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Mathematical analysis. — Nodal solutions of nonlinear elliptic Dirichlet problems
on radial domains by THOMAS BARTSCH and MARCO DEGIOVANNI, presented by
A. Ambrosetti.

ABSTRACT. — Let 2 c RY be a ball or an annulus anfl : R — R absolutely continuous, superlinear,
subcritical, and such that(0) = 0. We prove that the least energy nodal solutior-afu = f(u), u € H&(Q),

is not radial. We also prove that Eil4 eigenfunctions, i.e. solutions € H&(.Q) of —Au = xut — pu—, with
eigenvalue(x, 1) on the first nontrivial curve of the ik spectrum, are not radial. A related result holds for
asymmetric weighted eigenvalue problems. An essential ingredient is a quadratic form generalizing the Hessian
of the energy functional € Cl(Hé(Q)) at a solution. We give new estimates on the Morse index of this form

at a radial solution. These estimates are of independent interest.
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1. INTRODUCTION

In this paper we investigate two types of nonlinear elliptic equations on a bounded domain
2 c R, with homogeneous Dirichlet boundary conditions. One is the equation
(1.1) —Au= f(u) ing,

wheref : R — R is a continuous function wittf (0) = 0 and which grows superlinearly
and subcritically asu| — oco. The second type are the nonlinear eigenvalue equations

(1.2) —Au = AauT —bu") inQ
with givena, b > 0, and
(1.3) —Au=u" —puu"  in Q.

Hereu™ = max{+u, 0}. Equation[(T.R) is an asymmetric (if £ b) weighted eigenvalue
problem, [[1.B) the Ftik eigenvalue problem. We are interested in “least energy nodal”
solutions of [(1.]l) and in the first nodal eigenfunctions[of](1[2),] (1.3). In particular, we
prove a symmetry breaking effect in ca@es radially symmetric.

In recent years there has been an increasing interest in the existence and properties of
nodal solutions of semilinear elliptic boundary value problems beginning with[[3] 6, 10] in
the mid 1990s. Let

J(u):l-/ |Vu|2dx—/ F(x,u)dx, F(x,s):/sf(x,t)dt,
2 Jo 2 0

be the energy functional associated[to}(1.1). Then critical points ot} (2) — R are
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solutions of[(I.]L), and nontrivial solutions lie on the Nehari manifold
N ={ueH}R):u#0, J (uu=0}.
Similarly, nodal solutions lie on the nodal Nehari set
S={ueHIR):ut #0, Jwu* =0} = {u e H} ) : u* e N}.

We are interested in local minimizers &fs.

If £(s)/|s| is strictly increasing oiR~ and onR™, then is in fact a topological
manifold. Under additional regularity and growth conditions it is a differentiable
manifold, and critical points of the constrained functiodals are critical points ofJ.

Since the map$/3(2) — Hi($2), u — u*, are not locally Lipschitz continous, the set

S is not a differentiable manifold, independent of smoothness and growyh tfnder

mild conditions onf not involving differentiability, we show that a local minimizer &fs

is a critical point ofJ with “Morse index” at least 2. Sincé is only of classC? in our
setting, we need a generalized version of Morse index. Let us point out that it would also be
interesting to apply variational methods, not only minimization, directly|t¢. However,

due to the lack of Lipschitz continuity of — u™, it seems difficult to apply the critical
point theory for continuous functionals on metric spaces (see [9, 14, 13]xtdn fact, it

is not at all clear that a critical point of| s in the generalized sense is a critical point/of

If £2 is radially symmetric, we prove that a local minimizer .bfs cannot be radial.

The main idea is to relate the generalized Morse index of a radial criticalpoinf to the
number of nodal domains af Here we improve a recent result of Aftalion and Paceélla [1].

For the nonlinear eigenvalue problem {1.2) the solution corresponding to minimizers
of J|s is the second eigenfunction. This changes sign, and we prove that on a radially
symmetric domain, it cannot be radial. Similar[y, {1.3) has a cdreé FuCik eigenvalues
corresponding to the second eigenvalue. This has been investigated in [12]. Again we prove
that an eigenfunction associated g 1) € C is never radial. The techniques developed to
deal with [1.1) with nondifferentiabl¢ are useful when treatinf (3.2) arfd (1.3).

The paper is organized as follows. In Secfipn 2 we state our results n (1.1). These will
be proved in Sectior{g 5 afdl 6. In Sectign 3 we formulate the resul{s dn (1.2) ahd (1.3),
which will be proved in Sectiop|7. Sectiph 4 contains results on critical groups and Morse
indices for C1-functionals which are essential for our proofs. We believe they are of
independent interest.

2. SUPERLINEARDIRICHLET PROBLEMS
Let £2 be a bounded, open subseffdf, N > 2, and letf : £2 xR — R be a Caratbodory
function. Assume that

(f1) f(x,00=0fora.ex € £2;
(f2) there exist a functiom and constants € R, p > 2 such that

[f(x,s)| <a(x)|s|+bls|P~t fora.ex € 2 and every € R,

with a € LN/2(2)andp < 2*for N > 3,a € L"(2) for somer > 1 andp
unrestricted folv = 2;
(f3) fora.e.x e £2, the functions — f(x, 5)/|s| is strictly increasing ofR~ and onR™.
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LetJ : Hi(£2) — R be defined as
1 2
J(u) = = |Vu|“dx — F(x,u)dx,
2 Jo o)

whereF(x,s) = fg f(x,t)dt. ThenJ is a functional of clas€! whose critical points
are the weak solutions H&(Q) of the problem

2. i —Au= f(x,u) in,

u=0 onos2.
Since we are interested in nodal solutions we consider the constraint
S={ueH}2) :ut#0,u™ #£0, J'wu" = J (wu~ =0},

whereu® = max{£u, 0}. We will investigate local minima of | 5. For givenu e H(}(.Q)
we define the extended valued, upper semicontinuous funct'@palH(}(Q) — R by

. J t J(z —tw) —2J
0, () = limsup @+ 1w+ (tzz w) (Z).
~0
w—v

Finally, we denote by:(J; u) the supremum of the dimensions of the linear subsp¥ices
of H}(£2) such that
0,w) <0 foreveryv e V \ {0}

THEOREM2.1. Letu € S be a local minimum fot/|s. Thenu is a free critical point
of J withm(J; u) < 2.
Consider now the particular case in which

(fa) f:R — Risindependent of € £2 and absolutely continuous.

From regularity theory we know that any weak solutiore H&(Q) of (2.) belongs in

fact toC1(£2).
For a continuous function : 2 — R, let nodu) € N U {oo} be the number of nodal
domains, i.e. the number of connected component3 gfiu —1(0).

THEOREM2.2. Suppos€ f1)—(fa) hold ands2 is a ball or an annulus. Then
m(J;u) > (nodwu) —1) - (N + 1)
holds for any radial solutiom € H}(£2) of (Z)

Theorem[ 2.l will be proved in Sectidrf 5 and Theorem| 2.2 in Se¢flon 6. They
immediately imply the next

COROLLARY 2.3. Suppos€ f1)—(fa) hold and$2 is a ball or an annulus. Then a local
minimum of/|s is not radial.
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In [5] it is proved that a least energy nodal solution, i.e. a global minimizsr/ |, is
foliated Schwarz symmetri€his means that there existse R" with |P| = 1 such that
u(x) = v(|x|, (x, P)) depends only on the euclidean norm of x and on the projection
(x, P). Moreover,y(r, s) is decreasing in. The question whether or not least energy nodal
solutions are radial has been settledin [1] in the case whés®f classC! and f” satisfies
appropriate growth conditions so thatis of classC?. These conditions are essential for
the argument ofi [1] since the authors differentiate the equation and need the Hessian of
J at a solution. In the differentiable casgJ; u) is the Morse index of/ atu. In this
case it has been proved in [1] tha(J; u) > N + 1 if u is a radial and sign-changing
solution of [2.1). Theoremn 2.1 is an improvement of this estimate and is new even in the
differentiable case. Under the hypotheses bf [1]f6it can however be obtained using the
methods of[[1]. The generalization to the nondifferentiable case is particularly worthwhile
for certain applications to competing species problems in mathematical ecology where one
has to deal with jumping nonlinearities. We refer the reader to the pagers|[7, 11] for the
relevance of nodal solutions ¢f (2.1) to mathematical ecology.

3. ASYMMETRIC WEIGHTED EIGENVALUE PROBLEMS ANDFUCIK EIGENFUNCTIONS
In this section we first investigate the symmetry of solutions of

—Au =AauT —buT) in £,

3.1
(3.1) u=20 onos.

Here2 c RN, N > 2, is a radial bounded domain, i.e. a ball or an annulus zaid> 0

are fixed constants. Let = A1(£2) > 0 be the first Dirichlet eigenvalue efA in 2, and

lete; > 0 be an associated eigenfunction. Clearlysolves[(3]L) foi. = A1/a and—eq
solves[(3:]1) fon. = 11/b. It is well known that there exists a first nontrivial eigenvalye

with a sign-changing eigenfunction; séé [2] for a proof in a much more general situation. In
[5] itis proved that every eigenfunction correspondingas foliated Schwarz symmetric.
The question whether or not these eigenfunctions are radial has been left open.

THEOREM3.1. A nontrivial solution of(@.d))for » = A, is not radial.
Theorenj 3.1 will be proved in Sectiph 7. As a corollary, we obtain an analogous result

for a solution of

—Au = uT —uu" in £,
(3.2) : S

u=0 onos2,

for (A, u) € C C RT x RY lying in thefirst nontrivial curveof the FiEik spectrum. Recall
that the Féik spectrum consists of all pai¢s, 1) such that[(3]2) has a nontrivial solution.
Definingn : (A1, 00) — R by

n(A) =inf{u > A1 : (A, n) is a nontrivial F&ik eigenvalug,
we haver1 < n(A) < oo for everya. By definition, the curve

C:={*,n)) 12 € (A1, 00)}
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consists of Faik eigenvalues. Moreover; is continuous and strictly decreasing with
n(A2) = A2, hence(iz, A2) € C. The setC is symmetric with respect to the diagonal.
We refer the reader t0 [12] for proofs of these statements.

THEOREM3.2. A nontrivial solution of(3.2) for (1, n) € C is not radial.

PROOF By the above discussioh, = 1 is the first nontrivial eigenvalue of (3.1) if
(a,b) € C. Thus Theorenj_3]2 follows immediately from Theor¢m| 3.1. O

The nonlinear eigenvalue problems of this section have in general nondifferentiable
right hand sides. They are easy to deal with in the differentiablecasé or A = . The
corresponding variational integral is not of clag and Morse index arguments are not
straightforward.

4. CRITICAL GROUPS

In the following, H* will denote Alexander—Spanier cohomology with coefficients in a
given ringR.

DEFINITION 4.1. LetX be a topological spac& : X — R a continuous function and
u € X. We define theritical groupsof @ atu by

C,(P;u) = H"(veX: o) <Pw)}U{ul,{veX :®W) < D)},
Cn(@:u)y=H"{veX: @) <Pw)}. {veX: &) <Pw)}\ {u}).

Because of the excision property, we may repl&cby any neighborhood’ of u in X.
If X is a Banach manifold of clags!, @ is a function of clas€? andu is not a critical
point of @, then it turns out thaf,, (®; u) andC,,(®; u) vanish for everyn (see e.g/[[8,
Proposition 3.4 and p. 1064]). Moreover.ifis an isolated critical point o, then we
haveC,, (®; u) = C,,(®; u) for everym (see e.g.[8, Proposition 3.7]).

THEOREM4.2. LetE be a Banach space which splits into a direct siire= V & W with
dimV =m < oo andW closed inE. Letu € E,r > 0and let

®:Bw)NV)+ Bw)NW)—>R

be a continuous function. Assume that, for everye B,(u) N W, the functionv
@ (v + w) is strictly concave oB, (x) N'V. ThenC,(®; u) and Cy(P; u) are both trivial
foreveryk <m — 1.

PROOFE The assertion concernin@, (®; u) is proved in[[16, Theorem 6.1]. The assertion
concerningC, (@; u) can be proved in the same way. O

COROLLARY 4.3. Let E be a Banach spacd/ an open subsetaf, @ : U — R a
continuous function and € U. DefineQ, : E — R by

) t D(z —tw) — 20
Q. () = limsup (@+w)+ fé w) @)
=0
w—v
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and assume that there exists a linear subspéed E, with finite dimensiom:, such that
Q,() <0 foreveryv € V \ {0}.

ThenC, (®; u) and Cy(®; u) are both trivial for everyk < m — 1.

PROOF LetW be aclosed subspacebfsuch thatr = V& W. We claim that there exists
r > 0 such that, for every € B, (u) N W, the functionv — & (v + w) is strictly concave
on B, (u) N V. Since® is continuous, this is equivalent to showing that there existsO
such that, for everyig, u1 € (B, (u) N V) + (B, () N W) with ug # ug andu; —ug € V,
we have
1 1 1 1

05(5 ug + > Ml) >3 @ (up) + > D (u1).
By contradiction, lefu,,) be a sequence convergentitén E and(z,) be a sequence in
V \ {0} convergent to O such that

(4-1) 20 (uy) < D (up + 20) + @ (up — z5).

Let z;, = t,v, with t, > 0 convergent to O and, of unit norm. SinceV is finite-
dimensional, up to a subsequerieg) is convergent to some € V with v # 0. It follows
that

D (up + zp) + P(up — z25) — 20 (uy)
112

lim sup

n—00 [1zn
—lim sup¢(u" + tyvp) + @ (uy — tyvy) — 20 (uy,)

n—00 th

< 0.() <0,

which contradictg (4]1). Therefore there exists 0 with the required property.
By Theorenj 4.2, the assertion follows. O

REMARK 4.4. If @ is of classC? in a neighborhood of:, we clearly haveQ,(v) =
@ (u)[v, v]. If @ is of classC? in a neighborhood af, we have

z—u T—0
(7,9)—(0,0)
w—v

To see this, it is enough to observe that we can assume, in the definit@y tiatz > 0
and then apply the mean value theorem to the function

T @@+tw) — P+ (T —Hw)
on the interval [Qf].

In the last part of this section, we provide an estimate of the right hand sife pf (4.2) in
a specific case.
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Let £2 be a bounded, open subset®¥, N > 2, and letg : 2 xR — R be a
Caratleodory function. Assume that there exist functiens a, and constant$ € R,
p > 2 such that

(4.3) lg(x, 5)| < ar(x) +bls|P7 L,
(4.4)  (g(x,5) — gx,D)(s — 1) = —(az(x) + bls|P~2 + b|t|P2)(s — 1),
fora.e.x € 2 and eveng, r € R, whereay € L2N/N+2(2), ap € LN/2(£2) andp < 2*

for N > 3,a1, a2 € L"(£2) for somer > 1 andp unrestricted folv = 2.
For every(x, s) € 2 x R, set

. . 3 t) — )
(4.5) D.g(x,s) = liminf w
(t,7)—>(s,8) t—T

The continuity ofs — g(x, s) implies that

. . ) t) — )
D,g(x,s) = liminf g s+ — g s+ T)
(t,7)—(0,0) t—1
1,7eQ
Therefore, for every measurable function £2 — R, the functionD,g(x, ») is measur-
able and satisfies, bly (4.4), the inequality

fora.e.x € 2 and every € R.

(4.6) D, g(x, u(x)) > —az(x) — 2blu(x)|P~2 fora.ex e 2.

Consider theo!-functional¥ : Hi(£2) — R defined by (u) = — [, G(x, u) dx, where
G(x,s) = [y g(x, 1) dt.

ProPOsITION4.5. If @3)and(@4)hold then for every, v € H}(£2), we have

) V'iz+tww —¥'(z +%w)w
limsup @ ) (2 ) < —/ D g(x, w2 dx < 0o
—=>u T—0 o
(r,9)—(0,0)
w—v

(we agree that-oco - 0 = 0).

PROOF The latter inequality follows from[{4]6). To prove the former, consider two
sequencesi,), (v,) in H&(Q) converging tou, v, respectively, and two sequendes),
(¥,) in R, with 7,, # 9, converging to 0. Up to a subsequence, we may also assume that
(u,) is convergent ta and(v,) is convergent t a.e. ins2.

By (@.4), for a.ex € £2 and eveng, 7, ¥, r € Rwith t # ¢, we have

(gx,s+7tr)—gx,s+0r)r
T—0

> —a(x)r? = bls + tr|P72r% — b|s + 9r|P %2,

whence

(g(x, up + thvn) — g(x, uy + Vyv,)) vy,
T — Uy

> —avz — blu, + tnv,,|"’_2vf — blu, + z?nv,,|'"—2v3.
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Moreover, for a.ex € £2 and every, s € R, we have

L. , — , 0

iminf (g(x,0 +10) —g(x,0 +D0))o
o—S T —19

(7,9)—(0,0)

o—r

= D, g(x, s)r?

with the conventiont-oo - 0 = 0.
By Fatou’s lemma the assertion follows. O
5. PROOF OFTHEOREM[Z.]
We consider the Nehari manifold
N = {u e H}(2)\ {0} : J'(w)u = O}.
This is a topological manifold as a consequence fif)—(f3) but not a differentiable
manifold in general. Regularity conditions ghwhich imply that\ is aC*-submanifold

of H}(£2) can be found in4]. Conditionfs) implies that, for every: € Hg(£2) \ {0}, the
map

1 LA
g :RT >R, Am —J’(ku)u:/ |Vu|2dx—/ Mud)c,
Y o PR

is strictly decreasing. Sinaa, 1) — g, () is continuous, the set
Oo:={u e Hol(.Q) \ {0} : gu(X2) < 0 < g, (A1) for some O< A1 < A2}
is open. Clearly, we hav®g = {Au : u € N, 1 > 0}. Foru € Oy, there exists a unique
Ay > Osuchthag,(r,) =0, thatis,u € N. Using the fact that, is strictly decreasing,
it is easy to check that the ma&py — R, u — A, is continuous. Setting
O:={ueHNR2):u",u™ e O},
we see that) C Hol(Q) is open and obtain
LEMMA 5.1. The maps
ho: N xRY = 0o, (u,)) = Au,

and
h:SxRTxRT - O, (u,s,1)— su”™ —tu",

are homeomorphisms onto open subgggsO of H&(.Q).
THEOREMS.2. Foreveryu € S and every, we have

Cr(sw) =Cp o(Ulsiuw) and Cr(J;u) = Cr—2(J 55 1).
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PROOF Letu € S and set
C_={svT—tv :veS,s>00<r<1},
C+={sv+—tv7:veS,s>0,t21}.
As a consequence of Lemrha .1, and observing fitet ™ — tu~) < J(u) whenever
(s, 1) # (1, 1), we have
C,(Jiu)=HveC_UCy: J(v) < J()} U {u},
freC_UCL:J() <JW))}).

Since we are working with Alexander—Spanier cohomology in a metric space, we have the
Mayer—Vietoris exact sequence for (relatively) closed sets
HYwec_:Jw) <JwUul,{fveC_:Jw <Jw)})
®H (veC, T <Jw)Uu},{veCy:Jw) <Jw))
> H"Yvec_nCr:J@w) <Jw)}Uful,fve C_NCq: W) < J)})
— H(fve C_UCL : J(v) < Jw)}U{u},{ve C_UC4 : J(v) < Jw)})
— Hk({v eC_:Jw) <Jw}U{ul,fvelC_:JWw <Jw)})
® Hk({v eCyr:JWw) <Jw)}U{ul,{veCyr:JW <Jm}).

It is easy to see thay € Cy : J(v) < J(u)} is a weak deformation retract of
fveCy:JW) < J)}U{u}. It follows that

HY(weC_NnCy:Jw) <JU{u},{veC_NCy:Jw) <Jw)})
= Hk({v eC_UCL+:JWw) <Jw)}U{ul,{veC_UCL:J() <Jwm)}).
Setting

D_={sv+—v_:veS,0<s§1},

D+={sv+—v_:v€8, s > 1},
we obtain in a similar way

Qkfz(‘”S; u)
~H"2((veD_NDy:JW) <JW}U{ul,{ve D_NDs:Jw) < Jm))})
*H"YvecC_NCr:J@) <JW)}Uful, {fve C_oNCy:J@) < JW)}),

hence the assertion concerning the critical grotipgollows.
The assertion concerning the critical growpscan be proved in a similar way. O

COROLLARY 5.3. Letu € S be alocal minimum of |s. Then

Co(Js;u)=R, Cp(J;u)={0} foreveryk # 2.
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PrROOF By the dimension axiom, we have
ColJls;u) =R, Cr(Jls;u) ={0} fork # 0.
Then the assertion follows from Theorém|5.2. O
PROOF OF THEOREM[2.1. From Corollary 5]3 it follows tha€,(J; u) is not trivial.
Thereforeu is a free critical point of/. This fact can also be proved arguing aslih [5,
Proposition 3.1].
Assume now, for a contradiction, that(J; ©) > 3 and consider a finite-dimensional

subspace/ of HC}(Q) with dimV > 3 such thai),, is strictly negative orV \ {0}. From
Corollary[4.3 we deduce that,(J; u) is trivial, and a contradiction follows. O

6. PROOF OFTHEOREM[Z.2

From assumptiony2) and using Young's inequality, it readily follows thétsatisfies[(4]3).
Moreover, assumptio(yfs) implies that

fx.9) - fx.0) x5

s —1 N

fora.e.x € 2 and every, t € R with eitherO<s <rorr <s <0.
Combining this fact with assumptid(y>), it is easy to show thaf satisfies alsq (4]4).
Finally, if we defineD, f as in [45), we have

(6.1) D, f(x,s) > —a(x) — b|s|P~2 fora.e.x € 2 and every € R.
PROPOSITIONG.1. Foreveryu,v € H&(Q), we have

0. = [ voitdx~ [ D, wn?ax < o0
2 2
(again, we agree thatoo - 0 = 0).
PrROOF. This follows from Remark4]4 and Propositjon}4.5. O

Now we consider the particular case in whighis a ball or an annulus centered at the
origin of R¥, N > 2, andf : R — R is an absolutely continuous function. Singds
independent of, we may assume thatin hypothesiq f>) is a constant. In particular, the
estimate[(6]1) takes the form

(6.2) D, f(s) > —a—b|s|P~2 foreverys € R.

LEMMA 6.2. Letu € H&(Q) be a radial, sign-changing solution @&.7)and let
21 ={x e 2 :x1 <0}

Then there exists Hol(.Ql) such that

/ |Vv|2dx —/ st(u)vzdx < 0.
21 21
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PROOF. From regularity theory we know thate C1*(2) N W24(£2) for everya < 1
and everyy < oo.
By contradiction, assume that

(6.3) / [Vv|? dx —/ D, f(uyv?dx >0 foreveryv € H}(£21).
21 21

Since

1 2
=D, fu)(v—w)*,

_1 2 _
D, fwvw = 4st(u)(v+w) 22

by (6.3) and[(6B) it follows that
D, fwvw € LY(21) foreveryv, w € Hy(21),

and there exists a constafit> 0 such that

(6.4)
/ D, fwvwdx
21

<C vl llwll foreveryv, w € H}(£21).

Sinceu is radial and sign-changing, there exists an opemwsetC §2 such thatD,,u =0
ondw, D1 = £1 Nw # ¥, and eitherD,u > 0 or D,,u < 0 onw. Consequently, we
haveD,,u € Hj(D1).

From [6.4) it follows thatD, f (u)Dy,u € Llloc(Dl). Combining [2.11) with [[177,
Corollary 8], we deduce that

Su)Dyvdx =/ D, f(u)Dyuvdx

/ V(Dyu)-Vvdx = —
Dy D1

D1

for everyv € C2°(D1), hence, by[(6]4), for every e Hol(Dl). In particular, we have

f |V(Dyyu)|? dx = / D, f (u)(Dyu)®dx.
D D1

If we consider the function
Dy,u onDxy,
Z =
0 on$21\ w,

we see that € Hi(£21) and
/ |Vz|2dx —/ st(u)zzdx =0.
21 21
Combining this fact with[(6]3) an{l (§.4), we deduce that
/ Vz-Vuvdx —/ D,f(w)zvdx =0 foreveryv € H&(Ql).
21 21
If z> 0, (6.2) implies that

/ Vz-Vvdx+ | (a+blulP"?zvdx >0 foreveryv € H}(£21) with v > 0,
o o
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hencez is a nonnegative supersolution of
(6.5) —Aw + (a + blulP"?w = 0.

Sincez = 0 at any point of2; N dw, but not in a neighborhood, from the weak Harnack
inequality (see e.gl [13, Theorem 8.18]) a contradiction followg. ¥ 0, we proceed
analogously. 0O

ProoOF OFTHEOREM[Z.J. Ifu does not change sign there is nothing to prove. Thus we
may assume that := nodu) > 2. Let2 = A(r, R) = int{x € RN : r < |x| < R} with
O<r<R,andletr =rg<ri <--- <ry_1 <r, = Rbesuchthatd; = A(ri_1, i),
i = 1,...,n, are the nodal domains af We consider the domaing;, = A(r;_1, ri+1)
andB;; =f{x € B; :x; <0,i=1...,n—1,j=1,...,N. Thenu € H}(B;) is a
radial, sign-changing solution efAu = f(u). By Lemm there exists; H&(B,-j)
with
/ Vi |1* dx —f D, f (v} dx < 0.
ij Bij
If we set
ax = mMin{D; f (u), k},

we havey; € L*°(£2) by (6.3). By the monotone convergence theorem, there existil
such that

/ |Vv,-j|2dx—/ akvizjdx<0, i=1...,n=-1 j=1,...,N.
i Bi;

Therefore the first eigenvalue efA — oy on B;; with homogeneous Dirichlet condition

is strictly negative. Let);; be an associated eigenfunction. If we exteng to all of B;

as an odd function with respect.tg, we get a sign-changing eigenfunctipn e H&(B,-)

of —A — a4 on B; with homogeneous Dirichlet condition and strictly negative eigenvalue.
Let alsog;g € Hol(Bl-) be a positive eigenfunction efA — a4 on B; with homogeneous
Dirichlet condition; of course the associated eigenvalue is also negative. If we extend each
¢;; to all 22 with value 0 outsideB;, we find that the quadratic form

wr—)/ |Vw|2dx—/ aszdx
2 2

is negative definite on
Vi=sparg;:i=1....,n—1, j=0,...,N} C H}(2).

By construction, they;;’s are linearly independent, hence df) = (n — 1) - (N + 1).
Since

Qu(w)S/ |Vw|2dx—/ st(u)wzde/ |Vw|2dx—/ aszdx,
2 2 2 2

the assertion follows. O
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7. PROOF OFTHEOREM[3.]]

We consider the functional$, B : E = H&(Q) — R defined by
A(u) = / |[Vul?dx and Bu) = f (alut|? + blu~|?) dx.
2 2
ThenA € C*®(E) andB € C1(E) with
B (w)v = 2/ (au™™ = bu v dx.
2

In particular, B’ is Lipschitz continuous. Clearly, every € R \ {0} is a regular value
of B, soM := B~1(1) is a Cl-submanifold of codimension 1. A solutian # 0 of
(3:7) yields a critical point1//B(u))u € M of the constrained functiona|( with

A = A(u)/B(u), the Lagrange multiplier. Conversely, any critical paint M of A| 4
solves|[(3L) withh. = A(u). Also, nontrivial solutions of (3]1) correspond to critical points
of A/B: E \ {0} - R. For anyu € M, we consider the functional

O, : Ty M={veE:Bwv=0 - R,

0., () :=limsu 1 A( +z4+1¢ )+A( + tw) 2A( +2)
ulV) (= Z_)OptZBu Z w BM Z w Bu Z ,

t—0
w—v

wherez, w € T, M, t € R. Analogously to Sectiof]2, we denote by A/B; u) the
supremum of the dimensions of the linear subspaces 7, M such thatQ, is strictly
negative onv \ {0}. We shall prove:

PROPOSITION7.1. If C,(A|p; u) # Othenm(A/B; u) < k.
PROPOSITION7.2. If u € M solves@.T)with » = A thenC,(A|nq; u) # O.
These two results do not requif2 to be radial.

PROPOSITION7.3. If £2 is a ball or an annulus, and if is a radial solution of (3.7)),
thenm(A/B; u) > (nodu) —1) - (N +1) — 1.

Clearly, Theorerp 3|1 follows from these propositions.

PrROOF OFPROPOSITION7.]. Fore > 0 small the map
u-+v
VBu+v)’

defines aCl-diffeomorphism ofU, onto the open neighborhodd := k. (U,) of u in M.
It follows that

he U =veT,M:|v| <e}—=> M, hg):=

Cr(Alp;u) = Cr(Aohg; 0).

SinceA o he(v) = 4(u + v) we deduce tha€' (A o he; 0) = C (%4 o Tlr, M. 0) Where
7,(v) = u + v. Propositiorj 71 follows now from Corollafy 4.3. O
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PrRoOF oOFPROPOSITION7.J. This follows from the fact that a solutiane M of (3.1)
with A = Az is a critical point ofA| o4 of mountain pass type. For the proof set

I''={y e (0,1, M) :y(0) =0, y(1) <0}
It has been proved in[2] that

A(u) = = inf A .
() =12 = Inf._max A(y ()

Now, the path

_ cos(m/Z)MJr B Sin(nt/Z)u_

y(@): , O0=<r<1,
VBuh) VBu)
satisfiesy (0) > 0,y (1) < 0, and
_coS(wt/?) . siP(mt/2)
B(y(@®) = WB(M )+ WB(M ) =1

hencey(t) € M andy € [I'. Moreover, sincex solves [(3]L), it follows that
A@u*/\/BuT)) = A and therefored(y (1)) = 1 for all r € [0, 1]. It is also easily seen
that there exists onec 10, 1[ with y (f) = u and thaty (¢) is not a critical point ofA | A for
anyr # 7. SinceB is C1 with Lipschitz gradient and is smooth, we may deform =: yo
on M, using the negative gradient flow fa| o, to a pathy; such thatA(y1(r)) < A2
for all ¢ € [0, 1] with ¢ # 7. After the deformation one still hag (0) > 0, y1(1) < 0.
This follows from the fact thaV (A|a¢) () = u — K (1) andK is order preserving as a
consequence of the maximum principle. Thus we have provedihatl".

Now, y1(0) andy1 (1) cannot be connected by a pathdn’2 := {v € M : A(v) < Ap}.
Since this is an open subset of a manifold, we infer th&0) andy1(1) lie in different
components ofA<*2, On the other handy;(0) and y1(1) are connected M <*2 U {u}
by y1. According to [18, Theorem 6.4.5H°(A<*2) contains a nontrivial element that
does not come fromi’%(A<*2 U {u}). By the exact sequence

HO%A*2 U {u}}) > H°(A<*2) > HY(A*2 U {u}, A<*2)
we conclude tha€, (A|a; u) = HY(A<*2 U {u}, A<*?2) is not trivial. O

In order to prove Propositign 7.3, we compag with the quadratic form
P,:E—-R, P,v):=AW)— A(u)- / (ax+ + bx— + min{a, b}xo)vzdx;
2

here x4 is the characteristic function of the st € £ : f+u(x) > 0} and xg is the
characteristic function of the sgt € 2 : u(x) = 0}.

LEMMA 7.4. Foreveryu € M andv € T, M, we haveQ,(v) < 2P, (v).
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PROOF ltis clear that, for everyt, v € Hol(.Q) with u # 0, we have

A\ 1 N Au) B

It follows from Remark 4 4 that, for every € M andv € T, M, we have

B'(z+ tw)w — B'(z + dw)w
-0 '

(7.1) Qu(v) < 2A(v) — A(u)  liminf

(7,9)—(0,0)
w—v

We also used the fact th&' (u)v = 0 foru € M andv € T, M. On the other hand, if we
setg(s) = as™ — bs™, itis easily seen thaf (4.3) ar{d (B.4) are satisfied and

b if s <O,
D,g(s) = { min{a,b} ifs=0,
a if s > 0.

From Propositiofi 4]5 we deduce that

B'(z4+ tw)w — B'(z + dw)w
T—0

(7.2)  liminf

(7,9)—(0,0)
w—v

> 2/ (ax+ + bx— + min{a, b} x0)v? dx.
2

Combining [[7-11) and (7] 2) the assertion follows. O

PROOF OF PROPOSITION[7.3. We argue as in the proof of Theorém]|2.2. &t=
Ar,R) '=int{x e RN :r < |x| < R},andletr =rg <ry < --- <rp_1 <7, =R

be such thatd; = A(ri_1,r;),i = 1,...,n = nod(u), are the nodal domains af As
before we seB; = A(r,_1,riy1) and B;; = {x €B 1x; <0,i=1...,n-1,
Jj=1,...,N. And we definev; := Dy,u € cLo(2). Sinceu is radial, it has constant

sign near the outer bounda#y(B;) = {x : |x| = ri+1}. If u < 0 neard,(B;) we set
2;; := {x € B;j 1 vj(x) > 0}, so that; € Hj(2;;). Differentiating [3.1) we see thaj is
a weak solution of

—Av = plax+ +bx—)v inD,

7.3
(7:3) v=20 onoD,

onD = £;; with u = A = A(u). Let ux (D), k € N, denote the eigenvalues ¢f ([7.3)
counted with multiplicities.
We have just proved that

m1(Bij) < pa(2i)=A, i=1...,n=-1, j=1...,N.

Lety;; > 0 be a positive eigenfunction ¢f (7.3) @ = B;;. Extendy;; to ¢;; : B; - R
so thaty;; is odd inx;. Theng;; is a sign-changing eigenfunction ¢f (7.3) bn= B; with
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corresponding eigenvalye = u1(B;;) < A. Letg;o be a positive eigenfunction df (7.3)
on D = B; and set

V=sparigj:i=1...,n—1 j=0,...,N} C H}(£2).

Then dim(V) = (n — 1) - (N + 1) because the functions; are linearly independent by
construction. It follows that the quadratic form

E — R, v»—)/|Vv|2dx—A/(aX++bx_)v2dx,
Q 2

is negative definite o . This implies thatP, is negative definite oy N 7, M, henceQ,
is negative definite o N 7, M by Lemmd 7.4, and we obtain

m(A/B;u) >dm(VNT,M)>mn—-1) - (N+1) -1
=(modu)—1) - (N+1 -1 a
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