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Partial differential equations. — A note on nonlinear elliptic problems with singular
potentials by MARINO BADIALE and SERGIO ROLANDO, presented by A. Ambrosetti.

ABSTRACT. — We deal with the semi-linear elliptic problem
—Au+V(xhu = fu), ueDP2RY;R),

where the potentidl > 0 is measurable, singular at the origin and may also have a continuous set of singularities.
The nonlinearity is continuous and has a super-linear power-like behaviour; both sub-critical and super-critical
cases are considered. We prove the existence of positive radial solutigris déid, we show that the problem has
infinitely many radial solutions. Nonexistence results for particular potentials and nonlinearities are also given.
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1. INTRODUCTION

In this paper we consider the semi-linear elliptic problem
O —u+ V(lxDu = f(w),
ue DY2RN;R), N >3,

where the potentiaV : [0, +00) — (0, +o¢] is a measurable function, the nonlinearity
f : R — Ris continuous and they satisfy the following assumptions:

(Vq) there existA, @ > 0 such thatV (s) > As~* for almost every > 0;
(f,) there existM > 0and p > 2 such thaf| f(s)| < M|s|P~Lforall s € R.

Further assumptions dvi and f, as well as restrictions on the exponesmtand p, will be
required in the following (see Sectiph 3). As concerns the integrability properties of the
potential, we shall assume that

(V)1 V e LY(a, b) for some open bounded interv@l, b) withb > a > 0.

Let us point out that assumptiafV,) implies thatV is singular at the origin. Other
singularities are allowed b§V);.

Our existence results for problefr] (1) are stated in Seftion 3 (Thepiemg 8land 11) and
proved in Sectiofi]5. They give a generalization of the results]of [6] and partially extend
the ones of([l7] (see Remarks| 10 &ndl 12).
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The simplest case in which the assumptions of our results are satisfied (see E{ample 5)
is given by the problem

A
—Au+ —u = |ulP%u,
(2 x|

ue DY2RN;R), N >3,

whereA > 0. In the critical casep = 2* := 2N/(N — 2) anda = 2, the problem of
positive solutions to[(2) is studied i [16] (see Remfark 4), where Terracini also proves
that there are no positive solutions either it (RY) for p # 2* ande = 2, or in
L2(RY; |x|~® dx) for p = 2* anda # 2. The same problem is handled ifi [6] where it is
shown that no positive solution exists Ir? (RV) N L2(RY; |x|~* dx) if « € (0, 2) and

p > 2*, 0ra € (2,400) andp < 2*. On the other hand, the authors prove the existence
of a positive radial solution provided thate (0, 2) andp € (2* 4+ (¢ — 2)/(N — 2), 2%),

ora € (2,+o00) andp € (2%, 2 + (¢ — 2) /(N — 2)).
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Here we generalize the above mentioned nonexistence and existence results. Letting

2, := 2N/(N — ), in Theorenj B of Sectidn 2 we show that probl¢in (2) has no solution

in LP(RV) N L2(RY; |x|~® dx) whenevere € (0,2) andp ¢ (24,2%), ora = 2 and

p £ 25 0ra € (2, N)andp ¢ (2%,2,), ora > N andp < 2*. This will follow from a
Pohaaev type identity related to problefr] (2), which we prove for a general nonlinearity

f e COR; R) (Lemmaﬂ.). As concerns existence, from our results it readily follows that
problem @) admits radial solutionsdf € (0,2) andp € (2, 2%), ora € (2, +00) and

p € (2%,2%), where 2 := 2+ 20/(N — 2). Note that2* — 2% | = 2|(«¢ — 2)/(N — 2)| for

everya > 0 andN > 3.

The study developed here constitutes a part of the PhD thesis [13] of the second author.
We wish to thank the referee for his helpful remarks.
NOTATIONS

e We denote by 2 := 2N /(N — 2) the critical exponent for the Sobolev embedding in
dimensionN > 3. Moreover we set2 := 2N/(N —«) fora € (O,N) and 2, =
2+ 2a/(N — 2) for a € (0, +00).
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e The open ballB,(xg) = {x € RN : |x — xo| < p} will be simply denoted byB,
wheneverg = 0. The closure oB, is B,,.

e O(N) is the orthogonal group a&" .

e By — and— we respectively denotstrongandweakconvergence in a Banach space
X, whose dual space is denoted ¥¥

e C will stand for any positive constant, which may change from line to line.

2. POHOZAEV IDENTITY AND NONEXISTENCE RESULT

Let A, > O andp > 2. By means of integral identities, we prove the nonexistence result
for problem [[2) announced in the introduction.

LEMMA 1. Letf e COR;R) and letu € C2(RN \ {0}; R) be a classical solution to the
equation

3) Aut A u— Fw InRY\ (0. N > 3.

|x|*

SetF(s) := [y f(t)dt forall s € R. If

2
(4) / Va2 + 2 £ 1F@)| ) dx < +o00
RV [x|*
then
N-2 N — Au?
(5) —/ |Vu|?dx + “/ ! dx=N/ F(u)dx.
2 RN 2 RN |x|* RN

PrROOF The proof relies on a standard argument] [10], adapted to the case under
discussion. The starting point are the following identities, which hold tru’n {0}:

) 1 P N-2 2
(x - Vu)Au = div (x-Vu)Vu—§|Vu| X +T|Vu| ,
( V)Au—divAuz N —a Au?
P T2 e T T2 e

(x - Vu) f(u) = div[F (u)x] — NF (u).

Then, forRz > Ry > 0, upon multiplying equatior [3) by - Vu and applying the Diver-
gence Theorem on the open annwWRis= $2g, g, := Br, \ Bg,, We get

(6) —/ (x~Vu)(Vu-v)do~|——/ |Vul| + x-vda—/ F(u)x -vdo
a2 2 he x| a2

N -2 N — Au?
:_/ \Vul? dx + O‘/ " dx—N/ F(u) dx
2 Jo 2 Jo lx|® Q




4 M. BADIALE - S. ROLANDO

wherev(x) is the outward normal adi$2 atx and do is the (V — 1)-dimensional measure
of 3£2. Note that9 2 = 9 Bg, UdBg,, v(x) = —x/R10ndBg, andv(x) = x/R2 0NJ Bg,.
Hence

) / (x-Vu)(Vu -v)do
IBg,

2 AMZ
(8) |Vu|® + x-vdo
3B, x|

9) / Fux-vdo
83&

_ 1 2 . 2
= — (x - Vu)“do < R; |Vu|“do,
Ri Jyy, 3Br,

=Ri [Vul®+ do,
3B, x|

< Ri/ \F(w)] do,
3BR[.

fori = 1, 2. Now, arguing by contradiction, it is easy to prove that there exists a sequence
R1, — 0, Ry, > 0, such that

|x|*

2
Rl,n/ (qu|2+ “ +|F(u)|> do — 0.
aBRLn

By (?)—(9), this implies
2

1 A
—f (x~Vu)(Vu~v)dc7+—/ <|Vu|2+—u>x~vda—/ Fu)x-vdo — 0
9By, 2 JoBg,, x| 9Bk, ,

so that, evaluating [6) faR1 = R1, and passing to the limit as— oo, we get

(10)

- x-Vu)(Vu-v)do + = |Vul*+ — Jx-vdo — Fu)x-vdo
9Bg, 2 J9Bg, x| 9Br,

N -2 N — Au?
_ _/ \Vu|? dx + “/ “dx—N | F)dx.
2 BRZ 2 BR2 |x|Ol BR2

Arguing again by contradiction, one infers the existence of a sequRnge—~> +oo such
that

2
u
Rz,n/ (IVMI2 + + |F(u)|> do — 0.
8BRZn

x|
Hence, upon recalling (7)H(9), ([10) yields the conclusion. O

LEMMA 2. Letu € C2(RM \ {0}; R) be a classical solution to the equation

A .
u=u”%u inRY\ {0}, N> 3.
| x|

(11) —Au+

If u e DL2RN) N L2RY; x|~ dx) N LP(RN) then

A 2
(12) / IVl + 22 de/ ul|? dx.
RN x| RN
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PROOF Multiplying by, using the identity: Au = div[u Vu] — [Vu|? in RV \ {0}
and applying the Divergence Theorem on the open anmlus Bg, \ Bg,, We obtain

1 2 Au?
— u(Vu-x)do — — u(Vu-x)do + |Vul|*+ dx = | |u|Pdx.
R1 JaBpg, R2 JaBg, I?) x| 2
Now, since;2—+ = 2% < 2 and®t = 1 + 3, by the Hlder inequality we get

5/ |u||Vu|do
3Bg,
) 1/2¢ (N+2)/2N
BBRi 8BR1'

) 1/2* 1/2 .

< c(/ |u|? da) (/ |Vu|2da> RNTDIN
BBRI. aBRi
. 1/2* 1/2
=C<R,-/ |u|? da> (R,-/ |Vu|2da> .
BBRi aBRi

Then, as in the proof of Lemni 1, one can takg, — 0+ andRz, — +oo such that

1
‘—/ u(Vu - x)do
Ri Jyy,

Ri,nf (uf? + |Vu?) do — 0
aBRin

and the conclusion follows. O

THEOREM3. Ifx € (0,2) andp ¢ (2,,2"),0ra = 2andp # 2, ora € (2,N)
andp ¢ (2*,2,),0ora > N andp < 2%, then equatio) has no nontrivial classical
solutionu € C2(RN \ {0}; R) such that: € DT2(RN) N L2(RY; |x|~* dx) N L?(RV).

PROOF Assuming that the assertion of the theorem is false, we can apply both Ligmma 1
and Lemm&R. Thus plugging (12) infd (5) one gets

N—-2 N N N-— Au?
roe 2 / Vuldx =~ -2 ¢ / Y dx,
2 P/ Jry P 2 RN |x]¥

which is not possible for # O if

N—-2 N\/N N-«
_ | — - < 0.
2 p p 2

Since this inequality is actually equivalent to the assumptions of the theorem, we have a
contradiction. O

REMARK 4. Inthe case = 2 andp = 2*, equation|(1]l) admits solutions. This has been
proved in [16], where the positive radial solutions are completely classified; in particular,
all the radial positive solutions im12(R") are explicitly found. Related results can be
found in [B] and[[8].
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3. EXISTENCE RESULTS

In order to state our existence results we need some notatioi. BoB and for any given
measurable functiolr : [0, +00) — (0, +o0] satisfying assumptioV)1 we define the
weighted Sobolev space

(13) X:=XR";Vv):= {u e DY2(RY) : / V(xDu?dx < ~|—oo},
RN

which will be studied in Sectign| 4. Note théf); ensuresX # {0}.

For any givenf € CO(R; R) setF(s) := [ f(t)dt.

Our existence results rely on assumptiovs), (f,) and(V)1 suitably combined with
some of the following conditions:

(V)2 there existB, B, o > 0 such thatV (us) < u #BV (s) for almost everyt > uo
ands > O;

()1 there existsr > 2 such thaty F(s) < f(s)s forall s e R;

(f)2 F(syx) > Ofor somes, € (0, +00);

(f)3 F(s) > Oforall s € (0, +00);

(Ha fisodd;

(Fp) there existsn > O such thatF (s) > m|s|” for all s € R.

Note thatV (s) # 400 and(V), ensureV € L*°(c, +o0) for somec > 0.

EXAMPLE 5. If V : [0, +00) — (0, +00] satisfiesAs™ < V(s) < Cs~* for some
C > A > 0 and for almost every > 0, then assumption®/,) and(V), hold with 8 = «,
B > C/A andug > O arbitrary.

EXAMPLE 6. Forany giverd > 0 anda > 8 > 0, the function

400 fors =0,
V(is)=1{ As™® fors € (0, 1],
As™P  fors e [1, +00),
satisfiesVy) and(V)2 with B = g = 1.

EXAMPLE 7. For any giveng > 0, A > 0 anda > B8 > 0, assumptiongV,) and (V)2
hold for the function

+00 fors € [0, so],

V(s) = { B(S _ SO)i/B fOI’S S (SO3 +OO),

provided thatB = B(sg, A, «, 8) > 0 is large enough.

THEOREMS8. Let f e CO(R;R) satisfy(f); and letV : [0, +00) — (0, +oc] be a
measurable function satisfyin/):. Assume thatV,) and(f,) hold with«a € (0, 2) and
p € (2,2, 0ra € (2,+00) andp € (2%, 2%). Assume furthermore that eith€rsatisfies
(V)2 and f satisfieqf),, or f satisfieqf)3. Then problenfd)) has a nontrivial nonnegative
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radial solutionz € X (R": V), by which we mean
(14) / (Vu - Vh + V(|x))uh)dx = / fhdx forallh e X(RY; V).

RN RN

REMARK 9. If we replace assumptidafi), with the requirement of the existencesef< 0
such thatF'(s,) > 0, similar arguments ensure the existence of a nonpositive solution.

REMARK 10. Theoreni|8 generalizes the existence results of [6] in two directions: first,
as discussed in the introduction, it enlarges the rangesafor which problem[(R) admits
nonnegative radial solutions; second, it covers more general classes of potentials and
nonlinearities.

THEOREM11. Letf e CO(R; R) satisfy(f); and(f)4, and letV : [0, +00) — (0, +o0]
be a measurable function satisfying);. Assume thatV,), (f,) and(F,) hold witha €
(0,2)andp € (2%,2%), ora € (2, +o0) and p € (2%, 2%). Then there exist ix (RY; V)
infinitely many radial solutions to probleff]) in the sense of4).

REMARK 12. If f(u) = [u|?~2u, V € L® and lim_ o s*V (s) = 1, problemK]L) admits
infinitely many radial solutions for < @ < 2 and a slightly larger range of exponents
thanin Theorer@l, namely € (pq, 2*) with py =2+ 2a/(N —1—«/2) < 2. This

has been proved inl[7], where the authors are also able to prescribe nodal properties to
the solutions. Multiplicity results for probler(1) with continuous potentials which do not
vanish at infinity are contained inl[2] and [3].

Theorem$§ B and 11 will be proved in Sectjgn 5 by means of Mountain Pass theorems,
for which the reader is referred to the celebrated pager [1] by Ambrosetti—-Rabinowitz, or
to some more recent books suchlds [9]] [12]] [15].

4, A WEIGHTED SOBOLEV SPACE

Let N > 3 and assume that : [0, +00) — (0, +00] is a measurable function satisfying
(Vq) and(V)1. The aim of this section is to study the weighted Sobolev spaicéroduced
in (I3).

It is well known that the Sobolev space
DY2:= DY2RN) = {(u e L¥ RN) : Vu € L2R")}

equipped with the nornfju|| h12 := ||Vul;2 is a Hilbert space, which can be regarded
as the completion o€ °(RY). Let us just recall that wealo-2-convergence implies
pointwise convergence di" (up to a subsequence and almost everywhere).

Since the convergence in the weighted Lebesgue spa@®”"; V(|x|) dx) implies
pointwise convergence (up to a subsequence and almost everywhere), theXspace
DL2RM)NL2RN; V(|x]) dx) is a Hilbert space with respect to the nofmi|? := (u | u)
induced by the scalar product

u|v):= / (Vu-Vo+ V(xDuv)dx forallu,ve XRY; V).
RN

Note thatC°(By, \ B,) C X thanks to assumptiofV/);.
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By the continuous embedding < D2, weak X-convergence implies pointwise
convergence oV (up to a subsequence and almost everywhere). As a consequence, the
subspace

Xe=X/RY; V):={ue X®R"; V) :ux)=u(gx)forall g € O(N)}
(which is nonempty by assumpti@i)1) is closed inX, and thus it is a Hilbert space itself.
PROPOSITION13. The embedding(R"; V) < L% (R) is continuous.
PrROOF By a well known radial lemma [4], there exists; > 0 such that
(15 Vu € DRG@RY) |u)| < CylIVull 2@y lx]~ V=272 for almost every: € RY

(we notice that in[[4] the authors prove this estimate|fdr> 1, but their proof actually
works forx £ 0). Hence for any: € X, we have

20/(N—2)

()% = Ju () Plu) P N2 < Ju ) POVl g, 7 bl
— 20/(N—-2
< ATNCIVul g, PV (xDIu o

for almost everyr € RY, which implies
/R P dx < CQIVulZ ) ™2 fR | Vxhu? dx < /72 Ju) ?

so thatfjull, 2; gny < Cllull. O

By the Holder inequality, Propositign 13 together with Sobolev embedding yields the
following continuous embeddings:

(16) X (RY; V) — LP(RY) for0<a <2andp € [2}, 2]

and

(17) X (RY; V) < LP(RY) fora > 2 andp € [2*, 2¥].
ProOPOSITION14. The embeddingf6)(17) are compact fop # 2*, 2;,.

PROOFE Let {u,} C X, be a bounded sequence and Rs) := |s|” and Q(s) =
Is|% 4 |s|%. Thenu, — u in X, (up to a subsequence) and Jim.o P(s)/Q(s) =

lims_0 P(s)/Q(s) = 0. Thus we can apply a well known compactness lemma [14] (see
also [4]), by whichu,, — u in L?(RY) provided that the following conditions hold:

(@0) imxj—o0 [un (x) — u(x)| = 0 uniformly with respect ta;
(i) |u, —u|? — 0 almost everywhere dR”";
(i) sup, [py Q(uy —u)dx < +oo.
Actually, (i) is ensured by (15) together with the boundedne$$6{u, —u)||; 2}, whereas
(i) is satisfied, up to a subsequence, by pointwise convergence of weakly convergent
sequences iX;. Finally, since

2*
L%

%

1% + lup — ull

/ Oup —u)dx = ||luy —ul|
RN

condition (iii) follows from the continuity of the embeddings [16)4(17) together with the
boundedness dfju, — u]|}. O
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The following extendibility propositions show thatif € X; then |u|?~1 defines an
element of the dual spac¢ provided that condition$ (16]—(IL7) gnanda are satisfied.

PROPOSITION15. If u € X;(RV; V) then there exist§ = C(N, o, A) > 0such that

/ lul% Y| dx < Cllull%" v forallve X@RY; V).
RN

PrROOFE One has

Wl Yoldx = [ 2@t g
RN RN I)CI‘)‘/2
1/2
< f 2% gy )
RN RN IXI"‘
1/2
§<f |x|“|u|2<2a—1)dx) ( V(b dx)
RN
/2
sc(/ |x|°‘|u|2‘221>dx) [v]l.
RN

Now we write 22} — 1) = 2+ 4a/(N — 2) and use the estimafe (15) to obtain

2
* u

/ |x|“|u|2<2u—1>dx=/ e P/ dx
RN RN |X

2
— -2
< C||Vul )3 2)/ |”|a 2 x|~ 7 R2 dx

L2(RN)
aw/N-2 [ U
= ClIvul/ fR |

-1 4a/(N—-2) 2
< ATIC|Vull g, /R V(|x)u® dx

< Cllul*/™=2ju|? = Clu)*%Y
which completes the proof. O
PROPOSITION16. If u € X;(R"; V) then there exist§ = C(N) > 0 such that
/RN | Yldx < Cllul® Y| forallve X®RY; V).
PrROOFE Use the Hlder inequality and Sobolev embedding. O

PROPOSITIONL7. If u € X.(RY; V) then there exist§ = C(N,a, A) > 0 such that
for everyp € [2}, 2*] or p € [2*, 2%], according asy € (0, 2) or o € (2, +00), one has

/ [ul? " Yldx < Cllu|?~ v forallve X@RYN: V).
RN

ProOF. This follows, by interpolation, from Propositions|15 4ndl 16. O
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We conclude the study df, by proving the following technical lemma.

LEMMA 18. Assume thaV satisfies(V), and letF e CO(R; R) satisfy condition(f)..
Then there exists € X (R"; V) such that/py F(u)dx > 0.

PrROOF First, from assumptioiV), we deduce that € L*°(c, +o0) for somec > 0,
so thatCP (RN \ B.) C X. In order to prove the lemma, for amy > 3 we letgg €
C(c, +o0) be such that 6< ¢ < 1,¢r(t) =0fort <c+1lort>c+1+Rand
¢r(t) = 1forc+2 <t < c+ R. Then, for allx € RN defineug(x) := ¢r(|x|), SO
thatug € X, satisfies suppg C Bey14r \ Bey1, 0 < ug < 1inRYN andur = 1in
Beir \ Bes2. Using condition(f)y, it is now easy to see thg(ﬁw F(ssug)dx — +oc0 as
R — +o00. d

5. PROOF OFTHEOREMS8 AND [11

In this section we assume thate CO(R; R) satisfies(f); andV : [0, +00) — (0, +00]
is a measurable function satisfyirfy)1. We also assume th&V,) and (f,) hold with
a € (0,2 andp € (25,2%), ora € (2,400) andp € (2*,2%). SetF(s) == [ f(1)dt
and letN > 3. Our aim is to give the proofs of Theoreftjs 8 anfl 11, which will be achieved
through some preliminary lemmata.
We are going to look for critical points of the functionat X;(RY; V) — R defined

by
. 1 2 2 N.
I(u) = —/ (Vul®+ V(xDu“) dx —/ Fw)dx forallu e X,(R™; V).
2 RN RN

By assumptior(f,) and the continuous embeddinfs|(16)1(17), one easily sees ihaf
classC?! on X, with Fréchet derivative’ () at anyu € X, given by

I'(wh = (u | h) —/ fwhdx forallh e X,(RY; V).
RN

The next lemma shows that any critical point/ogives rise to a solution to problern] (1).
Notice that the lemma is a version of the Principle of Symmetric Criticality (s€e [11]).

LEMMA 19. Every critical point off : X, (R"; V) — R satisfies{14).
PROOF Letu € X;. Forh € X we define

T(uwh = / (Vu - Vh + V(x)uh)dx — / fwhdx.
RN RN

The linear functionaf” («) is well defined and continuous oy i.e., T (1) € X', since

‘/ fw)hdx
RN

for all h € X by Propositiorj 1J7. Hence there exists a unigue X such thatl (u)h =
(u | h) forall h € X. By obvious changes of variable, it is easy to see that for every

< f @)l dx < M/ )Pk dx < CllulP~Mh
RN RN
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andg € O(N)one hadii | h(g-)) = (i(g~1) | h) andT (u)h(g-) = T (u)h, so that
(@(g~ L) | h) = (@i | h). Thismeangi(g~1.) = i forallg € O(N), i.e.,i € X;. Now
assumel’(u) = 0in X;. Then(i | h) = T(u)h = I'(u)h = O for all h € X, implies
i = 0. Thismeang (u)h = O forallh € X, thatis, [14) holds. O

LEMMA 20. The functionall : X;(R": V) — R satisfies the Palais—Smale condition.

PrROOF Let{u,} C X, be a sequence such tha{u,)} is bounded and’(x,) — 0in X;.

We have to show thdi:,} contains anX,-converging subsequence. A standard argument
employing assumptio(f); shows thafu,} is bounded inX;. Then up to a subsequence
u, — uin X, and, by Propositio[]réun — u in L? for someu € X;. Itis a standard
exercise to conclude that, — u in X,. O

PROOF OF THEOREM [8. As we are interested in nonnegative solutions, it is not
restrictive to assumg'(s) = O for all s < 0. Indeed,(f,) implies f(0) = 0 and the
hypotheses of the theorem are still satisfied upon replagiay with f(s;). We want

to apply the well known Mountain Pass Theorem. To this end we observe that, by the
continuous embeddings (16)—{17), assumptign yields

‘/ F(u)dx
RN

< C/ lu|? dx < Clu||? forallu € X;
RN

so that
1 -
(18) I(u) > E||u|| —Cllu|? forallu e X;.

Sincep > 2, this proves thak has a mountain-pass geometry near the origin, namely there
exists, p > 0 such that for allk € X, with ||u|| = p one had (1) > §. On the other hand,

we are going to show that, under assumptidhie and(f), or under assumptiofi)s, there
existsi € X, such that|iz|| > p and/ (i) < O.

First assume thaiv), and (f)» hold. Takex € X, such thatfRN Fw)dx > 0 (see
Lemm) and set, (x) ;= u(u,jlx) where{u,} C (uo, +00) is any diverging sequence
such that the inequality iGV)2 holds for everyu = u,, and almost every > 0. Then
u, € Xy is such that

lunll? = = /RN Vul?dx + o) fRN V (unlxu? dx

2@2”2/ |Vu|2dx+A/L,’1V*°‘/ u—dx—>+oo
RN RN |X

N|x|*

and

1 1
I(uy) = 5#{5*2/ |W|2dx+—uf¥/ V(un|x|>u2dx—u,’¥f F(u) dx

RN 2 RN RN
1 B
< -M,I,V—Z/ [Vul?dx + —M,’j—ﬁ/ V (|x)u? dx —M,’:’f Fu)dx — —00
2 RN 2 RN RN
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We now assume hypothesi®s. Together with(f)y, it implies F(s) > F(1)s? for
everys > 1. Hence for any. > 1 andu € X, nonnegative one has

/ F () dx =/ F(ku)dx—i—/ F(w)dx > F(ml’f u? dx
RN Au>1 0<iu<1 Au>1

> F(1))J’/ u? dx.

u>1

Sincey > 2, this gives

1o 2 0 ?
I(w) < 5)\ lull® — F(L)x / lu dx - —co asi — +o0.
u=>

As a conclusion] exhibits a mountain-pass geometry. Hence Leifnnpa 20 and the Mountain
Pass Theorem provide the existence of a nontrivial critical poinf f@y Lemma[ 19, it
solves equatior] {1) in the sense [of|(14). Finally, we observe that, giae= 0 for all

s < 0, anyu € X satisfying [I%#) has to be nonnegative. Indeed, one f@3u_ = 0
almost everywhere oR”, so that

0= Vu - -Vu_dx +/ V(|x|)uu_dx —/ f@u_dx = —||u,||2
RN RN RN

impliesu = uy. O

PrROOF OFTHEOREM[L]]. Since assumptioff)s implies (u) = I(—u) forallu € X,

we can apply the Symmetric Mountain Pass Theorem (see for example Theorem 6.5 in
[15]). To this end, taking into accourt (18) and Lemma 20, we need only show that
satisfies the following geometrical condition: for any finite-dimensional subspa£€0}

of X, there existsk > 0 such that for all: € Y with ||u|| > R one had (1) < 0. In fact it

is sufficient to prove that any sequerag} C Y with |lu, || — 400 admits a subsequence
such that/ (u,) < 0. This is ensured by assumptigF,). Indeed, since all norms are
equivalent ort’, one has

[, s zm [l dx = Clu1?
RN RN
so that, since > 2, we get

I(u )—Enu 12— |  Flup)dx < 1”“ 12— CllunllP — —o0
n - 2 n RN n — 2 n n

and hence the claim follows. Then the Symmetric Mountain Pass Theorem yields the
existence of an unbounded sequence of critical values, far which there corresponds a
sequence of nontrivial critical points fér Lemmg 19 completes the proof. O
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