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Partial differential equations. — Periodic solutions of Birkhoff—-Lewis type for the
nonlinear wave equatigrby LUCA BIAsCcO and LAURA DI GREGORIQ presented by
A. Ambrosetti.

ABSTRACT. — We prove existence and multiplicity of small amplitude periodic solutions with large period for
the wave equation with small “mass”. Such solutions bifurcate from resonant finite-dimensional invariant tori of
the fourth order Birkhoff normal form of the associated hamiltonian system. The number of geometrically distinct
solutions and their minimal periods tend to infinity when the “mass” tends to zero.

KEeY worDsS: Nonlinear wave equation; infinite-dimensional hamiltonian systems; periodic solutions; Birkhoff
normal form.

MATHEMATICS SUBJECTCLASSIFICATION (2000): 34C25, 35L05, 37K50.

INTRODUCTION AND MAIN RESULT

We outline in this note some recent results on time periodic solutions with long period for
the nonlinear wave equation, obtained[inh [5], to which we refer for complete proofs.

Let us consider the nonlinear wave equation on the intervatJQvith Dirichlet
boundary conditions

(1) {Mtz—uxx"‘ll““‘f(u):ov

u(,0 =u(t,7) =0,

wherep > 0 and f is a real analytic, odd function of the forpi(u) = > ;.3 feuk,

f3#0.
Equation (1) can be studied as an infinite-dimensional hamiltonian system. If we set
v = u, the Hamiltonian is

H( )—/n Y e d
u,v—o > 5> T ho 8w )dx,

whereg(u) = fg‘ f(s)ds. Introduce coordinateg = (g1,92,...), p = (p1, p2,...)
through the relations

qi
— xi(x), v&x)= Vi pi i (x),
i1 V@i zzzl

wherey; (x) := +/2/m sinix andw; := /i? + p; then the Hamiltonian takes the form

ulx) =

1
@) H=4+Glg) =5 oilg?+p})+ G

i>1
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where

T

qi f3

Gm%=/ di ——m@odx=—- Gijki 9iqjqkq: + h.0.t.
0 i>1 Vi 4 i,jz,k:,l

andGjji = (wiwjoro)~Y? [ xixjxkxi dx. The origin is an elliptic equilibrium point
for the HamiltonianH .

A classical method to find orbits with long period, close to an elliptic equilibrium
point, was given by Birkhoff and Lewis for finite-dimensional systemsiin [6] (seelalso [8]).
Their procedure consists in putting the system in fourth order Birkhoff normal form: the
truncated Hamiltonian obtained by neglecting the five or higher order terms is integrable. If
the so called “twist” condition on the action-to-frequency map holds, there exist infinitely
many resonant tori on which the motion of the truncated Hamiltonian is periodic. By the
Implicit Function Theorem and topological arguments, Birkhoff and Lewis showed the
existence of a sequence of resonant tori accumulating at the origin with the property that
at least two periodic orbits bifurcate from each of them.

In [5] we adapt the Birkhoff—Lewis procedure to the nonlinear wave equdtjon (1). This
approach was recently carried outlin [1] for the beam equation and the NLS (see Rémark 2
below for comparison).

For hamiltonian PDEs, one meets two difficulties that do not appear in the finite-
dimensional case: the generalization of the Birkhoff normal form and a small divisors

problem.
Concerning the first difficulty we consider only a Birkhoff “seminormal form”. We fix
a finite subset of indice§ = {i1,...,iy} C N, 1 < i1 < --- < iy, and we put the

HamiltonianH in (@) in the seminormal form
H=A+G+G+K

whereG + G is the fourth order term witlG depending only op? 4 ¢?,i € N*, G
depending only orp;, q;, i ¢ Z, andK is a sixth or higher order term. The truncated
HamiltonianA + G + G possesses the\2dimensional invariant manifolgp; = ¢; = 0,

i ¢ T}, which is foliated byN-dimensional invariant tori. Sincg # 0, G satisfies the
“twist” property and, therefore, the linear frequencies of such tori form an open subset
of RY. We focus on completely resonant tori which are foliated by periodic orbits with
frequencyo = (@;y, - . ., @iy ). Such lower dimensional tori are highly degenerate. Hence,
in order to show the persistence of periodic orbits for the whole HamiltaHiame have to
impose some nondegeneracy conditions to avoid resonances between the torus frequencies
and the normal ones. This is exactly the point in which the small divisors problem appears
(see p[3P).

The estimate on the small divisors is the crucial step. To overcome this problem
we impose the strong conditiop (16) on the small divisors, avoiding KAM analysis (see
RemarK1). For this reason we consider only periddshich are integer multiples of
(compare with the classical variational approach of Rabinowitz, Brezis, Nirenberg etc.)
and we need

(3 MZT < 1
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We consider the “masgi > 0 as asmallparameter. For — 0 the frequencies; — i,
and the Birkhoff seminormal forrdegeneratesin the sense that its domain of definition
shrinks to zero while the remainder terkh blows up, see Propositidrj 1 (note that for
w = 0 equation[(]L) becomes completely resonant).

Next we perform a Lyapunov—Schmidt reduction aslin [3], [1]. We solve the range
equation by the Contraction Mapping Theorem using the above estimate on the small
divisors and controlling the blow-up of the remainder tekimfor ;= going to zero (see
p.[33). The bifurcation equation is solved by variational arguments.

THEOREM1. LetN > 2and fixZ := {i1,...,iy} C NT. Then there exists a constant
0 <c=c(@) < 1lsuchthat,if0 < pu < c, there exist at least/u geometrically distinct
smooth periodic solutions(z, x) of @) with minimal periodT™" € 7 Q,

< < pmin <
w - u?
satisfying
@) sup  (u(t.x) — Y _a; CoS@it + ;) sinix| < ¢t
teR, xe[0,n] iel
whereq; > ¢, ¢; € Randa; € R with
(5) & — wi| < ¢ tu?

foranyi € 7.

The solutions: are actually analytic in the spatial variable afief in time. One could
obtain estimates similar tp](4) for the derivatives:asf every order.

Theorem[ 1L is the first existence result on periodic solutions \ethe minimal
period for the autonomous nonlinear wave equation (for different-type existence results
of periodic solutions with large minimal period in the forced caselsee [10]).

Other authors, e.g. Kuksin, Wayne, Craig, Bourgain, Bambusi, constructed families of
periodic solutions of hamiltonian PDEs being inspired by the Lyapunov Center Theorem.
These periodic solutions are the continuation of one linear mode, the amplitudes of
the other modes being much smaller (unlike the resonant gase 0 considered in
[2], [4], [7]). On the other hand, the periodic solutions of Theofgm 1 invalve> 2
modes, oscillating with the same order of magnitude. These orbitssirietdy nonlinear
phenomenan

SCHEME OF THE PROOF

We introduce complex coordinates

1 .
(6) z=—(qi+ip)), Z =

1 .
\/i 72(%' _Ipz),
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where i= +/—1, living in the complex Hilbert algebra

0 = {2= (21, 22,..) 2 €C,i>1, |z|2, = Z 1Z:|%i% 2 < oo}

i>1

(herea > Oands > 1/2). The symplectic structureisi ;. ; dziAdZ; = } ;-1 dpindqi,
and the Hamiltonian irf {2) reads

7) H=A+G=) wz|°+G(z2).

i>1

Hamilton’s equations are = i9;: H, 7 = —id,H. The HamiltonianH is real analytic in
the sense thall is a function of z and, real analytic in the real and imaginary part of z.
Denote byA (¢4*, ¢45+1) the class of all real analytic maps from some neighborhood of
the origin in£®* into ¢4+, Sincew; ~ i, the hamiltonian vector fiel& ; belongs to
AL®S, ¢@5th) that is, the nonlinearity ismoothing of ordet..

Given a finite multi-indexZ, we will denote by the infinite vector obtained by deleting
fromz= (z1, 22, ...) itsZ-components, namely:= (..., z;,_1, Zi;+1. cees Zig—1, Zig1,
ooy Zin—1, Ziy41s - - ) = (Zi)ieze, WhereZ¢ ;= Nt \ 7.

Following [9] we put the Hamiltoniari in Birkhoff seminormal form. We explicitly
investigate its dependence arfor  small.

ProrosITION1 (Birkhoff seminormal form).Let0 < u < 1, Z C NT. There exists a
real analytic, close to the identity, symplectic change of coordinates> z defined in
B, C £%%into By, C £4° withr := const/u, satisfying||z — z,|l4,s4+1 = 0(IIZ*|I2,S//L),
transforming the Hamiltoniat = A + G in (7)) into seminormal form up to order six.
Thatis,H, = A+ G + G + K, where

8) Xg. X, Xk € AQ™S, 05T,

G =3 orjer Gijlzail?1zej12 1G] = 0213 ,) and K| = O(l|z.|E /1)

Note thatA + G is integrable with integraliz*,-|2, i =12, .... Moreover, although
the fourth order ternG is not integrable, it only depends @p = (z,,);cze, thatis, it is
independent of th&-modes. We also remark that this normal fadegenerateasu goes
to zero.

Since we are looking for small amplitude solutions it is convenient to introduce the
small parametey := t~1/2, where

and to perform the rescaling
Z, =nz, Zy=:nz, Hyr n_ZH* =H,

after which the Hamiltonian reads

_ ~ ~ ~ _ _ n
Hezm = A+ 3G +6) +n* K@ zm. Nzl [Zlas < cons§,

whereK (z, Z: n) i= 072K (nz, n2). |K| = O(l|z]I§ ; /1)
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We now introduce action-angle variablég ¢) < Rﬁ x TN on theZ-modes by
the following symplectic change of coordinates: := /I;(cos¢; — ising;), z; =
JI;(cosp; + ising;), for i € Z. The action] = (I;);ez, I; = 77, is defined for
|I| < constu/n?. We note thad ", rdli Adpi = =), .7dzi NdZi =) ;7 dpi Adg;
and thephase spacés
(9) Pas i=RY x TN x 4 5 (1,4, ).

In these variables the Hamiltonian becomes
~ A A AR 1 AR oA A
(10) HU,¢,z2,Zm=w-1+ 2 22+ nz[é(z‘\l, 1)+ (BI,z%7) + G(z,z)]
+ KU, 9,52 ),
where

w = (w,-l, ey a)iN),
2= ( cey Wi —1, Wig4+1, -0y wij*l» wij+11 cees Wiy—1, Wiy+1, - - ')7
2 - 27 is short for) .z w;2:2; and the matricest € Mat(N x N), B € Mat(co x N)

can be explicitly evaluated. In particular one can verify (see [9]) that, sigcg O, the
“twist” property detA £ 0 holds.

Resonant tori

We will find periodic solutions of the Hamiltonia#( in ) close to the ones of the
integrable Hamiltonian

o3 1 A%
(11) w'l—l—.(?~zz+n2|:§(A1,1)+(Bl,ZZ)],

in which G and K have been neglected. The manifdlel = O} is invariant for the

Hamiltonian in [(I1) and it is completely filled up by thé-dimensional invariant tori
T(lo) :=={I =1, p €TV, 2 =0},

on which the motion is linear with frequencies

(12) & = alo, T) = w + n2Aly.

Such tori are linearly stable withifted elliptic frequencies

(13) Qi = 2i(lo, ©) = 2; + n*(Blo); = wi + n*(Blo);, i €T

On7T (Ip) the flowt — (Ig, ¢po + @t, 0) is T-periodic,T > 0, if and only if

(14) oo, 1)t = k e ZV,
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Hence, if [I4) holds, the torug (Io) is completely resonant and supports the infinitely
many T -periodic orbits of the family

(15) F={@)=1o, ¢@) =¢o+aot, z(r) =0}.

The family F will not persist in its entirety for the HamiltoniaH. However, if the period

T is “sufficiently nonresonant” with the shifted elliptic frequencies, we can prove the
persistence of at least geometrically distinct-periodic solutions of{ close toF. More
precisely, the required nonresonance condition is

~ const
(16) |6 — Q2;g, T)T| > ——, VLeZ, Viel
l

in which the “small divisor’¢ — £2; (Io, 7)t appears.
We now consider the periodicity conditiof {14). Sinee is invertible (“twist”
condition) we can choosk andk as functions of so that[(1#) is always satisfied:

(17) Ip = Io(x) i= A (k — {w1)}),
(18) k = k(7)== [wT] + K,

wher@]| [(x1. ... xp)] := xal. - DDy (s - <o xa)) = ({xa), ... {xy)) andk €
ZY is a constant vector added to have

(19) (Ip); = const>0, Viel.
By (@7) the small divisor in[(1l6) takes the form

(20) (— (124 BA Yk —{wt)i, (e€Z, iecl

The small divisors estimat@g)
By (20), we have to prove that

const
(21) 16— 1i24+ u — (BA Yk — {wt))i| > ——, VeleZ, iecI.
l

In order to shol), we perform the expansios = t+/i2 + pu = it4+ut/2i + 0 (u?1)
requiring thatu?t is small (recall)). Using the explicit formulas far and B, one can
prove

-t/ — (BATM G — o) =t —mi— BT

4 <Nu

2
T [T Vi 4 .
ol—+—), WVez, AN
+(4N—1)i > +m>+ <i+ ; ) S [ S

1 Here the functions.] : R — Z and{-} : R — [0,1) denote the integer part and the fractional part
respectively.
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for a suitablen e Z. If we takex andu?z small enough and choose the constanEr} (21)
equal, e.g., to A6(4N — 1), estimate[(Z1) follows from

(22) T +2G(AN — 1)(€ — ti) + dm)| > 1/2, Ve e Z, i e I°.

To satisfy [22) we take € N so thati (4N — 1)(¢ — i) + 4m is an integer; in addition,
assuming that satisfies
lut +2j| > 1/2, VjeZ,

we have proved the following

PROPOSITION2. There exisiO (1 ~2) rescaled periods e N satisfyingu?r < 1 such
that the small divisors estima(&g) holds.

The functional setting

We look for periodic orbits of the HamiltoniaH near the familyF defined in), namely
we seek solutions of the forgi (¢), ¢ (), 2(¢)) = (lo, @t + ¢o, 0) + ¢(¢), wherelp was
defined in )¢o e TV is a parameter to be determined an@) = (J(¢), ¥ (), w(t))
is a T-periodic curve taking values in the covering sp&® x RY x ¢%* (which for
simplicity we will still denote byP, ;). For¢ = (J, ¥, w) € RY x RN x ¢4 we define
the norm

1Zle,, =1, ¥, wlp,, =+ ¥+ wla,s-

We look for H1-solutions¢ (r) in the Banach space

T
Hi,, = {; €Hf,,: / Y(t)dt = o}
0

whereHf , = {¢ € HXR,Pyy) 1 {(t + T) = {(t)} and HY(R, Pa,s) is the Sobolev

space of theL2-functions¢ : R — P, ; with weak derivative inL2. The spacd{} _ _ is
endowed with the normi¢ || 1 = lI¢li7.a,s + T8¢ lIT.0,5, Where

1 T
1215 45 = ;fo (TP + [y O + lwo)Z,) dt.

With this norm,H%’M is a Banach algebra with constant independer¥ ¢éee[1]). We
have to solve the functional equation

(23) Lt = N(&; ¢o)
whereL is the linear operator
(24) Lt =L(J, ¥, w) = (§ —n2AJ, J, w; —i2;w;)

andN is the NemytsKioperator coming from the nonlinearity. By (8Y, is smoothing of
order 1, namely

(25) N(; ¢o) € COO(H%,a,s’ HYJ:,a,s+1)'
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The Lyapunov—Schmidt reduction

By the “twist” condition and the nonresonance propefty (16), it results that the kernel
and the rang® of L are{ys = cons} and{foT ¥ = 0} respectively. Define the projections
i = (0, (§),0), MR = (J, ¥ — (), W), where(y) := [ ¥; then the equation
Lt = N(Z; ¢po) decomposes into the kernel equation

0= TN (: ¢o)

and the range equation
L¢ =TIRN(Z; ¢o)

which is equivalent tq = @ ¢, with @ ¢ := L~T»r N(¢; ¢o). By ),L‘1 “looses one
derivative”, which is compensated by the smoothing propgrty (25). Using the estimates on
the blow-up of the remainder ter for . going to zero, we prove that is a contraction
on asuitable closed ball &7 , . Hence, for any fixegh, we can solve the range equation
finding a solutiory (1) = ¢y, (¢) by the Contraction Mapping Theorem. Inserting= ¢4,
in the kernel equation, it remains to solve the finite-dimensional bifurcation equation 0
MicN (L $0), determiningpo € TV by standard variational arguments (See [3], [1]).

Finally, the very precise estimatég (4)] (5) allow us to prove the lower bounds on the
minimal period, 7™" > ¢/u. In PropositiorDZ the total number of periods satisfying
) is estimated from below by corist?. However, not all theT-periodic solutions
corresponding to different’s are necessarily distinct. Using] (4)] (5) we prove that the
total number of geometrically distinct solutions found in Theofém 1 is estimated from
below by constu. The estimate on the amplitudes> ¢ > 0 follows by [19). Regularity
in time follows by a bootstrap-type argument.

ReEMARK 1. In (I16) we imposed a strong condition on the small divisors in order to use
the standard Contraction Mapping Theorem to solve the range equation. For that reason we
can consider only a finite number of periods. In order to obtain a positive measure set of
periods, one should solve the small divisors problem by a Nash—Moser Implicit Function
Theorem. Thereafter, one should prove that the bifurcation equationDc N (¢4,; $0)

has a solution forpg belonging to a suitable Cantor set (sek [4]). A way to proceed is to
develop the reduced action functional in powers of the perturbation parameter and to prove
that the first nontrivial term has a nondegenerate critical point. In the present case, when
the perturbation parametegrgoes to zero, the periofl = 2752 goes to infinity and all

the low order terms in the development of the reduced action functional vanish.

REMARK 2. In [1]], instead of), the weaker “diophantine-type” conditjén- £2; 7|

> consti ~° is imposed on the small divisors; for all > 1, almost every rescaled period
7 is admitted. Hence, if the nonlinearity is smoothing of order 1, taking 1< o < d,
the Contraction Mapping Theorem can still be used to have existence. In particeldt,
for the beam equation antl> 1 for the NLS. Unfortunately, we have exactly= 1 for
the wave equation.
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