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Partial differential equations. — Periodic solutions of Birkhoff–Lewis type for the
nonlinear wave equation, by LUCA BIASCO and LAURA DI GREGORIO, presented by
A. Ambrosetti.

ABSTRACT. — We prove existence and multiplicity of small amplitude periodic solutions with large period for
the wave equation with small “mass”. Such solutions bifurcate from resonant finite-dimensional invariant tori of
the fourth order Birkhoff normal form of the associated hamiltonian system. The number of geometrically distinct
solutions and their minimal periods tend to infinity when the “mass” tends to zero.
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INTRODUCTION AND MAIN RESULT

We outline in this note some recent results on time periodic solutions with long period for
the nonlinear wave equation, obtained in [5], to which we refer for complete proofs.

Let us consider the nonlinear wave equation on the interval [0, π ] with Dirichlet
boundary conditions

(1)

{
ut t − uxx + µu+ f (u) = 0,
u(t,0) = u(t, π) = 0,

whereµ > 0 andf is a real analytic, odd function of the formf (u) =
∑
k≥3 fku

k,

f3 6= 0.
Equation (1) can be studied as an infinite-dimensional hamiltonian system. If we set

v = ut the Hamiltonian is

H(u, v) =

∫ π

0

(
v2

2
+
u2
x

2
+ µ

u2

2
+ g(u)

)
dx,

whereg(u) =
∫ u

0 f (s) ds. Introduce coordinatesq = (q1, q2, . . .), p = (p1, p2, . . .)

through the relations

u(x) =

∑
i≥1

qi
√
ωi
χi(x), v(x) =

∑
i≥1

√
ωipiχi(x),

whereχi(x) :=
√

2/π sinix andωi :=
√
i2 + µ; then the Hamiltonian takes the form

(2) H = Λ+G(q) =
1

2

∑
i≥1

ωi(q
2
i + p2

i )+G(q),
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where

G(q) :=
∫ π

0
g

(∑
i≥1

qi
√
ωi
χi(x)

)
dx =

f3

4

∑
i,j,k,l

Gijkl qiqjqkql + h.o.t.

andGijkl := (ωiωjωkωl)
−1/2

∫ π
0 χiχjχkχl dx. The origin is an elliptic equilibrium point

for the HamiltonianH .
A classical method to find orbits with long period, close to an elliptic equilibrium

point, was given by Birkhoff and Lewis for finite-dimensional systems in [6] (see also [8]).
Their procedure consists in putting the system in fourth order Birkhoff normal form: the
truncated Hamiltonian obtained by neglecting the five or higher order terms is integrable. If
the so called “twist” condition on the action-to-frequency map holds, there exist infinitely
many resonant tori on which the motion of the truncated Hamiltonian is periodic. By the
Implicit Function Theorem and topological arguments, Birkhoff and Lewis showed the
existence of a sequence of resonant tori accumulating at the origin with the property that
at least two periodic orbits bifurcate from each of them.

In [5] we adapt the Birkhoff–Lewis procedure to the nonlinear wave equation (1). This
approach was recently carried out in [1] for the beam equation and the NLS (see Remark 2
below for comparison).

For hamiltonian PDEs, one meets two difficulties that do not appear in the finite-
dimensional case: the generalization of the Birkhoff normal form and a small divisors
problem.

Concerning the first difficulty we consider only a Birkhoff “seminormal form”. We fix
a finite subset of indicesI := {i1, . . . , iN } ⊂ N, 1 ≤ i1 < · · · < iN , and we put the
HamiltonianH in (2) in the seminormal form

H = Λ+ Ḡ+ Ĝ+K

whereḠ + Ĝ is the fourth order term with̄G depending only onp2
i + q2

i , i ∈ N+, Ĝ
depending only onpi, qi , i /∈ I, andK is a sixth or higher order term. The truncated
HamiltonianΛ+ Ḡ+ Ĝ possesses the 2N -dimensional invariant manifold{pi = qi = 0,
i /∈ I}, which is foliated byN -dimensional invariant tori. Sincef3 6= 0, Ḡ satisfies the
“twist” property and, therefore, the linear frequencies of such tori form an open subset
of RN . We focus on completely resonant tori which are foliated by periodic orbits with
frequencyω̃ = (ω̃i1, . . . , ω̃iN ). Such lower dimensional tori are highly degenerate. Hence,
in order to show the persistence of periodic orbits for the whole HamiltonianH , we have to
impose some nondegeneracy conditions to avoid resonances between the torus frequencies
and the normal ones. This is exactly the point in which the small divisors problem appears
(see p. 30).

The estimate on the small divisors is the crucial step. To overcome this problem
we impose the strong condition (16) on the small divisors, avoiding KAM analysis (see
Remark 1). For this reason we consider only periodsT which are integer multiples ofπ
(compare with the classical variational approach of Rabinowitz, Brezis, Nirenberg etc.)
and we need

(3) µ2T � 1.
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We consider the “mass”µ > 0 as asmallparameter. Forµ → 0 the frequenciesωi → i,
and the Birkhoff seminormal formdegenerates, in the sense that its domain of definition
shrinks to zero while the remainder termK blows up, see Proposition 1 (note that for
µ = 0 equation (1) becomes completely resonant).

Next we perform a Lyapunov–Schmidt reduction as in [3], [1]. We solve the range
equation by the Contraction Mapping Theorem using the above estimate on the small
divisors and controlling the blow-up of the remainder termK for µ going to zero (see
p. 32). The bifurcation equation is solved by variational arguments.

THEOREM 1. LetN ≥ 2 and fixI := {i1, . . . , iN } ⊂ N+. Then there exists a constant
0 < c = c(I) < 1 such that, if0 < µ ≤ c, there exist at leastc/µ geometrically distinct
smooth periodic solutionsu(t, x) of (1) with minimal periodT min

∈ π Q,

c

µ
≤ T min

≤
c

µ2
,

satisfying

(4) sup
t∈R, x∈[0,π ]

∣∣∣u(t, x)− µ
∑
i∈I

ai cos(ω̃i t + ϕi) sinix
∣∣∣ ≤ c−1µ2,

whereai ≥ c, ϕi ∈ R andω̃i ∈ R with

(5) |ω̃i − ωi | ≤ c−1µ2

for anyi ∈ I.

The solutionsu are actually analytic in the spatial variable andC∞ in time. One could
obtain estimates similar to (4) for the derivatives ofu of every order.

Theorem 1 is the first existence result on periodic solutions withlarge minimal
period for the autonomous nonlinear wave equation (for different-type existence results
of periodic solutions with large minimal period in the forced case see [10]).

Other authors, e.g. Kuksin, Wayne, Craig, Bourgain, Bambusi, constructed families of
periodic solutions of hamiltonian PDEs being inspired by the Lyapunov Center Theorem.
These periodic solutions are the continuation of one linear mode, the amplitudes of
the other modes being much smaller (unlike the resonant caseµ = 0 considered in
[2], [4], [7]). On the other hand, the periodic solutions of Theorem 1 involveN ≥ 2
modes, oscillating with the same order of magnitude. These orbits are astrictly nonlinear
phenomenon.

SCHEME OF THE PROOF

We introduce complex coordinates

(6) zi =
1

√
2
(qi + ipi), z̄i =

1
√

2
(qi − ipi),
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where i=
√

−1, living in the complex Hilbert algebra

`a,s :=
{
z = (z1, z2, . . .) : zi ∈ C, i ≥ 1, ‖z‖2

a,s =

∑
i≥1

|zi |
2i2se2ai < ∞

}
(herea > 0 ands > 1/2). The symplectic structure is−i

∑
i≥1 dzi∧dz̄i =

∑
i≥1 dpi∧dqi ,

and the Hamiltonian in (2) reads

(7) H = Λ+G =

∑
i≥1

ωi |zi |
2
+G(z, z̄).

Hamilton’s equations arėz = i∂z̄H , ˙̄z = −i∂zH. The HamiltonianH is real analytic in
the sense thatH is a function of z and̄z, real analytic in the real and imaginary part of z.
Denote byA(`a,s, `a,s+1) the class of all real analytic maps from some neighborhood of
the origin in`a,s into `a,s+1. Sinceωi ∼ i, the hamiltonian vector fieldXG belongs to
A(`a,s, `a,s+1), that is, the nonlinearity issmoothing of order1.

Given a finite multi-indexI,we will denote bŷz the infinite vector obtained by deleting
from z = (z1, z2, . . .) its I-components, namelŷz := (. . . , zi1−1, zi1+1, . . . , zij−1, zij+1,

. . . , ziN−1, ziN+1, . . .) = (zi)i∈Ic , whereIc := N+
\ I.

Following [9] we put the HamiltonianH in Birkhoff seminormal form. We explicitly
investigate its dependence onµ for µ small.

PROPOSITION1 (Birkhoff seminormal form).Let 0 < µ < 1, I ⊂ N+. There exists a
real analytic, close to the identity, symplectic change of coordinatesz∗ 7→ z defined in
Br ⊂ `a,s intoB2r ⊂ `a,s with r := const

√
µ, satisfying‖z − z∗‖a,s+1 = O(‖z∗‖

3
a,s/µ),

transforming the HamiltonianH = Λ + G in (7) into seminormal form up to order six.
That is,H∗ = Λ+ Ḡ+ Ĝ+K, where

(8) XḠ, XĜ, XK ∈ A(`a,s, `a,s+1),

Ḡ =
1
2

∑
i orj ∈I Ḡij |z∗i |

2
|z∗j |

2, |Ĝ| = O(‖ẑ∗‖
4
a,s) and|K| = O(‖z∗‖

6
a,s/µ).

Note thatΛ + Ḡ is integrable with integrals|z∗i |
2, i = 1,2, . . . . Moreover, although

the fourth order termĜ is not integrable, it only depends onẑ∗ = (z∗i)i∈Ic , that is, it is
independent of theI-modes. We also remark that this normal formdegeneratesasµ goes
to zero.

Since we are looking for small amplitude solutions it is convenient to introduce the
small parameterη := τ−1/2, where

τ :=
T

2π
,

and to perform the rescaling

z∗ =: ηz, z̄∗ =: ηz̄, H∗ 7→ η−2H∗ =: H,

after which the Hamiltonian reads

H(z, z̄; η) = Λ+ η2(Ḡ+ Ĝ)+ η4K̃(z, z̄; η), ‖z‖a,s, ‖z̄‖a,s ≤ const
√
µ

η
,

whereK̃(z, z̄; η) := η−2K(ηz, ηz̄), |K̃| = O(‖z‖6
a,s/µ).
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We now introduce action-angle variables(I, φ) ∈ RN+ × TN on theI-modes by
the following symplectic change of coordinates:zi :=

√
Ii(cosφi − i sinφi), z̄i :=

√
Ii(cosφi + i sinφi), for i ∈ I. The actionI := (Ii)i∈I , Ii := zi z̄i , is defined for

|I | ≤ constµ/η2. We note that
∑
i∈I dIi ∧ dφi = −i

∑
i∈I dzi ∧ dz̄i =

∑
i∈I dpi ∧ dqi

and thephase spaceis

(9) Pa,s := RN+ × TN × `a,s 3 (I, φ, ẑ).

In these variables the Hamiltonian becomes

H̃(I, φ, ẑ, ¯̂z; η) = ω · I +Ω · ẑ ¯̂z+ η2
[

1

2
(AI, I )+ (BI, ẑ ¯̂z)+ Ĝ(ẑ, ¯̂z)

]
(10)

+ η4K̃(I, φ, ẑ, ¯̂z; η),

where

ω := (ωi1, . . . , ωiN ),

Ω := (. . . , ωi1−1, ωi1+1, . . . , ωij−1, ωij+1, . . . , ωiN−1, ωiN+1, . . .),

Ω · ẑ ¯̂z is short for
∑
i∈Ic ωi ẑi

¯̂zi and the matricesA ∈ Mat(N × N), B ∈ Mat(∞ × N)

can be explicitly evaluated. In particular one can verify (see [9]) that, sincef3 6= 0, the
“twist” property detA 6= 0 holds.

Resonant tori

We will find periodic solutions of the HamiltoniañH in (10) close to the ones of the
integrable Hamiltonian

(11) ω · I +Ω · ẑ ¯̂z+ η2
[

1

2
(AI, I )+ (BI, ẑ ¯̂z)

]
,

in which Ĝ and K̃ have been neglected. The manifold{ẑ = 0} is invariant for the
Hamiltonian in (11) and it is completely filled up by theN -dimensional invariant tori

T (I0) := {I = I0, φ ∈ TN , ẑ = 0},

on which the motion is linear with frequencies

(12) ω̃ := ω̃(I0, τ ) = ω + η2AI0.

Such tori are linearly stable withshifted elliptic frequencies

(13) Ω̃i := Ω̃i(I0, τ ) = Ωi + η2(BI0)i = ωi + η2(BI0)i, i ∈ Ic.

OnT (I0) the flowt 7→ (I0, φ0 + ω̃t,0) is T -periodic,T > 0, if and only if

(14) ω̃(I0, τ )τ =: k ∈ ZN .
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Hence, if (14) holds, the torusT (I0) is completely resonant and supports the infinitely
manyT -periodic orbits of the family

(15) F := {I (t) = I0, φ(t) = φ0 + ω̃t, ẑ(t) = 0}.

The familyF will not persist in its entirety for the HamiltoniañH. However, if the period
T is “sufficiently nonresonant” with the shifted elliptic frequencies, we can prove the
persistence of at leastN geometrically distinctT -periodic solutions of̃H close toF . More
precisely, the required nonresonance condition is

(16) |`− Ω̃i(I0, τ )τ | ≥
const

i
, ∀` ∈ Z, ∀i ∈ Ic,

in which the “small divisor”̀ − Ω̃i(I0, τ )τ appears.
We now consider the periodicity condition (14). SinceA is invertible (“twist”

condition) we can chooseI0 andk as functions ofτ so that (14) is always satisfied:

I0 := I0(τ ) := A−1 (κ − {ωτ }) ,(17)

k := k(τ ) := [ωτ ] + κ,(18)

where1 [(x1, . . . , xN )] := ([x1], . . . , [xN ]), {(x1, . . . , xN )} := ({x1}, . . . , {xN }) andκ ∈

ZN is a constant vector added to have

(19) (I0)i ≥ const> 0, ∀i ∈ I.

By (17) the small divisor in (16) takes the form

(20) `− (τΩ + BA−1(κ − {ωτ }))i, ` ∈ Z, i ∈ Ic.

The small divisors estimate(16)

By (20), we have to prove that

(21) |`− τ
√
i2 + µ− (BA−1(κ − {ωτ }))i | ≥

const

i
, ∀` ∈ Z, i ∈ Ic.

In order to show (21), we perform the expansionτωi = τ
√
i2 + µ= iτ+µτ/2i+O(µ2τ)

requiring thatµ2τ is small (recall (3)). Using the explicit formulas forA andB, one can
prove

`− τ
√
i2 + µ−

(
BA−1(κ − {ωτ })

)
i
= `− τ i −

µτ

2i

+
4

(4N − 1)i

(
Nµτ

2
+m

)
+O

(
µ

i
+
µ2τ

i

)
, ∀` ∈ Z, i ∈ Ic,

1 Here the functions [·] : R → Z and {·} : R → [0,1) denote the integer part and the fractional part
respectively.
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for a suitablem ∈ Z. If we takeµ andµ2τ small enough and choose the constant in (21)
equal, e.g., to 1/6(4N − 1), estimate (21) follows from

(22) |µτ + 2(i(4N − 1)(`− τ i)+ 4m)| ≥ 1/2, ∀` ∈ Z, i ∈ Ic.

To satisfy (22) we takeτ ∈ N so thati(4N − 1)(` − τ i) + 4m is an integer; in addition,
assuming thatτ satisfies

|µτ + 2j | ≥ 1/2, ∀j ∈ Z,

we have proved the following

PROPOSITION2. There existO(µ−2) rescaled periodsτ ∈ N satisfyingµ2τ � 1 such
that the small divisors estimate(16)holds.

The functional setting

We look for periodic orbits of the HamiltoniañH near the familyF defined in (15), namely
we seek solutions of the form(I (t), φ(t), ẑ(t)) = (I0, ω̃t + φ0,0) + ζ(t), whereI0 was
defined in (17),φ0 ∈ TN is a parameter to be determined andζ(t) = (J (t), ψ(t), w(t))

is a T -periodic curve taking values in the covering spaceRN × RN × `a,s (which for
simplicity we will still denote byPa,s). For ζ = (J, ψ,w) ∈ RN × RN × `a,s we define
the norm

‖ζ‖Pa,s = ‖(J, ψ,w)‖Pa,s := |J | + |ψ | + ‖w‖a,s .

We look forH 1-solutionsζ(t) in the Banach space

H 1
T ,a,s :=

{
ζ ∈ H 1

T ,a,s :
∫ T

0
ψ(t) dt = 0

}
whereH 1

T ,a,s := {ζ ∈ H 1(R,Pa,s) : ζ(t + T ) = ζ(t)} andH 1(R,Pa,s) is the Sobolev

space of theL2-functionsζ : R → Pa,s with weak derivative inL2. The spaceH 1
T ,a,s is

endowed with the norm‖ζ‖H1
T ,a,s

:= ‖ζ‖T ,a,s + T ‖∂tζ‖T ,a,s, where

‖ζ‖2
T ,a,s :=

1

T

∫ T

0
(|J (t)|2 + |ψ(t)|2 + ‖w(t)‖2

a,s) dt.

With this norm,H 1
T ,a,s is a Banach algebra with constant independent ofT (see [1]). We

have to solve the functional equation

(23) Lζ = N(ζ ;φ0)

whereL is the linear operator

(24) Lζ = L(J,ψ,w) := (ψ̇ − η2AJ, J̇ , ẇi − iΩ̃iwi)

andN is the Nemytskĭı operator coming from the nonlinearity. By (8),N is smoothing of
order 1, namely

(25) N(·;φ0) ∈ C∞(H 1
T ,a,s, H

1
T ,a,s+1).
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The Lyapunov–Schmidt reduction

By the “twist” condition and the nonresonance property (16), it results that the kernelK
and the rangeR of L are{ψ ≡ const} and{

∫ T
0 ψ̃ = 0} respectively. Define the projections

ΠKζ̃ := (0, 〈ψ̃〉,0), ΠRζ̃ := (J̃ , ψ̃ − 〈ψ̃〉, w̃), where〈ψ̃〉 :=
∫ T

0 ψ̃ ; then the equation
Lζ = N(ζ ;φ0) decomposes into the kernel equation

0 = ΠKN(ζ ;φ0)

and the range equation
Lζ = ΠRN(ζ ;φ0)

which is equivalent toζ = Φ ζ, with Φ ζ := L−1ΠRN(ζ ;φ0). By (16),L−1 “looses one
derivative”, which is compensated by the smoothing property (25). Using the estimates on
the blow-up of the remainder termK for µ going to zero, we prove thatΦ is a contraction
on a suitable closed ball ofH 1

T ,a,s .Hence, for any fixedφ0, we can solve the range equation
finding a solutionζ(t) = ζφ0(t) by the Contraction Mapping Theorem. Insertingζ = ζφ0

in the kernel equation, it remains to solve the finite-dimensional bifurcation equation 0=

ΠKN(ζφ0;φ0), determiningφ0 ∈ TN by standard variational arguments (see [3], [1]).
Finally, the very precise estimates (4), (5) allow us to prove the lower bounds on the

minimal period,T min
≥ c/µ. In Proposition 2 the total number of periods satisfying

(16) is estimated from below by const/µ2. However, not all theT -periodic solutions
corresponding to differentT ’s are necessarily distinct. Using (4), (5) we prove that the
total number of geometrically distinct solutions found in Theorem 1 is estimated from
below by const/µ. The estimate on the amplitudesai ≥ c > 0 follows by (19). Regularity
in time follows by a bootstrap-type argument.

REMARK 1. In (16) we imposed a strong condition on the small divisors in order to use
the standard Contraction Mapping Theorem to solve the range equation. For that reason we
can consider only a finite number of periods. In order to obtain a positive measure set of
periods, one should solve the small divisors problem by a Nash–Moser Implicit Function
Theorem. Thereafter, one should prove that the bifurcation equation 0= ΠKN(ζφ0;φ0)

has a solution forφ0 belonging to a suitable Cantor set (see [4]). A way to proceed is to
develop the reduced action functional in powers of the perturbation parameter and to prove
that the first nontrivial term has a nondegenerate critical point. In the present case, when
the perturbation parameterη goes to zero, the periodT = 2πη−2 goes to infinity and all
the low order terms in the development of the reduced action functional vanish.

REMARK 2. In [1], instead of (16), the weaker “diophantine-type” condition|` − Ω̃iτ |

≥ consti−σ is imposed on the small divisors; for allσ > 1, almost every rescaled period
τ is admitted. Hence, if the nonlinearity is smoothing of orderd > 1, taking 1< σ < d,
the Contraction Mapping Theorem can still be used to have existence. In particular,d = 2
for the beam equation andd > 1 for the NLS. Unfortunately, we have exactlyd = 1 for
the wave equation.
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