand of R 1 (x).
The equation (2.13) can be reduced to the Gaussian hypergeometric differential
equation by a suitable change of variable and solved as follows [32]:

wa(z) = 3“22)2171(2 2,1;%),

from which we obtain

Ro,i () = 3@ (5.3 152)

Thus, we have the following formulas for {o (2), see [16,32]:
B (e +B) \2 1 a— B2 u(z)
0= (755m55) (1 5v=Garp) [ o o)

|z|=r

d -4
= (2\;%)2(1 + (Z _1_}3)22[71(%’ %; 1;_K2)2 )’
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where u(z) = w»(z)/3¢(2) is a normalized (unique) holomorphic solution of (2.13)
in |z| < 1and k% < r < 1. We also have similar formulas for {¢ (3), see [16,20].

3. Apéry-like numbers

In what follows, we restrict our attention on Ry ;(k) appearing in the special value
formula for £ (s). We may sometimes refer to Ry 1 (k) as the first anomaly in {g (k)
for short. In this section, we define Apéry-like numbers Jg (), and study their recur-
rence equation and the differential equation satisfied by the generating function of
Ji(n). We finally discuss congruence properties for the normalized Apéry-like num-
bers Ji (1) (§3.4).

3.1. Apéry-like numbers associated to the first anomaly

We expand the first anomaly Ry ;(«) as follows:

! 2kduy -+ duy

L
EZ 1 2 2\2 2(1 4 (1 4 4
r=1, 1]k\/( —uf-up)? + (1 —uf - up) (U —ugy  --ouy)

Ry 1 (k) =

0
Z (_I’l%) Jr,k—r (n)KZn

1n=0

(‘%)ka)xzn,

n

T

1

r

(SRR SRR

Nk

0

3
Il

where we put
k—1
Te) =" Tri—r(n),
r=1

<duy.

T e ==
(0.1
If we change the variables of the integral by
uj = e~ 3% (G=12,....r),
Ur+j = e‘%yj' (G=12,....k—r),

then the corresponding domain of integration is

0<x1=x2=<--=<Xxp, 0=Zy1=ZYy2=" = Yi—r»
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so that we have

Jr,k—r (I’l) =

(1 _ e—2xr)n(1 _ e—2yk_, )n
/ (1 _ e—x,-—yk_r)2n+1
0<x|=<xp<-=<xr .
0=<y1=y2<<Yk—r X e_f(xVJ’_yk—r)dxldxz N dxrdyldyz N dyk_r

(x+y) —2x\n
// R ey
x (1 —e™?")"dxdy

—Lu -1 k—r—1
e 2 t (u—1) iy
d 1—e 2y
G eooie=r=n ' 7¢ )
0 X (1 — e~ 2@=0yn gy

By the binomial theorem, we have

k—1 o3
Jr(n) = ; Jr,k—r(n) = / (k — )1 (1 — e—u)2n+1 du

x / (1—e 2y (1—e 20 D)y
0

enu

1 uk—2 J
= - u
22n+1 ) (k —2)! (sinh %)2n+1
u

x /(1 —e )1 (1 — 2D gy, (3.1)

We call the numbers Ji (n) the Apéry-like numbers associated to the first anomaly
Ry..1(k) of Lo (k), or k-th Apéry-like numbers for short.* By the equation (3.1) above,
one has

1 T uk=2
Jr(n) = Jan i / = 2)!B,,(u)a’u, (3.2)
0
By (u) = e (1 —e 211 — e 2Dy gy (3.3)
n (sinh %)Zn-l-l
0

fork =2,3,4,...andn =0, 1,2,.... We notice that the function B, (u) is continu-
ous at ¥ = 0 and is of exponential decay as u — +oo (see [16, Proposition 4.10]). It is

4[Differences of conventions] J» (n) in this article is equal to J, in [16] (and J» (1) in [20]).
J3(n) in this article is equal to 2J,} in [16] (and 2J3(n) in [20]), since our J3(n) is defined to
be the sum Jq 3—1(n) + J2,3—2(n), each summand in which is equal to J,% in [16].
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convenient to introduce the numbers Jo(n) and J; (n) by
2"n! Du(1
nt WMoy,

o) = 0. i) = 5= = ()n(Dn

(a + n — 1) is the Pochhammer symbol.

where (@), = a(a+1)---
Example 3.1. We see that

’

Bo(u) = / =
% ) s1nh%

u

et _ Y
Bi(u) = m/(1—e 20)(1 — e 2Dy gy
0

_ u u — sinh u
sinh 7 (sinh 3)3
U u cosh %
— sinhz +2(Slnh E)S (Sil’lh E)Z'
2 2 2
Thus, we have
o0
1 uk—l
Jx(0) = d
<0 2-(k—2)!0/sinhg !
o0
1 k-1 1 k 2 _ h
Je(1) = [ pdu+ '/ u—sinhan)
2.(k—2).0 sinh & 4.-(k—=2) (sinh %)
1 /o'ouk_l 1 < uk—l
- : du + . du
2.(k—2)!0 sinh 5 4.(k_2)g0 (sinh )3
o0
1 cosh 5 k-2
- - U
2-(k—2)! ) (sinh %)2
Using the formulas
COS 5 s .
d R(s) > 1),
Z( 2F(s /smh“ 4F(s—|—1) (sinh%)Zu u  (N(s) )
0 0
[ T cosh 17 oyt
u 2 u
- du= -1 2 S—Zd __/
[ g =00 | G5 [

du (N(s) > 3),
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we get

J0) = (k= (k. 3).

3(k— 1)
4

Sy = (k= 3)¢(k—2.2) + (k. 5)(= 2O + 2 520)

for k > 4. It is worth noting that these formulas are also valid for k = 2 and k = 3;
1 3 1
pO=¢(2.3). L0 =73¢(23):
BO=2%(3.5). Ah=1+2¢(31).
2 2 2

Here we use the fact that
0 1)—0 Tim ( 1)¢( 1)—1
§(’2_’ s S3) T
We have now the following series expansion of J ().

Lemma 3.1 (Series expression). We have

Jen) = 22(2”’“)2( nf( )—( +m1+2])r
2

r=1m=0

1
X J
Z( b ( )(2+m+2j)" r

Proof. Tt is elementary to see that

k—r—1 e—i(x-i-y)(l —2x)n(1 _e—2y)nd d
// (r—l)'(k—r—l)' (1 — e—x—v)2n+1 xay

m —2n—1 [ xr—l —Lx—mx —2x\n
=Y (D ( m ) T (1—e*)"dx
0

yk—r—l ! )

Y b _eyngy,
X/(k—r—l)!e (1=e™)dy
0
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Since
o0
—7z—mz —2z\n
/a—l)' 2 (1—e"%)"dz
0
[e.e]
_ ( 1 1)' Z(_ )]( )/Za—le—(%-i-m-i-Zj)ZdZ
a—1)!
= 0
n
; 1
= 1’ (n)l—“
=0 J (5 +m—+2j)
the desired series expansion follows immediately. ]

3.2. Recurrence relations among Apéry-like numbers

Third Apéry-like numbers J3(n) satisfy the following inhomogeneous recurrence for-
mula, which is obtained in [16]:

4n2J3(n) — 8n? —8n +3)Js(n — 1) +4(n — 1)*J3(n —2) = 4J,(n — 1) (3.4)

for each n > 2. One should remark that the homogeneous part of this recurrence
formula is the same as the one for J,(n) given in (2.12).

We here show that the Apéry-like numbers J (1) for k& > 4 also satisfy a similar
three-term recurrence formula. Put

1 Ooul U\P
Thp() = S /l—!(tanhi) By, (u)du
0

forl, p,n =0,1,2,.... Notice that Jx(n) = Tx—» ¢(n) for k > 2. We also note that

® I+1

1 UNP U
T;,,(0) = oW /(tanh 5) sinh%du'
0
We need [16, formulas (4.36) and (4.37)]:
2 tanh %B,; () = 81 Bu_1 (1) — (21 + 1) B (u), (3.5)

n(tanh %)ZBn(u) =22n—1)By—1(u) +2(2n — 1)(tanh %)ZBn_l(u)
—16(n — 1) By—2(u). (3.6)
It follows from (3.5) that

(p+ I)Tl,p-i-Z(n) - 2Tl—1,p+1(”) = 2nTl,p(” -1)—(2n—- p)Tl,p(n)-
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Moreover, it follows from (3.6) that
2nTy pia(n) = 2n— DT p(n—1) + 2n— DT} py2(n —1) = 2(n — )17 p(n —2).
Combining these, we get

2n(2n — p)T;,p(n)
—Bn?—4(p+2n+3+2p)T; ,(n— 1) +2(n—1)2n—2— p)Ty,,(n —2)
=4nT_1,p+1(n) =22n — 1)T1—1 p11(n).

We see that

n tanh zB,, () —2(2n — 1) tanh EB,,_1 ()

8(” - l)Bn 2(”) - (2n - l)Bn l(u)
tanh 5

= —4B,_,(u)

by (3.6) and (3.5). This implies that

an Tl +1 20n—1) [l +1
_n/u (tanhz)lJ Bn(u)a’u—L %(tanh%)lJ By—1(u)du
0

22n+1 22n—1
0

4 oo

u

= e / 2 (tann 2) "B oy,
0

or
4nTy py1(n) —=2(2n — DT} py1(n — 1)
=4T1—1,p(n = 1) +2pT) p—1(n — 1) + 2pT} p1(n — 1).
Hence, it follows that
2n(2n = p)Ty p(n) — (8n = 4(p + 2)n + 3+ 2p) Ty 5 (n — 1)
+2(n—-1)2n—-2—-p)T;,,(n —2)
=4T12,p(n = 1)+ 2pT1—1,p—1(n — 1) + 2pT1—y p+1(n —1). (3.7)

In particular, if we put p = 0 and / = k — 2 in the equation above and join (3.4),
we obtain the following recurrence equation for J (n) (k > 2), which was announced
in [22].

Theorem 3.2. Fork > 2andn > 2,

4n*Ji(n) — (8n> —8n +3)Jx(n — 1)+ 4(n— 1)>Jr(n —2) = 4J3_»,(n — 1). (3.8)
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Remark 3.1. The generalized Apéry-like numbers defined in [19] (which was named
as Jx(n) in [19]) is identical to J; x—; (1) in this paper. It is quite interesting that those
generalized Apéry-like numbers, i.e., Jq x—1 (1), satisfy the following recurrence rela-
tion similarly to (3.8) (i.e., having the same homogeneous part of the Apéry-like
numbers)

4n2Jy g—1(n) — (8n% = 8n + 3)Jy g—1(n — 1) + 4(n — )Ty g—1(n — 2)
= 4J k-3(n) (3.9)
for k > 4 and n > 2. From this observation, although J1,k—1(n) does not describe
the special values {g(n), various J, x—,(n) (r = 1,2, ...,k — 1) are having similar
nature as the Apéry-like numbers possess. This may suggest that there are certain

unexpectically significant number theoretic properties behind NcHO that should be
clarified.

3.3. Differential equations for the generating functions

For k > 0, we define

w(z) = Y Jx(m)z", (3.10)
n=0
© /1

gr(x) =) ( nZ)Jk(n)x". (3.11)
n=0

We call wg (z) the k-th generating function of the Apéry-like numbers. It is immediate
to see that wo(z) = 0, go(x) = 0 and

3 1 arcsin/z
= F 151;_; = )
wi(z) = 2F1( ) z) Iz 2
arctan \/z

1 3
gi1(x) = 2F1(§, li=;—x) =

2’

NG

For later use, we notice two differential equations for w;(z):

2 3 d
{Z(l—z)ﬁ+5(1—22)E—1}w1(2)=0, (3.12)

{22(1 —2)% +1 —2Z}w1(z) =1. (3.13)
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Let us translate the formula (3.8) into the differential equations for the generating
functions wy (z). We have

{2(1—2) +(1—z)(1—3z)—+z——}ZJk(n)z

:=&m—zn@+z§3Mwum
n=2

—Bn?>=8n+3)Jr(n—1)+4(m — 1)>J(n—2))z2" L.

Using (3.8) and Jx (1) = Jr—»(0) + %Jk(O), we obtain
Theorem 3.3. One has

{z(l - z)2 —+(1—2)(1— 32)% yo— %}wk(z) —wpo(z)  (3.14)

fork > 2.

Remark 3.2. We have
2 3 k

{z(l—z) +(1_Z)(1_32)_+Z_Z} Wor(z) =0
and

d? d

{Z(l—z) + = (1 22)——1}
dz
5 2 d 3k
{2(1—2) S+ (- z)(1—3z)—+z——} Waks1(2) = 0
dz 4

for each k > 0. Namely, wy (z) is a power series solution of a linear differential equa-
tion, which is holomorphic at z = 0.

To find an explicit formula for Ji (n), it is useful to introduce the function

() = (1 —2Dw(z), t= ZZTI (<=> we(z) = A =Dve(1), z= t_%)
(3.15)

Note that

1
”@—h@zﬂcf )—MmZ(z)

3 ¢t O
f) = F(l,l;—;—): .
n() = 1—2h 211 ’;hz—{—l
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The formula (3.14) is translated as

d? d

{t(l — )=+ (1-21) l}vk(t) N )

dr 4
Let us look at the (hypergeometric differential) operator
2

dr?

d 1
1—2t)— — —.
=+ ( [)dt

It is straightforward to check that

(N (e
o= () Z()

satisfies the equation D; p,(¢) = t" by using the fact

@+ 1)2

tn 4 n2tn—1
4

Dttn -

(see [20, Section 4]). Thus, if we put

2
_ = _% A n | >
a0y =3 | 2) A" (20
n=0
then -~ 5
_1
pf- 3 () s} = a0
n=0
On the other hand, we see that
- 2 Apapn(®) = ) Alp—— ( 2) t
n=o \ " n=0 (n+3)* = k

o0 _l 2 o0 Al
= ()
k=0 n=k 2
Hence, if we assume that the numbers A; ; satisfy the condition

Aljope = Y —=—.
n=k (I’l + 5)2
then the functions &; (¢) satisfy the relation

Di&142(1) = =§1(1) (1 = 0).

232

(3.16)

(D)

(3.17)
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Notice that we have

Als
Alvzmp = LS (3.18)
e D R T e T

n=<S1=82==<Sm

under the assumption (3.17).
Now, we determine the numbers A; , so that they satisfy (3.17). If we set

11 [=1\7?
()
Ajp = 2”‘1’5 n

J2(0) l=2,

and extend by the relation (3.18), then the relation (3.17) is surely satisfied. We remark
that the series (3.18) indeed converges since A; , and A, , are bounded so that the
positive series A;42,,, 1S dominated by a constant multiple of the series (multiple
zeta-star value)

G2.2...= Y (kika. k)

O0<k<ko<-<km

Notice that

1 3 0t
£1(1) = l—tzFl(l’ 1§§§ :) = v1(?),
£2(1) = 12(0)-2F1(%, %; l;t) = va(t).

From the discussion above we have the following (see [22] for the proof).

Proposition 3.4. There exist constants C; (j = 1,2,...) such that v;(t) is given by

vi(t) = &) + ) Crajva;(0). (3.19)
0<j<l/2
Moreover; the coefficients Cj—, Cj_y, . .. are determined inductively.

From this proposition, we observe

1 z
wi(z) = ——& (= l)jzl/c;z_z,-wz,-(z), (3.20)
<j<

and in particular
a0 =304 (7 (DA + ez, G2y
k=0 0<j<l/2

By this equation, we can determine C;_,; by putting n = 0 inductively and obtain
explicit formulas of J; (n) for each /. We give first a few examples.
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Example 3.2. For/ = 2, 3,4, we have

N2
Lo =¢(2. 2) - 1)"(_5) (Z)
1 -3\ (n ! -5\
T = - 5};(‘”% ) RN ()
+2¢(3, %) Zn:(—l)" (_k%)z(Z)
n _1\2
Jo(n) = —;(2,%)];0(—1)"(,f) (Z) O;k (]-_:%)2
+3¢(4.5) i(—l)"(‘,{%)z@-

k=0

3.4. Numerical data of normalized Apéry-like sequences

In this section, certain numerical data of the Apéry-like sequences is presented.

The normalized Apéry-like numbers Jr(n) are defined inductively by the condi-

tions

Jas(n) =

Jos+1(n) =

s—1

Z J25—2(0) T2 42(n),

=0

s—1

Z J2s4+1-25(0)J2j12(n) + Jos+1(n).
=0

It is equivalent to define Je(n) by the recurrence relation

Te) = 7,07 (k) = Y ke O Taja(m). 7

0<2j<k

1 k=1 (mod?2),
2 k=0 (mod?2).

The numbers Jy (1) satisfy the relation

4n®Ji(n) — (8n% — 8n +

k(= 1)+ 4(n— 12T (n—2) = 4Jx_r(n — 1).
(3.22)

Notice that this is identical to the one for J (n). It is elementary to check that

n

fl(”) = Ji(n) =

2"n!
Q2n + DI

Toln) = Jz(”)

-2 (7))
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and )
- k=1,
3
- 1 k=12, - 3 1o
Ji(0) = (=47 K=2
) {0 otherwise, k() 4
1 k=34,
0 otherwise.

These are all rational numbers. Hence, by the recurrence relation (3.22) for J~k(n), all
the normalized Apéry-like numbers Ji (n) are rational.
Let us put

even . S 1
ZWi= Y G T

k>j1>>js>0

s )
ZUCEE=DS ! (7)

k>j1>'">j320 (,]1 + %)2 e (jS—l + %)2(‘]5 + %)3 ]s

fors =1,2,3,.... Wealso set Z§**"(k) = 1 for convenience. Then we have the

Theorem 3.5. Fors = 1,2,3, ... we have

~ " _1\?

Tz = 04 () (1) 2w,
k=0
n 1 2

T = 04 () (1) 20,
k=0

Proof. Define the numbers gl,n by the relation (3.17) satisfied by A; , together with
the normalized initial condition

~ 1 1 /=172 _
Al,n = Al,n == 1 ( 2) 5 A2,n = 1.
2n+5

We immediately have

4. |
YSeVen(n) = A2S+2,n = Z : 1 ' : ’
n<ji<-=<js (1 + 5)2 (s + 5)2
dd ~ 1 X s
S AR Z (11+%)2...(]S+%)3 s

n<j1<+=<js
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By the same discussion as in the previous section, we see that there exist certain

numbers C; (j = 1,2,3,...) such that

n 1\ 2
~ k —_—— n ~ ~
i =304 (F) (D) + E oo, G2)
k=0 0<j<l/2
Putn = 0in (3.23), we have 0 = A; ¢ + C)_, if | > 3 since Jo(0) = 1 and J;(0) = 0
if k > 2. Thus, we see that J;(n) are of the form
- " (N2 (0 =
Jin)y =Y (- 2
i)=Y (-1 ( K ) (k) Bk
k=0
with

By = Ak — ZAl—szrz,osz,k, By =42k, Bix=Asp.
0<j<l/2

Therefore, it is enough to show that Z&"(k)’s and Z%%(k)’s satisfy the relations

s—1

Z3N (k) = Y (k) = Y Y (0) 25" (k). (3.24)
j=0
s—1

Z3M (k) = Y4 k) = D Y29(0) 25 (k). (3.25)
j=0

Assume that s > 2, since these are directly proved when s = 1. We only prove (3.25)
by induction on k (the proof of (3.24) is parallel). If £ = 0, then the both sides of (3.25)

is zero. Suppose that (3.25) is true for k. Notice that

1
ZENk + 1) = ————— ZEN k) + ZE (k).
et 1) =~ 2 k)

1
YSCVCH k + 1 — YSCXCII k + YSCVCH k ,
(1) =~ VT )

YUk +1) = RTFT YR (k) + Y94 (k).
2

Using these relations together with the induction assumption, it is straightforward to
verify that the both sides of (3.25) for k + 1 coincide. ]

Remark 3.3. Note that

-2
Z8n) = Z2%n) =0 (0<n<s), Z(s)=Z%%) = W(_S%) )
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and hence

Fasta(n) = Tos1(m) =0 (0 <0 <5), Jasya(s) = Tas41(s) = ﬁ

We now provide several numerical data of Jk (n):

ADE! 2 8 16 128 256 1024 2048 32768
n —_— — — —
! 3°15° 35" 315 693’ 3003 6435’ 109395

3 41 147 8649 32307 487889 1856307 454689481

4 64" 256" 16384° 65536° 1048576 4194304 1073741824

65 13247 704707 660278641 357852111131 309349386395887

48" 8640 ° 430080° 387072000° 204374016000 173581664256000°

11 907 1739 6567221 54281321 7260544493 709180003579

8 576" 1024° 3686400° 29491200 3853516800° 369937612800

1 109 101717 4557449 15689290781 131932666373

4’ 216" 138240° 4838400° 13934592000° 102187008000

144010453389429161

99983038611456000 °

173 3419 29273 151587391 232347221 2444144299823

4’ 144’ 4608  30720° 132710400° 176947200° 1664719257600’
515 76667 115560397 1051251017 18813135818903

36" 6912° 576000 580608000° 3901685760° 54935735500800°

1 43 15389 1659311 251914357 10258433947

36" 576 115200° 8294400 928972800 29727129600

Jl(l’l) 1,

J3(n): 0, 1,

Ja(n):0, 1, —

Js(n): 0, 0,

Js(n): 0, 0,

J2(n): 0, 0, 0,

Js(n): 0, 0, 0,

3.5. Congruence of normalized Apéry-like numbers

The congruence properties of .Ec(2) (and J~k(3)) obtained in [20] (see also [29]) are
considered to be one of the consequences of the modular property that the generating
function w, possesses (i.e., wy is an automorphic form for I'(2)(= [p(4))). As we
will show in §5, there is a “weak modularity” for wy, (i.e., wy, is an automorphic
integral for & (2): see §5.1). Therefore, we may expect similar congruence properties
among fk (n) (n > 4). In fact, we provide below a certain reasonable conjecture on
congruence relations among fk(n). The aim of this section is to show some weak and
restricted version of the conjecture.

Based on a numerical experiment, we conjecture that the following congruence
relations among the normalized Apéry-like numbers should hold.
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Conjecture 3.6. For positive integers m,n, s and a prime number p such that mp > s
and mp™~! > s, we have
AT Dogi(mp") _ p@HDED Ty (mp" )

= = (#0) (mod p"),
Pt s 1 (mp) P>t s 11(mp)

p2sn ‘72s+2 (mpn) _ p2s(n—1) Ls+z(mpn—l)

= = J 0 .
p* Jasy2(mp) P25 Tps 40 (mp) (#0) (mod p")

Remark 3.4. When m < £, the denominator of p>s .72S+2(mp) is indivisible by p,
that is, p?*Jas+2(mp) = p'a (mod p™) for some t € Zsg and a € Z\ pZ. In this
case, the second one in the conjecture above is equivalent to

PP Dygpa(mp™) = p DT o (mp™™t)  (mod pn).

Here we prove slightly weaker results (Theorem 3.10). In what follows in Sec-
tion 3.6, p always denotes an odd prime. We recall the following basic congruences
on binomial coefficients (see [20, (6.7), (6.12), and (6.13)]).

Lemma 3.7. For any positive integers m, n, j, the following congruence relations

hold: 2 2
. n _1 n—1
G C) =) i
pJ pJ J J
, mp” n
pti = j =0 (mod p").
We also need the following elementary facts.

Lemma 3.8. Let ord, x be the exponentof pinx € Q, i.e, x = ]_[p PP X for x € Q.
If1<2j+1< p"t! then

_1
ord, ( j2) <n—ordy,(2j + 1).

Proof. Putr = ord,(2j + 1). Then there is some odd integer m such that 2j + 1 =
mp” < p"*T1. In general, we see that

o () = () - B2 b= 50=3)

where {x} = x — | x] is the fractional part of x € R. Notice that {x + 1} = {x}. It
follows then

: r
1<l<r = {%}z{&l}={ﬂpr—l_i}={l_i}<l’
P 2p! 2 2p! 2 2p! 2
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and

1 j 1
R Y AL A
p 2 2 Pl 2

Thus, we have

ordp(_j%) :#{lzl‘{pil}z%,r<l§n} <n-r
as desired. -

Lemma3.9. Fork =0,1,..., 25,

p2an§ven(kp) = pZS(n—l)sten(k) (mod pn) (3.26)
holds.

Notice that the denominator of p" Z¢"(k) is not divisible by p if 2k — 1 <

n+1
P .

Proof. First we notice that
{2/ +110=j <kp}N pZ ={p2j+1)|0=j <k}

In the sum

2sn

2sn —7zeven s »
p L (kp) = (=1) 3 __ .
kp>ji>>js>0 (J1+ 5)2 (s + E)2
the summand is = 0 (mod p") if any of 2j; + 1,...,2js + 1 is indivisible by p.
Hence, we have

(_1)sp2sn Z;:ven(kp)
Z pZSn

. 1 - T
k>j1>>js>0 (.]1 + 5)2 . (.]S + 5)2

2sn
S p

k> j1>>j5>0 (PG + 3% (pUs + 3))?

2s(n—1)

i1 — 1
k>j1>>js>0 (J1+3)?%...(s +3)?

— (_l)sp2s(n—1)Z§ven(k)’

(mod p")

which implies (3.26). u
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Theorem 3.10. If 1 <m < Z, then
2sn T ny — 2s(n—1) 7 n—1 n
P~ " Jas4a(mp”) = p Jas42(mp™™")  (mod p") (3.27)

holds.

Proof. Using the lemma above, we have

P st+2<mp)—2( DH( )( )”"z;”e“(k)

1

Z( 1)“’(‘;) (") on zs=) - moa )
mp"—1 _

Z (—l)k( ) ( ) 2s(n— I)Zeven(k) (modp )
k=0

= pPO=D I a(mp™h)

as desired. n

Remark 3.5 (Odd case). We expect that the congruence formula in Theorem 3.10
also holds for the odd case. Explicitly, we conjecture that

p(2s+l)n‘725+1(mpn) = p(2s+1)(n—l)‘725+1(mpn—l) (mod pn) (328)
holds for 1 <m < g. This is reduced to the congruence
p(2s+1)nzsdd(kp) = p(2S+1)(n_1)Z;)dd(k) (mod pn) (3.29)

as in the even case. To prove this, we need the following fact, which we have not
managed to prove. Let j/ = w, ie,2j +1= p2j +1). Then

P00 -2 1 -2
_— — =0 d p" 3.30
(j+§)3((j') (J) ) (mod 77) (330

when 1 <2j + 1 < p”. We note that by an elementary discussion, this congruence is

reduced to
1\ 2
1 !
| J

d >
2 (_1)2 =
.2
J

1, (3.31)
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where ord, x for x € Q is the exponent of p in x,i.e., x = ]_[p porr X If 25 +1 =
mp” (p + m) and s = ord, (2]’) then (3.31) is equivalent to

(2]1) = (-)’= (2]J ) (mod ps++1). (3.32)

We note that the modulo p™+!

ily as we sketch in the following. By a repeated use of the binomial theorem (see,
e.g., [6]), we get

version of the congruence (3.32) can be proved eas-

p—1
=(1—Xx?y”" 13" X/ (mod pth).
Jj=0

(1— Xy

Comparing the coefficients of X??1? (0 < b < p) in the both sides, we have

r+1 r
mp -1 — (_1\b[™MP -1 r+1
(ap+b )_( 1)( a ) (mod 777

in general. In particular, whena = j and b = pT_l, we obtain
2j' -1 (2j

() =05 () o,
J J

3.6. A remark on Euler’s constant for the NcHO

We know that the spectral zeta function {g (s) can be meromorphically continued to
the whole complex plane with unique pole at s = 1, see [17]. Actually, it has a simple
pole at s = 1 with residue Chd - By this fact, it would be reasonable to define

. VepB(aB—1)
the Euler(-Mascheroni) constant yo for the NcHO by

vo = lim {50(s) - ——f_ 1}
2= S\ afefp—1)s—1)

Since we can not expect neither an Euler product nor functional equation for o (s),
the analysis and results developed, e.g., in [12] for the Dedekind and Selberg zeta
function is seemingly difficult. Nevertheless, we expect that yo may possess certain
arithmetic significance like Kronecker’s limit formula [43], since it can be regarded as
a regularized value of “{p(1)”. Exploring this problem would be desirable to obtain
new information of the spectrum.
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4. Apéry-like numbers and Mahler measures

In this section, we observe a certain mysterious relation between our Apéry-like num-
bers and the modular Mahler measures discussed in [39] through a generating function
of the generating functions vy (¢) of the Apéry-like numbers.

4.1. Meta-generating functions

We study a generating function of v (¢) (sometimes we refer to it as the meta-gener-
ating (grandmother) function of Apéry-like numbers) as

Ve, A) := Y vapga () (=1)FA%,
k=0

VO(t.2) = ) vapea (0(=1FA%,

k=0

For the time being, we will concentrate on the even meta-generating function V¢ (¢, ).
Since v (0) = wr(0) = Jx(0) = (k — 1)¢(k,1/2), we have

7T2

e kq2k __
Ve, ) = Z(2k+1)§(2k+2 )( DAk = e

k=0

Lemma 4.1.
variable t is holomorphic aroundt = 0.

(t,A) (resp. VO(t, L)) in the

Proof. Recall the integral expression (3.1) of Ji(n)

Jr(n) =

_2t —2(u )\n
22"+1 / (k —2)! (sinh & )2n+1d”/(1 ) (1 — Yrdr.

Since
(1 _e—2t)n(1 _e—2(u—t))n < (1 _e—u)Zn

one observes that

=
<

1 o0
0< Ji(n) = )i /uk_ e 2 du.
0
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Since ;—f=7 < 1_2_1 <2for0 <u < I and y—o= < 2u foru > I, for any & > 0,

one sees that there exists a constant C, such that

o) 1 oo
oy _u u o _u -1 —u
/uk 2e 21 _udu<2/uk 2e 2du+2/uk Ye™2du
—e
0 0 1

o0
< cafu"—ze—zisdu = C.24 o) 'T(k —1).
0

It follows that 0 < Ji (1) < Cs(2 + €)F~! (independent of n). Since
o0
we(2) = Y Je(n)z",
n=0
one has

lwe(2)] < Ce+ A —1zD7" (Iz] < D).

Recall that v (1) = (1 — z2)wg(z) with z = ﬁ Hence, one obtains

1
ok = G+ e =11 =)™ (910) < 3)-

This immediately shows thatif |A| < 1/4/2 + ¢
o0

Ve, M) < Y [vakga (DA < Celt =11 = [t (A= 2+ )2 7"
k=0

This shows the assertion for V¢(¢, A). For the odd parity function V°(¢, 1), the proof
is the same. ]

It follows from the equation (3.16) that
D Ve(t, ) = A2Ve(t, L), 4.1)

where D is the differential operator defined in (D). Namely, the function V¢(¢, 1) is
an eigenfunction of D, with eigenvalue A2. Note that v,(t) = V#(t, 0) is a modular
form for 'y (4).

Remark 4.1. Similarly to the even case, we have

DVO(t,2) = Y (=¥ Divgrpr (A

k=0
= D oy (A
k=0

= —v_1(t) + A2V, M),
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where

1
—Qn+ 1) }z"
3 -G+

4>I'—

v-1(t) = —Dyv1 (1) =

i{4(n + 1’5

Z " o) -1
— 2n+3 4 t '

1
4

S
(=]

Namely, one has

(D — AH)VO(t,A) = 4%{1 1t2F1(1, 1; %; t_%) - 1}.

Rewrite (4.1) as
d2
(z(1 —z) S+ (- 2z)— - —AZ)Ve(t 1) = 0.
Since V€(t, A) is holomorphic around ¢ = 0 and vg(0) = (k — 1)¢(k, 1/2), one has
n? 1 1
V) = —— Fy(5 +id, 5 ik Lit). 42
1= o213 2 ) (4.2)
From this, it is immediate to see that
2k 2

dAZk{ZCOZthAZFI(%+M’%_M;l;t)}‘k=0' (4.3)

Vak+2(t) = (2k)!

In relation with the modular form interpretation of the generating function of
Apéry-like numbers for {¢ (2) developed in [21] (see §5) and [51], we naturally come
to the following problems.

Problem 4.1. Determlne whether there are any pair of A € C and k € N such that
d 2

D37 S0 7R 2Fi(5
for some congruence subgroup I' of SL,(Z) and for some modular function ¢t = #(7)

forI".

the function +iA, % —iA;1;¢(7)) in T can be a modular form

Problem 4.2. For some ¢t = #(7), is there any A such that , F; (% +id, 1 —iX1:t(0))
is a modular form for some congruence subgroup I' of SL,(Z)? Moreover, how many
such A’s; are these either finite or countably infinite, etc. locating on a certain line
or algebraic curve? Notice that, if A € Z\{0} then 2F1(% +id, I —iXlt)isa
polynomial so that the function in question is trivially a modular function.

Problem 4.3. Can we treat directly V¢(z, A) in the context of modular forms?
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4.2. Integral expression of V¢ (1, 1)

Concerning the question as is stated in Problem 4.3, we first provide the integral
expression of V¢(¢, 1).

Proposition 4.2.

Ve a) = /'/' 2e="% cos(A(u +v))(1 —e™*77) dudv.

1 — e U~ v)2 _ t(e—v _ e—u)2

Proof. Recalling (3.2), (3.3), (3.10), and (3.15), we have

nu

Ve M—(l—z)i(m”‘i - 7“2" e
,A) = ~ — 92n+1 (2k)! (Sinh%)Zn—i—l
= - )

X /(1 — e (] — g U=y ds} du

=(1 —z)/cos(ku)(/{z (2s1nh ZyprES]
0 0

x(1—e 2)"(1— e_z(”_s))”}ds)du

[e.e]
1 ze!
1— A 1-—
( z)/cos( u)(/ 2sinh%{ 4sinh? ¥
0 0

-1
x (1—e 2)(1 - e—2(u—s))} ds)du
1 o u 2¢=% cos(Au)(1 — e~¥)
2 / (/ (I1—e)2—t(e™s — eS—u)zdS)du
0o 0

1 2e="3" cos(A(u +v))(1 —e™7Y)
= 20// dudv

(1 — e U~ v)2 _ [(e—v _ e—u)z

as desired. -

When A = ll(% — %) for some integer / > 2, assuming ¢ = T2, we have

. 211_1 12// 1+ (xy)=2
14 (T ,i( i o (U SRR
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On the other hand, it follows from (4.2) that
2

Ve(TZ,%(%—;)) =5 Z] lel(l 1—;;1;T2). 4.5)

It follows then

11

1 1 , T 1+ (xy)=2

2,F —,1——;1;T2 =1 —[/ dxdy. (4.6

T2 1(1 I Sin” 7 T (o) = Tl =) ¥y 40
00

Related to this function/integral, we now recall the result in [39], which is dis-
cussing the relation between Mahler measures and the special value of L-functions
for elliptic curves from the modular form point of view. The (logarithmic) Mahler
measure m(P) of a Laurent polynomial P € C[xF,. .., xE]is defined as the follow-
ing integral over the torus:

m(P) = /~-~/1og|P(e2”“’1,...,ezﬂ“’n)|del...de,,.

It is known that, for instance, there is a remarkable identity such as m(1 + x + y) =
L'(y,—1), where L(y, s) is the Dirichlet series associated to the quadratic character
x of conductor 3. Among others, the study in [39] shows the following result, which
asserts very explicitly the relation between Mahler measures and the special value of
L-functions for elliptic curves.

Proposition 4.3. Forl = 2,3,4 and 6, put

1 1 dx dy
A) = —_— 4.7
ur(4) (2ni)2/1—lP1(x,y) Xy “.7)
T2

where T? = {(z,w) € C?||z| = |w| = 1} and

1 1 x2 2 1
PZ(x’y):x+_+J’+_’ P3(X,Y):—+y—+—,
X y y X Xy
x 1 x2 oy 1
Py(x,y)=xy*+ S5+ =, Pe(x,y)=—-=——
y X y X Xy

Then one finds

11
() = 2 Fy (7, - 1;c,x’) (I =2,3,4,6),

C,=2% C3=3% (Cy,=2° C¢=2%3%
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The function uj(A) is related to the Mahler measure of the polynomial P;(x,y) —1/A
(which defines an elliptic curve) as

A
d
m(P;(x,y)—1/4) = iﬂ{—logk —/(ul(t) — l)Tt}
0

It is worth noting that, via the hypergeometric representation (4.5), this propos-
ition shows that the following relation between Mahler measures associated with
curves and our meta-generation functions of Apéry-like numbers holds.

Corollary 4.4. The following holds.

Ve(c,A’ l(l - 1)) - ”—zul(x) (I =2,3,4,6). 4.8)
i\2 ] 2sin*(%) T

Remark 4.2. Since there is an intimate relation between the Mahler measure for

elements in group ring of a finite group and the characteristic polynomial of the adja-

cency matrix of a weighted Cayley graph and characters of the group [9], it is natural

to expect the existence of a certain dynamical system behind the NcHO.

5. Automorphic integrals associated with Apéry-like numbers

The function w, (¢) becomes a modular form of weight 1 with respect to the congruent
subgroup I'(2) if we take ¢ as a suitable I"(2)-modular function. This is a reflection
of the fact that the differential equation for w,(¢) is the Picard—Fuchs equation for
an associated family of elliptic curves. In this section, we recall this story for w;(#)
and other generating functions wg (¢) of Apéry-like numbers from [22] and study the
Fourier expansions of certain integrals of modular forms, which appear naturally in
the story.

5.1. Automorphic integrals

We summarize notations used in what follows, and we briefly recall the notion of
automorphic integrals due to Knopp [24]. This is a slightly extended notion of auto-
morphic integrals studied in [10].

Let I" be a Fuchsian group and m be an integer. Let t € §), ) being the complex
upper half plane, and ¢ := e2™'*. Denote by F(}) the linear space of all C-valued
functions on the complex upper half plane. The group I' acts on f by y7 := eris for
y =(95) € I'and t € h. The space F(h) becomes a (right) I'-module by the map

FH) x> (f.y) = flmy € F(b) defined by
(flmy)(@) = jlr.0) ™" f(y7). (5.1
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Here j(y,7):=ct+d fory = (% 4 ) and t € h. We denote by # (h), M (D), C(z) the
subspaces of F'(f)) consisting of holomorphic functions on f), meromorphic functions
on b and rational functions on § respectively. We also set C[7]; to be the space of
polynomial functions on §) which is of at most degree k. Notice that these spaces are
I'-submodules of F () under the action f|_gy.

The standard generators of the modular group SL,(Z) are denoted by

1 1 0 -1
T = = .
(1) o=( )
Define the subgroup &(2) of SL,(Z) by & (2) := (Tz, S ) Notice that & (2) contains
I'(2), the principal congruence subgroup of level 2;

G@2) DT 2):={y €SLy(Z)|y =1 mod 2} = (T? ST257").

If f(z) is an automorphic form of even integral weight m + 2 for I', then an
(m + 1)-fold iterated integral F'(t) of f(7) is called an automorphic integral of f(t).
By the Bol formula

m+1

U O F0) = jrp " 2R () (y €SLaR),  (5.2)

we see that (F|_,,y)(t) — F(7) is a polynomial in T of degree at most m + 1.

In [24], Knopp introduced an extended notion of the automorphic integrals; a
meromorphic function F on the upper half plane | is called an automorphic integral
of weight 2k for I" with rational period functions { Rr (y)(t) € C(z) |y € T'}if

(Flaky)(r) = F(7) + RFr (y)(7)
for each y € T" and F is meromorphic at each cusp of I".

Example 5.1. The Eisenstein series E»(7) of weight 2 satisfies

12
2wit’

Ex(t + 1) = Ex(7), TﬂEz(-%) — Ex(7) =

Hence, E5(7) is an automorphic integral of weight 2 with for SL,(Z).

Notice that an automorphic integral obtained by an (m + 1)-fold iterated integ-
ral of the automorphic form of weight m + 2 is an automorphic integral of weight
—m with polynomial period functions. To emphasize the polynomiality of the period
functions, in what follows, we call an automorphic integral with polynomial period
functions an automorphic integral.
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5.2. Modular form interpretation of w2 ()

We first recall the result on the modularity of w,(¢) in [21] briefly. We recall the
following standard functions; the elliptic theta functions

Oa() = D g2 030) =3 g2 Gu(r) =Y (1),

n=—o00 n=-o0o n=-o0o
and normalized Eisenstein series
’ o0
Ex(t) =1+ m’;(rk_l(n)q” (k =2,4.6,...),
where o5(n) = > _;, d°. Put

02(0)* _ A@? (@)@’

=D = o T AR -1 T o

(5.3)

which is a I'(2)-modular function such that 7(ico) = 0. Here A(7) is the Legendre
modular function and 7(7) is the Dedekind eta function:

A(r) = 16n(1)*n(21) " **n(41)"°.

We see that
03(7)* t 02(7)* dt 1
1—¢ = 3(7:) 7 — 2(7:) 7 g_ — _93(1,)4'
O4(7)* t—1 03(1)* tdg 2
By the formula ([48, Section 22.3]),
11 . 6(0)* )
F =, =, 1; = 9 )
2 1(2 5 93(1)4) 3(7)
it follows from (3.14) for k = 2 that

J2(0) 11 !
Fi(=,=;1;,——) = J»(0
1—¢2 1(2 2 z—1) 2(0)

b0 1(20)2
o~ PO ans

wa (1) =

which is a I'(2)-modular form of weight 1.

5.3. Toward modular interpretation of wy (¢)

The fact mentioned above on w,(¢) naturally leads us to a question what the nature
of wy(¢) is in general. In order to answer this question for the special case wq4(?), we
recall the following general fact (Lemma 5.1), which is a slight modification of [49,
Lemma 1] and is proved in the same manner. Let I" be a discrete subgroup of SL, (R)
commensurable with the modular group.
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Lemma 5.1. Let A(t) be a modular form of weight k and t(t) be a non-constant
modular function on T such that t (ioco) = 0. Let

d
o gk+1 ko _
L =79 + re ()0 4+ -+ ro(2) (19 t—dt)

be the differential operator with rational coefficients r;j(t). Assume that A, as a func-
tion in t, satisfies the differential equation LA(t) = 0. Let g(t) = g(¢(t)) be another
modular form. Then a solution of the inhomogeneous differential equation L B(t) =
g(t) is given by the iterated integration

B(t)_A(z)/ / fldf/dq k+ig)dg  dq
k+1

A1) ¢ q

From Theorem 3.3, it follows that

3k
) warn) =wa) 4

(t(l—t)2 + (- t)(1—3t)%+t—4

for k > 1, which can be also written in terms of the Euler operator ¢ as

k

Litaks2) = [ sggalt) (k2 1) (5.5

k=0 4 (O o ro(t) (ro().. .. rak—1 (1) € C(1)). (5.5b)

Let us consider the function
q

q
Wi(t) = wz(t)/.../(tht/dq)zk(l_ti)%‘;_q...c;_q
0

2k
q q
- (__) J2(0 )2421—;;‘ /"'/(Qz(f)494(r)4>kdq_q...a;_q.
0 0

2k

Let us look at the case where k = 1. If we apply Lemma 5.1 to (5.5), then we see
that the integral W (¢) is a solution to (5.5), and hence w4 (¢) — Wy () is a solution of
the homogeneous equation L f = 0 of degree 2 which is holomorphic at # = 0. This
implies that w4 () — Wi (¢) is a constant multiple of w,(¢). Thus, we have w4 (t) =
Cw,(t) + Wi(t) for a constant C, which is determined to be 72(= J4(0)/J2(0)) by
looking at the constant terms. Namely, we get

wa(t) = w2wa (1) + Wi(2). (5.6)
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5.4. Automorphic integrals approach to Wy (¢)

In what follows, we consider Wy (¢) for k € N in general. For convenience, let us put

f(x) = 02(1)*04(0)* = 1—15(E4(r/2) — 17E4(7) + 16 E4(27)), (5.7)
Ff . adq d
Ek(r)=0/-~-0/f<r>’°7q~7q, 538)
2k
Fof kdq dq Ff dq dq
Gk(f)=0/...0/f(f) 7...7=0/...0/Ek(f)7...7, (5.9)
o ey

Notice that

2 2k—1
e () S Gk (1)

k
We(t) = (~3) wa(OBx() =

Clearly, G () is a periodic function with period 2 and G (i 00) = 0. Since f(7)¥ is
a modular form of weight 4k with respect to I'(2) (or & (2)), the function G () is
an automorphic integral for f(7)* by definition. Hence, by (5.6), we have the

Theorem 5.2. The fourth generating function w4(t) of Apéry-like numbers is a linear
combination of wa(t) and

Wi(t) = il

()G (0),

which is a product of w,(t) and the derivative G’ (v) of an automorphic integral for
& (2) of weight =2, as
wa(t) = w2wa(t) + Wi(t). (5.10)

Note that the Fourier expansion of G (7) is given by

4 494 4
610 = [ [ [ 15 Eate/2 - 17Es0 + 168,00y 2L
0 0

Il
— (=]
(@)
N
o]
Q
w
~
=
~—~
S
NI
|
—
~
P
w
~
S
~
B
S
+
[\
N
w
~
=
~—
S
N
N
N—
~
|9
—_
—_
~

n>1 n>1 n>1

In the next section we will give a formula for G1(7) and w4(¢), in which they are
expressed in terms of differential Eisenstein series ((6.8) and Theorem 6.6).
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We calculate the period function of G (), especially to describe w4 (#) concretely
via G (7). The L-function corresponding to f(7) is

Ar(s) = /z f(zt)kdt (5.12)

0

which satisfies the functional equation Ay (4k —s) = Ay (s). By the inversion formula
of Mellin’s transform, one notices that

1
f(iy)k =5— / Yy AR(s)ds (y > 0,a > 0).

Rs=a
Put
_ Ar(s +2k) _ )
Ek(s) = =g Pk =ResEk(s) (j=1-2k....2k—1).
l'[, —1—2k(5—=J) =7
The functional equation for A (s) implies the oddness Ej(—s) = —E(s), from

which we see that pg _; = pi, ;. Define R’§ (7) by

2k—1

RE@) = —@0* Yy (5

j=1-2k

Notice that ng (1) is a polynomial in 7 of degree 4k — 2. We have the
Lemma 5.3 ([22, Theorem 4]). One has

Gi(t +2) = Gi(x), % ZGk(—;) G (1) = RE(v).

Let us consider the particular case where k = 1. Explicitly, we have

Ar(s) = 162 T ()5 ()¢ (s = 3)(1 = 27°)(1 = 247),

7¢(3) 1 473
P1,-1 = P11 = fr(3 » o P10 = 5 R}?(T) =560(3)(¢* - 1) + TT-

Lemma 5.3 then reads

Lemma 5.4. The function
Gi1(7) := G1(1) — 56£(3) (5.13)

satisfies

Gi(t +2) = G1(v), fzél(—l) —Gi(0) = 21, (5.14)
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5.5. Experimental calculation to determine the coefficients

In this section, we observe that the generating function wy () of the Apéry numbers
for {o(2k) is expressed by a certain linear combination of the multiple integral of
the (same) modular forms. Namely, we try to determine the coefficients c,’c’ j in the
equation

J 0 —
Wai42(1) = %@S)wz(z) 3 e Wi (0) + Wio) (5.15)
ji=1

:wz(z){Jz}‘*(z()O)+Z( ) ’jEj(r)} Che=D. (516

(Recall that W; (1) = (=1)/w,(1)E; (z).) Let ™, B™ and y"™ be the I-th Fourier
coefficients of wy,(t), E,,(7) and ¢ respectively, that is,

wma)—Za(’") 5 En(n)= Zﬁ("’) 2, Zy(’") :,

Trivially we have y = §;,0. We also note that )/(m) ,BI(m) = 0if/ < m since t and
f(7) vanish at i co. Thus, we have

n=0 n=0 =0 1=0 n=0

or

(m) Z Im (n)y(n).

Recall that W; (1) = (—3)7 w2(1)E; (t). Now, (5.15) reads

L J k (0) k I+m
2k+2) L J2k+2Y) 2 2 iy ldm
E ( ) qz = 2(0) E ()612 + E (——) Ck] § :“ )ﬂr(;f)fl 2
=0 j= 1,m>0

1/2

Comparing the coefficients of g*/“ of the both sides, we have

Toi+2(0)
]Z( ){Za(z) 5(1)} = gD 2}«;3) o

forl =1,... k.
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Example 5.2 (/ = 1). We have

Jzk+2(1)12(0) Jor42(0)J2(1) (1)
J2(0)

——J )y B et = o (0)p!

since
J2k+2(1)J2(0) — Jox42(0) J2(1)

3 3
= (24(0) + 5 2042(0))2(0) = 5 /2(0) J2:2(0) = J2k(0)12(0).
We see that
yD =16, B =64

Thus, we have
C, — J2k (O)
k.1 J2(0)

For instance, we have

Jo(0)  1J4(0 1
walt) = w758 3 7o 1) + 1)

Js(0) | Js(0) 2i d i dB
2”){1 0 T L0 1622a: %@ T 56 s

Example 5.3 (I = 2). We see that

2(7)}-

pD =128, P =256, BV =-128, B =256
For k > 2, we have

1
— HROB + Oy OB + B0 OBP e, + 08P

_ Jog+2(1)J2(0) — J2r42(0) J2(1) M J2k+2(2)J2(0) J2k+2(0)J2(2) )
- 72(0) "2 72(0) 2

which is reduced to

J 2)J>2(0) — J. 0)J2(2
=8 1], + 167212 J)2(0)22k+2() 22)
J _

2k (0) +4J2k 2(0)

J2(0) J2(0)

=-8+8

Example 5.4. We have
, Ju(0) , AJa2(0) ;175 —2(0) + 162J554(0)

Cc = , C = , C = R
kLT 0 k2 J2(0) k.3 8J,(0)

, —695J55—2(0) + 2794 55 —4(0) + 1024 J 5 — 6(0)

et = 97,(0)

A systematic study of the generating functions w, for higher special values is
desirable.
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6. Differential Eisenstein series

We have shown in Theorem 5.2 that the function w4(¢) is a linear combination of
wo(¢) and the derivative G| of an automorphic integral. To understand the integrals
G; (r) more concretely, we introduce a family of functions called differential Eisen-
stein series which play a role analogous to the ordinary Eisenstein series.

6.1. Periodic automorphic integrals

Let I' be a congruence subgroup of level N and m be an integer. We take a I'-sub-
module X of F(§)). We focus our attention on automorphic integrals of special types
defined as follows.

Definition 6.1 (periodic automorphic integrals). Let y be a (multiplicative) character
of T such that y(T") = 1. A holomorphic function f € H#(h) is called a peri-
odic automorphic integral for ' of weight m with character y and period functions

{Rfx(¥)iyer C Xif

f(x+N)= f(v), (6.1)
(flmy)(@) = x() f(t) = Ry (y)(x) forally €T, (6.2)

and for all y € SL,(Z) there exists {a, }nez such that

(flmN(@) = angV € X, an=0 (n<K0). 6.3)

nez

We denote by M,X (T, ¥) the set consisting of such periodic automorphic integral.
When y is the trivial character, we omit the symbol y and simply write M, (T, X).
We call f an Eichler cusp forms if it is a periodic automorphic integral such that the
Fourier expansion part of f |,y in (6.3) has no constant term for every y € SL,(Z).
The space of Eichler cusp forms is denoted by C,X (T, ¥).

When m > 0, M, (") := M,,(T, {0}) and C,,(T") := C,, (T, {0}) are nothing
but the spaces of classical modular forms and cusp forms of weight m respectively.
Indeed, f € M,,(T") is holomorphic at every cusp of I in this case.

Remark 6.1. If 1 € X, that is, X contains constant functions, then any constant shift
f(@)+c (ceC)of f e My(T', X) also belongs to M,,(I", X). In this case, it is
natural to study the quotient space M, (I", X)/(constants).

Example 6.1. We give a non-trivial example of I"-submodule X of F(§) as follows.
Let Vg m be a subspace of F(§) generated by t/ (j =0,1,...,2k) and (t — )™/
(¢ e C\{yoco|y eTT(2)}, j =1,2,...,m). Notice that 0 & {yoco |y € ['(2)}. Then
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the space Vo, is a I'(2)-stable subspace of C () under the action (f|_2xy)(7) =
F. ) f(y7) (y € T(2)). In fact, for y = (‘C‘ 3), ifweput f(1)=(t—a)™/ (1<
Jj < m), we observe

.
(flaky)(1) = (cT + d)zk(% —a)”’

_ (ct + d)2k+i
" ((a—ca)t + (b—da))/

a polynomial of degree j — 1

= a polynomial of degree 2k + :
(t —ya)/

This clearly shows that (f'|—2xy)(7) € Vak,m-
The period functions {Ry,, (y)} for f € M,,(I", X) obey the relation

Ry (TN) =0, (6.4)
Ry (v1v2) = x(VD)Rrx(v2) + Ry (YD) my2 (1.2 € T). (6.5)

The latter identity is readily checked as follows.

Ry (r1v2) = flmvive — x(niv2) f
= XD (flmy2 = x2) f) + (flmyr = X)) f)my2
= XD Rz (v2) + Ry (Y1) Imy2. (6.6)
Hence, by (6.5), the condition (6.2) can be replaced by the one only for generators
of .
For convenience, we give the definitions of the space of negative weight holo-

morphic automorphic integrals (with characters) in terms of the generators for the
specific groups &(2) and T'(2).

Definition 6.2 (periodic automorphic integrals for & (2) and I'(2)). We set
fr+2) = f{),
1

feX®|rmf(—=) = f) e & |
f is holomorphic at i co
fr+2) = f{),

m T
fesw®| @+ (5
f satisfies (6.3)

M, (&(2),X%):

M, (T'Q2),%):

)-ro e,

Remark 6.2. If f € J#(}) is holomorphic at i oo and satisfies the conditions

fE+D = f@. T (1) - 10 = Rpg @) € &,
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then we see that

(fImT)(@) =Y (=D)"anq?

n>0

when the Fourier expansion of f is givenby f(7) =}, anq?. Namely, f satisfies
the condition (6.3) in the definition of periodic automorphic integrals for & (2).

Example 6.2. By Lemma 5.3, we have G (t) € My_4(&(2), C[z]) for each positive
integer k.

Remark 6.3. When f(7) € M, (&(2), ¥) with period functions { Ry (y)}, by virtue
of (6.5), we have f(t) € M,,(I'(2), X). Indeed, we have

Re(ST25™Y) = Re(S)|mT 28 '+ Rp (TS + Re(STH € X,

6.2. Differential Eisenstein series

We always assume that — < argz < 7 for z € C to determine the branch of complex
powers. Define

G(s,x,7) = Z/(mt +n+x)"7,

mnez

G(s,7):=G(s,0,7),
GWaD (s, 1) = Y mr+n) (@b e{0,1,... N1}

mnez
m=a (mod N)
n=b (mod N)

for s € C such that 9i(s) > 2. Here Z/ means the sum over all pairs (m, n)

m,nez
of integers such that the summand is defined. We sometimes refer to these series as

generalized Eisenstein series (e.g., [3]). Remark that

) b
G(N,a,b)(s’ ‘L’) — N_SG(S, at + ’_[)’

N

in particular that G300 (s 1) = N™5G(s, 7).
It is known that G(s, x, t) is analytically continued to the whole s-plane, and
G (s, x, T) can be written in the form

1 1
G(s,x, 1) = Z T + 1_(S)A(s,x, 7),

n>—x

when x € R, where A(s, x, 7) is holomorphic in s and . In particular, we see that

G(=2k,7) = GELD(=2k, 1) =0
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for any positive integer k (see [26, Theorem 1]; see also [3]). We now introduce the
notion of differential Eisenstein series.

Definition 6.3 (differential Eisenstein series’). For m € Z, define
4G (1) 1= 2-G(s.7)
mn Te= aS 5.t s=m

. 9 o
dGWiab) (1) .= L GWiab) (s, ‘L’)‘ (@belo1,....N—1}).
S=m

as
It is immediate to see that dG,,(t + 1) = dG,,(r) and dG{"**?) (z + N) =
dG,(nN a.b) (7). In the case where N = 2, it is convenient to introduce an abbreviation
’b ; ’b . .
dG%? (¢) for dGZ%) (), which will appear frequently below.
For later use, we recall the definitions and several results on the double zeta func-
tions and double Bernoulli numbers [1]. Let @ = (w1, ;) be a pair of complex
parameters. Barnes’ double zeta function is defined by

6H(s,z | w) = Z (mw1 +nwy +2)~° NRs > 2),

m,n>0

and the double Bernoulli polynomials B; x(z | w) are defined by the generating func-
tion

tZezt
(o —T)(ewn = Z Bri(z | @

It is well known that the Barnes double zeta function is extended meromorphically
to the whole complex plane and the special values at the non-positive integer points
are given by (see, e.g., [1])

Lemma 6.1. For each m € N, one has

By m+1(z | ®)

Hl—m.z | o) = oy ——

Example 6.3. We have

_ Bagp(5F [ (=L0) 1
(-1.0)) = okt Dokt <ol
B ok42(t | (=1,7))

2k + 1)(2k + 2)

e (—Zk’ ! ‘

&(=2k.t | (=1.7)) =

—C[]
T

5We have used the notation d E, (7) in [22] in place of dG,,, (t). In this paper, however, we
use the notation dE,, () for representing the normalized differential Eisenstein series in §6.6,
which follows the standard use of Eisenstein series in the classical theory of modular forms.
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6.3. dG_,, is an automorphic integral
We notice the following elementary fact.

Lemma 6.2. Ift € b and (a,b) € R? —{(0,0)}, then
1
arg(——>+arg(ar+b)>7r = a>0,b=<0.
Lemma 6.3. Foreachk € N, one has

dG_zk(—%> - (—%)Zk{dG_zk(f) —4kmity(=2k, 7 | (1, 7))

Proof. Tt follows from Lemma 6.2 that
G(s,—%) = Z/(—m% +n)_s
m,ne
5 (Jone )

m,nez
( ) { Z/(m'c + n)—s + (62nis —1) Z(m_[ + n)_s}
m,nez rg;g
= (_%) {G(s,7) + (¥ — 1)ia(s, T | (—1,7))).
This yields
ad 1
gG(S, _;) s=—2k
d —s
= g(—%) G2k D)+ (747 — 1) (=2k. 7 | (—1,7))}

k .
(=2) " THO6. 0 + @ = DG, | (-1 D) ok
T S

(D (o, st akrt o)

Thus, we have

k
dG_zk(—%> - (—%)2 (4G _yy (1) — 4kmila(=2k, 7 | (—1,7)))}. .

By a similar calculation, we also have the following result.

Lemma 6.4. For each k € N, one has

1
dGl_zlk( ;) = 72k (dGYL (1) — dkmily(—2k, T — 1 | (=2.21))).
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By the lemmas above, we obtain the
Corollary 6.5. One has
dG_y (1) € M3k (SL2(Z). C (1)),  dG%5, (1).dGL,, (1) € M_p (G (2),C(1))
for each k € N.

Remark 6.4. We observe that dG”), (t),dGL;, (v) € M_5(T'(2), V,1), V2,1 being the
space defined in Example 6.1.

Remark 6.5. A recent calculation due to Shibukawa [41] on the same analysis of the
lemmas above shows that dG_,; () € M_»(SL2(Z), M(h)) but ¢ M_»; (SL>(Z),
C(t)) fork > 0.

Remark 6.6. Although we have given the proof of lemmas above directly, we may
extend these relations to the general case by a similar analysis in [3].

Remark 6.7. The function dG):' (r) can be written as

dG,;' (1) = (1 +27")dG,,(v) — 27"dG,,(t/2) — dG,, (27).

6.4. An expression of w4(¢) in terms of differential Eisenstein series

By Lemmas 6.3, 6.4 and 6.1, we have
dG", (—%) = r2(dck3 (1) - %"32,4@ ~11(=2,20))).
dG_z(—%> = 172(dG_,(x) - ?32,4@ [(=1.0).
A straightforward calculation using these formulas shows that
TBaa(t | (—1,1)) +2Bra(z — 1| (—2,217)) = —%‘L’.
Therefore, if we put
$1(7) := —87%{7dG_,(v) + 2dG", (1)}, (6.7)
then we have
HE+D =40, Po(-2) -0 =4

These relations are exactly the same as the ones (5.14) for G (r) = G1(r) — 56£(3).
Therefore, the difference G;(7) — 56¢(3) — ¢1(7) is a classical holomorphic modular
forms of weight —2 for I"(2). Since M_,(I"(2)) = {0}, we have

G1(7) = ¢1(7) + 56¢(3). (6.8)
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Putting this expression into (5.10), we obtain the following

Theorem 6.6. The generating function w4 (t) of Apéry-like numbers J4(n) is given
by

74 4(0)*
2 65(c)?

wheret = t(t) = —0,(1)*04(z) 2.

wa(t) = [1 ! df{7dG_2(r)+2dG1_’21(r)}],

tride

6.5. Fourier expansion of dG_,, ()

We now compute the Fourier expansion of the differential Eisenstein series dG_,; ()
using the result in [41]. Similarly to the classical Eisenstein series, we will find that
the Fourier expansion of dG_,; (7) is given by the Lambert series. In particular, we
notice that dG_,, () is not a cusp form.

We first recall the result for the bilateral zeta function in [41]. For (w7, w;), the
bilateral zeta function & (s, z | w1, wy) is defined by

E2(5,z | w1, w2) :=0a(s, 2 + w1 | w1, @2) + 82(5, 2 | —w1, w3). (6.9)

We take w; as 0 < arg(w;) < & in the subsequent discussion. Then the following
Fourier expansion of &, (s, z | —1, w) is known ([41, Theorem 4.7 and Corollary 4.8]).

Proposition 6.7. Suppose z, w € Y. Then we have
e—(n/z)iS(zn,)s e ns—lezninz

F(S) — 1 _eZJ-rina)'

EZ(S’Z | _l’w) =

(6.10)

Moreover, one notices that the bilateral zeta function & (s, z | w1, ®) is an entire
Sfunctionin s € C and form € N

E2(1—m,z | w1, w) =0. (6.11)

Using this proposition, we prove the following

Theorem 6.8. The Fourier expansion of the differential Eisenstein series dG_,; (7)
(k € N) is expressed by the Lambert series as

k o ok
dG_,.(v) = M{z n—2k—1

(27r)2k
_(=DF k)
- (27r)2k

2k + 1)}

1— eZninr

{§(2k + 1) +23 o (n)ez’”’”}.

n=1
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In particular, the constant term is given by the multiple of {(2k + 1) as

. (=¥ (2k)!
dG_,; (ic0) = am) {2k +1) #0.
Proof. We observe that
!/
G(s,t) =) (mo+miv)™
mg,m| €L
/ /
= Z (mo+my7)™" + Z (mo—my7)~° —Zmo_s
mo€Z,mi€L>q mo€Z,my€l>g mo#0

=(1+ e”is){ Z, (mo + mi7t)~* — g“(s)}.

mo€Z,m1€~Lx>o

By (6.11), since

/
0=6(1—-2kz|-L= Y (+mo+m1) = + 27,

mo€Z, m EZZ()

for k € N, we have

/
Z (mo +m17)"*|5=—2k = 0.

mer,mlelzo

It follows that

B%G(s, 7) - 23{ Z/ (mo + mlr)—S} T 20/ (=2k). (6.12)

s=—2k ds

mo€Z,m€Z=

On the other hand, we observe
SZ(S’Z | _1’_‘[) = §2(S7Z - 1 | _1’_‘[) + ZZ(S’Z | 17_T)

o0 [o¢]
= Z(z —1—mo+mr) + Z(z +mo +my7)”°

mo,m1=0 mo,m1=0

= Z Z(Z +mo +myt)”°

moeZ m1=0

= Z/ (z+mo+mt)y ™ +2z77°.

mo€Z,m EZZ()
By the Fourier expansion (6.10), using the fact

d 1

asT(s) = (2k)!,

s=—2k
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we have

P (—1)k(2k)! S n—2k—162ninz
—& (s, z | —l,r)‘ = - '
0s s=—2k (27.[)2 = 1 — e2mint

(6.13)

Therefore, we have

%{ Z/ (mo +m17)_s}

mo€Z,m1€Zx>o

= {a%éz(s,z | —l,r)‘sz_zk + (logz)sz}‘

(DR nRd
- 2k _ p2mint”’
(2n) — 1 — e2mine

s=—2k

z=0

It follows from (6.12) that

C2(=DFRKR) G 2k
—nk 2k _ p2mi
— 2k (271') — 1 e Tint

0
4G_yy () = 5-G(5.7)| —2(~2K). (6.14)

Using the functional equation

2s—1 K
r(;)r (1l —s5) =cos %sg“(s)
and i1
— = (2k)!,
ds T'(s) ls=—2k (2k)
we have X
(=D (2!
"(=2k) = ————C(2k + 1).
(=20 = S5tk 4+ 1)
Hence, we complete the proof of the theorem. ]

Remark 6.8. We note that the function ¢; (7) is expressible only by dG_, as
$1(t) = 871%(8dG_,(t/2) — 17dG_,(7) + 2dG_,(21)).

By Theorem 6.8, we have
1 oo
dG_,(7) = —P{CG) + 2; 0—3(")‘1"}-

Comparing with (5.11), we obtain (6.8) again.
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Remark 6.9. Like Ramanujan did, we may evaluate values of the Lambert series at
7 =i if k € N is odd as follows:

ad 1 ki(2m)2k+1 , , 1
D= T = aCnfe 33y Bk | CLD) 4+ 50Qk+ 1),

n=1

(6.15)
In fact, by Lemma 6.3 together with Example 6.3, we have

B ok42( | (—1,1))

N
4G5 (0) = 2kni = k1 2)

whenever k is odd. Hence, the formula follows immediately from Theorem 6.8.

6.6. Hecke operators acting on automorphic forms of negative weight

We give a short remark on the Hecke operators acting on the negative weight auto-
morphic forms.

Let n € N and set M, := {g € Mat,(Z) |detg = n}. Since the group SL,(Z)
acts on M, on the left, one may decompose M, into orbits. We now consider the
automorphic forms of weight —k (k € N). For f € M_;(SL»(Z), X), we set

(T(n) f)(x) = n7* 2713 (f e (0). (6.16)

HESL2(Z)\M,,

Here we notice that the sum Y, cq; , (z)\m,, |-k« depends on the choice of a sys-
tem of representatives {i} for the orbits SL,(Z)\M,,. Actually, if we take another
representatives {yu} (y € SL,(Z)) we observe that

S oSl =D flwylowm

WESL2(Z)\Mp, WESL2(Z)\M,
= ([ +RFW)km €D flosep + X
WESL2(Z)\M, WESL2(Z)\M,

This fact shows that 7'(n) f is determined modulo the space X for another choice
{yu} of the representatives for SL,(Z)\M,,. This observation, however, proves also
that

Lemma 6.9. Let f € M_;(SLo(Z), X). Then for y € SLy(Z) we have
T'(n)fl-ky =T(n)f modX (6.17)

for any choice of a system of representatives {jL} for SL,(Z)\M,.
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This lemma shows that for n € N the operator T'(n) defines a well-defined linear
endomorphism of M_;(SL,(Z), X). We call T'(n) the Hecke operator of index n
(acting on the automorphic integrals of negative weight). Similarly to the classical
case, we have the following

Proposition 6.10. The Hecke operator T (n) (n =1,2,...) on M_;(SL2(Z), X) pos-
sesses the following properties.

(1)  The operator T (n) has the following expression.

(T )@ =t Yk p () = Dyt (D),

ax1 d a>1 d
ad=n ad=n
0<b<d 0<b<d
(6.18)
(i) Let f(r) = Y120 AM(Dg' (g = €*™7). Then
> l
T @) =Y ( Y d*a(53))d" (6.19)

1=0 d|(n,l)

In particular, the space of cusp forms C_(SL(Z), X) is stable under T (n).
(iii) Letm,n € N. Then

T(m)T(m)=>» d*'T(um/d*) = T(m)T(n). (6.20)
d|(n,m)

In particular, T (n)T (m) = T (nm) whenever (n,m) = 1.

Proof. The proof can be done in the same way as the classical case. Actually, since
every matrix u € M, can be made upper triangular by multiplying it on the left by y €
SL,(Z), we have a system of representatives for SL,(Z)\M,, as + (g b*"id’ ) (ad =n)
witha > 0 and 0 < b < d. With this choice of representatives, by the definition (6.16),
we have the expression (i). Using the elementary relation

o ar+b >
_ d
Y (=) =d X Amdyg™.
b=0 m=0
we have the formula of (ii) from (i). We notice that the constant term in g equals

0_k—1(d)A(0), whence C_; (SL,(Z), X) is stable under T (n). The last assertion (iii)
can be deduced from the formula (ii) by computation. This completes the proof. =

We now show that the differential Eisenstein series dG_,; € M_»; (SL2(Z),C(t))
is a joint eigenfunction of 7'(n) forall n € N.
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Lemma 6.11. We have
(T (n)dG_y;)(7) = 0—2x—1(n)dG_,; (7)
foreachn,k € N.

Proof. Consider the function

Fn(s,r)=ns_12d_sG( ar—|—b) Za G( af—|—b)

a>1 a>1
ad=n ad=
0<b<d 05b<d
Then we observe
0
—F
as n(S, WS=—2k
1 J at +b 0 at +b
=-) 1= G(—2k, 2k_G (s,
n< {asa s=—2k ( d )—|—a s (S d )s=—2k}
ad=n
0<b<d
1 _ at+b
- Y a 2de_2k( v ) = (T(n)dG_,,)(1).
a>1
ad=n
0<b<d

On the other hand, we have

Fo(s,7) =n*"! Z Z/ (dm + (at + b))™° = 05-1(n)G(s, 1),

a>1 m,leZ
ad=n
0<b<d

and hence

0 0 0
FG| = gon)| Gk D+ o G|

= 0_2k-1(n)dG_,; (7).
Thus, we have the lemma. n

This lemma implies again that dG_,, can have the Fourier series expansion as

oo
dG_,; (1) = dG_,; (fo0) + Ci Z O_ak_1(n)g" (g = €¥7'7),

n=1
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for some constant Cy.. From Theorem 6.8 one finds that C, = ZM. We define

(2n)2k
the normalized differential Eisenstein series dE_,;, of weight —2k as
dE_,, (1) __2 dG_,; (7)
T):= T
2k Cel(k +1)
2 o0
=14+ — E O—sk—1(n)q".
L2k + 1) Z 2h—1(n)q

Then the associated L-function of dE_,, is given by

LWE_y.5) =Y. "‘%‘1(”) = £(s)¢(s + 2k + 1).

n=1

Namely, dE_,; is a Hecke form (see [13]). We observe in particular that L(dE_,;, s)

has a unique pole at s = 1, while there is no pole at s = —2k. Notice that since

L(Ey,s) = ¢(s)l(s — 2k 4+ 1), E,; being the classical Eisenstein series of weight

2k for SL»(Z), L(Eog, s) has a unique pole at s = 2k butnotats = 1 for k > 1.
Further, the completed L-function

_ s
E_ok(s) = £ + 2k + 1. £() =7 0(5)¢0)
satisfies the functional equation
B2k (—2k —5) = E_o(s).

Remark 6.10. Note that the function E_, (s) is meromorphic but not entire. It would
be interesting to study a Hecke-Weil type theorem about the correspondence between
negative weight automorphic integrals and their L-functions (Euler products).

7. Periodic Eichler cohomology for automorphic integrals

We construct a cochain complex from the period functions of negative weight periodic
automorphic integrals. Let us fix an integer m. Denote by I" a congruence subgroup
of level N, and y a multiplicative character of T such that y(T") = 1. Suppose that
X is a ["-submodule of the space F () of functions on }) via the action f |my (yenl).

7.1. First cohomology

Let C 1(T, %) be the space of all maps from I" to X. We call R, € C (T, X) a (twisted)
1-cocycle with weight y if it satisfies

Ry(y172) = x(yD)Ry(r2) + Ry(y1)|,,72-
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Notice that R, (/) = 0 if R, is a 1-cocycle. We denote by Z [lm](F, X) the set of all
(twisted) 1-cocycles (Here and after, to avoid complications, we do not specify the
character  in notation). Obviously Z}, (T, %) is a subspace of C' (T, X).

Define the element §f € C1(T", ¥) for f € ¥ by

GHW) = fl,y—x)f yel).
By a similar calculation as in (6.6) one has the
Lemma 7.1. §f € Z[lm](F, ¥) for each f € ¥.
Define the subgroup B[lm](l“, ¥)of Z [lm](F, ¥) by
B, (T.%) =im§ = {8f | f € ¥}.

We call an element of B[lm](F, X) by a (twisted) 1-coboundary. The quotient group
defined by
Hpy, (T, %) := Z, (T, %)/ Bj,1(T, ¥)

is called the first Eichler cohomology group of weight m for the I'-module X.

Periodic cohomology. Assume that I" is a congruence subgroup of level N. For f €
M, (T, X), put
RY(y) = fl,,y —x(Sf (yel).

It is easy to check that R}” gives an element in Z [1m] (I, X) (see (6.5)). We notice that
R}”(TN) = f(tr + N) — f(r) = 0 by definition.

Definition 7.1. Define
Zp) (D %) := {R € Zj,y(T.%) | R(T™Y) = 0},
Bl (N %) == {8f € BLy(N.®) | f €&, f(x+ N) = fO}C Z},y (. %)),
Hpy (T, %) := Z, (T, X)/ Bj,, (T, ¥).

We call H [lm] (T, X) the first periodic Eichler cohomology group (of weight m).

Let f € My(T, %). We sce that R € Z} (T, ¥). If R € B}, (T, %), then
there exists some g € X such that R}” = 6g and g(t + N) = g(t). It follows that
(f — g)‘my = f — g, which implies that f — g € M,,(I") and hence g € M, (T, X) +
M, (T') = M, (T, X). Thus, we have an injection

My (. %) — H} (T, %),
where we put

M(T, %) := My (T, %) /(X N My (T, %) + My (T)). (7.1)
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If m <0and X C C(7), then we have

M, (T, X)/(constants) 1 € X,

My (T, %) = {
M (T %) 1¢%.

In particular, we have the inequality
dim M (T, %) < dim f}},,(T, %). (7.2)

We also have
dim Hp, (T, %) < dim Hp, (T, %) — 1 (7.3)

when X = C(7) or X = C[t]_, (see [22, Lemma 17]).
Notice that 1 = j(y, 1) 2{1 — (1 — j(y, 1)?)} € M_»(&(2), C[r]2). By (7.2)
and (7.3), we have

1 < dime M*,(&(2).Clr]p) < dime H (I (2),C[r]2) — 1
since G € M_»(&(2), C[t],). It is known in [10] that
H 3 (T(2), Cltlar) = Mag42(T(2) @ Car12(T(2)),

Cri+2(I'(2)) being the space of cusp forms of weight 2k + 2 for I'(2). Since one has
both dim¢ M4(T"(2)) = 2 and dimc C4(I"(2)) = 0 (see, e.g., [42]), one concludes that
dimc M*,(I'(2), C[t]2) = 1. Thus, we have the following result.

Corollary 7.2. M_»(&(2),Clt]s) = M_»(I'(2).C[t])) =C -G, & C - 1.

This shows that the M_, (& (2), C[t],) is essentially given by wy, i.e., the special
value o (4).
The following lemma is obvious.

Lemma 7.3. Assume that a congruence subgroup I" of level N contains S. If [ €
M_i (T, X) we have

RFA(TY) (1) =0, RFA(S)(S1) =—1*R*($)(0).

In particular, Rj?k (y)eZ [lm](F , X). From the cocycle condition, one knows that R €

Z[lm](F, ¥) is determined by the double coset of Too = (TN):

R(TYy)(x) = R(y)(r), R(yTY)(x) = R(y)(T" 7).
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7.2. Cochain complex

Let us put
C" =C"(T, %) := Map(T"", %),

forn =1,2,3,...and C® = C°(T, X) := X. Foran n-tuple y = (y1,....yn) € I'",
we define

Ty =1 V-1 Vi+1. - ¥n)s Gy =i V1Yo Vn)
——

J-th

(j =1,2,...,n) for convenience. Define the linear operator §”: C"* — C"*1 by

G P = LFTDar + A @) fTary) + 31 £(Ey) (T4)

=1

for f € C"andy = (y1.....¥n41) € T"F1L.
Although we have given the proof of the following fact in [22], we give here a
shorter one.

Lemma 7.4. §"t1 08" = 0.

Proof. Take arbitrary f € C".Lety = (y1.....Yn+2) € "2, One has
6" 1) Tky) = F@Tey)|, Teyr + D" x(Tiyns1) £ Tns1 Tey)

+ ) (=17 £(€Tky)
j=1
and
" )Cy) = fFTEY)],Eiv1 + (D" X (Ciyns1) f(Tus1Cry)

n

+Y (=D feeey)
=1
forl <k <n-+2and 1 <j <n+ 1, where Ggy,, €y, are the r-th entry of Ty y,
€jy. We have

. V2 kzl, — Yrn+1 k:n—|-2,
+1 =
o Yn+2 k<n+2,
and

21 J =1, Ynt2Vn+1 J =n+1,
Ejl/l = ‘€j1/n+1 = )
Vn+2 j<n+1.
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Using these, we have

(6" 08" N)(@) = E" Tt + D" 22" ) Tnray)

n+1
+ Y (=D f)Ey)
j=1
n+1 ) n
=Y (=7 Y (=D feeey). (7.5)
j=1 =1
which surely vanishes. =

Thus, we can now define cocycles and coboundaries
Z3y (0 %) :=kerd", B[ (T, %) :=im§""!
in C"(T", X) and the cohomology group

foreachn =0,1,2,....
The following is a special case of the result by Gunning [10].

Proposition 7.5. H[’r‘n](F, Clt]-m) =0ifn > 1andm < 0.

Periodic cohomology. We define the groups Z f;n ](F, X), E[’;n ](F ,X) and H [’,’n ](F ,X)
as follows:

CMT %) = {f € CP(T,&) | F(TRN . TFNY =0, Ky, kn € Z),
Zpt (0.%) == Z[, /(1. %) N C™(T. %),
B, (T, %) := Bl,(T, %) N C"(T, %),
Hipy (T, %) = Zjpy (T, X)/ By (T X).

Proposition 7.6. IfH[',’n](F, X) =0, then H~[Z1](F, X) = 0. In particular,
A} (T.C[t] ) =0 ifn>landm < 0.
Proof. This is obvious because Z f;n](F, X) = B[’in](r, X) readily implies

by definition. ]

Problem 7.1. When H, [’,’n ](F, %) vanishes? How about the periodic case H [’,’n ](F, X)?
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Zero-dimensional cohomology. The group H [‘3"](1“, X) is easily described. Indeed,
since B[‘in](l“, %) =im§~! = 0, we have

HO (T %) = Z0 (D.%) = {f € & | f(y) = x()j(r. )" f(x) forall y € T},
(7.6)
Ifm <0,% = Cl[t]_p, x is trivial and I" is a congruent subgroup of level N, then we
have

Hip(T.Clel-m) € {/ € Clelom | £z + N) = f(D),

f(Nf1+ 1) = (Nt + 1)mf(f)} =0,

from which it also follows that H{) (T, C[t]) = 0.
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