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Partial differential equations. — Free energies and Fichera’s quasi-static problem
for materials with fading memoyyby GIOVAMBATTISTA AMENDOLA and MAURO
FABRIZIO, presented by T. Manacorda.

ABSTRACT. — In this work we are concerned with the Fichera problem related to the quasi-static equation of
viscoelasticity. By the use of the space derived from the minimum free energy, connected with a viscoelastic
material, we prove a unigueness and existence theorem in a new large space of data.
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1. INTRODUCTION

The Fichera problem for the integro-differential equation of viscoelasticity is connected
with the study of the corresponding quasi-static problem. Fichera [11]-[13] observed that,
in contrast to the case of linear elasticity, this problem cannot be resolved without providing
the datum of the initial history and so working on the time intervabi). Other authors

[8], [9] studied the same problem on the intergabo, co), but they had to assign suitable
decay conditions for — oo on the solutions, which is the same as giving the initial
conditions.

In this paper, following the Fichera point of view, we prove that it is more convenient
to work on new certain spaces more natural than the ones studied up to now. Therefore,
we shall consider the topology connected with the minimum free energy, which provides
the largest spacgl from which to take the initial history. On the other hand, the space
of solutions is built by means of the dual space of thet¢atefined by the histories. For
such a Fichera problem, by means of these new spaces, we are able to prove existence and
unigueness for a wide family of initial data.

2. FADING MEMORY AND THERMODYNAMICS

A viscoelastic material is defined by a constitutive equation which relates the stress tensor
T to the deformation gradierft by means of a functional of the type
T(x, 1) =T(F'(x)),

where F'(x,s) = F(x,t —s) fors € R™ = [0, oo) is the history of the deformation
gradientF, x denotes the position vector ands the time.
In the linear case we have

T(x,t) = Go(x)E(x,t) + /OO G'(x,s)E"(x,s)ds,
0
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where E = (Vu + (Vu)T)/2 is the infinitesimal strain tensor. MoreoveFg(x) and
—G'(x, s) are symmetric tensors, as also is

Goo(x) := Go(x) + /00 G'(x,s)ds.
0

Furthermore, the tensosy(x) andG . (x) are positive definite. Of course, the study can
be generalized to a non-linear constitutive equation of the type

(1) T(x,t) = Go(x)P(F(x,1)) +/ G'(x, )P (F'(x,s))ds,
0

where® : R® - R3 is a non-linear, regular and odd functionof
The dependence onwill be understood and not explicitly written.
AmapP :[0,d,) — Lin, piecewise continuous and defined by
P(t)=E(x), t¢€(0,dp),
is called akinetic proces®f durationd, € R*™, a strictly positive real. ByT we denote
the set of kinetic processes such thaPif P, € IT then Py x P> € I1, where

P1(7) if 7 €[0,d,,),

Py Pa(t) = { Pt —dp) if T €[dy,, dp, +dpy);

moreover, ifP € I1, then P, .,y € IT denotes the restriction @ to [z1, 2) C [0, d)).
The state of the system will be denoted dywhile X is the state space. The map:
X x IT — X, which associates to any initial state € X and any proces® € IT the
final stateoy = p(o;, P), is called theevolution function

In general the stresB(¢) is a function of the state () and of the procesB(¢), that is,

T(t) = T(o(t), P(1)).

For a viscoelastic material the state is given by the histary = E' = (E(¢), E!),
whereEL(s) = E'(s) — E(¢) for s > 0 denotes the history relative to the instantaneous
value of E, and the process by

P(r)=E"(x), t1€l0,d)),
while the stress is now a function of the statg) only.
In the following we shall consider the wolk done on the procesB, defined as
dl’ ~ B .
W(o, P) = / T(E', EP (1)) - EP (1) dx.
0
DEFINITION 1 ([17]). Two strain historiesE], E} are said to beequivalentf, for every
processE” : [0, T) — Sym they satisfy
T(EL, EP () = T(EL EP (1)) Vo >0

equivalently, as proved by Gentjli4], two histories are said to be equivalent if for every
processt” : [0, ) — Symand for everyr > 0 we have

W(EL, ET) = W(EL, EP).
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For the linear case we have the following result.

THEOREM2 ([5], [6]). In the linear case, two historieB], E} are equivalent if and only
if E1(t) = E>(r) and

2 / G'(s+ 1)Ej(s)ds = / G'(s + 1)Ej(s)ds VT >0.
0 0

According to the definition of the state of a viscoelastic material, two couples
(E1(p), E;l(r)) and (Ex(1), E£2(T)) equivalent in the Noll sense are represented by the
same state (7) (see[[16]). In other words, the state can be expressed by the pair

o= (E@),I'(r))

where ~
I'(7) = —f G'(s + 1)E'(s) ds,
0

or equivalently by the function
I'(t) = —G()E@) + I' (1).
We also use the representation
o o
I'(r) = —/ G'(s + D)[E'(s) — E(1)] ds,
0
which can be chosen to characterize the state as well.
As shown in [[9], from the Second Law of Thermodynamics we have the following
restriction on the half-range Fourier sine transfornGéfs):
o
3 Gi(w) = / G'(s)sinwsds <0 Vo eRT™,
0
or equivalently one on the half-range Fourier cosine transform:

o
4) G (w) = / G(s)coswsds >0 Vw e R,
0

whereG = G(s) — G. From the Strong Form of the Second Law we also obtain [See [4])

(5) Goo > 0;
in particular, for a solid we hav€ o, > 0, while for a fluidGo, = 0.

DEFINITION 3 ([14]). A processE” : [0,dp) — Sym(dp < oo) is said to be dinite
work processf

. dP . .
w(', EP) =/O T(E", Efy ) - EP (r) dT < o0,

where0' denotes the null histor}aT(s) = Oforall s € RT, and E” is the ensuing strain
in (0, dp].
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Moreover, since the duratiafi of a processP is usually finite, we can defin® on

R* by putting P(7) = E.P(r) = Oforallt > dp and, assuming alsf(t) = 0 for all
7 > dp, the workw (0T, E?) in the linear case can be written in the form

® WO E) = %GOOE(dp) - E(dp)
1 o0 o0 . - p - p
+—/ / G(t —s)E"(zv)- E" (s)dtds
2Jo Jo

1 L (™ & o EP (o . EP(en
= 5GocE(dp) - E(dp) + Zf Ge(wE (0) - E} (w)dw,

whereE? is the Fourier transform of ”.
The set of finite work processes is given by

7 ng{EP; foofooé(lr—sDEP(r)-EP(s)dtds<oo}.
0 0

This set is a Hilbert space if the kerr@lsatisfies the condition imposed on the constitutive
equation by the Second Law of Thermodynamics (h.gw) > 0) with the norm given by

. o0 00 v . .
IEP)? = / / G(t —sDEP(x) - EP(s)dt ds
o Jo
1/ ~ P TP N
= —/ Ge(wE () £ (w)dw.
T J-c0
The domain of definition of the admissible states is the set of all the strain histories
rendering the work well defined when the process belonggto
The work done on a process of durationdp < oo, on supposing thaP (z) = O for
T >dp andE(r) = 0fort > dp, assumes the form
t P 1
®) W', E”) = EGOOE(dP) - E(dp)

l [o)0] o0 o - p - p
+—f / Gt —sDE " (v)- E" (s)dtds
2Jo Jo

- %GOOE(t) CE(r) — /Oo I'(v) - EP (1) dt < 0.
0

Therefore the set of admissible staféér) is given by the duaky, of Hg, namely
2 00 2 . .
Hy = {1’(1); / I'(v) - EP (t)dt < o0, VET € HG}.
0

DEFINITION 4. A functiony : Dy, — R is called afree energyif

(a) the domainDy, C D is such that, for every; € Dy and P € I, the states =
p(o1, P) € Dy,
(b) if o7 = (0, 0") is the zero state, them' € Dy, andyr(oT) =0,
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(c) for any pairoy, o2 € Dy, and P € I such thato (o1, P) = o2 we have

©) V(02) — ¥ (o1) < W(oy, P).

In linear viscoelasticity, many free energies can be considered [2]. The famdfy
free energies is a convex sgf;has a minimum and a maximum elemept, andyry,. In
particular, we recall that there is an intermediate free energy called the Graffi-\Volterra free
energy, given by

1 1 [>
(10) VG (E") = EGooE(t)-E(t)—E/O G'OIE"(5)—EM][E"(s)—E®)] ds,

whereG'(s) < 0, G”(s) > 0.
The maximum free energy, considered(ih [7], has the following expression:

(11) ym(E") = %GooE(t) -E()

1 (oo [oo t [
+§/o /0 G12(|s1 — s2)[E'(s1) — E@®)] - [E' (s2) — E(t)] ds1ds2,

82
whereGia(ls1 — s2|) = 77775 G (Is1 — s2).

Finally, the minimum free energy was found by Breuer and Onat [1] in 1964 in the
following form:

. 1
(12) Ym(Em) = EGOOE(I) ~E(1)
1 o o o . .
w5 [ ] Gl sehEns) - Entsd dssdse,
2Jo Jo
whereE,, is the optimal process which yields the maximum recoverable work, but it is not
a functional of the historyz’ (s), or of the statd’ = (E(z), I'(7)).
_ Golden [15] was able to give a representation of the minimum free energy in terms of
I'(7) as
‘ 1
(13) Ym(I') = EGOOE(t) - E(1)
1 [} %) . .
+—/ / H(t,t)I'(v) - I'(t)dr d7,
2Jo Jo

whereH (z, 7') is a suitable kernel depending @iy moreover he proved that; is the
domain on which the minimum free energy is defined.

3. QUASI-STATIC PROBLEM IN LINEAR VISCOELASTICITY

Because the constitutive equation of linear viscoelasticity can be written in the form

t

(14) T(x,t) =G(x,t)Vu(x,0) —l—/ G(x,t — 1)Vi(x, 1) dt — I%%x, 1),
0
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the equation of motion becomes

t

(15) pii(x, 1) :V-/ G(x,t —1t)Vu(lx,t)dt +b(x,1),
0

where ;
b(x,t) = f(x, 1)+ V- [=1°x, 1) + G(x, 1)Vu(x, 0)]

is a given function inf2 x RT. Lettingv = i we can write the differential equati15)
in the form (see [3])

t

(16) ov(x, 1) =V / G(x,t —1)Vu(x,7)dt + b(x,1) on2 xR*.
0

This is a differential equation in the unknown functionto which we must associate

initial and boundary conditions. For this purpose, we note that in the general case we have
initial conditions expressed by a known functiotx, 0) = vo(x); however, this function

can always be supposed to be zero by changing the sources and, therefore, we assume the
following data:

(17) v(x,00=0 VxeR2, vx,1)=0 V(x,t)€d2 xR,

Let w be a smooth vector function a2 x R*, vanishing on the bounda®gs2 and
such thatw(x, 7) = O for allx € £2. Inner multiply (16) byw and integrate o2 x [0, T']
to obtain

T
(18) / f pU(x, 1) - w(x,t)dxdt
0 2

T t
+/ / / G(x,t —t)Vuv(x,t) - Vw(x,t)dt dx dt
0 2 J0

T T
—/ / Io(x,t)-Vw(x,t)dxdt—/ / f&x, ) - wx,t)dxdt =0,
0 2 0 2

which corresponds to the Virtual Work Principle and leads to a new definition of weak
solution.

Now, we are in a position to consider the quasi-static problem, which is connected
with equations[(1]8) andl (17), on the time doménoo), and is given in weak sense by
the system

o0 t
(19 / / / G(x,t —t)Vuv(x, 1) - Vw(x,t)dtdxdt
0 2 J0

—/OO/ [fCx,0)-wx, 1)+ 1%, 1) - Vw(x, )] dxdt =0,
0 2
(20) v(x,00=0 Vxe, v, 1)=0 V(x,1)ed2 xR,

So, in order to obtain a rigorous definition of solution according to the equglity (19),
we need to fix the function space for the functiaris, ) andw(x, ¢t). We introduce the
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spaces

He(RT; HY(2)) = {v € L2 (RY; HY(2));

o0 o0
/ / / G(x, |t —t')Vu(x, ') - Vu(x, t)dxdt’ dt < oo},
0 0 2

while the stateg(x, ¢) will be elements of the spadél, (R*; H3(£2)).
The spacé{s(R*; H(;}(.Q)) is a Hilbert space with respect to the inner product

(v1, )M, 2/0 /0 /Q[Goo(x)Jer?(x,r—f’)]

x [Vvi(x, ') - Vva(x, ) + Vi(x, 7) - Vuo(x, t)] dx dt’ dr.

DEFINITION 5. A functionv € Hg(R™T; H&(SZ)) is called aweak solutiorof the quasi-
static problem related to equatiofs6)—{17)with data f € H(R*; H~1(£2)) andI® e
Hip (RT; HY($2)) if it satisfies the identit§19) for anyw e ’I—[G(R+ H}($2)).

Now we are in a position to state the following theorem.

THEOREM6. Assume that the kernél(x, -) € Ll(IRJr L°(£2)) satisfies the thermody-
namic conditionG.(x, w) > 0 for any (x, w) € £2 x R. Then there exists a unique weak
solutionv € Hg(RT: H}(£2)) of the problem(1§)-{17)for any 10 € H;(R*: HE($2))
and f € L?(RT; H—l(Q)).

ProOF Consider the Fourier transform of the systém| (I6)}-(17) under the quasi-static
hypothesis

(21) V(G o) Vi (x, )] = = fr(x,0) + V- 12(x, ),
(22) vy (x, w)]pe =0.

For any fixedw € R, the sesquilinear form
(23) a(vy(x, w), wi(x, ) = / [G4(x, ®)Vvi(x, ®) - Vwi(x, w)] dx
Q

is a bounded and coercive formel(Q). Indeed, it is easy to verify that it is bounded. In
order to obtain the coercivity, we have to prove that for any fixeel R the inequality

la(vy (@), v+ (@) = k(@) v (@) 2

holds for allv; € Hol(.Q), wherek(w) is a positive constant. By the definiti@ZB), since
Gi(x,w) = G.(x,w) —iG(x, w), for anyw € R we have

la(vy (@), vy (@)] = /Q Ge(x, 0)Voi(x, @) - Vui(x, ) dx = k(o) [v4 (@) g1

wherek(w) = inf{|G.(x, w)|; x € 2}.
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This proves that for any fixed € R, the problem[(Z2[1){(32) admits a solution €
Hi () if the difference

Fi(x,0) = fy(x,0) — V- 1(x, )

is an element o ~1(£2).
Now, in order to study the behavior of. whenw — oo, we apply the Parseval
theorem to[(1B); after an integration by parts, we get

(24) / fQ{Per(x,w)~(iww+(x,w)—wo(x))

— G (x,w)Vui(x,w) - Vwy(x,w)}dxdw

- _/00 / {f+(x, 0) - wi(x, 0) + 12(x, ) - Vug (x, o)} dx dw.
—00 J 2

It is known that for any vector functioff € H~1(£2) there exists a tensor function
A € L2(2) such that for alb € H(£2),

/OO/ f(x,t)-v(x,t)dx:/oo/ A(x,t) - Vou(x, t)dx;
0 2 0 2

moreover, we recall that in our case

l o
v(x,0) = —/ v+ (x,w)dw = 0.
T

—00

Hence, equatior (24) can be written fo(x, 1) = v(x, t), that is,

(25) /00 / {—pv4(x, w) - iwvy(x, w) + G4 (x, ) Vvy(x, w) - Voyr(x, w)}dxdo
—00 J 2
I/OO / [A+(X,w)+12(x,a))]-Vv+(x,a))dxda).
—00 J 2

We note that the first term in the integral on the left hand side of this equation is an
odd function ofw and, therefore, its integral ov@ vanishes; moreover, the integral of the
second term reduces to

o0
f /G+(x,a))Vv+(x,a))-Vv+(x,a))dxda)
—o0 J 2
0 —
:/ /Gc(x,w)Vv+(x,w)-Vv+(x,a))dxda),
—o0 J 2

sinceG is symmetricG;+ = G, — iG; andGg is an odd function.
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Application of the Schwarz inequality to the integral on the right-hand sidg ¢f (25)
yields

(26) / / Gi(x,w)Vor(x,w) - Vor(x,w)dxdw
—00 J 2

[’ 1/2
< {/ f Girx, )AL (x, @) + 12(x, 0)] - [A4(x, ) + 19(x, w)] dxda)}
—o0 J 2

e} 1/2
X {/ / Gi(x,w)Vui(x,w) - Voir(x, w)dx dw} ,
—o0 J 2

whence it follows that

27) /OO / G.(x,w)Vvy(x,w) - Voy(x,w)dxdw
—00 J 2

5/ /G;l(x,w)[A+(x,w)+12(x,w)]-[A+(x,w)+1$(x,w)]dxdw.
—o0 J 2

Therefore, ifA + 1° € H(RT; L2(52)) we havev € Hg (R*; HE(52)). From [27)
and by the Poincértheorem, it follows that there exists a constan?) such that

(28) C(£2) foo / G:(x,w)v4(x,w) - v4(x,w)dx dw
—00 J 2

S/Wf Girx, )AL (x, @) + 12(x, 0)] - [A4 (x, ) + 19(x, w)] dx dw.
—00 J 2

Hence, if f € H,(RT; H-1(£2)) andI° € H,(R*; L?(£2)), then we see that the
function v belongs toHg (R*; H1(£2)) and it is a virtual work solution of the problem
(I8)—[IT) in the sense of Definition 1.1.

Research performed under the auspices of GNFM - INDAM and partially supported by Italian MIUR (Cofin
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