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ABSTRACT. — An existence theory for local solutions of a parabolic problem under a dynamical boundary
conditionou; + u, = 0 is developed and a spectral representation formula is derived. It relies on the spectral
theory of an associated elliptic problem with the eigenvalue parameter both in the equation and the boundary
condition. The well-posedness of the parabolic problem holds in some natural space only if the number of negative
eigenvalues is finite. This depends on the parametarthe boundary condition. & > 0 the parabolic problem

is always well-posed. Fer < 0 itis well-posed only if the space dimension is 1 and ill-posed in space dimension

> 2. By means of the theory of compact operators the spectrum is analyzed and some qualitative properties of
the eigenfunctions are derived. An interesting phenomenon is the “parameter-resonance”, where for a specific
parameter-valueq two eigenvalues of the elliptic problem cross. Examples are given for which the eigenvalues
and eigenfunctions can be computed explicitly. The last part of the paper deals with blow up of solutions of the
parabolic problem with nonlinear positive sources.
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1. INTRODUCTION

Let D ¢ RY be a bounded domain with Lipschitz boundar, and letn be its outer
normal. Letg(x) and F(x, t, u) be positive functions and be an arbitrary real number.
In this paper we shall discuss parabolic problems of the form

(1.2) ur — Au+qgx)u = F(x,t,u) inD x (0,T),
(1.2) ou; +u, =0 ondD x (0, T),
(1.3) u(x,0) = ug(x) in D.

We will study the existence of local and global weak solutions by means of a Hilbert space
approach and derive a representation formula for the solutions.

The most general result concerning existence of local solutions for positivas
established by Escher [110] in the framework of semigroups (cf. also the various references
to previous work cited therein). The question of blow up and of the blow up time for the
nonlinear problem was addressed[ih [7] where it was shown, again for pasijtthat for
large initial conditions blow up occurs for the same type of nonlinearities as for Dirichlet
and Neumann boundary conditions.
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Many authors have studied different variants[of|(1[I)4(1.3). Vitillaro [20] considered
nonlinear boundary conditions whetg is replaced byu, | 1u,. Fila and Quittner[11]
treated the problenj (1.1)—(1.3) with a nonlinear term on the right-hand sidle df (1.2) of
the form u|u|?1u. They were mainly interested under what conditions solutions exist
globally for all times or when they blow up in finite time. In all papers it is assumed that
o is positive. Problems with nonlinear Neumann boundary conditiens Q) with (1.2)
replaced by, = g(u) have been the object of many papers (cf. é€.d. [16]).

The case o6 < 0Ois less studied [4].[19]. It turns out that it is much more delicate and
gives rise to unexpected phenomena. In fact the parabolic problem is well-posed in some
natural Hilbert spacéuz((o, T), HY(D)) if o is nonnegative. For negative, however,
well-posedness holds in the spa€g[0, T], H1(D)) only in space dimension one. In
higher space dimensions the parabolic problem is ill-posed in this space.

For the expansion of the solutions of the heat equation with dynamical boundary
conditions into a Fourier series we are led to the following eigenvalue problem:

(1.4) —Ap+qx)p=rp IND, @, =Xiop o0OnNaID.
The corresponding Rayleigh quotient reads

[pIVvI2dx + [, qu?dx

R[v] = :
[v] [pv2dx +o §,,v2ds

which is not positive definite for negative

The spectral theory for such problems has been treated by Ercolano and Schechter
[9] for formally self-adjoint elliptic operators of second and higher order under lower
boundedness assumptions. For positive space-depesdamd for second order elliptic
operators it has been shown by Francois| [12] that the spectrum consists of countably
many eigenvalues bounded from below and tending+-te. In the present paper the
corresponding result is derived for negative constgnnore precisely, the spectrum has
an additional negative set which is infinite in dimensiovis> 2 and finite forN = 1.

The eigenfunctions are completefift (D) except in theesonance casg|+o|dD| =0
where it has to be supplemented with an additional element.

The main existence results for the linear heat equation with dynamical boundary
conditions are presented at the beginning of Section 2. We follow a Hilbert space approach
as in [17] which has the advantage of providing an expansion formula for the solutions.
The main part of Section 3 deals with the eigenvalue probfen) (1.4). The spectrum will be
described completely by means of the theory of compact linear operators. As anillustration
we compute the explicit form of the eigenfunctions on interv@sL) c R and balls
Br(0) Cc RV,

In Section 4 we study the phenomenon of parameter resonance in detailpdsses
through a critical valueg = —|D|/|dD| < 0 the first positive eigenvalue; (o) varies
continuously into the first negative eigenvalue; (o). At the resonance valug, itself,
this gives rise to an incomplete system of eigenfunctions, which needs to be augmented by
an extra element.

In Section 5 we study the long-time behavior of the solutions] of| (1.T)(1.3) with
nonlinear positive sources. The main result concerns the case where0O and the
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initial data are also positive. It turns out that all solutions blow up in finite time if the
corresponding reaction equation= f(z) has no global solutions. Loosely speaking, the
mechanism resembles the one with Neumann rather than Dirichlet boundary conditions.
This completes the results on existence of blow up initiatedlin [7]. The case of negative
o seems to be much more involved. The difficulty comes mainly from the fact that the
standard comparison principles do not hold, and the method of upper and lower solutions
is not applicable. For instance in contrast to the case of positigesolution with positive
initial data can become negative in finite time. Currently no results on blow up or global
existence seem to be available and these questions remain open.

After completion of the manuscript it was brought to our attention that J. L. Vazquez
and E. Vitillaro [19] have studied (1.1}—(1.3) with = 0, ¢ = 0 and arbitraryo.
Their results on well- and ill-posedness of the parabolic probjen ([.I)—(1.3) and on the
elliptic eigenvalue problen| (1.4) overlap with ours. Their results are stated for
domains. Their approach is different, e.g., they show thav) + L1(u)L1(v)u with
Li(w) = ([pudx+o fuds)/|D| + o|dD| is an equivalent norm it (D) except in
the resonance ca$P| + o|daD| = 0.

2. MAIN EXISTENCE RESULTS

2.1. Introduction

Consider the linear problem

(2.2) Uy — Au+qg(x)u = f(x,1) inDxRT,
(2.2) our+u, =0 ondD x RT,
(2.3) u(x,0) = ug(x) in D,

with ¢ € L°°(D). Let us introduce some notation. Rarv € H1(D) we set

(u,v):/(Vqu—i—q(x)uv)dx,
D

(u, v) :/ uvdx, (u,v)oz% uvds.
D aD

If ¢ = 0 andf,gdx > 0 then the form(, -) induces a norm which is equivalent to
the standard norm aff1(D). Assume thatig € H(D) and f € L?((0, T), L3(D)). A
functionu € C([0, T], HX(D)) is called aveak solutiorof (2.1)-[2.3) if

T T T
~ [ oo amodr+ [ wordr= [ (.6d+ w00+ oo 0
forall ¢ € C1([0, T], HYX(D)) with ¢ (-, T) = 0.

We will use the spacd.?(D) x L?(dD) consisting of the pairgf, g) of functions
f e L3(D) andg € L?(dD). Writing u € L?(D) x L?(dD) means that : D — Risin
L?(D) andu : 9D — Risin L?(d D), but in general there is no coupling betweeim D
andu on d D. Recall however that for domair3 with Lipschitz boundary every function
u € HY(D) has a trace itHY2(3 D) (cf. Alt [1]). Hence HY(D) < L2(D) x L2(dD)
compactly.
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2.2. Results for the eigenvalue problem

If we are looking for solutions of the homogeneous heat equafion (2.1) fvits O
satisfying the boundary conditions (P.2), of the fomtx, t) = e ¢(x), thenp(x) is
a solution of the eigenvalue problem

(2.4) —Ap+qx)p=rp IND, ¢@,=0clp 0ON3ID.

We first collect some results on the eigenvalue problen) (2.4) and refer to a later Section 3
for the proofs. Define

a(u,v) .= (u,v)+o(u,v)o, u,ve Hl(D).
The eigenvalue problern (2.4) can be expressed in the weak form as
(p,2) = ralp,2) Vze HYD).
We shall use the following notation:
N=1{1,2...}, No=NU{0}, Z={0,+1,+2 ...}.

Lety; anda;, i € I, denote all the eigenfunctions and eigenvalue§ of (2.4). We shall show
that the index sef is countably infinite. A negative (resp. positive) index will stand for a
negative (resp. positive) eigenvalue. If zero is an eigenvalue then it will be denoged by
Our results on the eigenvalue problem are as follows.

THEOREM1. Letg > Owith [, gdx > 0. Then there exists a complete $¢t}ic; C
HY(D) of eigenfunctions o with (y;, ;) = &;. For everyu € H(D) we have
=Y (u, ¥i) ¥ in HY(D).
(i) If o > Othen the eigenvalues are positive ahe: N. For everyu € L?(D) x L?(3 D)
we have

o0
u=Yy alu,¢)ei
i=1

in L2(D) x L2(3D) with ¢; = /A ;.

(i) If N > 2ando < Othen there are countably many positive and negative eigenvalues,
i.e.] =7\ {0}.

(i) f N=1ando < Othenl ={—k,...,—1}UNwithk > 2.

REMARK. Foro < 0 andu e HY(D) the expansion: = Y ier{u, i)y can be
rewritten as

(2.5) w="y_sign(r)a(u, g;)gi

iel
with ¢; = +/]1;|¥;. Unlike the caser > 0 we do not know if this expansion is true for
u € L3(D) x L2(3D) even if only finitely many negative eigenvalues are present.

The caseg = 0 is more involved. We shall distinguish between two casbs$:+
oloD| #0and|D|+o|dD| = 0.
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THEOREM2. Assume = 0and|D| + o|dD| # 0. Then there exists a complete set
{Wilier € HX(D) of eigenfunctions of2.4) with (y;, v;) = &; for i, j # 0. For every
u € HY(D) we haver = Y, o (. ¥i)¥i + P(u) in H'(D) where

_a(u,l) Jpudx +o ¢, uds
S all D]+ o|dD]

Pu) :

is a projection into the eigenspace corresponding o

() If o > Othen the eigenvalues are nonnegative dng No. For everyu € L?(D) x
L%(3D) we have

o
w=y a(,p)e; + P)
i=1
in L2(D) x L2(3D) with ¢; = /A ;.
(i) If N >2ando < Othenl =Z.

(i) LetN =1, D = (0,L) ando < O.If |o| < L/2thenl = {-2, -1} U Ng and if
lo| > L/2thenl = {—1} U Ng.

In order to describe the situation in the cd¢® + o|dD| = 0if N > 2 and
correspondinglyiD| + 20 = 0 if N = 1 we consider an arbitrary solution of the
boundary value problem

(2.6) —Aw=1 inD, w,=0 o0nabD.
Note that all eigenfunctions, including the constant ones, belong to the space

V:{veHl(D):a(v,l)z/ vdx—}—a% vds = 0¢.
D aD

In addition, all eigenfunctions except the constants lie in the subspace

sz{veV:a(v,w)zf vwdx—i—a% vwds =0
D aD

wherew is an arbitrary but fixed solution df (3.6). Hence every elemeat H(D) can
be split into
u=uy+ Pu)+ Q)w

where
a(u,w) a(w,w)a(u,l) a(u,l)

- . Q)= .

a(w, 1)

THEOREM 3. Assume; = 0 and|D| + o|dD| = 0. Then there exists an orthonormal
system{v;}ie; € H(D) of eigenfunctions o@)with (Yi, ) = &; fori, j # 0. By
adding the function andw the expansion = Ziel\{o} (u, Y)Y + P(u)+ Q(u)w holds
in H1(D) for everyu € H(D).

(i) If N > 2thenl = Z.
(i) LetN =1landD = (0, L). Then! = {—1} U Np.

Uy € va P(M) = a(l’ w) a(la w)2
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2.3. Existence results for the linear parabolic problem

The weak solution of the parabolic problelm {2.[)(2.3) can now be constructed by means
of the complete system of eigenfunctions introduced in the previous sectios; batdw
have the same meaning as in Theorghjg 1-3.

The following simple result will be helpful for the convergence proof of the formal
solution of the parabolic problem.

LEMMA 4. There exists a constagt > 0 such that for every € L2(D) one has

D AP S ClUf I -

iel
PROOF Fork e Nletly = I\ {0} N{—k,...,k}and letZ, = spanl; : i € I;]. The
functionzy := 3, (f, Vi)Y satisfies(zx, ¢) = (f, ¢) for all ¢ € Z;. Hence

(zks 2k) = Z(f» Wi)z =(f,z) < ||f||L2(D)||Zk||L2(D) =< C||f||L2(D)||Zk||H1(D)-

iely
Since the constants do not belong Zg the bilinear form{., .) produces a norm on
Z, which is equivalent to thed1(D)-norm. Therefore(zy, zx) = Yien (f )2 <
C||f||i2(D). Lettingk — oo we getd ;.\ g, (f: ¥i)? < C||f||§2(D) and the same holds if
i =0isincluded. O

THEOREMS5. Suppose there are at most finitely many negative eigenvalues Leet
HY((0,T), L3(D)) andug € H(D). Then problem(2.1)(2.3) is well-posed and has
a unique solutiont € C([0, T], HY(D)) in the sense of Secti¢ghl The solution has the
following form:

(i) Ifg >=0and[,qdx > Othen

w(x, 1) =Y (uo, Yide M Yi(x) + Y fihie i (x),
iel iel
wheref; (1) = [ (f (. 7). yi)etiTdr fori e I.
(i) If g =0and|D|+ o|dD| # 0then

a(ug, 1)

So(®)
a(1,1) +

u(x,t) = Z (uo, Yide i (x) + a(l,1)’

iel\{0}

Y fi@re M () +

iel\{0}

wheref; (1) = [o(f (-, 7). ¥i)etiTdr fori e I\ {0} and fo(t) = [o(f (-, T), D) dx.
(i) Ifg =0and|D|+ o|oD| = 0then

u(x,t) = Z (uo, Yi)e ' (x)

iel\(0}
a(ug, w) _ a(w,w)a(uo,l) a(ug, l)( )
a(L, w) a(L, w)2 a.n L0

+ ) fOMeTNY () + fot) + @O wk) — 1)

iel\(0}
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where

t
fi(t) =/ (f(, 1), ¥i)e T dr fori e I\ {0},
0

f(t)_/t<(f(7t)7w) _ a(wa LU)(f(,T),l) T(f(.7t)71))d7,'
o= a(l, w) a(L, w)2 a(w, 1) ’
! (f(v 7:)7 1) d
—— arT.
a(w, 1)

f) =
0

REMARK. Foro > 0 the above theorem can be improved as follows. Suppose
L2((0,T), L3(D)) andug € L%(D) x L%(3D). Then the solution has the properties
u € L2((0,T), HY(D)), u; € L2((0,T), L3(D)), traceu; € L3((0,T), L2(9D)) and
moreover|u —uoll 2(py, Il traceu —uoll .25 py — O ast — 0. Furthermorey is a solution

in the weak sense, i.e., for alle (0, T) and for all¢ € L2((0, T), H(D)),

/(J((ut,¢>+o(ut,¢>o>dr+/o <u,¢>=/o (f. $)dr.

PROOF OFTHEOREM 5. As an illustration we prove (iii). The proofs of statements (i)
and (ii) are almost the same. In view of Theofgm 3 we look for a solution of the form

ulx,r) = Z aj (DYi(x) + aot) +a @) (wx) —1).

Je\{0}

First we replace the infinite suﬁjel\{o} by a finite sumzjelk, Iy = I\{O}N{—k, ..., k},
and show that the coefficientg(r) have the form given in the theorem. We insert the finite
sum expression* into the weak form of (Z]1)F(2]3), wheug is replaced by the projection
of u’{) into Z; = spanpy; : i € I] ® span[1 w]. For finite sums:* we can use the concept
of classical solution of (2]1)=(2.3). Testing with a functipre H1(D) this means

ak, ) + Wk, ¢) = (f, ) + (g, d)o-

Replacingp successively with);, 1 andw and keeping in mind that

ra(Wi, ) =8, a@, D) =al,1)=a(,w)=0,
(Wi, ) =8ij, (Wi, w) =0,

we obtain the following set of equations:

‘;L{+a,~=<f,w,-> ifi e 1\ {0},
~aaw.D) = (£,
ao(t)a(w, 1) +a()a(w —t, w) = (f, w).

The expressions for the coefficients ag, @ follow by straightforward integration if we
impose the initial condition* (0) = ul(‘). Now we can build the full series definingx, t).
We will show next that: € C([0, T'], HX(D)). This then establishes thatis a weak
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solution in the sense of Sectipn P.1. Note tlat) introduces an equivalent norm on
H(D) only in the casef,qdx > 0. Forg = 0 it is an equivalent norm only on the
subspace¥, V,,. But since these subspaces have codimension 1 or 2, itis enough to control
(u, u). Let

ua(x, 1) =Y (o, Yi)e MY (x),  up(x, 1) =Y fi(rie MY (x),

iel\{0} iel\{0}

wheref; (1) = fé(f, ¥;)e*is ds. Then forz € [0, T] one finds

(g, ua) < (w0, ¥i)%e 2+ D" (uo, ¥i)? < Clluol5s ),

iel,i<0 iel,i>0
whereC = ¢2*minlT andmin is the smallest (negative) eigenvalue. Lebesgue’s dominated

convergence theorem implies that(-, t) is continuous as a function from [@] to
H(D). Next we need to show the same fgr. Note first that

2.7) (up, up) = Y fi()?2fe 2",
iel\{0}

Fori # 0 one has

1 Ait 1 1 ! Ais
f‘l(t):)\’_(f(st)v I/fi)e ! _)\’_(f(so)a wl)_k_/ (f[('?s)a wi)e ds
i i i JO

and hence
2_ 2 2 20, 2 2 ! o, il —1
fi(®) §p(f(~,t),wi) e +P(f(',0)71/fi) +/O (feCy8), ¥i)ds 3

Finally, this leads to

t
Yo AP <c Yy ((f(~,z>,1/fi>2+(f<-,0),wi>2+/o<fz(-,s),wl-)2ds>.

ieI\{0} iel\{0}

Applying Lemmg % we obtain

T
> i@z i <C /0 (LfC N2, + G D2 ) s,

ieI\{0}

where the constants depend onimin| and 7. This shows that the series on the right-
hand side of[(2]7) converges uniformlyzsinAs before, Lebesgue’s dominated convergence
theorem implies that, (-, 1) is continuous as a function from [0] to HX(D). This
finishes the proof of the theorem. O
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3. SPECTRAL THEORY

In this section we shall prove Theorefi}$ [L-3 on the structure of the spectriim|of (2.4).

If o > 0andg = 0itis known from[6] that the eigenvalue problem (2.4) has countably
many positive eigenvaluesf Lo < A1 < A2 < --- such thath; — oo ask — oco. We
shall extend this result to the cases of Theorieffi$ 1-3. Frequently in this section we use the
following well known result (cf. Alt[1]):

LEMMA 6. If V is a closed subspace d#l(D) not containing the constants, then
(fp IVul?>dx)Y/? is an equivalent norm oi. In particular, there exist constantsy, C»
> Osuch thatforallv € V,

3.1 / vZdx < le |Vo|?dx, % v2ds < CZ/ |Vv|?dx.
D D aD D

3.1. Thecase/(x) =0, [,gdx >0

In this case the fornt-,-) generates the normf,,(|Vv|? + g(x)v?) dx)¥2, which is
equivalent to the standard norm Bf-(D). To see this note first that by Lemrﬁ]a 6,

Jpvg dx 2

Jpadx

since the spac¢v € HY(D) : fD vqg dx = 0} does not contain the constants. It fol-

lows from ) that||v||§11(D) < C [p(IVv]? + q(x)v?) dx. Now we can describe the
eigenvalues of (Z]4) as eigenvalues of a compact operator as follows.

(3.2) Hv < c/ |Vv|? dx
D

HY(D)

LEMMA 7. For h € HY(D) there exists a unique € H1(D) such that
(3.3) —Av+g(x)v=h inD, wv,=0ch o0ndD.

The operator
K : HY(D) > HY(D), h+> v,

is compact, invertible and self-adjoint with respect to the inner prog¢uct. Hence it has
countably many eigenvaludg}ic; and the eigenfunctions form a complete system in
HY(D). The eigenvalues @®.4)are the reciprocals,; = Mi_l.

PROOF Forh € H(D) the functionalL; : H(D) — R given byL;(¢) = [, h¢ dx +

o %D h¢ ds is continuous and hence by the Riesz representation theorem there exists a
uniquev € HY(D) such that(v, ¢) = Lj(¢) for all ¢ € HL(D). Thusv is the weak
solution of [3.8) and the operatdf is well defined. Continuity and compactnesskofre
standard and invertibility and symmetry are immediate. O

REMARK. The following is a more general version of Lemfrja 7. let= {(f, g) €

L*(D) x L*(dD)} be equipped with the nor(f, &)l = (Il £ 1172, + 1811225, ">

Then for every(f, g) € W there exists a unique € H(D) such that-Av + g(x)v = f
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in D, v, = og onaD. The corresponding solution operatr: (f, g) — v from W to
H(D) is compact.

As a consequence of Lemrph 7 eigenvalues of (2.4) can be described variationally as
critical values of the functional

J() i=a(v,v) = /

v2dx —l—af v2ds
D aD

in the setfv € HX(D) : [, (IVv|?> + q(x)v®)dx = 1}. Obviously, ifc > O there are
only positive eigenvalues. This explains part (i) of Theofém 1. For the remaining parts of
Theorenj L note the following (see e.g. De Figueirédo [8]):

LEMMA 8. Assumer < 0. Suppose that
ui=supJ():{w,v)=1}>0, pu_1=inf{J(): (v,v)=1}<0.

Theni, = ufl andi_q = Mj are the first positive and first negative eigenvalues of
(2.4). Moreover, the following holds:

(@) Letk € N. Supposd < A1 < ... < A are the (not necessarily different) firkt
positive eigenvalues with eigenfunctiofis . . ., ¥. Suppose that

Mirr =SURJ () s (v, v) =1, a(¥;,v)=0,j=1,...,k} > 0.

Thenig41 = ;Lk‘jl is the next positive eigenvalue.
(b) Letk € N. Supposé._; < --- < A_1 < 0 are the (not necessarily different) firkt
negative eigenvalues with eigenfunctians, ..., ¥_1. Suppose that

p—k—1 =Inf{J) : (v,v) =1, a(j,v) =0, j=—k,...,—-1} <O.
Theni_;_1 = “:1%—1 is the next negative eigenvalue.

It is easy to see that the critical values, 11— ; are attained provided they are positive,
negative, resp.

THEOREM9. Leto < O.

(a) Then(2.4) has an unbounded sequence of positive eigenvalues.

(b) If N > 2then(2.4)has an unbounded sequence of negative eigenvalues.

(c) If N = 1then(Z2.4) has only finitely many but at least two negative eigenvalues, of
multiplicity one.

ProOOF (a) For any functiorv € H(}(D) we haveJ (v) > 0 since the boundary integral
vanishes. Thus we see that > 0 is attained. Now it suffices to show that for ang N
there exists a trial function such that(y;, v) =0for j = 1,...,k andJ(v) > 0. Such
a choice is always possible in afly+ 1)-dimensional subspace Hol(D).

(b) We need to show that_;_1 < O for all k € Np. By rotating and shiftingD let us
suppose that inf x1 = 0, sug, x1 = d with d = diamD andx, > 0in D. We divideD
into k + 1 domains as follows:

i—1Dd id .
Di:{xeD:x:l_e(m,m)}, l:].,...,k+1.
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ClearlyD = Dy U - -- U Dy 1. Next we fixa > 0 and defing + 1 functions

x5 sin(w (k + D)x1/d) if x € D;,

Vi(X) =

=14 else,
fori =1,...,k+ 1. Letv = Zf‘ill c;v; and determine the vecter= (c, ..., cx+1)
from the conditiorz (v, v) = 0 for j = —k, ..., —1. Thesek conditions are represented

by the linear system

k+1
Zcia(lpj,vi)zo fijZ—k,...,—l,
i=1

where in casé = 0 there are no conditions on the valtesince the linear system consists

of k equations irk + 1 unknowng(cy, ..., cx+1) We have at least a one-dimensional space
of nontrivial solutions G ¢ = (c1, ..., ck+1) € RFFL Withep = (0,1,0,...,0) € RV
we compute

/ v2dx = 612/ x%"‘ Sirf(r (k + Dx1/d)dx
D; ;

D;

2
- 2;; - /D v @2 LS (k + 1)x1/d)es) dx

2

i 2041
2a iir 1 ngi X sinf(r (k + Dx1/d) ez - nds

diamD
< f v2ds.
20( + 1 aD;

c

By superposition we obtain

diamD
/ v2dx < ?g v2ds.
D 20[ + 1 9D

If « > Ois solarge that diam®/(2« + 1) < —o thenJ (v) = [, v?dx+o §,, v?ds < O.
The remaining degree of freedom is the multiple @fhich is chosen such th¢5(|Vv|2+
g(x)v?) dx = 1. This shows that_;_1 < O.

(c)LetD = (0, L) andgs = |l9llco- Suppose satisfies forh. < 0 the eigenvalue
equation

- +gx)v=r in0,L), —v(0) =ocrv0), v(L)=ocrv(l).

Sinceg € L*(D) the solutionv is understood as &1(D)-solution in the sense of
Caratleodory. Consider also the solutierof the initial-value problem

—u" 4+ goou =Au in(0,L), —u'(0)=oru(0),

which is unique up to multiples. Note that0) /v'(0) = u(0)/u’(0) and assume(0) =
u(0) = 1. For negative. the solutioru is given by

u(x) = coOShy/—XA + goo x) — % sinh(y/—X + goo X).
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Notice thatu and v are convex as long as they are positive and concave as long as
they are negative. Faor sufficiently small a computation shows th&i(x) has no zero

in [0, L]. In this caseu(x) is decreasing and vanishes exactly onc¢,at (0, L). By
Sturm’s Comparison Theorem (cf._[21], especially the observation that it also holds for
Cl-solutions in the sense of Caratidory),v has a zerd, < &,. From the identity

W'u —u'v) = (g —goo)uv <0 in(&, L)
we deduce that
v'(L)u(L) — u' (L)v(L) + u' (&) v(E,) < 0.
————
>0

Sincev’(L) = o Av(L) this implies

w'(L) _ 0

oA — <
u(L)

Sinceu/(L)/u(L) ~ /—x asiA — —oo we conclude that all eigenvalues are bounded
from below by some numbeng. Since the negative eigenvalues cannot have a finite
accumulation point we have proved that there are at most finitely many.

It remains to show that there are at least two negative eigenvalues._-@rsuffices
to construct a functiom such that/ (v) = fOL v2dx 4+ o(v%(0) + v3(L)) < 0. This is
achieved by (x) = x* with sufficiently largex. ForA_» one needs a functiomsuch that
J(v) < 0anda(v, ¥_1) = fOL vy_1dx + o ((0)¥_1(0) + v(L)¥_1(L)) = 0. This can
be obtained by taking

ailx — L/2|* on][0, L/2],

v(x) =
azlx — L/21* on][L/2, L].

For sufficiently largex the functional is negative independent of the choiceotp. By
choosingai, ap appropriately one can achievgv, v_1) = 0. This finishes the proof
of (c). O

3.1.1. Qualitative properties of eigenfunctionsNext we will show that the eigenvalues
A_1 andxj are simple. We need the following version of the maximum principle. Note that
for smooth domains and smooth solutions it is a simple consequence of Hopf’'s maximum
principle.

LEMMA 10. Suppose® c R¥ is a bounded Lipschitz domain. Lee H1(D) be a weak
solution of
—Av=ax)v inD, v,=b(kx)v ondD

witha € L*®(D) andb € L*@D). If v > 0in D then eitherv = 0 or there exists
§ > Osuch thatv > § in D. In the second case the tracews$atisfiess > § ondD in the
L2-sense.

PrROOF By interior regularity,v € Clt'g‘(D). Supposev # 0. Thenv cannot have an

interior zero inD by the strong maximum principle and hence- 0 in D. It remains to
show that there exists > 0 such thav > § in D. By Lemmg 3D of the Appendix, there
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exists a smooth functiony) > § > 0 in a neighborhood’ of 3 D and a constank > 0
such that

[Vi(y)| > forally € U,

1
2K

Vi(x) -n(x) < for almost allx € 9D.

K

LetO < h € C*®(U) be a test function witthk = 0 ondU N D extended by 0 irD \ U.
Then

(3.4) /VvVhdx =¢ b(x)vhds+/ a(x)vhdx
w aD U

2% —bf(x)vhds—l—/ —a~ (x)vhdx
aD U

where we use the conventiaiix) = a®(x) —a~ (x) and likewise fo. Next we construct
a weak subsolution. Let(y) = ¢*'). For sufficiently largex > 0 we find

—Az(y) = (—aAt(y) — &?|Vi(»)Dz < —a~(y)z  inU,
Zn(x) = aVi(x) -n(x)z(x) < —b~ (x)z(x) a.e.ondD.

Hence, testing with & 4 € C°°(U) with h = 0 onaU N D one obtains

(3.5 /Vthdx 5% —b_(x)zhds+/ —a” (x)whdx.
U oD U

By the assumption > 0 in D one can choose > 0 such thatrz < v ondU N D.
Hence the test functioh = (v — 7z)~ > 0 vanishes 0dU N D and can be inserted in the
difference of [(3.4) and (3]5). This yields

/ —|V(v —12)"|?dx > f b~ ()[(v — 1) 1%ds +/ a” ([ —7tz2)7)%dx.
U aD U

This shows that > 7z in U. Sincez > § > 0in U this proves the result. O

THEOREM11l. Assumey > 0.

(i) If [, gdx > Othen the eigenvalues_1 and 1 are simple and their eigenfunctions
are of constant sign.

(ii) If » € Ris an eigenvalue such that one eigenfunction is of constant signitkeh;,
A=00rxr=Axr_1.

PROOFE Letyr be an eigenfunction associatedit@ndy be a nonnegative eigenfunction
associated with. # n. By Lemmd ID we find thap > § > 0 in D. Moreover, standard
regularity arguments based on bootstrapping (see e.g. Struive [18, Appendix B]) imply that
@, ¥ are inL>®(D). Hencey2/¢ is in H1(D) and can be used as a test function for the
@-equation. This implies

a2
/ g 2V eVY . VNV e = / (O — )2 dx +?§ oAy 2dx
D (2 D aD

= (— way, ¥) + /D IV % dx.
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Hence

fw —Vy

(3.6) 0< /D ”

(i) Let ¢ be an eigenfunction associatedito;. The variational principle of Lemnjg 8
implies thaty = || is also an eigenfunction to_;. By (3.) we have

2
dx = (u —Ma(y, ¥).

2

’fw—vw =0 a.e.inD,
@

which proves thap = ¢y in D. Hencei_1 is simple and by Lemmja 10 the associated
eigenfunction is bounded away from 0. The same argument works for

(i) If we chooseu = 11 then it follows froma(y, ¥) > 0 and [3.6) that < 1. If we
takeyu = A_1 thena(y, ) < 0 and [[I0) implyr > A_1. Since there are no eigenvalues
in (A_1, 0) and(0, A1) it follows thatA, = A_1, A =00rA = Aq. O

3.2. Thecaseg(x) =0

Again we want to apply the theory of compact self-adjoint operators in order to describe
the eigenvalues 0@.4). This requires the Hilbert space {v € HY(D) : a(v, 1) = 0}
with a(u, v) = fD uvdx+o 5530 uvds. Inthe caséD|+ 0|3 D| # 0 the spac® does not
contain the constants and heri¢g |Vv|? dx)/2 is an equivalent norm oW. All solutions
of (2.4) except the constants belongito

However, if|[D| + o|dD| = 0 then the constants do belongWo We must therefore
change the setting and define a proper subspatelnfV,, = {v € V : a(v, w) = 0}
wherew is a solution of the problem Aw = 1 in D, w,, = o ondD. The constants do
not belong to,, and(}, |Vv|? dx)¥/? is an equivalent norm on,,. The choice ofv may
seem arbitrary. In Sectigrj 4 we show why no other choicesfis possible.

LEMMA 12 (Existence and uniqueness).
(i) Let|D|+o|daD| # 0. Foranyh € V there exists a unique € V such that

3.7 —Av=h inD, wv,=0ch o0naD.

The operator
K V=YV, hv,

is compact, invertible and self-adjoint with respect to the inner product. Hence
it has countably many eigenvalugs;}i<; and the eigenfunctions form a complete
system irV. The eigenvalues )excepmo = 0 are the reciprocals.; = ,u,lfl.

(i) The same holds in the cagR| + o |dD| = 0if V is replaced by,,.

PROOE We give the proof in the “resonance” ca$®| + o|dD| = 0. In the
“nonresonance” cas®| + o|d D| # 0 the same proof works by formally settimg= 0
in all of the following. For giver: € V,, the functionalL; : V,, — R given by

Lh(¢)=/‘h¢dx+a¢‘ ho ds
D aD
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is continuous and hence by the Riesz representation theorem there exists auaijye
such that(v, ¢) = L, (¢) for all ¢ € V,,. We want to deduce thatis a weak solution of
(3.7). Sincerr’(D) = V,, @ span[1 w] this follows once we show that

(3.8) (v.¢) = Ln(¢) V¢ € span[lw].

The right-hand sidé., (¢) = a(¢, h) in (3.8) vanishes fop € {1, w} by the assumption

h € V,. For¢ = 1 also the left-hand side of (3.8) vanishes. It remains to compute
(v, w). Sincew weakly solves the equationAw = 1in D andw,, = o onaD we find

Jp VvVwdx = [pvdx + o §,,vds = 0 by definition of),,. Hence the operatadt is

well defined. Continuity and compactnessibfare again standard, and so are invertibility
and symmetry. O

REMARK. There is a more general version of Lemma 13.0f + o|dD| # 0 then let
W = {(f,g) € L%D) x L2@3D) : [, fdx + o [, gds = O} with the norm||(f, g)|| =

(IIfII%Z(D) + IIgIIiz(aD))l/z. For every(f, g) € W there exists a unique € V such that
—Av = fin D, v, = og ondD. The corresponding solution operafdr: (f, g) — v

from W to V is compact. If|D| 4+ o|dD| = 0 then the same result holds)i¥, V are
replaced byV,,, V,,, whereW,, = {(f.g) e W: [, fwdx + o §,, gwds = O}.

SinceAp = 0 is an eigenvalue with the constants as eigenfunctions, the variational
description of the eigenvalues §f (.4) differs slightly from the one given in the case where
q(x) > 0, # 0. The eigenvalues except 0 are critical values of

J) :=a(v,v) = /
D

in the setfv € V : [, |Vv[2dx = 1} or{v € V,, : [, |Vv[?dx = 1}. Obviously, if

o > 0 there are only positive critical values. This explains part (i) of Thegrem 2. For the

remaining parts of Theorefr} 2 and Theorlem 3 we have the following result (see e.g. De

Figueiredol[8]):

v2dx —i—o% v2ds
oD

LEMMA 13. Assumer < Oand|D| + o|dD| # 0. Suppose that
ur=supJ@):veV, (v,v)=1>0, pu_1=inf{lJw):veV, (v,v) =1} <O0.

Theni, = ;ql andi_1 = Mj are the first positive and first negative eigenvalues of
(2.4). Moreover, the following holds:

(a) Letk € N. Suppos® = Ao < A1 < --- < At are the (not necessarily different) first
k + 1 nonnegative eigenvalues with eigenfunctigns. . ., ¥. Suppose that

Mkt =SupJ() iveV, (v,v)=1a@;,v) =0, j=1...,k} > 0.

Thenig41 = /Lk_j_'l is the next positive eigenvalue.
(b) Letk € N. Suppose._; < --- < A_1 < Ag = O are the (not necessarily different) first
k + 1 nonpositive eigenvalues with eigenfunctigns,, . . ., ¥o. Suppose that

Pk—1=Inf{J() v eV, (v,v)=1, al¥;,v) =0, j=—k,...,-1} <O
Theni_x_1 = u_t_, is the next negative eigenvalue.
The same holds in the cagR| + o|d D| = 0if V is replaced by,,.
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Since(v, v)¥/? is an equivalent norm oW, V,, any sequence of extremal functions is
bounded in the full/*-norm. Provideds; > 0, u_; < Oitis easy to see that these values
are attained.

THEOREM14. Leto <O.

(a) Then(Z.4)has an unbounded sequence of positive eigenvalues.

(b) If N > 2then(2.4) has an unbounded sequence of negative eigenvalues.

(c) If N =1andD = (0, L) then(2.4) has exactly one negative eigenvalugif > L/2
and exactly two negative eigenvaluegif < L /2.

PROOF The proof is almost identical with the proof of Theorgm 9. The one-dimensional
case is computed explicitly in the following subsection. O

REMARK. Note that in contrast to Theorem]11 we do not claim dor< O that the
eigenfunctions associated with 1, 11 have constant sign. In fact the properties.of, A1
depend on the value of and change near the critical valugD|/|d D| (see Corollary 22
below):

o > —|D|/|dD| = X_1 simple,ir_1 of constant signy-; sign-changing,

o < —|D|/|dD| = X1 simple,y1 of constant signy_1 sign-changing,

o = —|D|/|dD| = ¥_1, Y1 both sign-changing.

3.3. Examples

The interval with constant potential Consider the one-dimensional case with constant
coefficientg € R,
¢+ —qp=0 1in(@OL)

together with the boundary conditions
—¢'(0) =0ip(0) and ¢'(L) =oip(L).
Solutions are of the following form:

A coS\/A —gx) + Bsin(y/A —gx) if A >gq,
@p(x) = 4 Acoshy/qg — Ax) + Bsinh(\/g — X x) if X <gq,

From the boundary conditions we deduce that eigenvalues are determined by the equations

200J/A—¢q .

3.9 tan(y/A — gL) = ——>"—T if 1 > gq,

(3.9) n( qL) T Sr— > q
200Jq — A

(3.10) tanh\/g —AL) = “22NI TN ey < g
0202 +q— A

In the case. = ¢ we obtain the zero eigenvaluegif= 0 and the eigenvalue = 2/(o L)
if g=2/(cL).
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Due to the asymptotes of the tan-function and its periodicity there are infinitely many
positive solutions of (3]9) regardless of the sigmadndg.

Next we look at the number of negative eigenvalues in thegas® (the casg < 0is
omitted due to the complexity of different cases). Clearly such eigenvalues can only exist
for o < 0 and they are governed Ky (3]10).

LEMMA 15. Assumer < O.

(@) If ¢ > 0 then there exist exactly two negative eigenvalues < A_1 < 0. The
corresponding eigenfunctian_1 has constant sign whereas » is sign-changing and
antisymmetric with respect to its zeroxat= L /2.

(b) If ¢ = 0and|o| > L/2then there exists exactly one negative eigenvalugwith
sign-changing eigenfunctiop_1, which is antisymmetric with respect to its zero at
L/2.

(c) If ¢ = Oand|o| < L/2 then there exist exactly two negative eigenvalues <
A_1 < 0. The corresponding eigenfunctian ; has constant sign whereas » is
sign-changing. Moreoveg_» is antisymmetric with respect to its zerolat2.

PrROOFE Using the half-angle formula taf®u) = 2tanha/(1 + tant? a) let us rewrite

@10 as

(3.11) tanh(y/g —AL/2)  oA/q— A

1+tantf(Jg —AL/2) 1+022/(q—2)
Let »* be the negative root @f?A? + 1 — ¢ = 0. Then|(3.1]1) is equivalent to

oA . "
(312) tanf(\/q — )\,L/Z) = ﬁ if A e (A", 0),
(3.13) tanhy/g — AL/2) = Y ‘(’7; At (—00, A%).

(a) There is exactly one solution_, € (—oo, *) of (3.13) and at least one solution
A—1 € (A%, 0) of (3.12). To see the uniqueness of the eigenvalug.in0) note that any
such eigenfunction is given by (assumiag> 0)

px) =A COSF(\/mx) (1 — \/:)LTA tanh(y/qg — kx))

> Acoshy/q — Ax)(l — % tanh(y/q — AL))
= Acoshy/q — Ax)(l —

202).2
02024 ¢q — )\)
and it is easy to see that the last expression is positiveifA*, 0) and negative if. < A*.
Hence Theorern 11 applies and shows thatfer (A*, 0) there is exactly one eigenvalue.
(b) & (c) As before there is exactly one solution pf (3.13) with a corresponding sign-
changing eigenfunction. It remains to discyss (B.12) which takes the form

tanhv/—AL/2) = —o+/—A forx € (A%, 0),
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i.e. the intersection of a concave curve with a linear curve of the varigble. Since

A = 0is an intersection point the existence of a further intersection point depends on the
derivatives at 0, i.e., fof./2 < |o| the two curves intersect exactly once(kt, 0) whereas

for L/2 > |o| they do not intersect. The eigenfunction corresponding to an intersection
pointin (A*, 0) has constant sign. O

The N-dimensional ball with constant potential For N > 1letD = Bz(0) c RY be
the ball of radiusk and let(r, 6), r € [0, R], & € S¥~1, be its polar coordinates. Consider
for constany; € R the problem

(3.14) Ap+ (A —q)e =0 inBr(0), 09,¢(x)=0crp(x) ondBgr(0).

The separation of variablegx) = w(r)a(6) yields

w//+N

-1
w’—i—()»—q—iz)w:O, Aga +va = 0,
r

where Ay is the Laplace—Beltrami operator of¥~1 with eigenfunction« and
eigenvaluev. Hencea must be a spherical harmonic and= vy = k(k + N — 2),

k=0,1,2, .... The equation fow then becomes
N-1
(3.15) w” + w' + <A—q - v—];>w =0 in(0,R),
r r
(3.16) w'(R) = o Aw(R).

By the usual transformatior(r) = r¥=2/2y(r) one finds

l _ 2
r r
oo N -2
(3.18) Z(R) = <ax+ T )z(R).

Solutions of[(3-1]7) are of the form

Jer(n—2)2(/A —gr) ifA>gq,
(3.19) 2(r) = § hryv—2)2(Vg —Ar) it A <gq,
Fh+H(N=2)/2 if =g,

where J, is the regular Bessel function of indexand I, is the regular modified Bessel
function of indexv. The eigenvalues are determined fr¢gm (B.18) by the equations

J/éJr(N,z)/z(V)L —gR) . oA+ NZ_}Z

(3.20) = if A >gq,
Jiy(v=2),2(s/A —qR) A—gq
/ r— N-2
(3.21) vw2pWa Mokt T q.

Liyn—-2)2/q —AR) g — X
In the case. = ¢ we obtain the eigenvalue= k/(o R) if ¢ = k/(o R) for somek € Np.
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Recall that/,, J;, have infinitely many zeroes tending ¢o and that the zeroes of,
and J] separate each other. This implies that for every fiked Ng there are infinitely
many positive solutions of (3.20) regardless of the siga ahdg.

As before we look at the number of negative eigenvalues in thecas® (the case
g < 0is omitted). We know from Theorep[1-3 that such eigenvalues only exist£00
and they are governed Hy (3]21).

THEOREM16. Assume < 0. Every eigenfunction @B.14)corresponding to a negative
eigenvalue has the forg(x) = z(r)r®N/2q () wherew is a spherical harmonic and
z(r) is a modified Bessel function as@19)and has constant sign. For everye N there
exists exactly one negative eigenvalue with a spherical harmonic of kfdex N — 2).
The situation fok = 0 is different:

(a) Letg > 0org =0and|o| < R/N. Then there exists exactly one negative eigenvalue
with a radially symmetric eigenfunction.

(b) Letg = 0and|o| > R/N. Then there is no negative eigenvalue corresponding to a
radially symmetric eigenfunction.

REMARK. The eigenfunctions corresponding to negative eigenvalues are either of
constant sign or such that every nodal domain intersects the boundary. This follows from
the representation(x) = z(r)r@N/2u;(9) sincez(r) is of constant sign and the sign
changes are due to the spherical harmagic

First we collect some properties of the modified Bessel functions. There is the integral
representation

o (s/2)Y
C JAC (v +1/2)

and the series representation

1
I,(s) / (1 — t%)"~Y2 coshst) dt
-1

A (5%
MO =L H e i D

which lead to
(3.22) 1) = Lsa(s) + S 1.

The previous identity implies

1/
v(5) > h forall s > 0.

(3.23) Lo s

Moreover I,(s) ~ e*/+/2ns ass — oo andl, ~ (s/2'/'(v + 1) ass — O.
Consequently, we have

I I
v(s) — 1 ass — oo, o) v u

(3.24) 1,(s) L(s) s  20+1)

+ 0(s2) ass — 0.
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PrRoOF OFTHEOREM[LH. Completeness. Supposep(r, ) is an eigenfunction o 4)
corresponding to a negative eigenvaludVe need to show that(x) = z(r)r@N/2x(0)
with a spherical harmonie and a modified Bessel functigrof the form [3.19). For fixed
r expandp(r, ) in spherical harmonics! (9) of degreex,

oo di
(3.25) o(r,0) =YY gl (e (0),
=01/=1

with gi € LfN_l(O, R). Next we expangt, ! = 1,...,d(k), into Bessel or modified
Bessel functiong/* which are the eigenfunctions ¢f (3]17), (3.18). The same arguments

as in the proof of Theoreﬁ 1 show that this system is complete in the sm]g(g(e?), the
completion of the differentiable radial functions(@@ R) under the norm

R _
(v, v) :/ rN_l<v/2+ <q+k(k+—};[2)>v2> dr.
0 r

The corresponding bilinear form(v, u) is
R
a(u,v) = / Nlyvdr + URN_lu(R)v(R).
0

The eigenfunction* solves[(3.1]7) [(3-18) with eigenvalag. According to the classical
results on the solutions of the Bessel differential equation there is only one solution which
is contained inH.% ,(R), namely the function given ifi (3.1.9). Hence

o
ge= Y vVt o) = Y yivlre©).
i=1 k=1
Observe thai* (r)e(0) is also an eigenfunction of (3]14) correspondingifo From
the above representation it follows immediately that Zj’il y,fl. w,ioe{‘. This proves the
completeness.

Uniqueness. Fix k € No and a corresponding spherical harmosjc Suppose there are
two valuesk < A < 0 solving ). Letw, w be the corresponding solutions .15)—
(3.18) normalized such that(R) = w(R). Sincew, w > 0 in (0, R] we see that =
w — w satisfies
N-1 - .
PR By N (A _g— ”—’5)}; ~0 in(0,R], K(© =0, h(R)=0.
r r

If vy = 0then a standard application of the maximum principle imglies0 in [0, R). If
v > 0 then we know thatv(0) = w(0) = 0 and hencé&(0) = 0. The assumption that
attains a non-negative maximum somewheré0inR) immediately gives a contradiction.
Hence also in this case we have< 0, i.e.,w < w in (0, R). Using the orthogonality
relation between eigenfunctions amdR) = w(R) we find

0=/ w(r)lb(r)otk(Q)zdx—i—G% w(R)zI)(R)ozk(Q)zds
D aD

< / W(r)2ar(0)? dx + af W(R)ar(0)%ds = J (o).
D aD

This is a contradiction sincé(way) < 0.
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Existence foyy > 0. Fixk € Np. Let (1) denote the left-hand side agd)) the right-
hand side of[(3.21). By (3.24) we know th@(x) < g() for A sufficiently negative.
Moreover, by[(3.23) we have

k+ (N -2 2 N -2

1O > / > = g(0).
JaR 2[R

Hence there exists at least one (and by the previous uniqueness proof in fact exactly one)
solution of [3.21) in(—oo, 0).

Existence fory = 0. Fix k € Np. With the same functiong (1), g(1) as before we
deduce from[(3.74) that

k+ (N =272 V—AR

f) ~ =T Ty +0(0% asi— 0,
(N—-2)/2
gA) = —o/—h + ———= SR

Hence, for everyk € N we havef(A) > g(A) nearr = 0, which implies as before
existence of a unique solution ¢f (3]21) (R oo, 0). Fork = 0 this also holds under the
additional assumptioR /N > —o.

Nonexistence fog = 0,k = 0and|o| > R/N. Inthis case we claim thgt(1) < g(1)
for all A < 0. This is equivalent td; (1)t < I,,(t)(_—lgtz +v) forallr > 0 withv =
(N — 2)/2. Computing the series we find

()t =

i (2j +v)(t/2)%*

S Mo+ j+D

00 U(l‘/2)2j+v 0 4(7(t/2)2j+2+v
I(”<_’ + > z(:)j!F(v+j+l)_Z:0Rj!F(v+j+1)

Z( 4aj(v+1)> (t/2)%+Y
- IIrTw+j+1)

Usingv = (N — 2)/2 and comparing the coefficients of the two series we find equality for
j = 0, weak inequality forj = 1 and strict inequality foj > 2 provided 1< —oN/R.
Hence there is no solution d¢f (3]21) (R0, 0). O

COROLLARY 17. Supposg; = const> 0 ando < 0. Then the eigenvalue problem
(3.14)restricted to radially symmetric functions has infinitely many positive eigenvalues
and at most one negative eigenvalue. The parabolic prolf&d)~(2.3) restricted to
radially symmetric initial data is well-posed.

PROPOSITION18. Supposé < g € L*(0, R), fOR r"1g(r)dr > 0ando < 0. Then
the eigenvalue proble8.14)restricted to radially symmetric functions has infinitely many
positive eigenvalues and exactly one negative eigenvalue. The parabolic pr@Eblm
(2.3)restricted to radially symmetric initial data is well-posed.
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PrROOF The existence of a first negative eigenvalug follows from Theorenj 9. We
may assume that the eigenfunctipnr= ¢_1 is positive. It satisfies

(3.26) —A¢+q(r)¢ =2r-1¢ inBr(0), ¢'(R)=0orp(R).

It is radially symmetric because it is simple. It remains to show that there is exactly one
negative “radial” eigenvalue. Let be an arbitrary radial eigenfunction

—AY +q(Y =2y inBr(0), Y'(R) =01y (R)

with & < A_1. The maximum principle implies that cannot have a closed nodal line.
Hence we may assumg > 0 in Bi(0) and obtain

—AY + g < A1y in Bg(0).

By a suitable scaling we may assume t#éR) = v (R) = 1. Sincey is a subsolution of
(3.28) we get O< y < ¢ in Bg(0). By the orthogonality condition we find

0=/¢npdx+a?§ ¢wdsgf¢2dx+o§£ % ds = J (o).
D oD D aD

This is a contradiction sincé(¢) < O. m]

4. EIGENVALUES IN THE RESONANCE CASE

As we have seen in Sections 2.2 2.3 the resonance case andog = —|D|/[dD|
displays special spectral properties, that are discussed in detail in this section.

4.1. The choice of the spadg,
Suppose one wants to solve
4.1) —Av=h inD, wv,=0ch onoD

for h € HY(D). Then necessarili € V = {v € HY(D) : a(1, v) = 0}, wherea(u, v) =
[puvdx + o §,, uvds. The next lemma explains why in the resonance easeop one
has to choosé with the extra conditior(w, ) = 0 in order to obtainv € V. The only
possible choice fow is a solution of-Aw = 1in D andw,, = ogonadD.

LEMMA 19. Leth € V ando € R. Then there exists a one-parameter fandly=
{vo+ v},er C HY(D) of solutions 0).

PROOF Leth € V and defingi = |D|~! [, hdx. Leta, b, c € HY(D) be solutions of

w [—4a=h—i inD, w7 MY
a, =0 onabD, b, =—-h—— o0naD,
[aD|
—Ac=0 inD,
- |D
©) c,,=(7h+hu onabD.

|0D|
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Solutions for(A) and (B) exist for everyh € H(D) whereas the solution aiC) only
exists if additionallya(1, ) = 0. Moreovera, b, ¢ are unique up to additive constants.
Finally, vo = a 4 b 4 c solves[(4.1). O

LEMMA 20. Leth e V.

(i) There exists a unique elementSm V if and only ifo # op.
(i) Leto = o0p. ThenS c Vifandonlyifh € V,, = {h € V : a(w, h) = 0}. Furthermore,
if h € V,, then there exists a unique elementSim V.

PROOF (i) A unigque solutiomvg + ¥ € V can be selected providedl, y) # 0. This is
the case if and only i # og.

(i) If w is the solution of-Aw = 1in D, w, = op ondD thenb = hw. Testing the
equation forw with ¢ and rearranging terms one finds

/cdx—i—cro% cds:aof (h —hwds,
D aD aD

and likewise by testing with one obtains

/adx—i—ao?{ ads:/(h—i_z)wdx.
D oD D

Hence, the conditiom € V reads

/(a+b+c)dx+oof (a+b+c)ds=/hwdx+ao¢ hwds =0,
D aD D aD

i.e., one needs the additional conditietw, ) = 0. Uniqueness of the solution in the
spaceV,, holds provided:(1, w) # 0. This is true since (1, w) = fD [Vw|2dx. O

4.2. Behavior ofA_1, A1 nearo = ogp

THEOREM21. There existss > 0 and anCl-curve o +— (A(0),v(0)) for o €
(00 — €, 00 + €) with values inR x H1(D) such that(x(c), v(c)) is an eigenpair for
the eigenvalue probleif2.4) with the properties/;, v(o') dx = |D| and

—|dD| 2
Alo) = W(U —o0p) + O(0 — 0p)*,
D
JaD —w
vo) =1— |f|lé+|2;';)(a —00) + O(0 — 0p)>.
D

Moreover, if (A, v) is an eigenpair of(2.4) with |0 — 00| < €, [A| < € andv > 0,
fD vdx = |D| then either(), v) lies on the curve ofA, v) = (0, 1).

REMARK. Note thatjo| < |og| impliesi(oc) < 0 and|o| > |og| impliesi(o) > O.
Hencel(o) parameterizeg._1 if |o| < |ogl and Ay if |o| > |og|. It shows howA_1
passes through 0 and becomgsaso passes through the critical valag (see Figure 1).
The positivity of the eigenfunction also passes frgim; to 1. Note that the min-max
principle implies that the eigenvalues are decreasing with respect to
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Ay A )
" !
A X |
Ao o
[N A 0 o
o M . |
\ C+ 3
A,

FiG. 1. Eigenvalues as functions ef

PROOFE Consider the normalized eigenvalue problem
(P) —Av=2Av inD, v,=0Av o0ndD, / vdx = |D|.
D
In the following we describe the solutions @P) as the zero-set of a nonlinear function
F(o,,v) WwhereF : R x R x HY{(D) - R x HY(D).
Construction of the curve. Define the operator
T:RxRx H(D) —> HYD), (o,x v)> T(o,A,v) =E,
where¢ is the unique solution of
—AE = in D,

=0\l — —— vdx — —— vds onabD,
(4.2) S D] Jp [0D] Jap

/§M=WL
D
Let
F: RxRle(D) — Rle(D), (o, A, V) > </ vdx—i—cry{ vds, T (o, A, v)—v).
D aD
Note thatF (o9, 0, 1) = (0, 0). Moreover, the following relation holds between zeroes of
F and solutions of P):

F(o, A, v) = (0,0) = (o, A, v) Solves(P),

(o, A, v) solves(P) and

(A, v) #(0,1)oro = oo

Therefore, solving’ (o, A, v) = (0, 0) nearo = og, A = 0, v = 1 by the implicit function
theorem will give all statements of the theorem since

} = F(o, A, v) =(0,0).

IF
A, v)

]_18F
(00.00d 90

(6 —ag) + O(0 — 00).
(00,0,1)

4.3) (o), v(0)) = (0.1) — [
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It remains to show the invertibility o%kgo,(ll) and to compute the inversg, z) :=

[%kgo,m)]‘l(a, y) for given (e, y) € R x HY(D). This requires finding the solution
(B, z) of

(4.4) / dx + % d oT
) zdx + og zds = «a,
D 3D o(A, v)

Diflferentiation of ) with respect tox, v) yields 5555 1(00.01)(8,2) = ¢, where¢
solves

B,z2)—z=1y.

(00,0,1)

—A{ =8 iInD, ¢, =pBog 0ONnadD, /;dx:O,
D

i.e.z = B(w — w). Therefore the solutiofB, z) of (4.4) is determined by

fzdx+oo% z=oa, PBw—-—w)—z=y.
D aD

The solution(B, z) can now be computed as

a+ [pydx+ood,,yds

Jpwdx +o0fypwds

a+ [pydx+ood,,yds
Jpwdx + o0y, wds

(4.5) p=

(4.6) z=

(w —w) —y.

The uniqueness of,z) shows the invertibility of%k%o,b. Notice that the

denominator in the above formula j§, |[Vw|?dx. Finally, |(00,o,1) = (|aD|,0) €

R x HY(D). Inserting(a, y) = (|aD|, 0) into (4.5){(4.6) and (4]3) gives the expansion of
A(o) andv(o) as claimed in the theorem. O

COROLLARY 22. For everyo € (—o0, op) the eigenfunctions corresponding g have
constant sign. For every < (og, 0) the eigenfunctions corresponding %o 1 have
constant sign.

PROOF. Let Bs(0,1) Cc R x H1(D) be the open unit ball of radiuscentered at0, 1) €
R x HY(D). For smalls > 0 we know that

due to the invertibility ofa("’A—kagO,o,D. Therefore, the global continuation theorem (see

e.g. [3]) applies and shows the existence of two conti#ttia [0, oo) x R x HY(D) and

C~ C (—00, 0] x R x H1(D) of solutions(o, 1, v) of F(c, A, v) = (0, 0) containing the
point (o9, 0, 1). Locally near(e, A, v) = (09, 0, 1) the two continua’ ™, C~ are described

by the curve of Theore@l. Note that the conditignvdx = |D| shows that # 0

for every elemento, A, v) € C*,C~. Thus, the maximum principle of Lemr@lo and a
continuity argument show that > 0 for every(o, A, v) € C*,C~. Similarly, » > 0 for
every (o, A, v) € C~ except foroc = og, andAr < 0 for every(o, A, v) € C* except for

o = og. Therefore Theore@l(ii) shows that= A1 if (0,4, v) € C* ando # op
and thaC*, C~ can be parameterized as single-valued continuous curves depending on
where thei-part is decreasing ir. Hence the global continuation theorem implies that
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bothC* andC~ are unbounded continua. Finally, note that the projectiofifobnto the
o-axis is o, 0) and thatC* becomes unbounded in the negativdirection ass — 0.
On the other hand, the projection®f onto thes-axis is(—o0, oq]. O

5. PARABOLIC PROBLEMS WITH NONLINEAR SOURCES

In this section we consider problern ([1.1)—{1.3) with positive sout€¢s, 7, u). For
simplicity we restrict ourselves to the case

Fx,t,u) =m(x,t)f (),

wherem e L®((0, T), L®(D)),m > 0and 0< f e C1. Throughout this section we shalll
suppose that there exists a local weak solutiaf (T.7)—[I.3) in(0, T) in the sense that
u € B:= L%((0,T), HY(D)), u, € L%((0, T), L(D)), traceu; € L((0, T), L%(dD)),
F(, - u() € L¥(0, T), L¥(D)) and

/0<<ut,¢>+a<u,,¢)o>dr+fo <u,¢>=f0 (f. ) di

forall t € (0, T) and for all¢ € B. Moreover we suppose thag € L?(D) x L?(3 D) and
lu — uoll 2(py, lItraceu — uoll 235y — O ast — 0. This is the case ¥ > 0.

For the study of blow up behavior we consider nonlinearifiesibject to the following
additional conditions:

(5.1) fG)>0 fors >0, f(s), f'(s)>0 forallseR,
® dE .

5.2 — for some positivag.

(52 o f®& 7 posiiveo

Our main result folr > 0 is based on a slight modification of an elegant argument
by Rial and Rossi [16] who studied the question of blow up for problems with nonlinear
Neumann boundary conditions.

THEOREM23. Assumer > 0,q =0, [, uodx + o §,,,uods > 0and (5.1, 5:2). If
fé(fD m(x,t)dx)dt — oo ast — oo thenu(x, t) does not exist as a weak solution for
all times.

5.1. Comparison principles

We start with some auxiliary result which shows that the qualitative behavior depends
heavily on the sign of.

LEMMA 24. Leto > 0and letu be a weak solution of L. A(T.3)in (0, T') with f > 0.

(i) Leth be aweak solution of the homogeneous equdfiai}(I.2)with zero right-hand
side andi(x, 0) < ug(x) a.e.inD. Thenh < u.

(i) If ug > Othenu > 0, i.e., all weak solutions ofZ.7)~(I.3) with nonnegative sources
and nonnegative initial datap are nonnegative.
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PrRooF (i) Forallt € (0, T) we have
/Or(a(ut —hi, @)+ (u—h,¢))dt = /OT(]-‘,qs)dz >0 if0<¢ebB
If we choosep = (1 — h)~ then we obtain
—/Ot(a((u —h),,w—h)")—=((u—h)",(u—h)"))dt =0,

which implies, keeping in mind that by assumptien— 4)~ (x, 0) = 0,
a(u—h)",u—h)")|; <0 forallt € (0, T).

This leads immediately to the conclusibrg u.
(ii) follows from (i) sinceh(x, 0) = ug(x) > 0 impliesh > 0, which follows as in (i)
by testing the equation fdr with ™. |

REMARK. The lemma is not true in generaldf < 0. For instance leD = (0, L),

F =1,qg = 0andug > 0. Leth(x, t) be the solution of the homogeneous parabolic

problem withF = 0 andh(x, 0) = uo(x). By Theoren b,
sign(A; )L _

Lt
S(x, 1) = u(x, 1) — h(x, 1) = =G - e Mg
G Zun e D ieIX\{:O} Ai pld e ety +20

providedL + 20 # 0. Hereg; = L1 fOL i (x)dx.

If0 >0 > —L/2thenl = {-2, -1} UN, ¢_1 is positive, andp_» is sign-changing
with ¢_» = 0 due to antisymmetry with respect to its zerovat L/2 (cf. Lemmd 1p).
Therefore -

Lo “a_ar
—_—e
|A—1]

If —L/2 > o thenl = {-1} UN, ¢_1 is sign-changing ang¢_1 = 0 again by
antisymmetry so thaé(x,7) ~ Lt/(L +20) — —oo ast — oo. And even in the
resonance case = —L/2 the difference’(x, r) tends to—oco ast — oo. Hence in
all three cases < h for largezr.

S(x,t) ~ — ¢p_1— —00 ast — oo.

DEFINITION 25. A functionii € B with ii; € L?((0, T), L3(D)) and withtraceii; €
L2((0, T), L?(3D)) is called anupper solutiorof (TI)(T3)if it(x, 0) > uo(x) in D and
ifforall ¢ € Bwith¢ > 0andallt € (0, T),

T T
/0 (aliin, #) + (@ $)) di zfo (Flx, 1), ) d.
Similarly u(x, ) is called alower solutionof (LI)(T.3) if the inequality signs are

reversed.

PROPOSITION26. Assume > 0. Letu resp.u be a lower resp. upper solution .7}
(T3)with 0 < f € CL. Suppose in addition that for atl € (0, T),

sup flu(-, )llLe(py < oo, sup [lm(-, t)llLe(py < 0.
1€(0,7) 1€(0,7)

Theni(x, t) > u(x, t).
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PrRooOFE Forall¢p € Bwith¢ > 0and allr € (0, T) we have
T T
/ (au, — ity §) + (u — ii, p)) dt s/ (F(x,t,u) — F(x, 1,00, §) dt.
0 0
Let¢ = (u—u)T and2™ = {(x,t) € Dx (0, T) : u(x,t) > i(x, t)}. By the boundedness
assumption om and theC-property of f one obtains

/t(}'(x, t,u) —F(x,t,u),p)dt = / (F(x,t,u) — F(x,t,u))(u —u)dxdt
0 2+

cf/ (g—ﬁ)zdxdt:c,/r((g—ﬁ)+,(g—ﬁ)+)dt.
o+t 0

Integration gives
1 ~y+ \+ 1 ~\+ ~\+
Ea((z— W, (w—uw))=r — Ea((z— w)*, (w—u))=0
e / (it )t
0

Since(u—ii)*|;—0 = 0 a Gronwall-type argument shows the assertioniz)™ = 0. O

Comparison principles for classical solutions of parabolic problems with dynamical
boundary conditions angl > 0 can be found in [5].

5.2. Proof of Theorerp 33

Suppose thaii(x, 1) exists for all times. By the comparison principle of Lemméa 24 we
haveu > h whereh is the solution of the corresponding homogeneous linear problem
(2.1)-2.3) withi(x, 0) = uo(x). From Theorer|5 we get the formula

a(uo, 1)

o
W) =3 e Hatuo, g)gi () +ho. ho =" .

i=1

SinceA; > 0 fori > 0 we deduce that

[puodx +o ¢, uods
D[+ 00D

h(x,t) = hg= >0 ast— oo.

Consequently, if a solution of (1.1}—(1.3) exists for all times then for any positiere
existstg such thatt > hg—e€ in D x (fg, o0) and f (u) > cg fort > 1g. Introducing ¥ f (u)
as atest function in the weak formulation pf {1.[)—[1.3) on the time intéryat) we get
for t > 19,

fr< l dx—f—a% e ds — |Vul® f(u) )dt / /m(x t)dxdt.
o \Jp fw) ap f(u) b f2u)

Put

S dE

g(s) == . m
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Since f is nondecreasing we have

/ g(T,x)dx —i—o‘(f g(T,x)ds —/ g(to, x) dx —o‘(f g(to, x)ds
D oD D dD

9
T
Z/ / m(x,t)dxdt.
to D

If we let T — oo the right-hand side tends to infinity whereas the left-hand side remains
bounded. This is a contradiction and thu(s, ) cannot be a global solution. O

The argument fails i& is negative.

EXAMPLE 1. Letf(s) = ¢*. Then by the previous theorem all solutions blow up in finite
time independent of the size of the domain. This is in contrast to the Dirichlet boundary
conditions where for small domains there exist stationary solutiéfy. Hence for all
uo(x) < U(x) the solutions are global. For large domains, however, no stationary solutions
exist and all solutions blow up in finite time [13].

EXAMPLE 2. Forp > 1let
(5.3) fls)= !

sP ifs >0,

0 otherwise

Then for all positive nonvanishing initial data the solution explodes in finite time. On the
other hand, all negative constants are stationary solutiong(t) < 0, the solutions are
negative and exist globally because= 0 is an upper solution. lfg is negative andig
changes sign itis not clear whether the solutions are global or blow up in finite time. Under
Dirichlet conditions, however, global solutions exists.

5.3. Outer domains

The situation is different in outer domains. By means of a standard procedure it is possible
to construct solutions oD in outer domains with Lipschitz boundary, for uniformly
bounded, continuous initial conditionsy > 0. Let {Dy}?2, be a sequence of nested
bounded domain®“ C D1 C Dy C --- with Jgoq Dk = RV, Letu; be the solution of
u; —Au= f(u) inDN Dy xR,
ou; +u, =0 ondD x RT,
u=0 ondD; x R,
u(x,0) = uo(x) inD.
By comparisonuy (x, t) < ugy1(x,1) in D N Dg. Let z(¢) be the solution ot = f(2),
7(0) = |lugllo- It exists for, sayt < T. Thenuy < zfort < T. Standard arguments based
on a priori estimates for the heat equation imply that> u« in Cécl ask — oo, whereu
is a solution inD x (0, T).
In what follows, we shall consider for simplicity the functigndefined in[(5.B). In the
case of Dirichlet boundary conditions it is well known franm [2] and|[14] that no nontrivial
positive solutions exist for all times p € (1, 1+ 2/N]. This implies the following resuilt.

LEMMA 27. LetD be an outer domain. Assurme> 0 andug € C(D). For p € (1, 1+
2/N] all positive weak solutions blow up in finite time.
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PrROOF The assertion follows immediately from a comparison argument. Indeed,
u(x, 1) > uP(x,r) whereuP (x, r) is the solution of (1.1)—(1.3) with Dirichlet boundary
conditions on a smooth domai c D and with the same initial conditioig(x). ]

Next we derive that global solutions can exist for small initial data, in contrast to the
case of bounded domains. This is essentially due to solutions that vanish at infinity.

LEMMA 28. Leto > Oandp > 1+ 2/N. If the complemenD¢ of D is star-shaped
with respect to the origin and ihinyp |x - n(x))| > o N ondD, then there exist global
solutions for sufficiently small initial data.

PROOFE The idea is to construct a positive upper solutiof, ), i.e. a function satisfying
(5.4) U — AU > f(U) inD, oU +U,>0 ondD xR*.
A standard choice i$ [2]

Ux,1) = At + 10)"Y e "/G0+10)  with A,y 10 > O.

We have
U—U{y—l—rZ}U—U(r)
r t+to At +10)2] T 2(t +10))’
2 1
v =-0(z5) * )
" 2(t + to) 20t + o) |’
and thus
N -2y r? )
55 U — AU —-UP =U + —U?,
(5:5) ' (2(t+to) 2(t + 19)2
2
oy or x -n(x)
5.6 U U,=U|- — .
(5.6) ol tn ( t+to+4(t+to)2 2(t+t0)>

If we choosey < N/2, sayy = N/2 — ¢, then [5.5) is positive for all € R* provided
that

et +10) > APt +19) Y PD,
This can only be achieved if > 1+2/N andA is sufficiently small. For the expression in
(5.8) to be positive for all positivewe must have-x -n(x) > 0and—oN/2 > x -n(x)/2.
The assertion now follows by comparison. O

6. OPEN PROBLEMS

We finish with a list of open problems.

1. The assumption on the star-shapedness and the sizérofemma[28 seems to be
unnatural since the result is true in the limit— oo for general outer domains.

2. It is not clear whether in the case of negativehe blow up result of Theorefn P3
remains true. Can one find conditions on blow up dor< 07? Do there exist global
(likely sign-changing) solutions? Singgis bounded for negative values, the solution
can never tend te-co in finite time. If blow up occurs then only in regions wherés
positive.
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3. Can one find an example in the one-dimensional case of a potertiad with more
than two negative eigenvalues in the case 0?

4. (See Sectiob.z.) Does the expansfon| (2.5) hold in the sens®& D x L2(3D) if
o <0?

7. APPENDIX

Let us recall an approximation property of Lipschitz domains (cEa¢g15]). There exists
a sequence af'*°-domainsD; > D with the following properties:

() There existk € N, balls By, ..., By, neighborhoodd/y, ..., Uy ¢ RN~ Co°-
functionqu; : Uy — R and Lipschitz functiongy; : Uy — Rforl = 1,...,k
such that

dD; N B, = graphy!, 3D N B; = graphg,

< |IVdilleo forl = 1,...,k. Let

and|(|¢] — dilloc — 0 @si — o0, [Ve]lloc
Lip(0D) = max—1,.« IVérllco-
(i) There exist homeomorphisms; : 9D — 9 D; such that
noA; >n a.e.ondD asi — oo.
(i) There exists a smooth vector field: RY — RY andK > 0 such that
h(A;(x)) -ni(Ai(x)) <—K VieN, VxedD.
LEMMA 29. For fixedi € N let x/(x, 1) denote the solution of the system
X =h(X), X0 =xeiD,
attimet, i.e., x; isamapdD; x R — RY. Then the maps
Dunx'(x,0) 1 T,0D' xR - RN, D yx'x.nn™t:RY - T, 0D xR

have the expansions

(7.1) D' (x, 1) = (dl7 5 pi, h(x) + O (1),

and

72 Danrin o= (2o 2D i 2O ) Lo
. (x,1) ’ h(x) - ni(x) ’ h(x) - ni(x)

forall z € R" where||O(?)||~pi) < Ct foralli € N.

ProoF. Differentiation with respect ta € aD' will be denoted byD, (the indexi is
dropped). If one differentiate = h(X), X (0) = x with respecttac € 9 D' and integrates
then one finds )

Doyl (x, 1) = ! @M 1),



66 C. BANDLE - J. VON BELOW - W. REICHEL

Likewise one findsD; x!(x, 1) = h(x'(x,1)). Note that||Dih|lsc < ||Dhlls Lip(dD),

whereDh(y) is the Jacobian of(y) with respect toy € RY. Expanding the expressions
of Dy x' andD, x' in 7 gives [7.1). The expansiop (7.2) follows fron (7.1) if one observes

that ) )
z-n'(x) z-n'(x)
T e -ni(x))'

For givens > 0 let2} = {y € D' : dist(y, dD') < §} and define the map

[0l i, hCOY] 1z = (z

112§ — R, y+> 1-componentof¢’(y)"*.

LEMMA 30. There exis$ > 0andig € N such that for all: > ip,

(7.3) forall y e £},

: 1
V') > 5

. -1
(7.4) Vi'(x) -n(x) < TN for almost allx € 9D.

PrROOF. First we compute fronf (7]2) in Lemral29 that

Vit (y) = n' (x) + O(dist(y, D))

1
h(x) - n'(x)
wherex = x-component of¢’(y)~1 € 9 D'. If i is sufficiently large and digt, 9 D?) < §
sufficiently small we obtairf (7]3). Moreover

i i -1 i
Vi'(x) -n'(x) < —— forallx e aD'.
Sincen' o A" — n asi — oo for almost allx € 3D, this implies[(7.4). O
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