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Partial differential equations. — Free energies and Fichera’s quasi-static problem
for materials with fading memory, by GIOVAMBATTISTA AMENDOLA and MAURO

FABRIZIO, presented by T. Manacorda.

ABSTRACT. — In this work we are concerned with the Fichera problem related to the quasi-static equation of
viscoelasticity. By the use of the space derived from the minimum free energy, connected with a viscoelastic
material, we prove a uniqueness and existence theorem in a new large space of data.
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1. INTRODUCTION

The Fichera problem for the integro-differential equation of viscoelasticity is connected
with the study of the corresponding quasi-static problem. Fichera [11]–[13] observed that,
in contrast to the case of linear elasticity, this problem cannot be resolved without providing
the datum of the initial history and so working on the time interval [0,∞). Other authors
[8], [9] studied the same problem on the interval(−∞,∞), but they had to assign suitable
decay conditions fort → ∞ on the solutions, which is the same as giving the initial
conditions.

In this paper, following the Fichera point of view, we prove that it is more convenient
to work on new certain spaces more natural than the ones studied up to now. Therefore,
we shall consider the topology connected with the minimum free energy, which provides
the largest spaceH from which to take the initial history. On the other hand, the space
of solutions is built by means of the dual space of the setH defined by the histories. For
such a Fichera problem, by means of these new spaces, we are able to prove existence and
uniqueness for a wide family of initial data.

2. FADING MEMORY AND THERMODYNAMICS

A viscoelastic material is defined by a constitutive equation which relates the stress tensor
T to the deformation gradientF by means of a functional of the type

T (x, t) = T̂ (F t (x)),

whereF t (x, s) = F(x, t − s) for s ∈ R+
= [0,∞) is the history of the deformation

gradientF , x denotes the position vector andt is the time.
In the linear case we have

T (x, t) = G0(x)E(x, t)+

∫
∞

0
G′(x, s)Et (x, s) ds,
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whereE = (∇u + (∇u)T )/2 is the infinitesimal strain tensor. Moreover,G0(x) and
−G′(x, s) are symmetric tensors, as also is

G∞(x) := G0(x)+

∫
∞

0
G′(x, s) ds.

Furthermore, the tensorsG0(x) andG∞(x) are positive definite. Of course, the study can
be generalized to a non-linear constitutive equation of the type

(1) T (x, t) = G0(x)Φ(F (x, t))+

∫
∞

0
G′(x, s)Φ(F t (x, s)) ds,

whereΦ : R3
→R3 is a non-linear, regular and odd function ofF .

The dependence onx will be understood and not explicitly written.
A mapP : [0, dp) → Lin, piecewise continuous and defined by

P(τ) = Ė(τ ), τ ∈ [0, dp),

is called akinetic processof durationdp ∈ R++, a strictly positive real. ByΠ we denote
the set of kinetic processes such that ifP1, P2 ∈ Π thenP1 ∗ P2 ∈ Π, where

P1 ∗ P2(τ ) =

{
P1(τ ) if τ ∈ [0, dp1),

P2(τ − dp1) if τ ∈ [dp1, dp1 + dp2);

moreover, ifP ∈ Π, thenP[τ1,τ2) ∈ Π denotes the restriction ofP to [τ1, τ2) ⊂ [0, dp).
The state of the system will be denoted byσ, while Σ is the state space. The mapρ̂ :
Σ × Π → Σ, which associates to any initial stateσi ∈ Σ and any processP ∈ Π the
final stateσf = ρ̂(σi, P ), is called theevolution function.

In general the stressT (t) is a function of the stateσ(t) and of the processP(t), that is,

T (t) = T̂ (σ (t), P (t)).

For a viscoelastic material the state is given by the historyσ(t) = Et = (E(t), Etr),
whereEtr(s) = Et (s) − E(t) for s > 0 denotes the history relative to the instantaneous
value ofE, and the process by

P(τ) = ĖP (τ ), τ ∈ [0, dp),

while the stress is now a function of the stateσ(t) only.
In the following we shall consider the workW done on the processP , defined as

W(σ, P ) =

∫ dp

0
T̂ (Et , ĖP (τ )) · ĖP (τ ) dτ.

DEFINITION 1 ([17]). Two strain historiesEt1, Et2 are said to beequivalentif, for every
processĖP : [0, τ ) → Sym, they satisfy

T̂ (Et1, Ė
P (τ )) = T̂ (Et2, Ė

P (τ )) ∀τ > 0;

equivalently, as proved by Gentili[14], two histories are said to be equivalent if for every
processĖP : [0, τ ) → Symand for everyτ > 0 we have

W(Et1, Ė
P ) = W(Et2, Ė

P ).
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For the linear case we have the following result.

THEOREM 2 ([5], [6]). In the linear case, two historiesEt1, Et2 are equivalent if and only
if E1(t) = E2(t) and

(2)
∫

∞

0
G′(s + τ)Et1(s) ds =

∫
∞

0
G′(s + τ)Et2(s) ds ∀τ ≥ 0.

According to the definition of the stateσ of a viscoelastic material, two couples
(E1(t), E

t
r1
(τ )) and (E2(t), E

t
r2
(τ )) equivalent in the Noll sense are represented by the

same stateσ(t) (see [16]). In other words, the state can be expressed by the pair

σ = (E(t), Ĩ t (τ ))

where

Ĩ t (τ ) = −

∫
∞

0
G′(s + τ)Et (s) ds,

or equivalently by the function

I t (τ ) = −G(τ)E(t)+ Ĩ t (τ ).

We also use the representation

Ĭ t (τ ) = −

∫
∞

0
G′(s + τ)[Et (s)− E(t)] ds,

which can be chosen to characterize the state as well.
As shown in [9], from the Second Law of Thermodynamics we have the following

restriction on the half-range Fourier sine transform ofG′(s):

(3) G′
s(ω) =

∫
∞

0
G′(s) sinωs ds < 0 ∀ω ∈ R++,

or equivalently one on the half-range Fourier cosine transform:

(4) Ǧc(ω) =

∫
∞

0
Ǧ(s) cosωs ds > 0 ∀ω ∈ R,

whereǦ = G(s)−G∞. From the Strong Form of the Second Law we also obtain (see [4])

(5) G∞ ≥ 0;

in particular, for a solid we haveG∞ > 0, while for a fluidG∞ = 0.

DEFINITION 3 ([14]). A processĖP : [0, dP ) → Sym (dP < ∞) is said to be afinite
work processif

W(0†, ĖP ) =

∫ dP

0
T (Eτ , ĖP[0,τ )) · ĖP (τ ) dτ < ∞,

where0† denotes the null history,0†(s) = 0 for all s ∈ R+, andEτ is the ensuing strain
in (0, dP ].
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Moreover, since the durationdP of a processP is usually finite, we can defineP on
R+ by puttingP(τ) = ĖP (τ ) = 0 for all τ ≥ dP and, assuming alsoE(τ) = 0 for all
τ > dP , the workW(0†, ĖP ) in the linear case can be written in the form

W(0†, ĖP ) =
1

2
G∞E(dP ) · E(dP )(6)

+
1

2

∫
∞

0

∫
∞

0
Ǧ(|τ − s|)ĖP (τ ) · ĖP (s) dτ ds

=
1

2
G∞E(dP ) · E(dP )+

1

2π

∫
∞

−∞

Ǧc(ω)Ė
P
+(ω) · ĖP+(ω) dω,

whereĖP+ is the Fourier transform oḟEP .
The set of finite work processes is given by

(7) HG =

{
ĖP ;

∫
∞

0

∫
∞

0
Ǧ(|τ − s|)ĖP (τ ) · ĖP (s) dτ ds < ∞

}
.

This set is a Hilbert space if the kernelǦ satisfies the condition imposed on the constitutive
equation by the Second Law of Thermodynamics (i.e.Ǧc(ω) > 0) with the norm given by

‖ĖP ‖
2

=

∫
∞

0

∫
∞

0
Ǧ(|τ − s|)ĖP (τ ) · ĖP (s) dτ ds

=
1

π

∫
∞

−∞

Ǧc(ω)Ė
P
+(ω) · ĖP+(ω) dω.

The domain of definition of the admissible states is the set of all the strain histories
rendering the work well defined when the process belongs toHG.

The work done on a processP , of durationdP < ∞, on supposing thatP(τ) = 0 for
τ ≥ dP andE(τ) = 0 for τ > dP , assumes the form

W(I t , ĖP ) =
1

2
G∞E(dP ) · E(dP )(8)

+
1

2

∫
∞

0

∫
∞

0
Ǧ(|τ − s|)ĖP (τ ) · ĖP (s) dτ ds

−
1

2
G∞E(t) · E(t)−

∫
∞

0
Ĭ t (τ ) · ĖP (τ ) dτ < ∞.

Therefore the set of admissible statesĬ t (τ ) is given by the dualH′

G ofHG, namely

H′

G =

{
Ĭ t (τ );

∫
∞

0
Ĭ t (τ ) · ĖP (τ )dτ < ∞, ∀ĖP ∈ HG

}
.

DEFINITION 4. A functionψ : Dψ → R+ is called afree energyif

(a) the domainDψ ⊂ D is such that, for everyσ1 ∈ Dψ andP ∈ Π , the stateσ =

ρ̂(σ1, P ) ∈ Dψ ,
(b) if σ †

= (0,0t ) is the zero state, thenσ †
∈ Dψ andψ(σ †) = 0,
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(c) for any pairσ1, σ2 ∈ Dψ andP ∈ Π such thatρ̂(σ1, P ) = σ2 we have

(9) ψ(σ2)− ψ(σ1) ≤ W(σ1, P ).

In linear viscoelasticity, many free energies can be considered [2]. The familyF of
free energies is a convex set;F has a minimum and a maximum element,ψm andψM . In
particular, we recall that there is an intermediate free energy called the Graffi–Volterra free
energy, given by

(10) ψG(E
t ) =

1

2
G∞E(t)·E(t)−

1

2

∫
∞

0
G′(s)[Et (s)−E(t)] ·[Et (s)−E(t)] ds,

whereG′(s) < 0, G′′(s) ≥ 0.
The maximum free energy, considered in [7], has the following expression:

ψM(E
t ) =

1

2
G∞E(t) · E(t)(11)

+
1

2

∫
∞

0

∫
∞

0
G12(|s1 − s2|)[E

t (s1)− E(t)] · [Et (s2)− E(t)] ds1 ds2,

whereG12(|s1 − s2|) =
∂2

∂s1∂s2
G(|s1 − s2|).

Finally, the minimum free energy was found by Breuer and Onat [1] in 1964 in the
following form:

ψm(Ėm) =
1

2
G∞E(t) · E(t)(12)

+
1

2

∫
∞

0

∫
∞

0
Ǧ(|s1 − s2|)Ėm(s1) · Ėm(s2) ds1 ds2,

whereĖm is the optimal process which yields the maximum recoverable work, but it is not
a functional of the historyEt (s), or of the stateI t = (E(t), Ĩ t (τ )).

Golden [15] was able to give a representation of the minimum free energy in terms of
Ĭ t (τ ) as

ψm(I
t ) =

1

2
G∞E(t) · E(t)(13)

+
1

2

∫
∞

0

∫
∞

0
H(τ, τ ′)Ĭ t (τ ) · Ĭ t (τ ′) dτ dτ ′,

whereH(τ, τ ′) is a suitable kernel depending oňG; moreover he proved thatH′

G is the
domain on which the minimum free energy is defined.

3. QUASI-STATIC PROBLEM IN LINEAR VISCOELASTICITY

Because the constitutive equation of linear viscoelasticity can be written in the form

(14) T (x, t) = G(x, t)∇u(x,0)+

∫ t

0
G(x, t − τ)∇u̇(x, τ ) dτ − Ĩ0(x, t),
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the equation of motion becomes

(15) ρü(x, t) = ∇ ·

∫ t

0
G(x, t − τ)∇u̇(x, τ ) dτ + b(x, t),

where
b(x, t) = f (x, t)+ ∇ · [−Ĩ0(x, t)+G(x, t)∇u(x,0)]

is a given function inΩ × R+. Lettingv = u̇ we can write the differential equation (15)
in the form (see [3])

(16) ρv̇(x, t) = ∇ ·

∫ t

0
G(x, t − τ)∇v(x, τ ) dτ + b(x, t) onΩ × R+.

This is a differential equation in the unknown functionv, to which we must associate
initial and boundary conditions. For this purpose, we note that in the general case we have
initial conditions expressed by a known functionv(x,0) = v0(x); however, this function
can always be supposed to be zero by changing the sources and, therefore, we assume the
following data:

(17) v(x,0) = 0 ∀x ∈ Ω̄, v(x, t) = 0 ∀(x, t) ∈ ∂Ω × R+.

Let w be a smooth vector function on̄Ω × R+, vanishing on the boundary∂Ω and
such thatw(x, T ) = 0 for all x ∈ Ω. Inner multiply (16) byw and integrate onΩ× [0, T ]
to obtain

(18)
∫ T

0

∫
Ω

ρv̇(x, t) · w(x, t) dx dt

+

∫ T

0

∫
Ω

∫ t

0
G(x, t − τ)∇v(x, t) · ∇w(x, t) dτ dx dt

−

∫ T

0

∫
Ω

I0(x, t) · ∇w(x, t) dx dt −

∫ T

0

∫
Ω

f (x, t) · w(x, t) dx dt = 0,

which corresponds to the Virtual Work Principle and leads to a new definition of weak
solution.

Now, we are in a position to consider the quasi-static problem, which is connected
with equations (18) and (17), on the time domain(0,∞), and is given in weak sense by
the system

(19)
∫

∞

0

∫
Ω

∫ t

0
G(x, t − τ)∇v(x, τ ) · ∇w(x, t) dτ dx dt

−

∫
∞

0

∫
Ω

[f (x, t) · w(x, t)+ I0(x, t) · ∇w(x, t)] dx dt = 0,

(20) v(x,0) = 0 ∀x ∈ Ω̄, v(x, t) = 0 ∀(x, t) ∈ ∂Ω × R+.

So, in order to obtain a rigorous definition of solution according to the equality (19),
we need to fix the function space for the functionsv(x, t) andw(x, t). We introduce the
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spaces

HG(R+
;H 1

0 (Ω)) =

{
v ∈ L2

loc(R
+
;H 1

0 (Ω));∫
∞

0

∫
∞

0

∫
Ω

G(x, |τ − τ ′
|)∇v(x, τ ′) · ∇v(x, τ ) dx dτ ′ dτ < ∞

}
,

while the statesI0(x, t) will be elements of the spaceH′

G(R
+
;H 1

0 (Ω)).

The spaceHG(R+
;H 1

0 (Ω)) is a Hilbert space with respect to the inner product

(v1, v2)HG
=

∫
∞

0

∫ τ

0

∫
Ω

[G∞(x)+ Ǧ(x, τ − τ ′)]

× [∇v1(x, τ
′) · ∇v2(x, τ )+ ∇v1(x, τ ) · ∇v2(x, τ

′)] dx dτ ′ dτ.

DEFINITION 5. A functionv ∈ HG(R+
;H 1

0 (Ω)) is called aweak solutionof the quasi-
static problem related to equations(16)–(17)with dataf ∈ H′

G(R
+
;H−1(Ω)) andI0

∈

H′

G(R
+
;H 1

0 (Ω)) if it satisfies the identity(19) for anyw ∈HG(R+
;H 1

0 (Ω)).

Now we are in a position to state the following theorem.

THEOREM 6. Assume that the kernel̆G(x, ·) ∈ L1(R+
;L∞(Ω)) satisfies the thermody-

namic conditionǦc(x, ω) > 0 for any(x, ω) ∈ Ω̄ × R. Then there exists a unique weak
solutionv ∈ HG(R+

;H 1
0 (Ω)) of the problem(16)–(17)for any I0

∈ H′

G(R
+
;H 1

0 (Ω))

andf ∈ L2(R+
;H−1(Ω)).

PROOF. Consider the Fourier transform of the system (16)–(17) under the quasi-static
hypothesis

∇ · [G+(x, ω)∇v+(x, ω)] = −f+(x, ω)+ ∇ · I0
+(x, ω),(21)

v+(x, ω)|∂Ω = 0.(22)

For any fixedω ∈ R, the sesquilinear form

(23) a(v+(x, ω),w+(x, ω)) =

∫
Ω

[G+(x, ω)∇v+(x, ω) · ∇w+(x, ω)] dx

is a bounded and coercive form inH 1
0 (Ω). Indeed, it is easy to verify that it is bounded. In

order to obtain the coercivity, we have to prove that for any fixedω ∈ R the inequality

|a(v+(ω), v+(ω))| ≥ k(ω)‖v+(ω)‖H1
0

holds for allv+ ∈ H 1
0 (Ω), wherek(ω) is a positive constant. By the definition (23), since

G+(x, ω) = Gc(x, ω)− iGs(x, ω), for anyω ∈ R we have

|a(v+(ω), v+(ω))| ≥

∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx ≥ k(ω)‖v+(ω)‖H1
0

wherek(ω) = inf{|Gc(x, ω)|; x ∈ Ω}.
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This proves that for any fixedω ∈ R, the problem (21)–(22) admits a solutionv+ ∈

H 1
0 (Ω) if the difference

F+(x, ω) = f+(x, ω)− ∇ · I0
+(x, ω)

is an element ofH−1(Ω).

Now, in order to study the behavior ofv+ whenω → ∞, we apply the Parseval
theorem to (18); after an integration by parts, we get

(24)
∫

∞

−∞

∫
Ω

{ρv+(x, ω) · (iωw+(x, ω)− w0(x))

−G+(x, ω)∇v+(x, ω) · ∇w+(x, ω)} dx dω

= −

∫
∞

−∞

∫
Ω

{f+(x, ω) · w+(x, ω)+ I0
+(x, ω) · ∇w+(x, ω)} dx dω.

It is known that for any vector functionf ∈ H−1(Ω) there exists a tensor function
A ∈ L2(Ω) such that for allv ∈ H 1(Ω),∫

∞

0

∫
Ω

f (x, t) · v(x, t) dx =

∫
∞

0

∫
Ω

A(x, t) · ∇v(x, t) dx;

moreover, we recall that in our case

v(x,0) =
1

π

∫
∞

−∞

v+(x, ω) dω = 0.

Hence, equation (24) can be written forw(x, t) = v(x, t), that is,

(25)
∫

∞

−∞

∫
Ω

{−ρv+(x, ω) · iωv+(x, ω)+G+(x, ω)∇v+(x, ω) · ∇v+(x, ω)} dx dω

=

∫
∞

−∞

∫
Ω

[A+(x, ω)+ I0
+(x, ω)] · ∇v+(x, ω) dx dω.

We note that the first term in the integral on the left hand side of this equation is an
odd function ofω and, therefore, its integral overR vanishes; moreover, the integral of the
second term reduces to∫

∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx dω

=

∫
∞

−∞

∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx dω,

sinceG is symmetric,G+ = Gc − iGs andGs is an odd function.
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Application of the Schwarz inequality to the integral on the right-hand side of (25)
yields

(26)
∫

∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx dω

≤

{∫
∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω)+ I0

+(x, ω)] · [A+(x, ω)+ I0
+(x, ω)] dx dω

}1/2

×

{∫
∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx dω

}1/2

,

whence it follows that

(27)
∫

∞

−∞

∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω) dx dω

≤

∫
∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω)+ I0

+(x, ω)] · [A+(x, ω)+ I0
+(x, ω)] dx dω.

Therefore, ifA + I0
∈ H′

G(R
+
;L2(Ω)) we havev ∈ HG(R+

;H 1
0 (Ω)). From (27)

and by the Poincaré theorem, it follows that there exists a constantC(Ω) such that

(28) C(Ω)

∫
∞

−∞

∫
Ω

Gc(x, ω)v+(x, ω) · v+(x, ω) dx dω

≤

∫
∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω)+ I0

+(x, ω)] · [A+(x, ω)+ I0
+(x, ω)] dx dω.

Hence, iff ∈ H′

G(R
+
;H−1(Ω)) andI0

∈ H′

G(R
+
;L2(Ω)), then we see that the

function v belongs toHG(R+
;H 1(Ω)) and it is a virtual work solution of the problem

(16)–(17) in the sense of Definition 1.1.
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