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Solid mechanics.— A theory of plastic splashing, by PIERO V ILLAGGIO .

ABSTRACT. — The fall on the ground of a highly deformable body is followed by a remarkable spread of the
material on the plane of fall. Here we propose a model for determining the extent of the splashed mass and the
time of arrest after the first contact with the ground.
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1. INTRODUCTION

When a perfectly plastic body falls on a rigid ground it tends to spread horizontally along
the surface of impact and, at the same time, to flatten in the vertical direction. Since the
material is plastic, the body will maintain its final configuration after the impact ceases.
If the squeeze is relevant, we call the phenomenon “squashing” and observe it when, for
instance, a rotten fruit falls on the floor, an avalanche reaches the foot of a mountain, or a
block of ductile metal is dynamically forged as described by Thomsenet al. [8, Ch. 14].

A rigorous theory of splashing is prohibitively difficult since the rapid change of shape
of the splashing body occurs by propagation of plastic waves inside the material. But to
account for plastic waves is hard even for one-dimensional bodies. In order to simplify the
problem a semi-statical theory of impact is commonly accepted. It is based on an energy
balance between the initial kinetic energy and the dissipation energy spent at the end of
splashing. But this approach too is not easy since it requires the construction of a stress-
strain field satisfying equilibrium, plasticity conditions, and incompressibility at the same
time.

However, it is possible to avoid these technical difficulties by treating the splashing
of bodies of relatively simple geometry and applying the so called method of “uniform
energy” in metal processing (Thomsenet al. [8, 10.3]). We consider the vertical fall of
a circular disk of given radiusa0 and given heighth0 (Fig. 1(a)) onto a smooth rigid
horizontal plane. Since the material is perfectly plastic the kinetic energy of the falling
body, endowed with a velocityu0, will be converted into plastic dissipation energy and
the disk will assume a new squeezed configuration with a smaller heighth1 and a larger
radiusa1. These quantities are unknown, but the condition of incompressibility requires
πa2

0h0 = πa2
1h1. Also the time taken by the disk to reach the splashed shape (b) is

unknown.
The treatment of impact problems by equating the energies of an elastic body before

and after the first instant of collision was first introduced by Cox [2] in his approximate
theory of longitudinally struck rods. The extension of Cox’s method to plastic materials is
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FIG. 1. (a) The disk just before the impact. (b) The completely splashed disk.

immediate for rods, but it is not easy for three-dimensional bodies. The method of uniform
energy offers an ingenious device for overcoming this difficulty.

It may appear that a so simplistic theory applied to a particular geometry catches only
the order of magnitude of the expected effects and not their exact values, but a comparison
with experiments done on the impact of projectiles on rigid targets show that the theoretical
previsions are also accurate. A less precise answer can be instead expected for the fall of
avalanches, which are described by a different mathematical model. But even in this case
the outcome of the uniform energy method is in surprising accord with observations.

2. BASIC ASSUMPTIONS AND ENERGY BALANCE

As soon as the lower face of the disk touches the rigid plane, stresses and strain arise in the
interior of the disk, but their exact evaluation is impossible. Hence some assumptions are
expedient.

Let us consider the disk in its final splashed state shown in Fig. 1(b). With reference to
a system of cylindrical coordinates having the originO placed at the centre of the bottom
face, thez-axis coinciding with the axis of the disk, and ther, θ-axes placed on the plane,
the cylindrical disk occupies the region 0≤ r ≤ a, 0 ≤ z ≤ h1, 0 ≤ θ ≤ 2π . We
assume the strain state to be defined by three normal strain componentsεr , εz, εt in the
r, z, θ directions respectively. Since these strains are large it is convenient to define them
in the logarithmic form (cf. Thomsenet al. [8, p. 60])

(1) εz = ln
h1

h0
, εr = εt = ln

a0

a1
.

Note that the hypothesis of conservation of volume (πa2
0h0 = πa2

1h1) yields

(2) ln
h1

h0
+ 2 ln

a0

a1
= 0,
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or

(3) εt = εr = −
εz

2
.

After the first contact a state of stress arises in the disk. Its exact evaluation is again
involved, since, beside the (dynamic) field equations, also the boundary conditions on the
faces must be satisfied. However, in order to avoid these difficulties we consider the simple
distribution of stresses

(4) σz = C = const, σr = σt = τ = 0,

which satisfies the (statical) field equation but not all the boundary conditions. In particular,
σz = C = const violates the expected requirement thatσz vanishes on the upper face
z = h1, that is free. The constantC in (4) must be determined by the condition of plasticity.
If the material obeys the Huber–Hencky criterion of plasticity (see Nadai [5, p. 210]), the
condition is

(5) σz = C = −σV0,

whereσV0 is a material constant. The negative sign indicates thatσz is a compression.
In order to evaluate the dissipation energy it is first necessary to write the stress deviator

associated with the stress state (4):

(6) σ ′
r = σ ′

t =
1

3
σV0, σ ′

z = −
2

3
σV0, τ ′

= 0.

Hence the dissipation energy per unit volume is (cf. Szabó [7, §16])

dWp = σ ′
zεz + σ ′

rεr + σ ′
t εt ,

and the total dissipation energy is

(7) Wp =

∫ ∫ ∫
V

(σ ′
zεz + σ ′

rεr + σ ′
t εt )dV,

whereV (= V0) denotes the volume. Substitution of (1) and (6) into (7) yields

(8) Wp = σV0

[
−

2

3
ln

h1

h0
+

2

3
ln

a0

a1

]
V0 = −σV0πa2

0h0 ln
h1

h0
.

On the other hand, the kinetic energy of the disk before the impact isT =
1
2ρV0u

2
0,

whereρ is the density andu0 the velocity. Since conservation of energy requires the
equation

T0 =
1

2
ρV0u

2
0 = Wp = −σV0V0 ln

h1

h0
,

we obtain

(9) h1 = h0 exp

(
−

ρ

2

u2
0

σV0

)
.
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As a numerical illustration let us consider the fall of a cylindrical mass of initial height
h0 = 1 m, radiusa0 = 1 m, velocityu0 = 10 m/sec, densityρ ∼ 102 Kg sec2/m4 (the density
of water), and yields stressσV0 = 104 Kg/m2 (that of a soft clay; Schleicher [6, p. 42]).

Then formula (9) givesh1 ' e−1/2 = 0.606 m, anda1 = a0

√
h0
h1

' 1.285 m.
It is interesting to compare this result with the outcomes of the experiments performed

by Taylor (cf. Goldsmith [3, p. 187]) on lead bullets fired against an armor plate. For lead
we takeρ ∼ 103 Kg sec2/m4, σV0 = 5 · 106 Kg/m2. For a lead cylinder, fired with velocity
v0 = 102 m/sec against a rigid target, the ratioh1/h0 is about 0.5, wheras formula (9) yields
the value 0.330.

3. THE TIME OF SPLASHING

The energy method gives the values of the dimensions of the disk (h1, a1) at the end of the
process of splashing, but does not estimate the velocity with which splashing propagates.
In order to answer this question it is necessary to make recourse to the momentum balance
equation with respect to the vertical motion (parallel to thez-axis) of the disk. Let us
concentrate the mass of the body in its instantaneous center of massr = 0, z = h(t)/2
(Fig. 1(b)) whereh(t) is now a function of time. The reacting force, according to (5), is
P = −σV0πa2. Hence the equation of motion is

(10) M
ḧ

2
+ P = ρπa2h

ḧ

2
+ σV0πa2

= 0,

which can be reduced to

(11) ḧ +
2σV0

ρ

1

h
= 0,

with the initial conditionsh(0) = h0, ḣ(0) = u0. The implicit solution of (11), taking
account of the initial conditions, is

(12)
∫ h0

h

dh√
u2

0 −
4σV0

ρ
ln h

h0

= t,

and the timeT at whichh reaches its final valueh1 is given by

(13)
∫ h0

h1

dh√
u2

0 −
4σV0

ρ
ln h

h0

= T .

The integral on the left hand side of (13) is not elementarily calculable, but may be roughly
estimated from above and below (cf. Kauderer [4, §43]). Since the logarithmic term under
the square root is positive and satisfies the inequalities

0 ≤ − ln
h

h0
≤ − ln

h1

h0
=

ρ

2

u2
0

σV0

,
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we obtain from (13) the upper bound

T +
=

∫ h0

h1

dh

u0
=

h0 − h1

u0
=

h0

u0

(
1 − exp

(
−

ρ

2

u2
0

σV0

))
,

and the lower bound

T −
=

∫ h0

h1

dh√
u2

0 −
4σV0

ρ
ln h1

h0

=
h0 − h1
√

3u0
=

h0
√

3u0

(
1 − exp

(
−

ρ

2

u2
0

σV0

))
.

It may be useful to exemplify these formulae with the numerical data chosen at the end
of Section 2. The bounds are

T −
= 0.0227 sec, T +

= 0.0394 sec.

The surprising conclusion deriving from these rough estimates is that complete
splashing occurs in a short time even for relatively soft bodies like that considered in the
example. The time of complete arrest has the order of magnitude of three hundredths of
a second. With the same numerical data we find that the mean horizontal propagation
velocity of the disk is about 10 m/sec, which explains,inter alia, the rapid spread of
avalanches. The measured value of the propagation velocity of the edge of an avalanche in
the deposition zone ranges from 8 to 20 m/sec (cf. Bozhinskiy and Losev [1, p. 175]).
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